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CHAPTER 1

INTRODUCTION

The fixed point theory of self-mappings in metric spaces has been widely stud-
ied since almost a century ago, when S. Banach [1] presented a famous theorem
which becomes a powerful tool in nonlinear analysis known as Banach contraction
principle. Later in 1969, R. Kannan [2] proposed a fixed point theorem called
Kannan fixed point theorem. It is noted that the theorem is not an extension of
Banach contraction principle.

There are many generalizations of Banach contraction principle, one of those
was shown by T. Suzuki [3] in 2008. He proved that the conclusion is still true
if the contraction criteria of 7" in Banach contraction principle is replaced by a
certain weaker condition. Also M. Kikkawa and T. Suzuki [4] proved a theorem
which can be applied to a wider class of mappings than that of Kannan.

In 1975, P.V. Subrahmanyam [5] proved that Kannan fixed point theorem
characterizes the completeness of metric spaces, which is state that a metric space
X is complete if and only if every Kannan mapping on X has a fixed point. On
the other hand, E.H. Connell [6] showed that Banach contraction principle cannot
characterize completeness of metric spaces by giving an example of a metric space
which is not complete and every contraction mapping on the space has a fixed
point. However, in 2008 T. Suzuki [3] established a theorem that characterize the
completeness of the metric space.

In this work, we investigate the conditions of Suzuki and Subrahmanyam in

cone metric spaces.



CHAPTER II

PRELIMINARIES

In this chapter, we review some notations, terminologies, and fundamental
facts that will be used thoughtout our work. The symbols R, R* R stand for
the set of real numbers, the set of positive real numbers and the set of nonnegative

real numbers, respectively.

2.1 Metric Spaces

Definition 2.1.1. A metric on a nonempty set X is a map d : X x X — R such

that the followings hold for any z, y, z € X :-
(i) d(x,y) = 0 if and only if = = v,
(i) d(z,y) = d(y, ),
(iii) d(z,2) < d(z,y)+d(y, 2).

If d is a metric on X, then the space X with the metric d is called a metric

space and denoted by (X, d).

Remark 2.1.2. From the conditions above, we have for each x,y € X,
0=d(z,z) <d(z,y) +d(y,z) = d(z,y) + d(z,y) = 2d(z,y);

i.e. d(x,y) > 0. Therefore d: X x X — R{.



Definition 2.1.3. Let (X, d) be a metric space, p € X and E C X.

(a) A neighborhood of p is a set N, (p) consisting of all ¢ € X such that d(p,q) < r

for some r > 0. The number 7 is called the radius of N,(p).

(b) p is a limit point of E if every neighborhood of p contains ¢ € E such that
q 7 p.

(c) E is closed if every limit point of F is in E.
(d) pis an interior point of E if there is a neighborhood N of p such that N C E.
(e) The interior of E, intF, is the set of interior points of E.

Definition 2.1.4. A sequence on a nonempty set X is a function from N into X.

The sequence {(n,z,) : n € N} will be denoted by (z,,).

Definition 2.1.5. A sequence (z,) in a metric space (X, d) is said to converges if
there is x € X with the following property: For every € > 0 there is N € N such
that n > N implies that d(z,,x) < €.

In this case we also say that (z,) converges to x, or that x is the limit of (z,,).
and we write

T, —x or lim z, =x.

n—oo

If (z,,) does not converge, it is said to diverge.

Definition 2.1.6. Let (z,,) be a sequence in X. A subsequence (z,, ) of (z,) is a

mapping k — x,, where (n;) is a strictly increasing sequence in N.

Theorem 2.1.7. Let (x,) be a sequence in a metric space X and x € X. Then

(x,) converges to x if and only if every subsequence of (x,) converges to .



Definition 2.1.8. Let (X, d) be a metric space. A sequence (x,,) in X is called a
Cauchy sequence if for each € > 0 there is N, € N such that d(z,,,z,) < € for any

m,n > N..

Definition 2.1.9. A metric space (X, d) is said to be complete if every Cauchy

sequence in X converges to a point in X.
Theorem 2.1.10. Fvery closed subset of a complete metric space is complete.

Definition 2.1.11. Let X be a real vector space. A function || - || : X — [0, 00)

is said to be a norm on X if the followings hold for any x,y € X and ¢ € R :-

(i) ||z]] = 0 if and only if x =0,

(if) ezl = lelll=ll,
(i) flz +yll < =zl + llyll-
A vector space equipped with a norm is called a normed (linear) space.
Theorem 2.1.12. Let X be a normed linear space. Then the function
d: X xX —[0,00) defined by
d(z,y) = |z =yl

forany x,y € X is a metric on X. The metric d defined above is called the metric

induced from the norm || - ||.

Definition 2.1.13. A Banach space is a normed linear space which is complete
with respect to the metric induced from the norm.
2.2 Fixed Point Theorems on Metric Spaces

Definition 2.2.1. Let X be a set and A C X. A point a € A is called a fixed

point of a mapping f: A — X if a = f(a).



Definition 2.2.2. Let (X, d) be a metric space. A self-mapping 7' : X — X is

said to be
(i) a contraction map if there is r € [0,1) such that for each z,y € X,

d(Tx,Ty) < rd(z,y).
(ii) a contractive map if for each z,y € X such that = # y,
d(Tz, Ty) < d(z,y).
(iii) a Kannan map if there is r € [0, %) such that for each z,y € X,
d(Tz,Ty) <r(d(z,Tx)+d(y,Ty)) .
There are some well-known results that guarantee the existence of the fixed
point of a certain kind of self-maps on a metric space.

Theorem 2.2.3. (BANACH CONTRACTION PRINCIPLE [1]) Let (X, d) be a com-

plete metric space and T a contraction on X. Then T has a unique fixed point.

Theorem 2.2.4. ([1]) Let (X,d) be a compact metric space and T a contractive

on X. Then T has a unique fized point.

Theorem 2.2.5. (KANNAN FIXED POINT THEOREM |[2]) Let (X, d) be a complete

metric space and T a Kannan mapping on X. Then T has a unique fized point.

Theorem 2.2.6. [5] Let (X, d) be a metric space in which every Kannan mapping

on X has a fized point. Then X is complete.

Theorem 2.2.7. [3] Let (X, d) be a metric space. Define a nonincreasing function

0 : [0,1)—>(%,1] by
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Then the followings are equivalent:
(i) X is complete,

(ii) every self-mapping T on X satisfying the condition that there exists r € (0, 1]

such that for each x,y € X,
O(r)d(z, Tx) < d(z,y) implies d(Tz,Ty) < rd(z,y),
has a fixed point.

Theorem 2.2.8. [4] Let (X, d) be a complete metric space. Define a nonincreas-

ing function r : [0,3) — (3,1] by

1
1—r ,Hﬁgr

A\

Let T be a self-mapping on X satisfying the condition that there exists r € |0, %)

such that for each x,y € X,
o(r)d(z, Tx) < d(z,y) implies d(Txz,Ty) < rd(z,Tx)+rd(y, Ty).

Then T has a unique fixed point.

2.3 Cone Metric Spaces

The notion of cone metric spaces was first introduced by L.G. Huang and Z.

Xian [7] in 2007. The definition of cone metric space is precisely stated as follows.

Definition 2.3.1. Let E be a real Banach space. A subset P of E is called a

cone if the followings hold:



(i) P is closed, nonempty and P # {0};
(ii) a,b € R;a,b >0 and z,y € P imply that ax + by € P;
(iii) z € P and —z € P imply that z = 0.

The followings are examples of cones in some well-known Banach spaces.

Example 2.3.2. (i) P, = {(z1,29,...,2,) € R" : 2, > 0,Vn} and

Py ={(x1,29,....,2,) € R" : 2, <0,¥n} are cones in R".
(ii) P ={f € Cr([0,1]) : f > 0} is a cone in Cg([0, 1]) with the supremum norm.

(iii) P = {(z,) €' : 2, > 0,Yn} is a cone in ! with {! norm ||z| = Z |2,

n=1

Given a cone P C F, we define a partial ordering < on E with respect to P
by

r =y ifand onlyif y—x¢€ P.

We write © < y to indicate that < y and # # y, while x << y will stand for

y — x € int P, where int P denotes the interior of P.

In our work we consider a cone P with nonempty interior. To study the
properties of a cone metric, the following properties of cone P are useful. We

state here as a remark. The proof is straightforwardly.
Remark 2.3.3. For any cone P of a Banach space,
(i) intP + intP C intP,
(ii) AintP C intP, for all A > 0,

(iii) P+ intP C intP.



Definition 2.3.4. The cone P is said to be normal if there is a number K > 0

such that for all x,y € F,
0 <z <y implies ||z]| < K [jy]|.

The least positive number K satisfying the above condition is called the normal

constant of P.

Example 2.3.5. The set P = {(z,y) € R? : 2,y > 0} is a normal cone in R?

with normal constant K = 1.

Example 2.3.6. P = {f € Cg([0,1]) : f > 0} is a normal cone in Cg([0, 1]) with

normal constant K = 1.

Proposition 2.3.7. [8] For every normal cone, its normal constant must not be

less than 1.

Proposition 2.3.8. [8] For each m > 1, there is a normal cone with normal

constant K > m.
The following example shows that there exists a non-normal cone.

Example 2.3.9. Let £ = Cg([0,1]) with the norm || f|| = || f|l., + [|f]l., where
|lglloc = sup |g(t)| and consider the cone P = {f € E: f > 0}. For each k > 1,
te(0,1]

put f(x) =z and g(z) = 2%*. Then 0 < g < f, || f|| = 2 and ||g|| = 2k + 1. Hence

E|lfll < |lgl]. Therefore P is a non-normal cone.

By the notion of cone defined above, L.G. Huang and Z. Xian [7] introduced

the cone metric spaces.

Definition 2.3.10. Let E be a Banach space with a cone P, < the partial ordering
on F with respect to P. Let X be a nonempty set. Suppose the mapping d :

X x X — F satisfying the following properties for each z,y, z € X:



(i) d(x,y) = 0 if and only if z = y;
(i) d(z,y) = d(y,z);
(iii) d(z,y) 2 d(x,z) +d(z,y).

Then d is called a cone metric on X (with respect to the cone P) and the pair

(X, d) is called a cone metric space.

Remark 2.3.11. From the above definition, we have for each x,y € X,
0 =d(z,z) 2d(z,y) +d(y, x) = d(z,y) + d(z,y) = 2d(z, y);
ie. 0 X d(z,y). Therefore d: X x X — P.

Remark 2.3.12. If £ = R and P = R, then cone metric space is obviously a

metric space with metric d.

Example 2.3.13. Let P = {(z,y) eR? : 2,y >0}, X =R, d: X x X — R?
defined by d(z,y) = (|]z — y|, ]z — y|), where @ > 0 is a constant. Then (X, d) is

a cone metric space.

Example 2.3.14. Let E =", P = {(z,) € E : x, > 0,Vn € N}, (X, p) a metric
space and d : X x X — FE defined by d(x,y) = <%> Then (X,d) is a cone

metric space.

Next, the definitions of convergence in cone metric spaces are presented. Some

properties of convergent sequences in the spaces are proved by Huang and Xian

7).
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Definition 2.3.15. Let (X, d) be a cone metric space, x € X and {x,} a sequence

in X. Then

(i) {z,} converges to x whenever for every ¢ € E with 0 << ¢ there is N € N
such that d(x,,r) << ¢ for all n > N. If this is the case, we denote by

lim x, =z or x,, — x. The point z is called a limit of {x,}.
n—oo

(ii) {z,} is a Cauchy sequence whenever for every ¢ € E with 0 << ¢ there is

N € N such that d(z,, z,,) << ¢ for all n,m > N.

(iii) (X, d) is complete if every Cauchy sequence in (X, d) is convergent to a point

in X.

Lemma 2.3.16. [7] Let P be a normal cone with normal constant K and (X, d)

a cone metric space. Let {x,} , {y,} be two sequences in X. Then
(i) nh—>r{>lo x, = x if and only anh—{rolo d(zp,z) = 0.
(i) If {x,} is convergent, then the limit of {x,} is unique.

(ii) If {x,} is convergent, then {x,} is a Cauchy sequence.

(v) {x,} is a Cauchy sequence if and only if mlrlLllloo d(xpm, x,) = 0.

(v) If lim z, =z and lim y, =y, then lim d(x,,y,) = d(z,y).

Definition 2.3.17. Let (X, d) be a cone metric space. If every sequence in X has
a convergent subsequence, then X is called a sequentially compact cone metric

space.

The Banach contraction principle and Kannan fixed point theorem in cone

metric spaces were also established in [7].
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Theorem 2.3.18. [7] Let P be a normal cone with normal constant K and (X, d)
a complete cone metric space. Suppose the mapping T : X — X satisfies the

condition that there exists r € [0,1) such that for each z,y € X,
d(Tz,Ty) 2 rd(z,y).
Then T has a unique fixed point in X .

Theorem 2.3.19. [7] Let P be a normal cone with normal constant K and (X, d)
a complete cone metric space. Suppose the mapping T : X — X satisfies the

condition that there exists r € [0, %) such that for each x,y € X,
d(Tx,Ty) = r(d(x,Tx) +d(y,Ty)) -
Then T has a unique fized point in X.

They also proved the fixed point theorem for nonexpansive mappings in cone

metric spaces, which is stated as follows.

Theorem 2.3.20. [7] Let P be a normal cone with normal constant K and (X, d)
a sequentially compact cone metric space. Suppose the mapping T : X — X

satisfies the condition that for each x,y € X and x # v,
d(Tz, Ty) < d(x,y).
Then T has a unique fized point in X.

In 2009, S. Radenovic [9] presented the fixed point theorems for the class of

mappings satisfying a contractive condition in cone metric spaces.
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Theorem 2.3.21. [9] Let P be a normal cone with normal constant K and (X, d)
a complete cone metric space. Suppose the mapping T : X — X satisfies the

condition that there exists r € [0,1) such that for each z,y € X,
|d(Tz, Ty)|| < r|ld(z, y)]l-
Then T has a unique fixed point in X .

Theorem 2.3.22. [9] Let P be a normal cone with normal constant K and (X, d)
a complete cone metric space. Suppose the mapping T : X — X satisfies the

condition that there exists r € [0, %) such that for each x,y € X,
|d(Tz, Ty)ll < r (ld(z, T)[| + |ldCy, Ty)l) -

Then T has a unique fized point in X.



CHAPTER III

MAIN RESULTS

In this chapter, we present the fixed point theorems in cone metric spaces
which are analogous to Theorem 2.2.7 and Theorem 2.2.8. A characterization of

completeness in cone metric spaces is also given.

3.1 Fixed Point Theorems

The results in this section were inspired by Theorem 2.2.7 which stated that
in any complete metric spaces X every self-mapping T on X satisfying a certain
weaker contraction condition always has a fixed point. To prove the theorem, we

need the following lemma.

Lemma 3.1.1. Let P be a normal cone with normal constant K and (X,d) a
complete cone metric space. Let T be a self-mapping on X satisfying the condition
that for each x € X,

d(Tx, T?*r) < rd(z, Tx)

for some r > 0. Then for every x,y € X, either

1 1
@, Ta)| < K da, )] or e [dTw T%0)| < K [d(Ta )|
holds.

Proof. Let x € X be arbitrary. Suppose there exists y € X such that

ld(z, Tx)|| > K [|d(z,y)||  and (T, T*2)|| > K |d(Tz,y)| -

1+ Kr 1+ Kr
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Then
ld(z, Tz)|| < K ||d(z, y)[| + K [|d(y, Tz)]]
< e |d(x, Tx)|| + T o Hd(T:c,TQ:v)H
< e i, To) | + e N 7))
= |[d(z, Tx)]||.
This is a contradiction. ]

Now we prove the theorem, which give a sufficient condition for any self-
mapping 7' on a complete cone metric space with respect to a normal cone, to has

a unique fixed point.

Theorem 3.1.2. Let P be a normal cone with normal constant K and (X,d) a

complete cone metric space. Define a function 6 : [0,1) — R by

(

VE244-K
1 U< MRt f
O(r) = 1—K2r VK2+4-K 1
( ) K22 ) oK <r< NoT &
_1 1
| /7 v R <7< 1.

Let T be a self-mapping on X satisfying the condition that there exists r € [0,1)

such that for each x,y € X,
O(r) ||d(z, Tx)|| < K ||d(z,y)| implies d(Tz,Ty) = rd(z,y). (3.1)

Then there exists a unique fixed point z of T. Moreover lim T"x = z for all

n—oo

z e X.

Proof. Note that for every r € [0,1), 8(r) <1 < K, so

0(r) d(z, Tx)|| < K [|d(z, Tx)]|
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From the assumption (3.1), we have
d(Tz, T?r) < rd(x, Tx), (3.2)

for all z € X. Let ug € X be arbitrary. Set u,, = T"uq for each n € N. From
(3.2), we have

d(tp, Upy1) < "d(ug, uq).

So for n > m,

d(un7 um) j d(unv un—l) + d(un—la un—?) + ...+ d(um—‘rl) um)

< ("2 ™) d (g, u)

< (;:Z) d(ug, us).

Since K is the normal constant of P, ||d(w,, um)| < EZ=||d(ug, u1)||. Then

lim d(up,u,) = 0. Hence (u,) is a Cauchy sequence. By the completeness

n,Mm—00

of X, there is z € X such that lim wu, = z. Next, we will show that

n—oo

d(Tz,z) 2 rd(z,z) forall e X~ {z}. (3.3)

Let x € X ~ {z}. Since lim w, = z, there exists N € N such that ||d(u,,2)| <

lld?fff;)||’ for n > N. Let n > N. Then

0) Nt Tue) | < K 1, )|
< K (i, 2|+ N, D))
< & gz ldte. 2] )
= [ld(z. 2)]| ~ 5 |, )]
< N, )]~ d(un, )

< K |[d(un, z)]] -
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By the assumption (3.1), we have
d(tps1, Tx) =2 rd(u,, x).

Then d(z,Tx) = lim d(uyy1, Tz) 2 lim rd(u,, x) = rd(z, ).

n—oo

Next we show that 77z = z for some j € N. Suppose on the contrary that

Tz # z for all j € N. Then (3.3) yields for each j € N,
d(T" 1z, 2) < 1r7d(Tz, 2).

Case 1: 0<r< —VKQQ?’K and 0(r) = 1.

We note that

r?4+r <

2
VK2 +4—-K +\/K2+4—K_ 1
2K oK K2

and

2Kr* < 2K (-@EY <2K (\/%)2 =1.
Suppose [|d(T%z, 2)| < ||d(T?z,T%z)||. Then
ld(z,Tz)|| < K ||d(z, T%2)|| + K ||d(T?2, Tz)||

< K ||d(T?2,T%2)|| + K ||d(T%2,T2)||

< K2(r* +r) [ld(2, T2)|

< |ld(z,T2)],
which is not true. So we have

0(r)||d(T%2, T°2)|| = ||d(T?z, T%2)|| < ||d(T?z, 2)|| < K ||d(T?%z,2)||.-

From the assumption (3.1), we get

d(T?z,Tz) < rd(T?z,2) = r*d(Tz,2).

Then

d(z,Tz) 2d(z,T?2) + d(T?2,Tz) =< 2r°d(T*z, 2).
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Therefore

ld(z, T2)|| < 2K7* [|d(z, T2)|| < |ld(z, T=)l|.

This is a contradiction.

Case 2: —VKQZJ;"K <r< \/% and 0(r) = 1I}£QQT.

In this case 2K7? < 1. Suppose 0(r) |d(T?z,T32)|| > K ||d(T?z, z)||. Then

ld(=, T2)|| < K [|d(=,T%2) || + K [|d(T*2, T2)
< O(r) ||d(T?2, T%2)|| + K ||d(T?2,T%)||
< (Kr?0(r) + Kr) ||d(2,Tz)||
= = ld(z.72)]

< ld(z,T=)]l,
which is not true. So we have
0(r)||d(T%2, T°2)|| < K ||d(T?z, 2)|| -
Similar to the previous case, it implies that
ld(z, T=)|| < 2Kr* ||d(z, T2)|| < |d(z, T2)] .

This is a contradiction.

Case 3: «/%T{ <r < 1landf(r) :ﬁ.

From Lemma 3.1.1, we have for each x,y € X,
0(r) ld(z, T2)|| < K |ld(z, )l or 6(r)[|d(Tz, T?x)|| < K [|d(Tz,y)] .

Then 6(r) [[d(un, un2)|| < K [|d(un, 2)[| or 6(r) [d(unt1, uni2)|| < Kld(uns, 2)|-

From the assumption (3.1), we have for all n € N

d(tups1, Tz) 2 rd(uy, z) or  d(upse, T2) 2 rd(Upyr, 2).
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Thus there exists a subsequence (uy,) of (u,) such that
d(Un;+1,Tz) 2 rd(un,;, 2)
for all j € N. Then we have

d(z,Tz) = lim d(up,+1,T2) 2 lim rd(u,;, z) = d(z,2) = 0.

]—}OO j—)OO

Hence z = T'z. This is a contradiction.
Therefore in every case, 77z = z for some j € N. Since (T"z) is a Cauchy

sequence, for any € > 0 there exists N € N such that for each m,n > N,
d(T"z, T"z) < e

Then

d(z,Tz) = d(T™ 2, TN 2) < e.

Hence d(z,Tz) = 0. This implies Tz = z. So z is a fixed point of T.

Now if w is another fixed point of T, by (3.3) we have

d(w,z) = d(Tw, z) 2 rd(w, z).

Hence d(w, z) = 0. So w = z. Therefore the fixed point of T is unique. ]
Remark 3.1.3. If K > /2 and —VKZ}A‘_K <r< \/%T(’ then #(r) < 0 and the

Theorem 3.1.2 is the Theorem 2.3.18.

Remark 3.1.4. We note that Theorem 3.1.2 is a generalization of Theorem 2.2.7
when we consider [0,00) as a cone in R and it is obvious that the Theorem 3.1.2

holds if we substitute the funcion 6 by any function n : [0,1) — R such that

n(r) < 0(r) for all r € [0,1).
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It is obvious that the class of the mappings satisfying the contractive condition
in Theorem 2.3.18 contains that of the usual condition of contractions. However,
the following example shows that the contractive condition in Theorem 2.3.18 is

certainly weaker than the usual contraction condition.

Example 3.1.5. Let P be the cone {(x,y) € R*: z,y > 0} and
X ={(0,0),(4,0),(0,4),(4,5), (5,4)}.
Define d : X x X — R? by

d((21,91), (12,92)) = (|21 = 22| + [91 = 42, 0).

Then (X, d) is a complete cone metric space because every Cauchy sequence in X

is a constant sequence. Define a self-mapping 7" on X by

(xlao) , L1 S T2,
T(Il,]fg) Sy

(O,ZEQ) , L1 > Ta.

Note that if (z,y) # ((4,5),(5,4)) and (y,x) # ((4,5),(5,4)), then
d(Tz,Ty) < %d(x,y).

Since 0(3)[1d((5,4), T(5,4) | = 0(3)1Id((4,5), T'(4,5))[| = T > 2 = [|d((4,5), (5,4))],
T satisfies the condition (3.1). But d(7'(4,5),T(5,4)) £ rd((4,5), (5,4)) for every
r € [0,1) because rd((4,5),(5,4)) — d(T(4,5),T(5,4)) = (2r — 8,0) ¢ P. This

means that 7" is not contraction.

Note that if z is a fixed point of T™, then z is also a fixed point of 7. The

following corollary is immediately obtained from Theorem 3.1.2.
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Corollary 3.1.6. Let P be a normal cone with normal constant K and (X,d) a
complete cone metric space. Define a function 6 as in Theorem 3.1.2. Let T be a
self-mapping on X satisfying the condition that there exists r € [0,1) and n € N

such that for each x,y € X,
0(r) ld(z, T"2)|| < K||d(z,y)|| implies  d(T"z,T"y) = rd(z,y).
Then T has a unique fixed point.

Proof. From Theorem 3.1.2, T™ has a unique fixed point z. Then
TTz)=T(T"z) =Tz,

so Tz is also a fixed point of 7. Hence Tz = z, z is a fixed point of T'. Since the

fixed point of T is also fixed point of 1™, the fixed point of T is unique. O

The following theorem gives a condition which guarantee the existence and

uniqueness for generalized contractive mappings in cone metric spaces.

Theorem 3.1.7. Let P be a normal cone with normal constant K and (X,d) a
sequentially compact cone metric space. Let T be a self-mapping on X such that

for each x,y € X and v # vy,

1

Then T has a unique fixed point.

Proof. Suppose on the contrary that x # Tx for all x € X. Since HLK < K,

iz ld(z, Tx)|| < K ||d(z, Tx)||. From assumption (3.4), we have
d(Tz, T?r) < d(z, Tx). (3.5)

for all x € X. Let ug € X be arbitrary. Set u,, = T"uq for each n € N. We note

that u,,1 # u, for all n € N. From the sequential compactness of X, there exists
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a subsequnece (un;) of (uy) such that lim u,, = z. By (3.5) and Lemma 3.1.1,

Jj—o00
we have,
1 1

17K |d(z, T)|| < K||d(z,y)|]| or 17K |d(Tz, T?z)|| < K ||d(T=z,y)|
for all x,y € X. Then

1 1
PR unj ) uanrl = unja z or ——— unj+17 unj+2 = unj+1> z .
e e )| < K | d(un;, 2) v )| < K [l )|

From the assumption (3.4), we have
d(Un;41,T2) < d(ty,,2) or  d(tn;12,T2) < d(tn+1, 2)
for all j € N. Thus there exists a subsequence (ny) of (n;) such that
A(tn, 41, T2) < d(tp, , 2)
for all £ € N. Then we have

d(z,Tz) = lim d(up,+1,Tz) < lim d(u,,,2) = d(z,z) = 0.

k—o00 k—o0

Hence z = Tz, This is a contradiction. Therefore there exists v € X such that
v="Tv.

Now if w is another fixed point of 7', we have 1+;K |d(w, Tw)|| =0 < K ||d(w,v)]|.
From the assumption (3.4), we have d(Tw,Tv) < d(w,v) but v and w are fixed
points of T', so d(v, z) = d(Tv,Tz) < d(w, z). This is a contradiction. Therefore

T has a unique fixed point. O

Remark 3.1.8. The self-mapping on complete cone metric space defined as in

Example 3.1.5 satisfies the condition (3.4) but not contractive.

Next we prove the following theorem, which is a generalization of Theorem

2.3.19.
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Theorem 3.1.9. Let P be a normal cone with normal constant K and (X,d) a

complete cone metric space. Define a function ¢ : |0, %) — R by

1
1 V=71 <
p(r) =
1—r 1 1
THEK-—1)r TvaE =T <3

Let T be a self-mapping on X satisfying the condition that there exists r € [0, %)

such that for each x,y € X,

o(r) |d(z, Tz)|| < K ||d(z,y)|| implies d(Tx,Ty) 2 rd(z,Tz) +rd(y, Ty).
(3.6)

Then there exists a unique fized point z of T. Moreover lim T"x = z for all

n—oo

zeX.

Proof. Since o(r) <1 < K, ¢(r) ||d(z,Tz)|| < K ||d(z,Tz)||. From the assump-

tion (3.6), we have
d(Tz, T?r) = rd(x, Tx) +rd(Tz, Tx).

Hence

d(Tx, T?r) = d(z,Tx) (3.7)

—r
for all z € X. Let ug € X. Set u, = T"ug. As in the proof of Theorem 3.1.2,

we can show that (u,) is a Cauchy sequence. By the completeness of X, there is
z € X such that nh—>nc}o u, = z. Next, we will show that
d(z,Tz) 2 rd(z,Tz) forall ze€ X\ {z}. (3.8)
Indeed, if z € X \ {z}, by the same process as in Theorem 3.1.2, we have
o(r) ld(un, Tun)|| < K ||d(un, x)]| -

Then from the assumption (3.6), we have

d(tups1, Tx) 2 rd(tn, Upyr) + rd(x, Tx).
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Thus d(z,Tz) = lim d(up41, Tx) 2 lim (rd(un, unp1) +rd(z, Tx)) = rd(z, Tz).

Next we show that z is a fixed point of T'. Suppose Tz # z. Then (3.7), (3.8)
yield

d(z,T%z) =<

Case 1: 0 <r < 1+\1/ﬁ and ¢(r) = 1.

We note that ’"12%: < 1. Then

d(z,Tz) 2 d(z,T%2) + d(Tz, T%2)

7“2

<

~ Td(z, Tz)+ lrjd(z, Tz)
2
= 7‘1 j:d(z,Tz)

<d(z,Tz).

This is a contradiction.

) 1 1 Y - 1—r
Case 2: /R <r<j;and p(r) = I+(K—-Dr

From Lemma 3.1.1, we have for each x,y € X,

p(r) lld(z, T2)|| < K fld(z,y)ll - or (r) |[|d(Tz, T?)|| < K ||d(T=,y)l|.
Then
p(r) [|d(un, tnsa)[| < K [d(un, 2)[| - or @(r) [[d(unsr, unia) || < K [|d(tng, 2)]] -
Therefore, we have
d(tpi1, T2) 2 rd(Up, upi)+rd(z,Tz) or  d(upie, Tz) 2 rd(Uni1, Unio)+rd(z, Tz).
Thus there exists a subsequence (uy,) of (u,) such that

d(Un41,T2) 2 rd(Un,, Un;41) +7d(2,T2).

Then

d(z,Tz) = lim d(up,11,T2) = lim (rd(u,,, w,,+1) + rd(z,T2)) = rd(z,Tz).

n—oo n—oo
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Hence d(z,Tz) = 0. So z = T'z. This is a contradiction.

Now if w is any fixed point of 7', by (3.8) we have
dw,z) =d(Tw, z) 2 rd(w, Tw) = 0.
Hence w = z. Therefore z is a unique fixed point of 7. O
It is immediate that the following result is obtained from Theorem 3.1.9.

Corollary 3.1.10. Let P be a normal cone with normal constant K and (X, d)
a complete cone metric space. Define a function ¢ as in Theorem 3.1.9. Let T

be a mapping on X satisfying the condition that there exists r € [O, %) andn € N

such that for each x,y € X,
o(r)[|d(z, T )| < K||d(z,y)||  implies d(T"z,T"y) = rd(z,T"z)+rd(y, T"y).
Then T has a unique fived point.

We also establish the existence fixed point result for a generalization of

Theorem 2.3.22

Theorem 3.1.11. Let P be a normal cone with normal constant K and (X, d) a
complete cone metric space. Suppose the mapping T : X — X satisfies condition

that there exists v € [0,1) such that for each x,y € X,

1d(T'z, Ty)|| < ymaz{||d(z, Tz)|, ld(y, Ty)|}- (3.9)
Then T has a unique fized point in X.
Proof. Let ug € X. Set u,, = T"uyg for all n € N. We have

[d(untr; un)|| = [1d(Tun, Tun1)|
< ymaz{||d(un, Tun)|[, [|d(un—r, Tun-1)[}

— ymaz{ [ d(tns, un)ll A, )|}
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That is
[d(uns1, un) || < ymaz{||d(upr1, wn) s [|d(twn, wn-1)][}- (3.10)

If there exists n € N such that max{||d(unr1, un) ||, [|d(tn, wn-1)||} = [|d(wni1, un)]l,
then from (3.10) we have, ||d(upi1, un)|| < Y||d(tnt1, un)||, but v € [0,1), so we
get d(upi1,u,) = 0. This means Tu,, = u,+1 = u,. Hence u, is a fixed point of
T.

If max{||d(wns1, un) ||, ||d(tn, un-1)||} = |d(tn, tun—1)]| for all n € N, then from

(3.10) we have,

(g1, tn) || < Al d (U, )]
< A2 d(un-1, Un_2)||

< .o <"l d(ur, wo) |
For n > m,
AUy Un) = AUy Up—1) + (1, Up—2) + oo + d(Ups1, Unn)-
By the normality of cone, we get

| d (U, um) || < K||d(tn, p—1) + d(tn-1, Up—2) + ... + d(Umi1, Un)]|
< K (lld(un; una)|| + [|d(un—1; un—2) || + .. + [[d(mir, wm) )

<K (" "4 ™) [, wo) |

< (2) batwn )l
That is

lim  d(up, um) = 0.

Hence {u,} is a Cauchy sequence. By completeness of X, there is z € X such

that lim u, = z. Then, we note that

n—oo

[d(un, T2)|| = |d(Tun—1, T2)|| < ymaz{||d(un—1, Tun-1)|, l[d(z, T2)[]}. (3.11)
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So, we consider the following 2 possible cases.
Case 1: [|d(z, T2)|| < ||d(un-1, Tun—1)|,

from (3.11), we have
ld(un, T2)|| < Alld(un—r, Tun1) || = V]|d(tn-1, )]l
then by Lemma 2.3.16, we get
4z, T2)]) = T [ld(un, T2)] < 7 Tin [[d(un 1, 0) | =0,

That is d(z,Tz) = 0. Hence z = T'z.
Case 2 |d(2,T2)|| > (s, Titn )]l
from (3.11), we have

|d(un, T2)|| < ylld(z, TZ)],

then by Lemma 2.3.16, we get
ld(z, T2)|| = T [|d(u,, T2)|| < ~[ld(z,T2)]-

Since v € [0,1), d(z,Tz) = 0. This means z = T'z.

Now if w is another fixed point of 7', then
ld(w, 2)|| = [|d(Tw, T2)|| < ymaz{]|d(w, Tw)]|, ||d(z,T=)|} = 0.
Then d(w, z) = 0, that is w = z. Hence z is a unique fixed point of 7. O

Example 3.1.12. Let X = {—2,—1,0, 1,2}, with the usual metric in R. We note

that X is complete. Define a self-mapping 7" on X by

Then T satisfies the condition (3.10) but it is not a Kannan mapping.
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The next purpose is to establish a generalized Redenovic’s Theorem, which

can be proved in a similar way to Theorem 3.1.2.

Theorem 3.1.13. Let P be a normal cone with normal constant K and (X, d) a
complete cone metric space. Define a function 6 as in Theorem 3.1.2. Let T be
a self-mapping on X satisfying the condition that there exists r € [0,1) such that

for each z,y € X,
0(r)ld(z, Tz)|| < K ||d(z,y)|| ~implies ||d(Tz, Ty)|| <rlld(z,y)]|.

Then there exists a unique fixed point z of T. Moreover lim T"x = z for all

n—oo

rzeX.

3.2 Characterization of Completeness

In this section, we give a necessary and sufficient condition for cone metric

spaces to be complete.

Theorem 3.2.1. Let P be a normal cone with normal constant K < /2 and
(X,d) a cone metric space and define a function 0 as in Theorem 3.1.2. Then the

followings are equivalent:
(i) X is complete.

(ii) For each self-mapping T on X satisfying the condition that there exists r €

[0,1) such that for each x,y € X,
O(r) ld(z, To)|| < K |ld(z, )|l implies  ||d(Tz, Ty)|| < rlld(z,y)l]

has a fixed point.
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Proof. Note that (i) implies (ii) by Theorem 3.1.13. To show (ii) implies (i),
assume (ii). Suppose X is not complete. Then there exists a Cauchy sequence
(u,) which does not converge in X. Define f : X — P by f(z) = lim d(z,u,),

Vo € X. To show that f is well-defined, let € > 0 and choose ¢ >=> 0 such that

K?||c|]| < e. Then there exists M € N such that for each m,n > M,

ld(; un) = d(z, um)|| < K [d(z, um) + d(un, ) = d(z, wp)|

= K ||d(un, um) ||
< K le]
< €.

Hence (d(z,u,)) is a Cauchy sequence in P, so d(z,u,) is a convergent sequence,

therefore f is well-defined. Note that the followings hold:

L f(z) = fly) 2 d(z,y) = f(z) + f(y).
2. f(x) = 0.

3. lim f(u,) =0.

n—oo

Define a mapping 7" on X as follows: For each x € X, since f(z) > 0 and
lim f(u,) =0, there exists a smallest N € N such that || f(ux)|| < W Il f ()|l

We put Tz = uy. Then | f(Ta)|| = ||f(un)l| < Gromsw I/ @) < [1£(@)]], so

for each x € X, Tx # x. That is T does not have a fixed point. Next, we will

show that for each z,y € X,
0(r) ld(z, Tz)|| < K ||d(z,y)|| implies [[d(Tz, Ty)|| < r||d(z,y)| -

Let 2,y € X be such that 0(r) ||d(xz, Tz)|| < K ||d(z,y)]|-
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Case 1: [[f(y)l > 2K || f(x)[|. Then
[d(Tz, Ty)| < K([f(T)[ + [F(Ty)l)

o(r)r
K (g @I+ 170D

IN

IA

@I+ 52 17l
SIF@I+ 5 1w+ =@ - 25 @)

= —IF W) =l f@)]

< rlld(z,y)ll-

VAN

Case 2: |[f(y)|| < 2K [|f(2)][. Then

Klldte. )l = 06 Jda. 7o)l = 00n) (e 1@ - 1T

1 O(r)r
S 80 (E . m) 1F@)|
30(r)

= Zgj;}ﬁ;ﬁ;ﬁ}g [f ()]

Hence

1d(Tz, Tyl < K([f(To) [l + [Tyl

K (g ) 1l + K (oo ) 17
O(r)r 0(r)r

< Groonwe VO grgmn e 17

B 30(r)r

= Bromn i Tl

IA

< rlldz, )]

By the hypothesis, T" has a fixed point. This is a contradiction. Hence X is

complete. n

If the restriction on the normal constant K is omitted and a condition for

mapping 7T is added, then the sufficient part of Theorem 3.2.1 is still true.
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Theorem 3.2.2. Let P be a normal cone with normal constant K and (X,d) a
cone metric space and define a function 6 as in Theorem 3.1.2. If for each self-
mapping T on X satisfying the condition that there exists r € [0,1) such that for

each x,y € X,
0(r)| |d(z, T2)|| < K [|d(z,y)|| implies ||d(Tz, Ty)|| < rlld(z,y)|
has a fixed point, then X is complete.

Theorem 3.2.3. Let P be a normal cone with normal constant K and (X,d) a

cone metric space. Then the followings are equivalent:
(i) X is complete.

(ii) For each self-mapping T on X satisfying the condition that there exists y €

[0,2) such that for each z,y € X,

|d(Tz, Ty)|| < ymaz{|[d(z, Tx)| , [d(y, Ty)||}
has a fixed point.

Proof. 1t is clear that (i) implies (ii) by Theorem 3.1.11. Next assume (ii) and
suppose that X is not complete. Then there exists a Cauchy sequence {u,} which
is not convergent in X. Without loss of generality, we may assume that u,’s are
distinct for all n € N.

Let z € X and define a, = inf{||d(z,u,)| | n € N}. We note that for any
x & {u, | n € N}, a, > 0. Since (u,) is a Cauchy sequence, lim d(u,u,) = 0.

m,n— 00

Then there exists a least positive integer N, such that
(s )| < yorw < ylld(z, w)],
for each [ € N and m,n > N,. Therefore

[ty wn, )| < lld(, w)ll, (3.12)
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for each | € N and m > N,. Then by a similar reasoning, for each n € N there

exists a least positive integer n’ > n such that
1t ) [| < || (i, 20 ) (3.13)

for each m > n/.

Define T : X — X by

uN, ;o ¢ {u, | neN}
T(z) =
Upy .z € {u, | n € N}.
It is clearly that T has no fixed point.
To show that ||d(Tx, Ty)|| < ymax{||d(z, Tx)|, ||d(y, Ty)||}, we consider the
3 possibilities. Let z,y € X.
Case 1: x,y ¢ {u, | n € N}.

Then there exist positve integers N, and N, such that T'(x) = uy, and T'(y) = uy,.

By (3.12) we get,

|d(Tz, Ty)|| <~lld(y, Ty)[| if N, =N,
and

[d(Ta, Tyl < Ad(@, T)| # Ny < Ny,

Case 2: z,y € {u, | n € N}.
Then there exist positve integer m and n such that * = u,, and y = u,. By
the definition of T, there exist positive integers m’ > m and n’ > n such that

T(x) = Uy and T'(y) = u,. By (3.13) we get,
(T2, Ty)| < ~lld(y, Ty)ll it m" = n’

and

1d(Tz, Ty)| < ylld(z, T)|| if m'<n'.
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Case 3: v € {u,, | n € N} and y ¢ {u, | n € N}.
So x = u,, for some m € N, then by the definition of 7" there exist positive integers

m' >m and N, such that T'(z) = ., and T'(y) = uy,. By (3.12) we get,
|d(T, Ty)ll < ylld(y, Ty)l| if m" >N,

and by (3.13) we get,
|d(Tx, Ty)|| < y|ld(z,Tx)|| if m <N,.

By all of these cases, we have ||d(Tx, Ty)|| < ymax{|d(x,Tz)|,|d(y, Ty)| },
which contradicts to the hypothesis of the theorem. Therefore (X, d) is a complete

cone metric space.

]

It is obvious that the following result is immediately obtained from Theorem

3.2.3.

Corollary 3.2.4. Let P be a normal cone with normal constant K and (X,d) a

cone metric space. Then the followings are equivalent:
(i) X is complete.

(ii) For each self-mapping T on X satisfying the condition that there exists r €

[0,2) such that for each z,y € X,
|d(Tz, Ty)|| < r(lld(z, Tz)|| + [|d(y, Ty)l|)

has a fixed point.
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