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results show that my framework improves accuracy, F-value (combination term of 

Precision and Recall), and AUC of a classifier more than SMOTE and Safe-Level-
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CHAPTER I 

Introduction 

In the first chapter, according to my thesis proposal, goal, scope, achievement, and 

research methodology are described as follows. 

 My thesis goal is to develop an integration technique of DBSCAN and DBSMOTE 

to over-sample a minority class in an imbalanced dataset; as a result, the classification 

performance of a classifier is improved. 

 My framework relies on a density-based concept to operate on an imbalanced 

dataset with multiple minority classes. After applying my density-based framework for 

handling the class imbalanced problem I expect to achieve the significant improvement 

of decision tree C4.5, RIPPER, and multilayer perceptron (MLP), when evaluating on 

accuracy, F-value, and AUC. 

 I design a new data structure as a connected graph for the over-sampling 

purpose. In my framework, I construct the graph from a cluster of a minority class and 

then generate a synthetic instance along the path between each instance and the 

pseudo-centroid of this cluster. Consequently, the synthetic instances are dense nearby 

the centroid and sparse far from this centroid. The distribution of the synthetic instances 

prevents the overlapping problem and causes a classifier to concentrate on the core of 

a cluster which contains important information. 

 

1. Objective 

In this thesis, I aim to design the combination algorithm of DBSCAN and SMOTE to 

strengthen a minority class distribution by over-sampling this class. This affect will 

guarantee the minority class detection to be satisfactory; in addition, the classifier is 

guided to emphasize more dense regions for the minority instances. My research shows 
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the improvement of the predictive performance of a classifier for both minority and 

majority instances in an imbalanced dataset. 

 

2. Scope of Work 

Due to the scope of my research, my framework applies a density-based concept for 

handling the class imbalanced problem and is operates on multiple minority class 

datasets with continuous attributes. In my experimental design, my framework is 

compared with various over-sampling techniques in the SMOTE family by evaluating 

accuracy, F-value (as the term of Precision and Recall), and AUC of C4.5, Ripper, and 

SVM available in WEKA 3.6.5 on UCI datasets. 

 

3. Expected Outcome 

After applying my framework on imbalanced UCI datasets with multiple minority classes, 

I expect to achieve the significant improvement of accuracy, F-value, and AUC when 

applying decision tree C4.5, RIPPER, and multilayer perceptron. 

. 

4. Research Methodology 

In this thesis, the concept of my framework is to emphasize on the core information 

contained in the core of a cluster than the border information contained in the border of 

a cluster. The key idea of my approach can be acquired by defining a new data 

structure for the over-sampling purpose. My framework applies this data structure for 

generating synthetic instances into the line segments close to the core with a higher rate 

and the line segments far from the core at a lower rate. 

 My framework applies a particular graph whose shortest paths reside within the 

shape of a cluster. An edge between two nodes in the graph exists if and only if these 
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two nodes lie within a threshold distance so this graph would consist of many short 

edges. As an over-sampling process generates a synthetic instance and then positions 

it along a shortest path searched in the graph transformed from an arbitrarily shaped 

cluster, it will be located inside the shape of the graph because this shortest path is 

similar to a skeleton path, a path which is formed inside a cluster. Consequently, the 

density of the synthetic instances is dense nearby the core and is sparse far from the 

core and then a classifier is induced to emphatically learning in the important 

information contained around the core so the overlapping problem between a minority 

class and a majority class would be treated. 

 My framework outperforms SMOTE and Borderline-SMOTE due to the following 

facts. SMOTE is negatively impacted by the over-generalization problem because 

SMOTE blindly generalizes throughout a minority class without considering a majority 

class, especially in an overlapping region, which is a mix between a minority class and a 

majority class, so it is consequently difficult for a classifier to accurately detect an 

instance; however, my framework treats each region differently. Borderline-SMOTE 

operates only on borderline instances in the overlapping region where synthetic 

instances are most dense so the rate of detection of majority classes is disappointing 

because the classifier mis-detects instances as being positive in this context; however, 

my framework avoid generating positive instances around border region and will relief 

the negative impact around border region. 
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CHAPTER II 

Background 

In this chapter, the backgrounds of my thesis comes from my research interest, a 

specific problem I encounter with, suitable methods and evaluators for the class 

imbalance problem, experimental classifiers, and the concept of k nearest neighbours. 

 Data mining is one research area of Computer Science, Computer Engineering, 

and Information Technology, and is a process of analyzing collections of data. The 

objective of data mining is to discover knowledge, relations, or patterns from large 

databases in structures that human can understand. 

 Class imbalanced problem is an interesting one among classification tasks in 

data mining and occurs in an application when a target class (minority class) has a very 

small fraction compared with another class (majority class); as a result, a classifier loses 

its predictive performance because a huge majority class dominates a tiny minority 

class during classification processing. 

 Re-sampling techniques are categorized in the data level concept and are 

applied for handling the class imbalanced problem.   In addition, the techniques re-

balance classes in an imbalanced dataset by inserting (over-sampling) and/or deleting 

(under-sampling) instances into/from this dataset until the classes are approximately 

balanced. 

 Accuracy is a traditionally measure applied in a balanced dataset but 

inappropriate for an imbalanced dataset because this performance measure tends to 

count a large number of instances in a majority class as correctly classified. Fortunately, 

F-value and AUC are suitable for the class imbalanced problem because these 

performance measures concentrate on a minority class with its high priority. 

 In my experiment, I apply three kinds of classifiers. The first one is a statistical 

classifier C4.5 applied for generating a decision tree. The second one is a rule-based 
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classifier RIPPER applied for discovering a rule set. The last one is a neural network 

model MLP applied for distinguishing a set of instances which is not linearly separable. 

 K nearest neighbours is the concept of finding the k nearest instances which 

orbit around a considered instance by calculating from a distance metric such as 

normalized euclidean distance function which is applied in this thesis. Besides, the 

nearest instances are more similar to the considered instance than the other instances 

due to the distances between them. In this thesis, I apply k nearest neighbours to select 

a suitable instance to be over-sampled. 

 

1. Data Mining 

Data mining or knowledge discovery in large databases (KDD) is a challenging field of 

Computer Science, Computer Engineering, and Information Technology, and is a 

process of analyzing a collection of huge number of instances by applying various 

machine learning and artificial intelligence algorithms. Technically, the objective of data 

mining is to discover or extract knowledge, relations, or patterns from different 

perspectives and summarizing them into useful structures that human can understand. 

Data mining tool such as WEKA, RapidMiner, SASEM, or R, is one of analytical softwares 

for analyzing large databases, and allows users to analyze data from many different 

dimensions or angles, categorize it, and summarize the relationships identified. They 

support the main functionalities of data mining which are classification, clustering, and 

association analysis. 

 Fig 2.1 illustrates the process of data mining which starts from understanding of 

the application domain, the relevant prior knowledge, and the goals of the end-user. In 

the selection step, the process creates a target dataset by integrating a DBMS 

(Database Management System), or focusing on a subset of variables or data samples, 

on which discovery is to be performed. In the preprocessing step, the process cleans 

noise or outliers, collects necessary information to model, strategies for handling 
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7 

 Classification, prediction, and forecasting have the similar meaning in data 

mining. It is a method for predicting future values by considering probability of past 

events. For example, I may aim to predict that a new customer will pay the bill within 60 

days or take longer than 60 days. For another example, the forecast may be used to 

predict tomorrow weather that it will be rain, sunny, or cloudy. For the classification, I 

may want to diagnose whether a patient will have cancer in his/her body. 

 Clustering is a method for grouping data into distinct clusters that have similar 

characteristics so I may treat each cluster differently. For example, a health-insurance 

company may discover a cluster of customers who are television science-fiction fan. 
Consequently, the company can target this kind of customers by using television 

advertisements in new science-fiction episodes. The well-known and widely-used 

clustering algorithms are k-means and DBSCAN. 

 Association analysis is a method for discovering interesting relations between 

items in large databases. This method can be applied to market basket analysis. For 

example, the relation {Milk, Bread} → Butter means that if customers buy milk and 

bread together, they are likely to also buy butter. This information can be used as the 

basis for decisions about marketing activities such as promotional pricing or product 

placements. 

 For evaluating the performance of data mining models, separating data into 

training and testing sets is an important part of evaluating data mining models. Typically, 

when users partition a data set into a training set and testing set, a large proportion of 

data is used for training, and a smaller portion of the data is used for testing. Stratified 

sampling randomly samples the data to help ensure the proportion of class instances. 

By using similar data for training and testing, users can minimize the effects of data 

discrepancies and help classifier recognize the characteristics of the datasets. After a 

model has been processed by using the training set, users test the model by making 

predictions against the test set. Because the data in the test set already contains known 
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values for the class attribute, it is easy to determine whether the model's predictions are 

correct. 

 The other method evaluating the performance of a classifier is cross validation 

which reserves a portion of the data to test the accuracy of the model building from the 

set of the data.  Cross validation randomly divides data into two or more subsets; 

training samples (used to construct the model), validated samples (some methods need 

these to tune the model), and test samples (evaluate performance of the model). The 

procedure of k-fold cross validation begins to divide the data in k parts; (k - 1) parts for 

building (train) and one part for predicting (test); after that the process fit the model on 

the training data; finally, it measures the data in the test sample. This procedure is 

repeated multiple times, each time dividing the data into subsets at random. 

 

2. Class Imbalanced Problem 

A dataset is considered to be imbalanced if the target class has a small number of 

instances compared to the other classes. A problem encountered with an imbalanced 

dataset is called class imbalanced problem [1], [2], [3], [4]. Many applications in these 

problems consider the two-class case [5], [6], [7], [8], [9], [10]. In this case, the smaller 

class is called the minority class of which the instance in this class is referred as 

positive, and the larger class is called the majority class of which the instance in this 

class is referred as negative. 

 Because the objective of the class imbalance problem is to correctly classify the 

(minority class) positive instances, if a dataset has more than two classes, the target 

class will be selected as the minority class while the remaining classes will be merged 

as the majority class. In multiple class datasets, there are two widely used techniques; 

One-Against-All (OAA) and One-Against-One (OAO). OAA treats these datasets as a 

binary classification problem for each distinct class so a classifier for each class is 

trained to predict whether the label is the class or not the class. OAO extracts all pairs of 
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microcalcifications in mammography [17]. In these domains, a standard classifier needs 

to accurately predict an important and rare minority class, but the classifier seldom 

predicts this class due to its tiny size. 

 The example of an application which encounters the class imbalance problem is 

network intrusion detection. Intrusion occurs when hackers or virus attack the machine 

in a computer network. Number of intrusions on the network is typically a very small 

fraction of the total network traffic and is more important than typical usages. If an 

administrator can built a classifier which efficiently detects the intrusion before it 

compromises the network, the network will be more secured. 

 There was a study [18] which evaluated AUC of classifiers training after these 

preprocessing techniques, over-sampling, under-sampling, and data cleaning, by 

applying decision trees C4.5. The experiments showed that the over-sampling 

techniques were better than the under-sampling techniques. Moreover, the 

combinations of over-sampling and data cleaning provided satisfactory results when a 

minority class was small. 

 In this thesis, the density-based minority over-sampling framework for handling 

the class imbalanced problem is proposed. My framework relies on the density concept 

of arbitrarily shaped clusters of positive instances. In addition, my framework considers 

the density of each region in an imbalanced dataset and then generates more synthetic 

instances in the dense regions rather than the sparse regions because the information 

contained in the dense regions is more important than that in sparse regions. 

 

3. Re-sampling Technique 

One strategy for handling class imbalanced problems is a re-sampling technique [3], 

[19]. It is a preprocessing technique that adjusts the distribution of classes in an 

imbalanced dataset until all classes are nearly balanced before feeding this modified 

dataset into a classification algorithm. 
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 There are two types of re-sampling techniques: over-sampling techniques and 

under-sampling techniques. The former inserts positive instances into a minority class, 

while the latter removes negative instances from a majority class. Both techniques 

change the distribution of a dataset until its classes are approximately equally 

represented. However, the over-sampling technique may encounter the over-fitting 

problem [20] if this technique creates smaller and more specific decision regions by 

duplicating instances. In contrast, the under-sampling technique may diminish some 

important information in a dataset-especially in its core. 

 Fig 2.3 illustrates an original dataset (left side) and a modified dataset (right 

side) in the two dimensional space after applying both over-sampling and under-

sampling techniques. In this figure, a symbol + represents a positive instance in a 

minority class and a symbol - represents a negative instance in a majority class. Over-

sampling duplicates or synthesizes positive instances into a minority class and under-

sampling cleans some negative instances from a majority class; as a result, a minority 

class is better learned by classifiers. 

 

 

Fig. 2.3. Over-sampling and Under-sampling. 

 

 SHRINK [10] is a system which searches for the best positive region. The region 

is an overlapping region, mixing of positive instances and negative instances, which 

have a maximum ratio of the positive instances to the negative instances. The system 

insists that the overlapping region be classified as positive, whether positive instances 
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prevail in the region or not. However, the system fail to learn on disjunctive concepts [4] 

because the system was designed specifically for overlapping classes so there is no 

benefits if the classes do not overlap. 

 One-Sided Selection [19] considers only numeric attributes. the heuristic 

technique under-samples a majority class by eliminating the negative instances, which 

can easily be detected using the concept of Tomek Links [18], from noise regions and 

borderline regions; however, the experiment reveals that the performance of the induced 

classifier is largely unaffected by the choice of removed negative instances. In addition, 

negative instances can roughly be divided into four regions: noise, borderline, safe, and 

redundant. The noise region overlaps the decision regions of a minority class. The 

borderline region is the boundary between positive and negative regions and is 

unreliable due to the fact that even a small amount of noise instances can send the 

borderline instances to the wrong side of decision surface. The safe region is kept for 

future classification tasks. The redundant instances do not harm correct classifications 

but increase classification costs. 

 Fig 2.4 illustrates an original dataset (left side) and a modified dataset (right 

side) after applying One-Sided Selection which detects Tomek Links to remove both 

noise and borderline instances in a majority class; as a result, a minority class is more 

dominant to be recognized by classifiers. Note that Tomek Links connect between 

positive and negative instances which are nearest neighbours to each other. 

 

 

Fig 2.4. One-Sided Selection. 
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 Another strategy is to apply cost-sensitive learning, which operates on an 

imbalanced dataset by assigning distinct costs to correctly classified instances or 

classification errors [21], [22], [23]. Other techniques deal with this situation differently, 

such as internal bias discrimination, boosting based algorithm [24], [25], and clustering 

based classification [2]. 

 

4. Performance Measure 

The performance of a classifier is customarily evaluated by a confusion matrix, as shown 

in Table 2.1. The rows of the table are the actual class label of an instance, and the 

columns are the class labels predicted by a classifier. Typically, the class label of an 

instance in a minority class is set as positive and that of a majority class is set as 

negative. TP, True Positive, is the number of positive instances correctly classified. FN, 

False Negative, is the number of positive instances incorrectly classified. FP, False 

Positive, is the number of negative instances incorrectly classified. TN, True Negative, is 

the number of negative instances correctly classified. From Table 2.1, the six 

performance measures of classification [9], accuracy, Precision, Recall, F-value, TP 

rate, and FP rate, are defined by formulae (2.1) through (2.6). 

 

Table 2.1. A confusion matrix for the two-class imbalance problem. 

 Predicted Positive Predicted Negative 

Actual Positive TP FN 

Actual Negative FP TN 

 

Accuracy = (TP + TN) / (TP + FN + FP + TN) (2.1) 

Recall = TP / (TP + FN) (2.2) 

Precision = TP / (TP + FP) (2.3) 
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F-value = ((1 + β)2⋅Recall⋅Precision) / (β2⋅Recall + Precision) (2.4) 

TP Rate = Sensitivity = TP / (TP + FN) (2.5) 

FP Rate = 1 - Specificity = FP / (TN + FP) (2.6) 

 

 In the class imbalance problem, accuracy is an inappropriate measure due to 

the tiny misclassification error on a minority class. In the domain studied by Lewis and 

Catlett [26], their dataset had only 0.2% positive instances and nearly 100% negative 

instances. A trivial classifier can reach an accuracy of 99.8% by predicting every 

instance as a negative instance and ignoring the existence of the positive instances. 

However, the objective of the problem is to aim for high prediction performance on a 

minority class. 

 Considering the definition of accuracy, if most positive instances are 

misclassified and most negative instances are correctly classified by a classifier, 

accuracy will be still high because the large number of these negative instances can 

influence the whole classification result on accuracy. On the other hand, Precision and 

Recall are effective measures for the problem because they can evaluate the 

classification rates by concentrating on a minority class. 

 F-value [27] integrates recall and precision. The F-value is large when both 

recall and precision are large. The parameter β, corresponding to the relative 

importance of precision and recall, is usually set to 1, meaning that Precision is as 

important as Recall. 

 ROC [28], the Receiver Operating Characteristic, is a standard technique for 

summarizing the prediction performance of a classifier over the range of trade-offs 

between TP rate and FP rate. The ROC curve is a graph in two-dimensional space in 

which the x-axis represents FP rate and the y-axis represents TP rate. One ROC curve 
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 RIPPER [30] is a rule-based classifier is based on if and then conditions that 

called the rule set. The rules have to have two properties. The first one is that the rules 

should be mutually exclusive. The second one is that the rules should be exhaustive. 

The rule based classifier is very similar to the tree based classifier and it is very easy to 

convert a tree to a rule based classifier. Actually in order to guarantee the above two 

properties it is recommended to construct a tree and then convert it to a set of rules. 

However, rule base classifier has advantage over decision tree that its rules can be 

simplified. 

 A rule r covers an instance x if the attribute of the instance satisfy the condition 

of the rule. For example, a rule r and instances x1, x2, and x3 are given as follows. 

 r: (Age < 35) ∧ (Status = Married) → Cheat = No 

 x1: (Age = 29, Status = Married, Refund = No) 

 x2: (Age = 28, Status = Single, Refund = Yes) 

 x3: (Age = 38, Status = Divorced, Refund = No) 

To consider all of them, only x1 is covered by the rule r. Note that more than one rule 

may cover the same instance. 

 MLP [27] (multilayer perceptron) is a feedforward artificial neural network model 

that maps sets of input data onto a set of appropriate output. MLP consists of multiple 

layers of nodes in a directed graph, with each layer fully connected to the next one. 

Except for the input nodes, each node is a neuron or processing element with a 

nonlinear activation function. MLP utilizes a supervised learning technique called 

backpropagation for training the network. MLP is a modification of the standard linear 

perceptron, which can distinguish data that is not linearly separable. 

 Fig 2.7 illustrates MLP. In brief, an input vector is placed on the input nodes and 

is propagated to the output layer via the weight connections and the hidden-layer. This 

is done for each vector in the training set (one iteration). Each node in the hidden and 
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output layers transforms the sum of its inputs via an activation function, normally known 

as a sigmoid function. 

 

 

Fig 2.7. A simplified MLP network architecture. 

 

6. K Nearest Neighbours 
To demonstrate the k nearest neighbors (KNN) analysis, consider the task of classifying 

a new object (query point) among a number of known examples. This is shown in Fig 

2.8, which depicts the examples (instances) with the plus and minus signs and the 

query point with a circle. The task is to estimate (classify) the outcome of the query point 

based on a selected number of its nearest neighbors. In other words, I want to know 

whether the query point can be classified as a plus or a minus sign. To proceed, 

consider the outcome of KNN based on 1 nearest neighbor. It is clear that in this case 

KNN will predict the outcome of the query point with a plus (since the closest point 

carries a plus sign). Now I increase the number of nearest neighbors to 2, i.e., 2 nearest 

neighbors. This time KNN will not be able to classify the outcome of the query point 

since the second closest point is a minus, and so both the plus and the minus signs 

achieve the same score (i.e., win the same number of votes). For the next step, I 
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increase the number of nearest neighbors to 5 (5 nearest neighbors). This will define a 

nearest neighbor region, which is indicated by the circle shown in the figure. Since there 

are 2 and 3 plus and minus signs, respectively, in this circle KNN will assign a minus 

sign to the outcome of the query point. 

 

 

Fig 2.8. K nearest neighbors. 

 

 I apply this concept for determining the k nearest neighbours of an instance and 

then use them in the over-sampling step for generating synthetic instances because the 

considered instance and its selected k nearest neighbours are considered similar. In 

this thesis, I fix k as 5 as the default value. 
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CHAPTER III 

Related Work 

In this chapter, my thesis relates to two researches; a widely-used re-sampling 

technique, SMOTE (Synthetic Minority Over-sampling TEchnique) [8] and a well-known 

clustering algorithm, DBSCAN (Density-Based Spatial Clustering of Applications with 

Noise) [31] because I aim to combine them to achieve a new efficient over-sampling 

framework. 

 SMOTE is the state-of-the-art over-sampling technique which generates a 

synthetic instance along the line segment between each instance and its selected 

nearest neighbor from a minority class. Unfortunately, SMOTE blindly generalizes the 

regions of a minority class without considering a majority class; thus, SMOTE encounters 

the overlapping problem. 

 DBSCAN is a density-based clustering algorithm which is applied to discover 

clusters of arbitrary shapes and also to detect noises. In the algorithm, for each instance 

in a cluster, the neighbourhood of this instance within the radius Eps has to contain at 

least MinPts instances. To approximate the values of Eps and MinPts, a sorted k-dist 

graph is considered for this purpose. 

 

1. SMOTE 

SMOTE is the state-of-the-art over-sampling technique which generates synthetic 

instances by operating in the feature space rather than the data space. These synthetic 

instances are generated along the line segments joining each instance to its k nearest 

neighbours. A dataset can have continuous attributes or nominal attributes. The authors 

chose the euclidean distance metric for continuous attributes. 

By the SMOTE algorithm, for each instance, compute the vector difference 

between the feature vector of the instance and one from its k nearest neighbours and 
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then multiply this difference by a random number between 0 and 1. After that, add this 

difference to the feature vector of an original feature vector, thus generating the new 

synthetic instance. This process is illustrated in Fig 3.1 in which a white point and a gray 

point represent a positive instance and a synthetic instance, respectively; in addition, a 

centre point is a considered positive instance and satellite points orbited around it are 

its k nearest neighbours 

 

.  

Fig 3.1: SMOTE over-sampling. 

 

The synthetic instances cause a classifier to create larger and less specific 

decision regions rather than smaller and more specific regions. More general regions 

are learned for positive instances rather than those positive instances being subsumed 

by negative instances around them. The effect is that a classifier generalizes better. 

However, SMOTE encounters the overgeneralization problem because this 

technique blindly generalizes the region of a minority class without considering a 

majority class-especially in overlapping regions. If a dataset has a highly skewed class 

distribution, the synthetic instances in overlapping regions will be sparse with respect to 

the instances in a majority class. Thus, the majority and minority classes would be 

blended. 
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2. DBSCAN 

DBSCAN is the density-based clustering algorithm which is applied to discover clusters 

of arbitrary shapes based on the metric distance and number of neighbor points. In 

addition, DBSCAN can be used as a noise detection algorithm. 

 The algorithm requires two parameters; the distance Eps and the threshold 

MinPts. The key idea of DBSCAN is that for each instance in a cluster, its 

neighbourhood within the radius Eps must include at least the number of instances 

MinPts. Their definitions are repeated for the purpose of comparison. 

 

Definition 1: (Eps-neighbourhood) 
Let D be a dataset. The Eps-neighbourhood of an instance p, denoted by NEps(p), is 

defined by NEps(p) = {q ∈ D | dist(p, q) ≤ Eps}. 

 

Definition 2: (Directly density-reachable) 

An instance p is directly density-reachable from an instance q wrt. Eps and MinPts if 

1) p ∈ NEps(q) and 

2) |NEps(q)| ≥ MinPts (Core instance condition). 

 

By Definition 1, the Eps-neighbourhood of an instance p is the set of all 

instances whose distances measured from p do not exceed the threshold Eps. In 

addition, the metric function dist(p, q) returns the distance between the instances p and 

q. Any type of distance can be applied to this function. In this thesis document, I 

illustrate all figures in the two-dimensional space with normalized euclidean distance 

function. 

In a cluster, there are two types of instances; core instances and border 

instances. The first type relies on the core instance condition and is located in the center 
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of the cluster. The second type does not rely on this core instance condition and is 

located around the border of the cluster. Fig. 3.2 (a) illustrates where a core instance 

and a border instance are located in the two dimensional space. In this figure, each 

point represents an instance and each circle represents the region of the radius Eps 

from a center point. If there are points located in this space, they will be in the Eps-

neighbourhood of the center point. This example uses a MinPts value of 5; thus, 

instance p is a border instance while instance q is a core instance. 

By Definition 2, if an instance p is a member of the Eps-neighbourhood of a core 

instance q, p will be directly density-reachable from q. This relation is not symmetric 

when one is a core instance and the other is a border instance. Fig. 3.2 (b) illustrates the 

asymmetric case in which an arrow represents the direction of directly density-

reachable relation; a head point is directly density-reachable from a tail point. In this 

figure, the instance p is directly density-reachable from the instance q, but q is not 

directly density-reachable from p. 

 

  
Fig. 3.2. (a) Core instance and border instance (b) Directly density-reachable. 

 

Definition 3: (Density-reachable) 
An instance p is density-reachable from an instance q wrt. Eps and MinPts if there is a 

chain of instances p1, …, pn, p1 = q, pn = p such that pi+1 is directly density-reachable 

from pi. 

Definition 4: (Density-connected) 
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An instance p is density-connected to an instance q wrt. Eps and MinPts if there is an 

instance r such that both p and q are density-reachable from r wrt. Eps and MinPts. 

 

By Definition 3, density-reachable is the transitive extension of directly density-

reachable. In addition, density-reachable is transitive but not symmetric because if there 

exists at least one border instance in a pair, this border instance cannot hold the core 

instance condition and thus the partner cannot be density-reachable from the border 

instance. Fig. 3.3 (a) illustrates the asymmetric case. In this figure, the instance p is 

density-reachable from the instance q, but q is not density-reachable from p. 

By Definition 4, if there is a core instance from which two instances in a cluster 

are density-reachable, these instances will be density-connected to each other. This 

relation is not only symmetric but also reflexive. Only a pair of core instances can hold 

the reflexive property. Fig. 3.3 (b) illustrates the symmetric case. In this figure, the 

instances p and q are density-connected to each other by an instance r. 

 

  
Fig. 3.3. (a) Density-reachable (b) Density-connected. 

 

Definition 5: (Cluster) 
A cluster C wrt. Eps and MinPts is a non-empty subset of a dataset D satisfying the 

following conditions: 

1) ∀ p, q: if p ∈ C and q is density-reachable from p wrt. Eps and MinPts, then q ∈ 

C (Maximality) 
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2) ∀ p, q ∈ C: p is density-connected to q wrt. Eps and MinPts (Connectivity) 

 

Definition 6: (Noise) 
Let C1, …, Ck be the k clusters of a dataset D wrt. Epsi and MinPtsi where 

i ∈ {1, …, k}. noise is the set of instances not belonging to any clusters Ci and is 

defined as noise = {p ∈ D | ∀i: p ∉ Ci}. 

 

By Definition 5 and Definition 6, a density-based cluster is defined as a set of 

instances that satisfy the density-connected relation and are maximal with respect to 

density-reachable. A cluster includes not only core instances but also border instances. 

Noise is a set of instances that are not located in any clusters. Note that some border 

instances are treated as part of a cluster, while the remainder is considered to be noise. 

A core instance cannot be noise because a cluster must include at least one core 

instance to satisfy the maximality and connectivity conditions restricted by Definition 5. 

Moreover, only one core instance and its Eps-neighbourhood can be treated as the 

thinnest cluster. 

DBSCAN can not only discover arbitrarily shaped clusters but also detect noise 

instances in a dataset. This algorithm constructs a cluster by determining a core 

instance as a root, then retrieving all instances that are density-reachable from this root 

to acquire a cluster included in this root. The time complexity of the algorithm DBSCAN 

was analyzed as a logarithmic function O(nlgn) [31], where n is the number of instances 

in a dataset. 

The DBSCAN algorithm operates in the following manner. For each instance in a 

dataset, determine whether this instance satisfies the core instance condition. If an 

instance does, it will be a core instance p. After that, construct a cluster C by including 

all instances in the Eps-neighbourhood of p. For each instance in C that has not yet 

been processed, seek a core instance q and then merge C with the instances in the 
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Eps-neighbourhood of q that are not already located in C. Recursively, check their Eps-

neighbourhood in the next step. This loop executes iteratively until no new instance can 

be included in the current cluster C. 

However, the appropriate values of Eps and MinPts are difficult to decide. 

Fortunately, the authors provide a heuristic to determine these parameters from the 

given k, the number of nearest neighbours. Let d be the distance between an instance p 

and its furthest kth nearest neighbour. If Eps is assigned as d, the number of instances in 

the Eps-neighbourhood of p will be exactly (k + 1). In cases where the distances 

between several instances and p are the same, the Eps-neighbourhood of p would 

include more than (k + 1) instances. 

The function k-dist requires an instance p and returns the distance d. The sorted 

k-dist graph illustrated in Fig. 3.4 plots all distances d in descending order. In this 

figure, the x-axis represents each instance p in a dataset and, the y-axis represents the 

distance d assigned by k-dist(p). This graph can guide the values of Eps and MinPts of 

the thinnest cluster. If an instance q is selected as the threshold instance, then setting 

Eps and MinPts to k-dist(q) and k, respectively, any instances p for which k-dist(p) does 

not exceed k-dist(q) will be core instances and the remainder will be border instances. 

In the sorted k-dist graph, all instances that lie to the right of the threshold 

instance are core instances, whereas all instances that lie to the left of the threshold 

instance are border instances. Note that the threshold instance is considered to be a 

core instance. In addition, the threshold instance should be the first instance in the first 

valley of the sorted k-dist graph. It is inconvenient to design an algorithm that can 

automatically detect this threshold instance; however, an analyst can conveniently 

determine this threshold instance by visualizing and considering this sorted k-dist 

graph. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 33.4. A sortedd k-dist grapph. 
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CHAPTER IV 

Problem Methodology 

In this chapter, I describe my three approaches to handle the class imbalanced 

problems, two over-sampling and one under-sampling techniques, as follows. 

Safe-Level-SMOTE [7] is an improvement of SMOTE which carefully over-

samples a minority class by generating synthetic instances along the same line segment 

of SMOTE with different weight degree called safe level computed by counting the 

minority class nearest neighbours. By synthesizing instances more around larger safe 

level instances, these synthetic instances are located closer to minority instances than 

majority instances. 

MUTE (Majority Under-sampling Technique) [6] is an under-sampling technique 

which gets rid of noise majority instances which overlap with minority instances. The 

removal majority instances are considered based on their safe levels relying on the 

Safe-Level-SMOTE concept. MUTE not only reduces the classifier construction time 

because of a downsizing dataset but also improves the prediction rate on a minority 

class. 

DBSMOTE (Density-Based Minority Over-sampling Technique) [9] relies on a 

density-based notion of clusters and is designed to over-sample an arbitrarily shaped 

cluster discovered by DBSCAN. DBSMOTE generates synthetic instances along a 

shortest path from each positive instance to a pseudo-centroid of a minority-class 

cluster. Consequently, these synthetic instances are dense near this centroid and are 

sparse far from this centroid. 

 

1. Safe-Level-SMOTE 

SMOTE is an original work of the over-sampling techniques for handling the class 

imbalanced problem by generating synthetic instances. Unfortunately, SMOTE might 
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generates synthetic instances to be crashed against the opposite-class instances 

especially in the border of a minority class; thus, SMOTE encounters the overlapping 

problem. 

 Basing on SMOTE, Safe-Level-SMOTE carefully over-samples by considering 

safe positions to generate synthetic instances. In addition, Safe-Level-SMOTE assigns 

each positive instance its safe level before generating synthetic instances along the line 

between the positive instance and their selected positive nearest neighbours. Each 

synthetic instance is positioned closer to the largest safe level so all synthetic instances 

are generated only in safe regions. This is the advantage of my technique because it 

can prevent the case of over-sampling in unwanted locations such as noise and 

overlapping regions. 

 The safe level (sl) is defined as formula (4.1). To interpret this formula, if the safe 

level of an instance is close to 0, the instance is nearly noise. But, if it is close to k, the 

instance is considered safe for over-sampling. 

 The safe level ratio (sl_ratio) is defined as formula (4.2). The safe level ratio is 

used for selecting the safe positions in an over-sampling line segment of SMOTE to 

carefully generate synthetic instances of a minority class. 

safe level = the number of positive instances among its k nearest neighbours (4.1) 

safe level ratio = sl of a positive instance / sl of a nearest neighbour (4.2) 

 

 The Safe-Level-SMOTE algorithm is showed in Fig. 4.1. All variables in this 

algorithm are described as follows. p is an instance in the set of all original positive 

instances D. n is a selected nearest neighbours of p. s included in the set of all synthetic 

positive instances D′ is a synthetic instance. slp and sln are safe level of p and safe level 

of n respectively. sl_ratio is safe level ratio. numattrs is the number of attributes. dif is 
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the difference between the values of n and p at the same attribute id. gap is a random 

fraction of dif. p[i], n[i], and s[i] are the numeric values of the instances at ith attribute. In 

the algorithm, D and D′ are set of positive instances. p, n, and s are vectors. slp, sln, 

sl_ratio, numattrs, dif, gap, p[i], n[i], and s[i] are scalars. 

 The algorithm begins to computer the k nearest neighbours of p. After that, the 

algorithm assigns the safe level to p and the safe level to n and then calculates the safe 

level ratio of the pair of p and n. There are five cases corresponding to the value of safe 

level ratio illustrated in Fig. 4.2. In this figure, the meanings of all variables are described 

below. 

 The first case illustrated in Fig. 4.2 (a). The safe level ratio is equal to ∞ and the 

safe level of p is equal to 0. It means that both p and n are noise instances because all k 

nearest neighbours of p and n are opposite-class instances. If this case occurs, 

synthetic instance will not be generated because the algorithm does not want to 

emphasize the important of noise regions. 

 The second case illustrated in Fig. 4.2 (b). The safe level ratio is equal to ∞ and 

the safe level of p is not equal to 0. It means that n is noise because all k nearest 

neighbours of n are negative instances. If this case occurs, a synthetic instance will be 

generated far from noise instance n by duplicating p because the algorithm  want to 

avoid the noise instance n. 

 The third case illustrated in Fig. 4.2 (c). The safe level ratio is equal to 1. It 

means that the safe level of p and n are the same. If this case occurs, a synthetic 

instance will be generated along the line between p and n because p is as safe as n. 

Besides, this case is SMOTE. 

 The fourth case illustrated in Fig. 4.2 (d). The safe level ratio is greater than 1. It 

means that the safe level of p is greater than that of n. If this case occurs, a synthetic 

instance is positioned closer to p rather than n because p is safer than n. The synthetic 
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instance will be generated in the range [0, 1/sl_ratio] illustrated by the dark line in the 

figure. 

 The fifth case illustrated in Fig. 4.2 (e). The safe level ratio is less than 1. It 

means that the safe level of p is less than that of n. If this case occurs, a synthetic 

instance is positioned closer to n rather than p because n is safer than p. The synthetic 

instance will be generated in the range [1 - sl_ratio, 1] illustrated by the dark line in the 

figure. 

 In the algorithm, when each iteration of for loop in line 2 finishes, if the first case 

does not occurs, s will be generated along the specific-ranged line segment between p 
and n, and then s will be added to D′. After the algorithm terminates, it returns a set of 

all synthetic instances D′. The algorithm generates |D| - t synthetic instances where |D| 

is the number of all positive instances in D, and t is the number of iterations that satisfy 

the first case.  

 Safe-Level-SMOTE carefully over-samples a minority class in an imbalanced 

dataset. Each synthetic instance is generated in safe position by considering the safe 

level ratio of the pair of instances. The synthetic instances generated in safe positions 

can improve prediction performance of classifiers on the minority class. 
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Input: a set of all original positive instances D 

Output: a set of all synthetic positive instances D′ 

  1.  D′ = ∅ 

  2.  for each positive instance p in D { 

  3.     randomly select one from the k nearest neighbours of p, call it n 

  4.     compute slp and sln 

  5.     if (sln ≠ 0) 

  6.        sl_ratio = slp / sln 

  7.     else 

  8.        sl_ratio = ∞ 

  9.     if (sl_ratio = ∞ ∧ slp = 0)  ; the 1st case 

10.        skip 

11.     else 

12.        for (atti = 1 to numattrs) { 

13.           if (sl_ratio = ∞ ∧ slp ≠ 0)  ; the 2nd case 

14.              gap = 0 

15.           else if (sl_ratio = 1)  ; the 3rd case 

16.              random a number between 0 and 1, call it gap 

17.           else if (sl_ratio > 1)  ; the 4th case 

18.              random a number between 0 and 1/sl_ratio, call it gap 

19.            else if (sl_ratio < 1)  ; the 5th case 

20.              random a number between 1 - sl_ratio and 1, call it gap 

21.           dif = n[atti] - p[atti] 

22.           s[atti] = p[atti] + gap·dif 

23.        } 

24.        D′ = D′ ∪ {s} 

25.  } 

26.  return D′ 

Fig. 4.1. Safe-Level-SMOTE algorithm. 
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(a) The 1st case: sl_ratio = ∞ ∧ slp = 0 

 
(b) The 2nd case: sl_ratio = ∞ ∧ slp ≠ 0 

 
(c) The 3rd case: sl_ratio = 1 

 
(d) The 4th case: sl_ratio > 1 

 
(e) The 5th case: sl_ratio < 1 

Fig. 4.2. The five cases corresponding to the safe level ratio. 

 

2. MUTE 

My proposed strategy, MUTE was inspired by Safe-Level-SMOTE, which defines safe 

levels on only minority (positive) instances before processing an over-sampling routine. 

In contrast to Safe-Level-SMOTE, MUTE applies safe levels on majority (negative) 

instances for the purpose of under-sampling. 

 A safe level of a majority instance, calculated by (4.1), is computed by the 

number of minority instances among k nearest neighbours. A majority instance is 

located in a safe region if a safe level is equal to 0. On the other hand, if a safe level is 

equal to k, a majority instance is considered to be noise. 
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 The MUTE algorithm, shown in Fig. 4.3, is to wipe out the Majority Noise Set, 

defined by Definition 7, from a dataset. In the algorithm, τ is a minimum number of 

minority nearest neighbours of a majority instance, which permits MUTE to remove this 

instance, thus τ is set as k because I aim to delete only noise majority instances in a 

dataset. 

 

Input: an original dataset D, a threshold τ 

Output: an under-sampling dataset D - N 

1.  N = ∅ 

2.  for each majority instance n in D 

3.     if sln ≥ τ 

4.        N = N ∪ {n} 

5.  return D - N 

Fig. 4.3 MUTE algorithm. 

 

Definition 7: Let D be a dataset, and sln be a safe level of a majority instance n. The 
Majority Noise Set is defined by N = {n ∈ D | sln = k}. 

 

In the class imbalanced problem, noise majority instances are frequently screwed 
into the crowd of minority instances as shown in Fig. 4.4, in which symbols + and – 
represent minority and majority instances respectively. MUTE cleans this crowd to be 
more unmixed with majority instances in an overlapping region. After cleaning this region, 
a classifier better generates a decision boundary because majority and minority 
instances are not extremely blended. In addition, MUTE does not diminish important 
information in a dataset because each delible majority instance is orbited by all nearest 
neighbors from a minority class. By-product of MUTE is the speedup for a classifier 
construction. 
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Fig. 4.4. An overlapping region before (left) and after (right) under-sampling. 

 

3. DBSMOTE 

In the class imbalanced dataset, there are two significant questions to be answered: 

Which minority class region should be emphasized by an over-sampling technique? and 

How should synthetic instances generated by the SMOTE family be distributed? 

 For the first question, typically, a dataset is divided into three regions; noise, safe, 

and overlapping. A noise region is located outside a cluster. A classifier often detects 

noise instances as negative because negative instances encompass these noise 

instances, and thus an over-sampling technique should not operate in this region. A safe 

region is located inside a cluster. A classifier easily recognizes this region because it has 

sufficient numbers of instances. However, for the class imbalance problem, a safe region 

of a minority class does not contain enough instances, and thus a classifier often 

misclassifies this region. An overlapping region is located around a cluster border, which 

contains a blend of positive and negative instances. This region is detected with great 

difficultly because a classifier cannot efficiently distinguish between the two classes, and 

thus over-sampling in this region might be harmful. To summarize, for the class 

imbalance problem, an efficient over-sampling technique should concentrate on a safe 

region and treat with caution any overlapping regions. 

 For the second question, SMOTE operates throughout a dataset, and thus 

synthetic instances are spread throughout every region. Borderline-SMOTE operates only 



 

 
36 

on a dataset border, and thus synthetic instances are dense in an overlapping region. 

Safe-Level-SMOTE operates throughout a dataset and positions synthetic instances in an 

overlapping region close to a safe region. Accordingly, these instances are sparse in an 

overlapping region and are not dense in a safe region. In this thesis, I design a new re-

sampling technique which produces more synthetic instances around a dataset core 

than a dataset border and does not operate within a noise region. Thus these instances 

are dense in a safe region and are sparse in an overlapping region. 

 The efficient over-sampling technique called DBSMOTE is proposed for handling 

class imbalanced problems. This technique combines the density-based clustering 

algorithm DBSCAN and the over-sampling technique SMOTE. 

 Naturally, the distribution of any class in a real-world balanced dataset is 

compact near the core of a cluster and is sparse near the edge of the cluster. 

Consequently, the predicted result for an unidentified instance depends on its location. A 

classifier would predict the instance to be the same class as the core if the instance was 

close enough to the core. 

 The development of DBSMOTE was inspired by the over-sampling technique 

Borderline-SMOTE [9], which concentrates on over-sampling only the borderline regions 

of a cluster. Normally, these regions contain a high overlap between positive instances 

and negative instances. After over-sampling, these regions are dense in the positive 

instances, and thus a trivial classifier would predict more instances as positive instances 

whether they are positive instances or not. Accordingly, this effect improves a classifier’s 

detection rate on a minority class but decreases it on a majority class. However, an 

efficient over-sampling technique should induce a classifier to accurately predict a 

minority class while not sacrificing the prediction rate on a majority class. 

 The approach of DBSMOTE is opposite to Borderline-SMOTE, which not over-

samples around the center of a cluster, but DBSMOTE concentrates on this center. The 

concept of DBSMOTE is to emphasize the core information rather than the border 

information. This goal can be accomplished by over-sampling different regions with 
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different rates. The regions near the centroid of a cluster are over-sampled at a higher 

rate than the regions far from the centroid because the center of a cluster is more 

important than the edge of a cluster. Thus synthetic instances are dense near the 

centroid and sparse far from the centroid. Normally, the centroid of a cluster is located in 

the center of the cluster and is computed by the average of all instances. 

 In this thesis, I designed a new data structure called a directly density-reachable 

graph, which is defined in Definition 8. The graph is transformed by a cluster of instances 

and is an underlying weighted directed graph [32]. In the graph, each node represents 

an instance in a cluster while each edge represents a directly density-reachable relation. 

To consider a pair of connected nodes, if at least one is directly density-reachable from 

the other, the edge between this pair will be created. In the weight function, each weight 

is computed based on the distance in the pair. Note that R is a set of real numbers. 

 

Definition 8: (Directly density-reachable graph) 

A directly density-reachable graph of a cluster C discovered by DBSCAN, denoted by 

G(C) = (V, E), where V is a set of nodes represented as instances in C and E is a set of 

edges. E is defined as E = {(v1, v2) ∈ V×V | an instance v1 is directly density-reachable 

from an instance v2 wrt. Eps and MinPts or vice versa}. Let w: E → R be a weight 

function where w(v1, v2) is equal to the distance between a pair of connected nodes v1, 

v2 ∈ V. 

 

A directly density-reachable graph is illustrated in Fig. 4.5. All black points are 

core instances and the others are border instances. At least one from a pair of 

connected nodes is guaranteed to be a core instance, but no link connects a pair of 

border instances because they cannot hold the directly density-reachable relation in 

Definition 2. 
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Fig. 4.5. A directly density-reachable graph. 

 

 A directly density-reachable graph was designed based on the requirements of 

my research, which needs a particular graph whose shortest paths reside within the 

shape of a cluster. In the graph, each edge exists if and only if the connected nodes in a 

pair are close enough to each other, and thus this graph is composed of many low-

weight edges. The edges of a complete graph, whose edges link in every pair of nodes 

whether the distances in the pairs are high weight or low weight, do not fit the shape of a 

cluster; however, those of a directly density-reachable graph fit the same shape. 

 For an arbitrarily shaped cluster, if an over-sampling process generates a 

synthetic instance by locating it along the shortest path in a complete graph, this 

synthetic instance may be located outside the shape. This effect causes an overlapping 

problem between the synthetic instance and a negative instance. On the other hand, if a 

data structure is a directly density-reachable graph, the synthetic instances are located 

inside the shape because the shortest paths are similar to the skeleton path [33]. 

 A shortest path algorithm applied in a directly density-reachable graph is 

illustrated in Fig. 4.6. Note that I do not show edges in the graph. The symbols in this 

figure are described as follows. A circular point represents a positive instance, and the 

black point represents the centroid of all positive instances in. The point p is one 

positive instance to be considered. The solid line represents a shortest path in a directly 

density-reachable graph for the pair of the considered point p and the centroid, whereas 
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these instances will be identified as noise instances and excluded from any clusters. 

Thus, this noise effect cannot interfere with the computation of the centroid. In my 

research, I use the pseudo-centroid, which is determined by the nearest instance from 

the centroid, because the centroid may not exist as an actual instance in a cluster. 

 The flow diagram of the over-sampling framework integrated with DBSMOTE is 

illustrated in Fig. 4.7 and is described as follows. First, all instances in a minority class 

D+ are fed to DBSCAN. Note that a whole dataset D consists of D+ and D-, where D- is 

all instances in a majority class. Second, DBSCAN produces m clusters: C1, C2, …, Cm. 

These clusters are disjoint sets. In addition, DBSCAN can detect and remove a set of 

noise instances N. Only the clusters are selected for processing in the next step. Third, 

each cluster is over-sampled by DBSMOTE. Fourth, DBSMOTE generates m sets of 

synthetic instances for each cluster: C1′, C2′, …, Cm′. Finally, all sets of synthetic 

instances are merged with an under-sampling dataset DMUTE operated by MUTE. The 

result is an over-sampled dataset D′. After the framework finishes, this modified dataset 

can be fed to any classification algorithm. 

 

 
Fig. 4.7. An over-sampling framework integrated with DBSMOTE. 

 

 DBSCAN requires the two parameters Eps and MinPts, which are passed to all 

DBSMOTE processes. Moreover, these parameters are global parameters for my over-

sampling framework. The values of the parameters can be determined by visualizing a 
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sorted k-dist graph, as described in Chapter 3.2. This setting guarantees that a directly 

density-reachable graph is a connected graph; thus, all shortest paths in my graph can 

be successfully searched. I design to set Eps and MinPts as global parameters 

because if Eps and MinPts are local parameters for each DBSMOTE process, they will 

be difficult to determine.  

 The algorithm DBSMOTE is shown in Fig. 4.8. In this algorithm, the input is a 

cluster i of instances Ci, Eps ε, and MinPts k while the output is a set i of synthetic 

instances Ci′. All instances in Ci and Ci′ are in a minority class. The values of Eps and 

MinPts in DBSCAN and DBSMOTE are the same and are derived from the sorted k-dist 

graph. All variables and all functions in my algorithm are described as follows. In 

addition, p is a positive instance located in a cluster i of instances Ci, and s is a 

synthetic instance contained in a set i of synthetic instances Ci′. 

 Let G be a directly density-reachable graph, which is an output from 

construct_directly_density-reachable_graph(Ci, ε, k). This function constructs a directly 

density-reachable graph G from a cluster Ci with respect to Eps ε and MinPts k, relying 

on Definition 7. These parameters guarantee that a directly density-reachable graph is a 

connected graph. This function operates in two steps. In the first step, it classifies each 

instance in a cluster as a core instance or a border instance. The type of all instances is 

determined because any instances must be directly density-reachable from a core 

instance. In the second step, for each pair of nodes, if at least one instance in this pair is 

directly density-reachable from its partner, the edge connecting the pair will be created. 

 Let c be the pseudo-centroid, which is an output from determine_pseudo-

centroid(Ci). This function determines the pseudo-centroid c, which is the nearest 

instance from the mean of all instances in a cluster Ci. Typically, the centroid of a cluster 

is computed by the mean of all instances in a cluster, but the centroid may not be an 

instance in the cluster. Thus, the nearest instance from the mean is selected as the 

pseudo-centroid. 



 

 
42 

 Let π be a predecessor list, which is an output from Dijkstra(G, c). Dijkstra’s 

algorithm [34] is a graph search algorithm that solves the single-source shortest path 

problem for a graph whose edge weights are all non-negative. This predecessor list can 

describe all visited nodes in a shortest path between the pseudo-centroid c and any 

other node. The shortest path is obtained by traversing backwards through the 

predecessor list. The time complexity of Dijkstra’s algorithm is O(|V|2 + |E|), where |V| is 

the number of nodes and |E| is the number of edges. This time complexity can be 

derived from a polynomial function O(n2) [34] when n is equal to |V|. 

 Let § be a shortest path, which is an output from retrieve_shortest_path(π, p, c). 

This function retrieves a shortest path between a positive instance p and the pseudo-

centroid c by traversing π. 

 Let e be an edge, which is an output from select_random_edge(§). This function 

randomly selects one edge in the shortest path §. 

 Let {v1, v2} be a pair of nodes connected by an edge e, which is an output from 

get_connected_nodes(e). 

 For the variables in the loop for, atti is an attribute index, numattrs is the number 

of attributes, dif is the difference between the numerical values of v2 and v1 at the same 

attribute atti, and gap is a random number assigned by generate_random_number(0, 1), 

which returns a real number in the range from 0 to 1. In addition, v1[atti], v2[atti], and 

s[atti] are the numerical values of the instances at the same attribute atti. 

 To summarize the algorithm, DBSMOTE begins to construct a directly density-

reachable graph from a cluster of positive instances with respect to the global 

parameters Eps and MinPts, relying on Definition 7. Next, the pseudo-centroid of the 

cluster is assigned to the nearest instance from the mean of instances in the cluster. 

After that, for each instance in the cluster, DBSMOTE generates a synthetic instance 

along the line segment in the pair of nodes connected by an edge that is randomly 

selected from a shortest path, embedded in a directly density-reachable graph, 
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between the instance to the pseudo-centroid. After DBSMOTE is applied to a cluster i, 

the algorithm returns a set of ni synthetic instances where ni is the number of instances 

in a cluster Ci. Furthermore, the number of synthetic instances generated by my 

framework depends on the size of a set of noise instances. If a dataset contains t noise 

instances, the framework will generate (n - t) synthetic instances, where n is the number 

of instances in a minority class contained in a dataset. 

 

Input: a cluster i of positive instances Ci, Eps ε, and MinPts k 

Output: a set i of synthetic instances Ci′ 

  1.  Ci′ = ∅ 

  2.  G = construct_directly_density-reachable_graph(Ci, ε, k) 

  3.  c = determine_pseudo-centroid(Ci) 

  4.  π = Dijkstra(G, c) 

  5.  for each instance p ∈ Ci { 

  6.     § = retrieve_shortest_path(π, p, c) 

  7.     e = select_random_edge(§) 

  8.     (v1, v2) = get_connected_nodes(e) 

  9.     for (atti = 1 to numattrs) { 

10.        dif = v2[atti] - v1[atti] 

11.        gap = generate_random_number(0, 1) 

12.        s[atti] = v1[atti] + gap·dif 

13.     } 

14.     Ci′ = Ci′ ∪ {s} 

15.  } 

16.  return Ci′ 

Fig. 4.8. DBSMOTE algorithm. 
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 DBSMOTE produces a set of synthetic instances. This set is dense near the 

pseudo-centroid of a cluster and is sparse far from the pseudo-centroid. In other words, 

the core information is more emphasized than the border information. The over-sampled 

dataset causes a classifier to concentrate on learning around the core information 

spread around the pseudo-centroid more than on in the border information spread near 

the edge a cluster. 

 A directly density-reachable graph satisfies the properties that cause similarities 

between synthetic instances and core instances. In this section, I define two terms, core 

node and border node. In the graph, a core node is a node that represents a core 

instance, and a border node represents a border instance. In addition, the weight of an 

edge is equal to the distance between the pair of connected nodes, and the degree of a 

node is equal to the number of edges incident to the node. The lemmas related to these 

properties are described as follows. 

 Lemma 1 informs us that the weight of each edge in a directly density-reachable 

graph cannot exceed Eps because Definition 1 and Definition 2 require the distance 

between a core instance and its Eps-neighbourhood to be no greater than Eps. 

 In the algorithm DBSMOTE, each synthetic instance is generated along the line 

of an edge in a directly density-reachable graph. The length of this line is equal to the 

weight of this edge and is related to the similarity between a synthetic instance and a 

core instance connected by the edge. If the line is long, the similarity will be low. If the 

line is short, the similarity will be high. A synthetic instance should be closer to a core 

instance, which holds the core information, because the similarity between the 

connected nodes in the pair should not be small.  In the worst case, the similarity 

guarantees that the distance between a synthetic instance and a core instance cannot 

exceed the distance Eps. This similarity-guaranteed distance Eps is useful for an 

application with the restricted condition of not allowing an algorithm to create a synthetic 

instance whose similarity to an instance in a cluster exceeds the specified distance. 
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 In a complete graph in which each node connects to every other node, the 

maximum weight among all edges incident to a node is equal to the distance from its 

furthest (n - 1)th nearest neighbour where n is the number of instances in a cluster. In a 

directly density-reachable graph, that maximum weight is equal to the distance from a 

node to its furthest kth nearest neighbour. Because k is less than n, the similarity 

between a core instance and a synthetic instance generated along the line of an edge in 

a directly density-reachable graph would be more than that in a complete graph. 

 

Lemma 1: The maximum weight of any edge in a directly density-reachable graph is not 

greater than Eps. 

Proof: Definition 1 and Definition 2 restrict the distance between two directly density-

reachable instances such that it cannot exceed Eps. □ 

 

 Lemma 2 informs us that the degree of a core node in a directly density-

reachable graph must reach MinPts because a core instance must obtain at least 

MinPts Eps-neighbourhood relying on the restriction of the core instance condition in 

Definition 2. 

 Lemma 3 informs us that the degree of a border node in a directly density-

reachable graph must not reach MinPts because a border instance cannot hold the 

core instance condition in Definition 2. 

 Because the number of edges incident to a core node is greater than that of a 

border node, most visited nodes in a shortest path would be core nodes. Thus, synthetic 

instances would be closer to the core instances than the border instances. DBSMOTE 

not only emphasizes the generation of synthetic instances near the pseudo-centroid of a 

cluster over instances near the edge of the cluster, but also locates these instances 

closer to core instances because the regions around the pseudo-centroid and the core 
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instances contain significant core information. This phenomenon produces similarity 

between the information in synthetic instances and the core information. 

 

Lemma 2: The minimum degree of a core node in a directly density-reachable graph is 

not less than MinPts. 

Proof: From the core instance condition in Definition 2, a core instance obtains at least 

MinPts Eps-neighborhood. □ 

 

Lemma 3: The maximum degree of a border node in a directly density-reachable graph 

is less than MinPts. 

Proof: From the core instance condition in Definition 2, a border instance does not meet 

this condition. □ 

 

By Theorem 1, DBSMOTE takes a polynomial running time O(n2) when n is the 

number of instances in a cluster. In the algorithm SMOTE, finding k nearest neighbours 

takes O(n) and producing a synthetic instance takes O(1) for one instance in a minority 

class, so the running time of SMOTE is O(n2). Borderline-SMOTE also takes O(n2) 

because the authors did not modify any parts of the algorithm SMOTE; they only 

changed the input set from all instances to only borderline instances and then fed them 

to the algorithm SMOTE. Among the SMOTE family, the running time of DBSMOTE is not 

slower than SMOTE and Borderline-SMOTE. In the over-sampling framework integrated 

with DBSMOTE, its running time is considered to be the total running time of DBSCAN 

and DBSMOTE. In the worst case, DBSCAN detects all clusters and a number of noise 

instances by taking O(nlgn). Next, DBSMOTE produces a set of synthetic instances by 

taking O(ni
2) for a cluster i, where ni is the number of instances in a cluster i. Because 

ni is not greater than n, I can derive that O(ni
2) is equivalent to O(n2). After that, merging 

these sets takes O(n). Because the number of clusters is a constant, the running time of 

my framework achieves a reasonable time complexity O(n2). 
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Theorem 1: (Time complexity) 

The time complexity of DBSMOTE is O(numattrs·n2), where n is the input size. 

Proof: All running times of the functions in DBSMOTE are specified as follows. 

 Each instruction in the lines 1, 10, 12, 14, and 16 takes O(1). Let T1(n), T10(n), 

T12(n), T14(n), and T16(n) be the running times of these instructions so there is a positive 

constant ci such that 0 ≤ Ti(n) ≤ ci where i ∈ {1, 10, 12, 14, 16}. 

 The step construct_directly_density-reachable_graph(Ci, ε, k) takes O(n2) 

because classifying each instance as a core instance or a border instance takes O(n2) 

and then creates all edges in a directly density-reachable graph takes O(n2). Let T2(n) 

be the running time of this function so there are positive constants c2 and n0 such that 0 

≤ T2(n) ≤ c2n2 where ∀n > n0. 

 The step determine_pseudo-centroid(Ci) takes O(n) because computing the 

mean of all instances in a cluster Ci takes O(n) and then determining the nearest 

instance from the mean takes O(n). Let T3(n) be the running time of this function so 

there are positive constants c3 and n0, such that 0 ≤ T3(n) ≤ c3n where ∀n > n0. 

 The step Dijkstra(G, c) takes O(n2), relying on the time complexity of Dijkstra’s 

algorithm. Let T4(n) be the running time of this function so there are positive constants c4 

and n0 such that 0 ≤ T4(n) ≤ c4n2 where ∀n > n0. 

 The step retrieve_shortest_path(π, p, c) takes O(n). In the worst case, all nodes 

in a directly density-reachable graph are visited nodes in a shortest path. Let T6(n) be 

the running time of this function so there are positive constants c6 and n0 such that 0 ≤ 

T6(n) ≤ c6n where ∀n > n0. 

 The step select_random_edge(§) takes O(1) because this function randomly 

selects one edge in a shortest path §. Let T7(n) be the running time of this function so 

there is a positive constant c7 such that 0 ≤ T7(n) ≤ c7 where ∀n > n0. 



 

 
48 

 The step get_connected_nodes(e) takes O(1) because this function gets the 

index information for a pair of connected nodes. Let T8(n) be the running time of this 

function so there is a positive constant c8 such that 0 ≤ T8(n) ≤ c8 where ∀n > n0. 

 The step generate_random_number(0, 1) takes O(1) because this function 

generates a random real number in the range from 0 to 1. Let T11(n) be the running time 

of this function so there is a positive constant c11 such that 0 ≤ T11(n) ≤ c11 where ∀n > 

n0. 

 Loop for in line 5 takes n steps. 

 Loop for in line 9 takes numattrs steps when numattrs is a constant. 

 Let T(n) be the total running time and be derived as the following inequalities: 

 

0 ≤ T(n) ≤ T1(n) + T2(n) + T3(n) + T4(n) + n·(T6(n) +T7(n) + T8(n) 
       + numattrs·(T10(n) + T11(n) + T12(n)) + T14(n)) + T16(n) 
 
   ≤ c1 + c2n2 + c3n + c4n2 
       + n·(c6n + c7 + c8 + numattrs·(c10 + c11 + c12) + c14) + c16 
 
   ≤ (c1 + c16) + (c3 + c7 + c8 + c14 + numattrs·(c10 + c11 + c12))·n 
       + (c2 + c4 + c6)·n2 

 
   ≤ (c1 + c16)·n2 + (c3 + c7 + c8 + c14 + numattrs·(c10 + c11 + c12))·n2  
       + (c2 + c4 + c6)·n2 

 
   ≤ (c1 + c16 + c3 + c7 + c8 + c14 + numattrs·(c10 + c11 + c12) 
       + c2 + c4 + c6)·n2 

 
   ≤ c·numattrs·n2 
 

Because there is a positive constant c such that T(n) ≤ c·numattrs·n2 where ∀n > n0, I 

can derive that T(n) = O(numattrs·n2) □ 
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By Theorem 2, the shortest paths of each instance to the pseudo-centroid of a 

cluster exist in a directly density-reachable graph. In addition, the correctness of the 

algorithm DBSMOTE can be validated by this theorem because the algorithm cannot be 

halted unless all shortest paths are completely searched by line 6 in the algorithm. If 

there is even one instance whose shortest path from the pseudo-centroid does not exist, 

the results will be incorrect, and the algorithm cannot be applied in practice. This 

theorem is important because it indicates that the algorithm is reliable. 

 

Theorem 2: (Correctness) 

There exist all shortest paths between each instance and the pseudo-centroid of a 

cluster. 

Proof: Assume to the contrary that there is an instance z whose shortest path from the 

pseudo-centroid c of a cluster does not exist. Relying on condition 2 in Definition 5, z 

and c are in the same cluster; thus, z is density-connected to c. By Definition 4, there 

must be an instance r such that z and c are density-reachable from r. By Definition 3, 

there is a chain of instances p1, …, pn, p1 = r, pn = z such that pi+1 is directly density-

reachable from pi, where n is the number of instances in this chain and i is an integer in 

the range from 1 to n - 1. By Definition 7, pi+1 is directly density-reachable from pi; thus, 

an edge connecting pi+1 and pi exists. This sequence of instances is a path between r 

and z. Because z and c are density-reachable from r, a path between z and c also 

exists, contradicting my assumption that there is a path between z and c. Thus, all 

shortest paths between each instance and the pseudo-centroid in the cluster exist when 

the instances in this pair are represented as nodes in a directly density-reachable 

graph. □ 
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CHAPTER V 

Experiment 

In this chapter, I describe my collected datasets form UCI and show my experimental 

results with their statistical tests as follows. 

 In my experiment, I compared three performance measures: accuracy, F-value, 

and AUC of my framework with those of SMOTE and Safe-Level-SMOTE, by applying 

three classifiers: a decision tree C4.5, a rule-based classifier RIPPER, and a neural 

network model MLP, on five UCI imbalanced datasets: Glass, Letter Recognition, Page-

Blocks, Satimage, and Segmentation, with multiple minority classes. In addition, I run the 

paired t-tests to test a difference in means across the paired observations of my 

framework with SMOTE and Safe-Level-SMOTE. 

 

1. Dataset 

I selected the multi-class datasets with various degrees of imbalance from the UCI 

Repository of Machine Learning Databases [35], Glass Identification, Letter Recognition, 

Page-Blocks, Satimage, and Image Segmentation, which are shown in Table 5.1. 

 I randomly split each dataset except Satimage, which has separated training 

and test sets, into a training set (2/3) and a test set (1/3). In addition, target classes were 

selected as minority classes and remaining classes were merged as a majority class. In 

order to avoid the randomness of SMOTE techniques, I determined median accuracy, F-

value, and AUC from 3 independent running. 
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Table 5.1. The descriptions of UCI datasets in the experiments. 

Dataset Attributes Instances Class 

ID 

Minority Class Name Minority 

Class % 

Glass 10 17 3 Vehicle Windows 7.94 

13 5 Containers 6.07 

Letter 

Recognition 

16 736 3 C 3.68 

734 8 H 3.67 

734 26 Z 3.67 

Page-blocks 10 329 2 Horizontal Line 6.01 

88 4 Vertical Line 1.61 

115 5 Picture 2.10 

Satimage 36 479 2 Cotton Crop 10.80 

415 4 Damp Grey Soil 9.36 

470 5 Soil with Vegetation 

Stubble 

10.60 

Segmentation 19 330 3 Foliage 14.29 

330 5 Window 14.29 

 

2. Experimental Result 

For my experimental design, I used the performance measures accuracy, F-value (as 

Precision and Recall), and AUC to evaluate the over-sampling techniques SMOTE, Safe-

Level-SMOTE (SAFE), and DBSMOTE (DBS). The value of β in F-value was set to 1. The 

number of k nearest neighbour to be over-sampled was set to 5 as the default value of 

SMOTE [8]. The standard classifiers, Decision Tree C4.5, RIPPER, and Multilayer 

Perceptron (MLP), were applied. The experimental results from all datasets are 

illustrated in Tables 5.2 through 5.5. 
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Table 5.2. Accuracy results when applying SMOTE family on UCI datasets. 

Classifier Dataset DBS SMOTE SAFE 

C4.5 Glass 84.21 76.31 78.94 

Letter Recognition 96.56 97.01 96.57 

Page-blocks 97.85 97.30 97.63 

Satimage 85.85 86.30 86.95 

Segmentation 96.73 95.69 96.08 

Ripper Glass 84.21 78.94 80.26 

Letter Recognition 96.84 97.01 96.69 

Page-blocks 97.46 97.52 97.57 

Satimage 88.25 86.80 87.15 

Segmentation 95.30 95.30 94.90 

MLP Glass 90.78 81.57 86.84 

Letter Recognition 96.35 95.94 95.97 

Page-blocks 96.97 96.53 96.47 

Satimage 90.20 88.75 88.95 

Segmentation 97.65 97.25 96.86 
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Table 5.3. F-value results when applying SMOTE family on UCI datasets. 

Classifier Dataset Class DBS SMOTE SAFE 

C4.5 Glass 3 0.286 0.400 0.167 

5 0.750 0.333 0.727 

Letter 

Recognition 

3 0.888 0.883 0.883 

8 0.742 0.798 0.754 

26 0.905 0.899 0.892 

Page-blocks 2 0.936 0.933 0.933 

4 0.867 0.867 0.867 

5 0.725 0.676 0.712 

Satimage 2 0.958 0.945 0.935 

4 0.603 0.564 0.580 

5 0.813 0.814 0.832 

Segmentation 3 0.939 0.930 0.933 

5 0.905 0.867 0.890 

Ripper Glass 3 0.400 0.375 0.375 

5 0.667 0.600 0.444 

Letter 

Recognition 

3 0.915 0.901 0.899 

8 0.733 0.743 0.720 

26 0.935 0.933 0.926 

Page-blocks 2 0.916 0.919 0.926 

4 0.906 0.867 0.867 

5 0.727 0.714 0.740 

Satimage 2 0.951 0.944 0.935 

4 0.624 0.607 0.612 

5 0.833 0.828 0.839 

Segmentation 3 0.932 0.920 0.912 

5 0.863 0.865 0.851 
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Table 5.3. F-value results when applying SMOTE family on UCI datasets (Continue). 

Classifier Dataset Class DBS SMOTE SAFE 

MLP Glass 3 0.600 0.167 0.200 

5 0.833 0.769 0.833 

Letter 

Recognition 

3 0.865 0.852 0.848 

8 0.777 0.728 0.735 

26 0.881 0.861 0.861 

Page-blocks 2 0.903 0.870 0.867 

4 0.800 0.800 0.792 

5 0.718 0.684 0.684 

Satimage 2 0.971 0.951 0.969 

4 0.679 0.662 0.647 

5 0.880 0.859 0.861 

Segmentation 3 0.960 0.959 0.951 

5 0.929 0.915 0.906 
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Table 5.4. AUC results when applying SMOTE family on UCI datasets. 

Classifier Dataset Class DBS SMOTE SAFE 

C4.5 Glass 3 0.783 0.740 0.669 

5 0.907 0.747 0.870 

Letter 

Recognition 

3 0.978 0.964 0.958 

8 0.930 0.951 0.942 

26 0.958 0.961 0.961 

Page-blocks 2 0.971 0.972 0.972 

4 0.946 0.946 0.929 

5 0.852 0.890 0.895 

Satimage 2 0.985 0.973 0.977 

4 0.852 0.795 0.787 

5 0.927 0.892 0.908 

Segmentation 3 0.981 0.980 0.977 

5 0.961 0.917 0.922 

Ripper Glass 3 0.714 0.706 0.713 

5 0.786 0.714 0.695 

Letter 

Recognition 

3 0.966 0.961 0.959 

8 0.899 0.902 0.873 

26 0.977 0.974 0.975 

Page-blocks 2 0.974 0.981 0.975 

4 0.981 0.933 0.934 

5 0.897 0.825 0.826 

Satimage 2 0.980 0.968 0.965 

4 0.858 0.844 0.836 

5 0.918 0.923 0.905 

Segmentation 3 0.987 0.981 0.947 

5 0.951 0.927 0.921 
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Table 5.4. AUC results when applying SMOTE family on UCI datasets (Continue). 

Classifier Dataset Class DBS SMOTE SAFE 

MLP Glass 3 0.867 0.838 0.840 

5 0.990 0.983 0.861 

Letter 

Recognition 

3 0.995 0.977 0.960 

8 0.961 0.951 0.956 

26 0.989 0.985 0.981 

Page-blocks 2 0.983 0.978 0.979 

4 0.992 0.981 0.990 

5 0.954 0.955 0.954 

Satimage 2 0.999 0.996 0.998 

4 0.941 0.939 0.936 

5 0.989 0.972 0.976 

Segmentation 3 0.998 0.998 0.997 

5 0.994 0.995 0.991 

 

For the statistical analysis illustrated in Tables 5.5 through 5.7, I applied the 

paired t-tests to all the accuracy, F-value and AUC results above. For each test, the null 

and alternative hypotheses were 

 
H0: µ1 - µ2 = 0 
H1: µ1 - µ2 ≠ 0 
 

where µ1 is the mean of DBSMOTE and µ2 is the mean of SMOTE or Safe-Level-SMOTE. 

All pairs of variances were not significantly different. For each result, I did two paired t-

tests: DBSMOTE to SMOTE and DBSMOTE to Safe-Level-SMOTE. The significance level 

(α) was set to 0.05. If P(T ≤ t) two-tail < α, H0 is rejected, which meant that there was a 

difference in means across the paired observations. 
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Table 5.5. t-test: paired two sample for means on accuracy. 

  DBS SMOTE DBS SAFE 

Mean 93.014 91.21467 93.014 91.85533 

Variance 27.11577 55.94568 27.11577 41.6465 

Observations 15 15 15 15 

Pearson Correlation 0.944343  0.975887  

Hypothesized Mean Difference 0  0  

Degree of Freedom 14  14  

t Stat 2.261047  2.519068  

P(T ≤ t) one-tailed 0.020104  0.012272  

t Critical one-tailed 1.76131  1.76131  

P(T ≤ t) two-tailed 0.040207  0.024545  

t Critical two-tailed 2.144787   2.144787   

 

Table 5.6. t-test: paired two sample for means on F-value. 

  DBS SMOTE DBS SAFE 

Mean 0.808077 0.77441 0.808077 0.777051 

Variance 0.023457 0.036204 0.023457 0.037869 

Observations 39 39 39 39 

Pearson Correlation 0.862332  0.940544  

Hypothesized Mean Difference 0  0  

Degree of Freedom 38  38  

t Stat 2.168379  2.67111  

P(T ≤ t) one-tailed 0.018229  0.005534  

t Critical one-tailed 1.685954  1.685954  

P(T ≤ t) two-tailed 0.036458  0.011068  

t Critical two-tailed 2.024394   2.024394   
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Table 5.7. t-test: paired two sample for means on AUC. 

  DBS SMOTE DBS SAFE 

Mean 0.937718 0.920897 0.937718 0.915641 

Variance 0.004557 0.006839 0.004557 0.006971 

Observations 39 39 39 39 

Pearson Correlation 0.924886  0.922806  

Hypothesized Mean Difference 0  0  

Degree of Freedom 38  38  

t Stat 3.211854  4.108829  

P(T ≤ t) one-tailed 0.001343  0.000102  

t Critical one-tailed 1.685954  1.685954  

P(T ≤ t) two-tailed 0.002685  0.000204  

t Critical two-tailed 2.024394   2.024394   

 

To summarize the experimental results, it is apparent that DBSMOTE achieves 

the best accuracy, F-value (as Precision and Recall), and AUC when applying various 

types of classifiers. According to the paired t-tests, the performances of DBSMOTE are 

significantly better than that of SMOTE and Safe-Level-SMOTE for all measures. 
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CHAPTER VI 

Discussion and Conclusion 

In the last chapter, I discuss and summarize my research and also point out my future 

works as follows. 

 The trade-off between re-sampling techniques in this thesis is revealed as 

following facts. SMOTE consumes the least execution time in seconds but fails to 

operate on an overlapping region. Safe-Level-SMOTE can treat the overlapping problem 

but does not apply the features scaling process. DBSMOTE efficiently remedy the 

overlapping problem but consumes the least execution time in seconds. It has been 

evidenced that SMOTE is the fastest in the experiment; however in the class imbalanced 

problem I aim to archive the predictive performance but not the execution time so 

DBSMOTE is the best technique for handling this kind of problem. 

 The trade-off between re-sampling techniques in this thesis is revealed as 

following facts. SMOTE consumes the least execution time in seconds but fails to 

operate on an overlapping region. Safe-Level-SMOTE can treat the overlapping problem 

but does not apply the features scaling process. DBSMOTE efficiently remedy the 

overlapping problem but consumes the least execution time in seconds. It has been 

evidenced that SMOTE is the fastest in the experiment; however in the class imbalanced 

problem I aim to archive the predictive performance but not the execution time so 

DBSMOTE is the best technique for handling this kind of problem. 

 In conclusion, the class imbalanced problem has got more attentions among 

machine learning society. Unfortunately, traditional data mining techniques are still 

unsatisfactory when applications encounter this kind of problem. In this thesis, I propose 

the density-based over-sampling framework DBSMOTE which concentrates to operate 

on the core of a cluster of a minority class rather than the border of this cluster because 

this core contains significant information; as a result, a classifier emphasizes to learn on 

this core. Moreover, I also provide future works to improve both predictive performance 

and execution time of my framework. 
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1. Discussion 

SMOTE family is the group of over-sampling techniques based on SMOTE and consists 

of an original SMOTE, Safe-Level-SMOTE and DBSMOTE. The discussion among these 

techniques is described as Table 6.1. 

 For SMOTE, the main advantage is that the execution time of SMOTE in the 

experiment is the fastest comparing with the other techniques in SMOTE family because 

computing k nearest neighbours consumes the low cost; in addition, the disadvantage is 

that SMOTE cannot treat the overlapping regions because the synthetic instances 

generated in these regions would crash into the negative instances. 

 For Safe-Level-SMOTE, the advantage is that Safe-Level-SMOTE can treat the 

overlapping regions because the synthetic instances generated in these regions would 

be closer to the core of a cluster rather than the border of this cluster so these synthetic 

instances would not crash into the negative instances; in addition, the disadvantage is 

that an instance which its attributes have highly values might not be considered as the k 

nearest neighbours because the features scaling approach is not applied. 

 For DBSMOTE, the advantage is that DBSMOTE can efficiently treat the 

overlapping regions because the synthetic instances generated in these regions located 

closer to the safe regions which contain the core information of a minority class so a 

classifier is induced conveniently to separate the regions between a minority class and a 

majority class; in addition, the disadvantage is that the execution time of DBSMOTE in 

the experiment is the slowest comparing with the other techniques in SMOTE family 

because Dijkstra’s algorithm consumes the high cost. 
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Table 6.1. The Discussion on SMOTE family. 

Technique Concept Pros Cons 

SMOTE • SMOTE over-samples all 

instances spreading 

throughout a cluster in 

every region. 

 

• SMOTE generates all 

synthetic instances along 

a line joining each 

positive instance and its 

randomly selected 

positive nearest 

neighbours. 

 

• The density of the 

synthetic instances is not 

dense in any particular 

regions. 

• SMOTE consumes 

the least execution 

time in the 

experiment 

comparing with the 

other techniques. 

 

• SMOTE is widely 

available in data 

mining softwares 

such as WEKA. 

 

• SMOTE is easy to 

implement in 

various computer 

languages. 

• SMOTE 

poorly 

handles the 

overlapping 

regions. 
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Table 6.1. The Discussion on SMOTE family (Continue). 

Technique Concept Pros Cons 

Safe-Level-

SMOTE 
• Each positive instance 

has its safe level 

computed by the 

number of positive 

instances among the k 

nearest neighbours. 

 

• Each synthetic instance 

is generated along the 

same over-sampling line 

of SMOTE but 

positioning closer to a 

larger safe level 

instance. 

 

• The density of the 

synthetic instances is 

similar to that of SMOTE 

but not spreading in the 

overlapping regions. 

• Safe-Level-

SMOTE 

handles the 

overlapping 

regions. 

• An instance with a 

highly value-

feature may not be 

considered as the 

k nearest 

neighbours. 
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Table 6.1. The Discussion on SMOTE family (Continue). 

Technique Concept Pros Cons 

DBSMOTE • Each synthetic instance is 

generated along the 

shortest path from each 

positive instance to the 

pseudo-centroid of a 

minority class-cluster when 

these instances in the pair 

are represented as nodes 

in a directly density-

reachable graph. 

 

• The density of the synthetic 

instances is dense nearby 

the pseudo-centroid and is 

sparse far from the 

pseudo-centroid. 

• DBSMOTE 

efficiently 

handles the 

overlapping 

regions. 

• Although the time 

complexity is 

O(n2), the 

execution time in 

the experiment is 

slower than the 

other techniques. 
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2. Conclusion 

Class imbalanced problems are beginning to receive more attention among data miners 

and researchers. An application encounters this problem when the classes in a dataset 

are imbalanced. In addition, there are many techniques for handling the problems, such 

as over-sampling and under-sampling. Unfortunately, traditional data mining techniques 

are not capable of solving this kind of problem. I have designed an efficient technique 

called DBSMOTE based on the density concept for dealing with class imbalanced 

problems. 

 DBSMOTE begins to run DBSCAN to discover arbitrarily shaped clusters and to 

detect noise instances to be deleted and then execute SMOTE to generate synthetic 

instances inside the shapes of these clusters.  These instances tend to avoid appearing 

in any regions of a majority class so the prediction rate on a minority class would be 

improved. 

 According to the experimental results, the performance of DBSMOTE evaluated 

by F-value (as Precision and Recall), and AUC is better than that of SMOTE and Safe-

Level-SMOTE when applying various types of classifiers. This phenomenon stems from 

DBSMOTE’s generation of all synthetic instances along the shortest paths between each 

instance and the pseudo-centroid of a cluster in a directly density-reachable graph. 

Thus, the synthetic instances are dense near the pseudo-controid and sparse far from 

the pseudo-controid. Consequently, these synthetic instances cause a classifier to 

concentrate on the core information located around the pseudo-centroid instead of on 

the border information located around the edge of a cluster. In summary, the synthetic 

instances can improve prediction performance on a minority class. Furthermore, the 

statistical analysis supports my conclusions. 

 Analysis of the algorithm reveals that DBSMOTE takes O(numattr·n2) when n is 

the size of an input set, and both SMOTE and Safe-Level-SMOTE take the same running 

time. The correctness of DBSMOTE is also validated. The information contained in the 

synthetic instances is more similar to the core information than the border information. 
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3. Future Work 

Although the experimental results have provided evidence that DBSMOTE can 

successfully classify an imbalanced dataset, there is considerable room for future work 

in this line of research. First, different density-based clustering algorithms could replace 

DBSCAN by integrating with DBSMOTE. Second, pruning a directly density-reachable 

graph might improve the performance of DBSMOTE. Third, automatic determination of 

the number of synthetic instances generated by DBSMOTE and the values of Eps and 

MinPts should be addressed. 
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