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Ab initio method was used to calculate the structural phase transitions and physical
properties of semiconductors. At the beginning, the complex compounds which have been
widely used in solar cell industry such as Culn Ga, Se, were studied. For high pressure phases

and electronic properties of CulnSe,, it was found that the CIS transform in the following way;,

142d — Fm3m —> Cmcm at 12 GPa and 42 GPa respectively. The sX-LDA band gap in
the 142d structure increases at the rate of 39.6 meV/GPa, in fair agreement with 30 meV/GPa
obtained from the photoabsorption experiment. The band gap is closed in the Fm3m and
Cmcm structures. Therefore, the metallic phase has been assumed for both structures. The path
of transformation from Fm3m to Cmem was derived. The barrier between these two phases was
estimated. The upper bound of the potential barrier is 17 meV which is equivalent to thermal
energy at 198 K. For studying the effects of Na on high pressure phases of Culn,.Ga, .Se,, it was
found that the high pressure phase transitions of Culn,.Ga, .Se, appear to be remarkable similar
to that of the CuInSe, phase transitions. The Na concentrations were chosen at 0.1, 1.0 and 6.25

%. The positive mixing energy of Na, ., is higher than that of Na, . Thus, Na substitutes on Cu

InGa
sites are more energetically favorable than on Ga or In sites which is in good agreement with the
previous reports. The Na substitutes reduce the hardness of CIGS and they can be easily added
into the Culn, .Ga,.Se, under high pressure comparing to the addition under ambient pressure.

The most significant effects occur at Na concentration of 6.25%. It was found that the EDOS near

the VBM is increased noticeably in the chalcopyrite phase. This should lead to the increase of the

hole density.
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CHAPTER |
| ntroduction

Energy crisis is one of the most important problems for mankind in this
century and solar cell is a practical choice of clean energy for solving this problem. In
the past, solar cell is an unpopular energy source, as shown in Figure 1.1 (a), due to
low efficiency of the photovoltaic process. However, it becomes a practical choice
because of an unlimited source of sunlight. Solar cell is a device that converts the
energy of sunlight directly into electricity using photovoltaic effect. It consists of
multilayer of bothn andp type semiconductors, as shown in Figure 1.1 (b), such as
Silicon, Gallium Arsenide, Indium Phosphide, Cadmium Telluride and Copper
Indium Diselenide. The electrical and optical properties of solar cell highly depend on
the type of semiconducting materials. The absorption coefficient for some
semiconductors may be increased by the external factors such as temperature,
pressure and impurities. The effect of fabrication process on the improvement solar-
material was widely investigated by the experimental scientist. Several fabrication
techniques have been developed in the past decade based on experimental trial and
error approach. Recently, theoretical studies have been widely used for materials
simulation. It has become more important matter to understand the physics behind the
fabrication process which is largely governed by the two important thermodynamic
variables, pressure and temperature. Most of theoretical solution for material
properties was carried out using the first-principle stuatyifitio). This technique
relies on fundamental laws of nature without additional assumptions or special
models. The advantage ab initio study is that it can be carried out without knowing
any experimental data of the system. Nowadays, the accurate simulations of materials
are drastically increased by the advance of theoretical and computational techniques
accompanied by the rapidly growing of computing power. The basic laws in physics
and quantum chemistry are widely adopted in several programsbfamitio
simulation. Moreover, the novel information obtained from this sophisticated
theoretical approach has widened our understanding in nature and properties of

materials.



The Role of Renewable Energy in the Nation's Energy Supply, 2008

Total = 99.305 Quadrillion Btu Total = 7.301 Quadrillion Btu

_ ~Solar 1%
-~ Geothermal 5%
Wind 7%

Hydropower 34%

Biomass 53%

Ni/Al contacts
- ZnO:Al + ZnO:i

n-type CdS

p-type
CulnGaSe

(b)
Figure 1.1: (a) U.S. energy consumption statistics in 2008. Only 7% of U.S. energy

supply came from renewable energy in 2008 and out of that only 1% is solar energy
(http://www.simply-solarpower.com/photovoltaic-cell.html). (b) The structure of

CulnGaSe solar cell (http://www.energy-daily.com).
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Figure 1.2: Comparisons the absorption spectrum of CulaB@ other photovoltaic

semiconductors [1].

In previous studies, the Copper Indium Diselenide (CIS) has recently emerged
as a very promising material for photovoltaic solar-energy application, due partially to
the fact that it is the strong absorbing semiconductor under sunlight, shown in Figure
1.2. CIS is also widely used in optical industries. The high pressure phases of CIS
were studied using diamond anvil cells and x-ray diffraction experiments [2, 3]. In
1996, the crystal structure and phase transitions under high pressure of CIS were
investigated by T. Tinoco et a[2]. They studied the crystal structure of CIS under
the maximum pressure of 29.0 GPa by using energy dispersive x-rays diffraction with

synchrotron radiation and diamond anvil cell. It is well known that the ambient
pressure phase of CIS is the chalcopyrite ph&d@d(), as shown in Figure 1.3(a).

The first phase transitions have been observed at 7.6 GPa and the high-pressure
phases have been indexed as a cubic struckm8r), as shown in Figure 1.3(b).

The volume reduction at the phase transition is about 11 %.



Figure 1.3: The high pressure phases of CIS [9] (a) the upper structure is chalcopyrite

phase (42d) (b) the left handed side structure is NaCl-like cubic ph&se3m) and
(c) the right handed side structure is the orthorhontac(n) phase.



More recently, T. Bovornratanaraks al. [3] extended the study of CIS up to 53.2
GPa. They observed an orthorhomlzntm) structure, as shown in Figure 1.3(c), at
33.9 GPa, and th&m3m is completely transformed t8mcm at 43.9 GPa. Apart

from the structural phase transitions, the CIS band gap and optical properties under
pressure were studied in thd2d phase [4-8]. Goradezet al. [4] studied the optical
absorption of monocrystalline CIS samples grown by Bridgman technique and
chemical vapor transport method. At 300 K, they found that the energy gap increases
linearly with pressure between 0 — 7 GPa at the rate of 30 meV/GPa. It was proposed
that the band gap increase comes from I-VI bond reduction as a repdlbohding

of the valence orbitals under pressure [1].

(a) (b) (c) (d)

\ T L) D L}
Na compound y 1 ;

Cu, In, Ga, Se :r ",:'-1'.: ‘ {. 1'& -*""l:-:-'
._...:._-:+ S b 1 % .

Na barrier

Figure 1.4: The experimental processes of Na doping into CIGS. (a) Na is diffused
from the substrate into CIGS during growth. (b) Na is supplied by a thin Na-
containing precursor layer deposited prior to CIGS growth. (c) A Na compound is co-
evaporated during the CIGS-deposition process. (d) Na is diffused into as-grown

absorbers using a post-deposition treatment [9].



By studying CulnSg CuGaSgand CuAlSg Maeda and Wada [7] concluded tlsat
bonding of the 1lI-VI bond dominate the conduction band and a shorter bond length
results in a wider band gap. Vidalal. [8] studied the electronic properties of CIS by
using any functional such as local density approximation (LDA), Green's function
methods with GW approximation [8], Heyd-Scuseria-Ernzerhof (HSHEY®)id
functional and etc. They found that the band gap in the chalcopyrite phase depends
strongly on the lattice displacement. The trend of the GW band gap was compared
with the LDA results. Despite of underestimating the band gap values, the LDA
results exhibit a similar trend to the GW results.

The achievement of maximum cell efficiencies could be obtained by adding a
small amount of Sodium (Na) into Copper Indium Gallium Diselenide (CIGS) [9-19].
The simplest method to incorporate Na is to diffuse from soda-lime glass substrates
through the Mo back contact into the growing CIGS layer [13, 14]. Another method is
that Na can be supplied by a thin Na containing precursor layer deposited prior to
CIGS growth, diffused into as-grown absorbers using a post-deposition treatment, and
co-evaporated during the CIGS-deposition process [15-19], as shown in Figure 1.4.
For the ternary semiconductors such as chalcopyrite I-Hlédmpounds, the Na
atoms can substitute any of the two metal sites of group-I or lll, and the types of
carriers would depend on the site of Na on chalcopyrite [17]. ®eil. [18]
suggested that Na impurities have three effects on Culit38). First, Na replaces
on Cu site, and the compound NalpSes a larger band gap and positive mixing
enthalpy. Second, the effect of Na on the surface of CIS is to dissogiateo@tomic
oxygen, and substitutes into Se-site vacancies, and it increases the hole density. Third,
Na becomes a defect at the Cu or In site. They found that Na on the Cu site has no
effect on the electronic levels in the band gap, whereas Na on the In site produces
some acceptor levels. Other reported effects were the increase of the hole density,
conductivity, and grain sizes, and the suppression of the formation of the ordered
defect compound. Lét al. [19] studied Na-doped CIS by first-principle calculations.
They used a super cell method and replaced a Na atom on one of the Cu gifes (Na
They observed that 6.25% &ancreases the CIS band gap by 0.114 eV at ambient
pressure. Another effect of 6.25% {ais to increase the density of states near
valence band maximum (VBM). They found that 6.25%\Naas stronger effect on
the hole density of CIS than 8.33% and 12.5% Na. From previous studies, Na has



significant effects on physical properties of CIS. Na becomes a point defect at the Cu
or In site. The impurities of Na were widely studied at ambient pressure. These
previous works are the motivation for studying structural phase transitions and

physical properties of doped semiconductors under high pressure.

In this work, the experimental phase transitions under pressure of CIS will be
verified byab initio calculation, as will be shown in Chapter Ill. The work has been
carried out and extended to find the transitions pressure of@algSe where x = 0,
0.5and 1. Theab initio method is based on density functional theory (DFT) which
treat the electron density as a basic variable. All ground state properties are
determined by the ground state density. The total energy of many-body system is a
unique functional of electron density. The minimum total energy of a system is related
to the ground state electron density. The bulk properties of materials will be
determined from basic laws in théBrillouin zone. In DFT model, Kohn-Sham
equations will be solved by self-consistent field method. The results of calculation
depend on types of exchange correlation functional in Kohn-Sham equations. The
calculations will be done by using the self-consistent field (SCF) method. The
generalized-gradient approximation (GGA) functional of Perdew-Burke-Ernzerhof
(PBE) will be adopted for the exchange-correlation energy in the calculations. For
phase transitions, the stability of high-pressure phases will be investigated from the
slopes of energy-volume curves and the enthalpy, H = E + PV. The procedure is based
on optimizing the structure at fixed volumes and using ther@er Birch-Murnaghan
equation of state (EOS). From equation of state, it can be used to extract
thermodynamics properties of bulk semiconductor by partial differentiations. For
studying at extremely high pressure (in GPa), the pressure range of semiconducting
region in CIGS will be evaluated. The physical properties will also be investigated
under the extreme conditions. The calculation results will be compared with previous
experimental reports. The electronic properties such as band structure, electronic
density of states (EDOSSs) were also presented. For DFT band structure calculation, it
is well known that the LDA and GGA functionals neglect the effect of excited states;
as a result, some properties such as energy gap will be underestimated comparing to
those obtained from experimental studies. The standard Kohn-Sham orbitals (GGA or
LDA) were obtained from the Kohn-Sham equations which exploited only the local
potentials. However, the non-local potential can be added into the Kohn-Sham



equations by using the screen-exchange local density approximation (sX-LDA)
functional. In this work, the DFT band gap of CIGS was investigated using sX-LDA
functional. In Chapter IV, the effects of Na on GBasSe at ambient pressure
were analyzed up to the high pressure phases. Na impurity was added into
CulnysGaysSe by using virtual crystal approximation and super cell methods. The
efficiency of adding Na into CIGS under high pressure was described from the mixing
energy. From incorporation of Na into the CIGS, it is expected that the properties of
CIGS such as bulk modulus, electronic density of states and hole density will highly
depend on doping concentration. The novel information about the impurity Na into

CIGS under high pressure will also be discussed in the Chapter IV and V.



CHAPTER I
Theoretical Background

In quantum mechanics, Schrodinger's equation and Werner Heisenberg's
matrix mechanics share a major success in explaining a single particle in any given
potential. The evolution with time was described by the time-dependent Schrddinger
equation. The solutions are commonly used to evaluate the energy levels and other
properties of a single electron. However, this technique is not practical for the systems
that contain large number of electrons which is called many-body system. In such
problem, the quantum theory for a system of ions and interacting electrons is based on

solving a many-body Schrédinger equation in the form

where H is the Hamiltonian of the system,

= (2.2)
e’
_22 Z R -R,|

(J::I)

The right handed side terms of Eq. 2.2 consist of the kinetic energy of electrons,
electron-ion interactions, electron-electron interactions, kinetic energy of ions and
ion-ion interactions respectively. This equation is the central equation of condensed
matter which contains all properties of many-body system. However, we cannot
exactly solve for the solutions of this equation. By using basic approximations, we
can assume that the ions is moving slowly in space and the electrons is

instantaneously responding to the ionic motionysbas an explicit dependence on

only electrons motion. This is called "Born-Oppenheimer approximation™” [20]. From
Born-Oppenheimer approximation, we can explicitly separate the solid wave function
into the product of electron and ion wave functions. The ion-ion effect can be omitted
and the electron part will play an important role in this problem. The ion-ion



10

interactions term in Eqg. 2.2 can be set to be a constant, which can be added from
observable properties related to the nuclei. Therefore, Hamiltonian of the electronic

system for the ions at rest becomes

2

1 e
5 IZ}: (2.3)

r—r‘

A=y a3

|r || N
This Hamiltonian cannot exactly be solved by using the eigenvalue problem in Eq. 2.1
due to the complex nature of many-electron wave functions. The first approximation
of many-electron wave functions was introduced by Hartee’s theory [21]. It was
suggested that the complicated many-electron wave function can be reduced to the
product of single-electron wave functions. However, this idea fails to explain the
antisymmetric property of the electron wave functions. Later, Hartree and Fock (HF)
[21-22] suggested that the many-electron wave function was proposed as a Slater
determinant of the single-electron wave functions. The Hartree-Fock theory can be
applied to tiny systems. It includes the antisymmetric property of the electron wave
functions and exchange interaction but it still excludes the correlation effects. In
addition, HF method is not suitable for the systems which possess large number of
electrons because of its high consumption in computing memory. For a solid system,
the density functional theory (DFT) is a more suitable approach for the reason that
DFT contained exchange-correlation interactions which has taken the simulation close

to a real system. In the following section, the DFT will be discussed in great detalil.

2.1 Density Functional Theory

Density functional theory (DFT) is one of the most popular and successful
technique to solve many-body problems. In principle, DFT is an exact method started
from the basic laws but the practical process used some approximations for exchange-
correlation functional. The first principle studying of DFT started from Hohenberg-
Kohn theorems [23].
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2.1.1 Hohenber g-K ohn theorems

Hohenberg-Kohn theorems for the systems of a non-degenerate ground state

consist of two theorems as follow:

The first theorem: For the system of interacting particles in an external potential,

V. (r), there exists a one to one correspondence between the external potential and
ground state densitynf(r) ). Consequently, the ground state expectation value of any

observable quality is a unique functional of the electron density, i.e.

A= An(] and (v |Aly) = An(n)] (2.4)

The second theorem: For a given external potential applied to an interacting particles
system, we can determine the ground state energy by minimizing total energy with
respect to density by using the variational principle. The exact ground state energy,

E,, corresponding to the correct ground state density) , is given by

E, = E[n(n)] < E n(n)] (2.5)

2.1.2 Thedefinition of functional

The function is a rule of mapping a variabteto a scalarg(x). While
functional (F[g]) is the mapping of a functiom(x), to the value of the functioR[g]
[24-26]. TheF[g] may be viewed as a function of a large collection of variables. In
the same way, g(x), we can think of a veatas a set of valug in g(r). We can

think of g(x) as the indexed set of valugs The functional derivative d¥[g], denoted

, Is the path of difference for all test functidifx), in the form

OF
69(x)

og9(x) 5g9(x)
iR[909 + & F(X)] - Fl (%]

>0 Fod

<5F[g(x)] 1 (X)> [ OFLIOI ¢ ey

=dip[g(x)+gf(x)] (2.6)
&

e=0

In physics, it is common to use Dirac delta functig(x— X'), as a test function.
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SFIO( _ i FLAR +eX x=X)] —H ¢ }] (2.7)
é‘g(x') £—0 & .

By using Eq. 2.6, when we have the functidggn(r)] =ngc(r, n(r))dr, then

<5Exc[n] >_ iim Beln+&f1-E 1
on -

>0 &

o [18:000) £ ) g ()]

>0 <
ag,.(n(r
Jitgutrry +2£ =04 1g a(rytar

=lim

£—>0 P
= lim on (to the first order approximatio

&> &

on

:<59xc(n(r)) f>
on '

We then have the result as

SE,
) 9 (N(r)). (2.8)

Alternatively, theg,.(n(r)) can be expanded to the multi-variable paramgptar the

other form such ag,.(n(r)) = ngc(qi). The partial derivatives of,.(n(r)) are

gXC
dq =0,.(9). (2.9)

Next, we will emphasize on the derivation of a complex variadlan(d its conjugate

(z). For example, we have a real functif@ z) or f(z, z), where real part
z =(z+Z)/2 and imaginary pa# =(z-2)/2i. The two partial derivatives df
with respect t@ andz will be real because is always real. The partial derivatives of

f with respect ta is
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afl_aflazrli‘z

07|, oz L o7 |, oz , oz |,
(2.10)
1| of . of
== —| +i—| |
RN

The real and imaginary components give both derivatives simultaneously. When we

minimize over all possible values, we need only one condition

o

—| =0. 2.11
0z ( )

z

2.1.3 Kohn-Sham equations

According to the Hohenberg-Kohn theorems, all observable qualities are
functionals of electrons density. The numerical determination of the ground state
density in DFT was evaluated by Kohn and Sham [27]. They proposed that Kohn-
Sham equation is a Schrédinger-like equation as a functional of density. This equation

obtained from the Hohenberg-Kohn energy functiogn{ ) which can be written as
E[n]=T,[n]+U[n]+E,[n] (2.12)

where T is the non-interacting kinetic energy of electrodsis the potential energy

including the electron-electron interaction (Hartree energy) and external potential
energy due to a coulomb potential of nuclei, dafd is the exchange-correlation
energy due to the interaction of the electrons. The potential from nuclei on the single

electron at positiornr{ is

Z,e
- 2.1
Vi, er—Rll (2.13)

If the number of electrons in volunt®/ is n(r)dV, we have the total potential energy

of the electrons interacting with the nuclei is

Upya = Vo, (NN(r)r. (2.14)
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For electron-electron interaction, the total coulomb potential for single electron at

point r from another electron af can be written as

n(r")dr’

R (2.15)

#(r)=€|

From the electrostatics this integral is equivalent to the Poisson’s equation in the form
Vp(r) = —4ze’n(r) (2.16)

And then, the total interaction of electrons with themselves is
1
Ugq =§f¢(r)n(r)dr. 2.17)

The electron density and kinetic energy can be obtained from the orbitals. Because the
square of each orbital gives the distribution of the electrons in that orbital, the total

electron density can be written in form

occ

n(r)=Yfw ()], (2.18)

wheref; the number of electrons in each orbiggl, usually there are 2 electrons. The

total kinetic energy can be obtained from the sum over all kinetic energy of electrons

in each orbital in the form
-
T,.=> flw () — V. (r) [dV. 2.19
“ zi).Jm)( o w.()} (2.19)

In advanced quantum mechanics, the electron density in Eq. 2.18 is only the average
density, but the actual density is fluctuated. The total energy is corrected by adding
the approximation of exchange-correlation correction, in which one of the simplest

function is
E,. = [ g, (n(r))dr. (2.20)

The total energy in Eq. 2.12 can be written as
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Efw(] =X 1 [wi ) [—g—mvzw( ) jdr +[Vig Dy
i (2.21)

+2 o i+, 0 ORr

The total energy in Eq. 2.21 is functional ofr) or {y,(r)} . By using variational
method [25-30], we take the derivatives of real functions. We need to include the
normality constraint of each orbital with a separate Lagrange multipfjgr The

condition of minimization is

)

W(Td +Unu—e| +Ue|—e| + Exc +Unu—nu _Izﬂij.l//: (r)Wi (r)dVJ =0. (222)

By using the same technique in Eg. 2.8, the kinetic energy functional hag @re

term and then we get

5T, s N
5wr(r>‘5wr(r>(iz v (r)( om” ‘”i(”jdvj

LI SR yeN CRLEE
= a%*(r){fi% (I’)( ZmVi Wi(r)j)

2
) ‘% LV, (). (2.23)

wi(r)

For the functional derivative b4 term, V. (r) is unchanged with the variation of

w, (r), it can be written as

é‘Unu—el _ 5
Sy, (r) Sy (1)

(Vo (rIn(r)av)

NV, On() a(zfi vi(r) j‘

. =V, L
vty T

vi(r)
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5Unu—e|

W=Vnu(r)fi§”i(r)' (2.24)

In the term of electron-electron energy, the potential function and density change with

v, (r) . We used the Poisson’s equation in 2.16 to get

[pnav =] (59) :i(;) av =[ gv* ( ffge)zjdv ~[#(onav,

where we have moved tHé’s(r) to V>o¢4(r) by integrating by parts twice. We can

find the functional derivative in gy from_[¢(§n)dv as

s, §;I¢(r)n(r)dv sn(r)

i) anm e

= f.0(r)w. (r). (2.25)

wi(r)

For exchange-correlation term, it was derived in Eq. 2.8. We have

0, _ 99,.(n(r)) an(r)

XC

Sy, (r)  on(r) oy, (r)

= £ g, (N(r)y; (). (2.26)

For the potentialu the functional derivative is zero because it is not changed

nu—nu?

with w; (r) . Finally, we obtain

o (r)( Z&Iw. (r)v, (r)de——/Wi (r). (2.27)

From minimizing the Eq. 2.22, the Kohn-Sham equations can be obtained as

2

R h y)
Hiks¥ :[_%Viz + Ve j|l//i :Ti‘//i =&V, (2.28)

Whereﬁ = ¢ and the effective potentiaV) is given by

n(r )e Z€ 5Exc[n(r)]
I Z|r -R | sn(r) (2.29)
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The first, second and third terms are the Hartree potendjg{r)), the external

potential (V,,(r)) and the exchange-correlation potentid] (r)) respectively. The

Kohn-Sham equation is tHéke Schrodinger's equation, but it is not Schrodinger's

equation because we can span the electron density on any arbitrary basis function,

shown as Eq. 2.18. Moreover, the Kohn-Sham orbitedg (s not an exact wave

function for explaining the properties of one electron in the system. But the ground
state density can be obtained from the summation of overall occupied one-electron
states, shown in Eqg. 2.18. The difficult problem for solving Eq. 2.28 is that we cannot
exactly evaluate the exchange-correlation term in Eq. 2.29. However, it can be solved

by using some novel approximation as follows.

]
et W ¢
L Lk ' - #
/ 5 outgoing /
LR -
i e |
\\ ’.‘ F} 5

Figure 2.1: A model that can be used to explain the correlation effect in many-body

system. The transition states of electrons are the correlated motions.

2.1.4 Exchange-correlation approximations

The exchange-correlation term consists of the exchange and correlation effects
in the many-electron system. The exchange effect contains the antisymmetric of
electronic wave function in HF method. But the correlation effect is obtained from the
correlated motions of electrons in a system, shown in Figure 2.1. For Kohn-Sham
solution, we use Kohn-Sham orbitals, which is not the antisymmetric wave function.
Therefore, the exchange and correlation effects need to be included in the exchange-
correlation approximations. The conventional and well known approximations for
exchange-correlation function are Local Density Approximation (LDA) and
Generalized Gradient Approximation (GGA) [29-32].
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The Local Density Approximation or LDA is the simplest method for the
exchange-correlation approximations in Kohn-Sham equations. It assumes that the
exchange-correlation energy per electron is the known exchange-correlation energy
per electron of a homogeneous electron gas with the same density at any position

The approximate functionakg&can be written as
Exc[n(r)] =ngc(n(r))n(r)d3r (2.30)
5Exc[n(r)] 8(n(r)gxc(n(r)))

and = : (2.31)
on(r) on(r)

with £,6(N(r)) = €rome| N(r) |- (2.32)

The £, (n(r)) is not a functional, but it is a function ofr) at a particular point of

space. The expressions fyr based on various methods. The LDA is widely used in

the slowly varying density systems. However, the LDA scheme is not well described
in many cases such as the rapidly varying density systems. There are many attempts
to improve the LDA by including higher-order terms of electron density such as the
gradient of density which is called Generalized Gradient Approximation (GGA). The

Eq. 2.30 can be rewritten as
E.[n(r)]=[e.e(n(r).vn(r))n(r)d°r (2.33)

Recently, the GGA functional has been developed as Perdew-Wang (PW), Perdew-
Wang 91 (PW91) and Perdew-Burke-Ernzerhof (PBE) respectively [29-32]. The
modern functional GGA-PBE [30-32] was adopted in the calculation of
semiconducting systems reported in this work. However, LDA and GGA give the
wrong band gap for semiconductors. Because the Kohn-Sham orbitals obtained from
the models of exchange-correlation functional in Eq. 2.30 and 2.33 are not enough to
explain splitting band gap between valence and conduction band in semiconductor. In
this work, the band gap calculation method was improved by using the screen-
exchange local density approximation (sX-LDA) [33-36]. The sX-LDA is a
combination of LDA and Hartree-Fock theory. The intrinsic local screen-exchange

interaction has been replaced by a non-local interaction and a generalized Kohn-Sham
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equation. In the local potential (using the functional in Eq. 2.30 or 2.33), the standard

Kohn-Sham orbitals are the lowest eigenvalue solutions of an equation in the form

{—h—zvf +u'°c(r)}//i = Ey;. (2.34)
2m

By using sX-LDA functional, the local potential{*(r)) can be modified by adding

a non-local integral operatotv™ (r,r'). The Kohn-Sham equations with sX-LDA

becomes

{—S—Vf e J'VX'QL (r,r'y, (r’)dr’} w,(r)=Ey,(r). (2.35)
m

V-(r,r") is adirect functional of the orbitals. We begin with the original definition

of the exchange energy, , in term of the Kohn-Sham orbitals as

X1

i (N ()85 (N (1)

(2.36)
r=r

UX:—%Zdrdr’
ikiq
wherej and glabel bands and-goints in the same way thaand kdo. This is used to
calculate the exchange energy in HF method. sX-LDA attempts to incorporate some
of the effects of correlation into Eq. 2.36. One of the effects of correlation is to
effectively screen the effect of exchange at long range. This can be achieved in a
simple manner by multiplying the integrand of exchange energy by a factor that

decays exponentially with increasing electron-electron separation in the form

i (D (1)1 (D (1) ol

(2.37)
r=r]

EN =—£Zdrdr’
2 {igq
where ks is the reciprocal screening length. From non-local exchange-correlation

energy, EN-, in Eq. 2.37, the non-local potentM[" (r,r’") is given by

3 XC !

VXI‘\:IL (r T ,) _ —%Z ¢jq (r)¢jq (r ,) efks\r—r’\ ' (238)

ia |r —r’|
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In this work, the sX-LDA method has been tested and it indicates that this functional
provide more reliable approach for solving band-gap problem in semiconductor
materials. However, the calculation using sX-LDA functional requires a significantly

increasing in computing time comparing to the usual LDA and GGA.

2.1.5 The secular equation

The method for solving Kohn-Sham equations is described as follows. First,
the Kohn-Sham orbitals can be expanded as a linear combination of an arbitrary basis

function,@ (r), as

v ()= Y60 (r) 239)

where ¢, are the sets of coefficients aQdis the number of basis function. Next, the
Kohn-Sham orbitals in Eq. 2.39 are substituted in Kohn-Sham equations, multiplying
with the complex conjugate of the basis functi@rﬂ(r), and then integrating in real

space to obtain

Q it Q 7
ZQnI(Pj (N Hise (r)dr = zclngi J'¢j (), (r)dr, (2.40)
i= i=1
This equation is denoted by the Hamiltonian mati#¥), (coefficient matrix C),
eigenvalue matrix ) and overlap matrix@) in the matrix form asHC =&0OC,
which is called "secular equation and O are theQxQ matrices [37-39]. The

secular equation can be solved by the numerical simulation.

2.1.6 Periodic potential system

For the periodic potential system in solids, we can consider the complex

system by using Bloch theorem [40, 41]. The electron wave function of periodic

crystal is the product of plane waves and periodic funatjpér) as
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W (1) =Uy ()€, (2.41)

wherek is a wave vector analis a band index. Under Bloch theorem, the eigenvalue

and wave function must relate with the conditions

Ek) =EK +G) (2.42)

and Vi (1) = Vo) (). (2.43)

G is the reciprocal lattice vector. The maximum valueGo{G, ) relates to the

cutoff energy

22
E,, = O

- 2.44
o (2.4

We define the periodic function as a summation of the plane wave basis sets, and the

wave function can be written as

e (1) = 3 (k)€ (2.4

By inserting this wave function into Kohn-Sham equations and using the same

method to get the Eq. 2.40, we obtain

2, 1Cy (K) =2, (K)Cy (K), (2.46)
-
R’ 2
where 411k :%‘k +G,[ 8,4V (G, -G)) (2.47)
and Va (GG )= [e"""Vy (r)e ™ ar. (2.48)

Eq. 2.46 is the secular equation in reciprocal lattice. We can get eigenvalues and
eigenstates (Kohn-Sham orbitals) by diagonalization Eq. 2.47. Eg. 2.48 shows the
transformation of the effective potential between the real and reciprocal spaces [37-
39]. Therefore, the Kohn-Sham equations will be solved by using the secular equation

and Fourier transform also [42]. It could be noticed that the eigenvalues and
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eigenstates of Kohn-Sham equations have no physical meaning, but we can obtain the

physical meaning from these results.

Pick a trial density m()

v

Calculate W(n) and \(n)
v
2

Solve KS equationt i/, = {—Zh—me + quf}//i =Ey,

A

by diagonalization of matrixes

v

Calculate new density(r)

v

Is solution self-consistent?

lYes Nol

Compute total energy Generate new densitym)
(It is weighted from the current
and previous densities.)

Figure 2.2: Flow chart of the computational procedure for the total energy calculation
[42].

The physical meanings from Kohn-Sham equations are the true ground state density
and the ground state total energy. The ground state total energy of a slgstgrogn

be written as

E, =§gi -V, [n]+ Exc[n]—j5E§—°n[n]n(r)dr. (2.49)
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The algorithm for solving self-consistent Kohn-Sham equations is described in Figure
2.2. First, the pseudopotential of core ions is constructed from a given atomic

numbers and positions of ions. The cutoff plane wave and k-point sampling are
defined by input parameters. The electrons density is initially guessed by using a set
of random coefficient of the plane waves basis set. The effective potential is then
calculated from the guessed density. Next, Kohn-Sham equation is solved to get the
total energies and Kohn-Sham orbitals. If the solution does not converge, the new
density can be obtained from weighting of the current and previous densities and it is
used as the initial density for next step. This process runs until the density is
convergence. Finally, the output observable qualities can be calculated from the

converged ground state density.

2.1.7 Cutoff energy and k-point sampling

The number of basis seG() is defined by the cutoff energy. The infinite

value ofG gives the exact Kohn-Sham solution as the infinite basis set. However, we
cannot do that due to the limitation of calculation. The suitable cutoff energy for a
system has to be estimated. The electronic states are defined only at a set ofkdiscrete
points. The number of k points is proportional to the volume of primitive cell in solid.
The number of Kohn-Sham orbitals depends on the size of k-point sampling. It makes
sense to divide the first Brillouin zone because it is invariant under Bloch’s theorem.

By using the Monkhorst-Pack method [43], we can write the integrated funt{ign

over the first Brillouin zone as
V
f(r):—3_[F(k)dk:ijF(kj), (2.50)
8r Bz i

where F(k) is the Fourier transform off (r), V is the cell volume andy, are

weighting factors. The k-points are distributed uniformly in space as

k, =x;b,+x,b,+x;b; whereb; are reciprocal lattice vectors. The infinite k-point

sampling gives the exact solution. In the first step of all calculation, the optimum

cutoff energy and k-point sampling must be tested for a system. The suitable k-point
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depends on lattice constant. In DFT, we cannot know the exact solution, but we can
find the error of converged solution by comparison with the higher cutoff and k-point.
The electron density, total energy and other quantities can be obtained from the

summation of the occupied stateskthe first Brillouin zone.

2.1.8 Band structure calculation

From the solution of Kohn-Sham equations, we obtain the true ground state
density, the Kohn-Sham obitals, the correct effective potential (in Figure 2.3) and
hence the complete Hamiltonian. From Bloch theorem, the energy level can always be
confined to the primitive unit cell of the reciprocal lattice Bfllouin zone. The

band index appears for ea&hresulting in many solutions, i.e.
<l//nk|HA KSank> = Ex. (2.51)

This equation leads to a description of the energy levels of electrons in a periodic

potential in terms of a family of continuous functidfswhich is the band structure

of the solid.

n(r) V(r)

Figure 2.3: The equi-surface of electron densfty and potential {).
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2.1.9 For ce evaluation

In DFT calculation, the force between ions is evaluated by using Hellman-
Feynman theorem [44]. The calculated force is used for solving the Newton’s
equation of motion, molecular dynamics and geometry optimization. At a given
pressure, we can find a set of atomic positions which gives the minimum energy by
using geometry optimization. The step of solving an optimum point is controlled by

the force tolerance. For stationary non-eigenfuncyon(partial derivative is zero),

the force on an interested ions at a position vect@aR be calculated by

F 0B __olylHly)

oR oR
oH 0 0
g IR

-2
4,

where E is the total energy calculated from the expectation value of Kohn-Sham

joH;
oR

,/,> ; (2.52)

Hamiltonian with Kohn-Sham orbitals. For algorithm of geometry optimization, the
ions are firstty moved into new positions, and the electronic configuration is
optimized. Next, the total energy is compared with previous configurations, and
checked if forces lie within the tolerance limits. If the structure is not optimized, the
procedure returns to the first step to generate a new set of ionic positions. Finally, the
process is ended by checking if the total energy fall within the tolerance limits.

2.1.10 Absor ption coefficient

In Cambridge Serial Total Energy Package (CASTEP), we can calculate the
optical properties of solids that are due to electronic transitions. In general, the
difference in the propagation of an electromagnetic wave through vacuum and some

material can be described by a complex refractive indewhich can be expressed in



26

terms of real partn) and imaginary partk} in the form N =n+ik. The absorption

coefficient (77) is related to the imaginary part of refractive indem form

2k 4k
77:—:—

= (2.53)

Where 4 is the wavelength in nm, which can be multiply by dget the absorption
coefficient in the units of cih The absorption coefficient depends on wavelength of
phon, which has the energy above the band gap level. The probability of absorbing a
photon depends on an electron transition from valence band to the conduction band.
The inverse of the absorption coefficient is the absorption depth, which is the distance
of penetration from the surface of material. For visible light region, the blue light (

= 400nm) has a highest absorption, and it is absorbed in a short distance, while the red

light (4 = 700nm) has a longest distance and low absorption.

For performing calculations of optical properties, it is common to evaluate the

complex dielectric constant and then express other properties in terms of this. The

complex dielectric constan(w) = ¢, +i¢, = N*, where @, ¢ and &, are the

frequency of an incident wave, real and imaginary parts of the dielectric constant. In

CASTEP, the imaginary pagt, of the complex dielectric constant can be calculated

from

o X flillve ot -5 - (254

&,y (w) =

The &, defined the transitions of electronic states with weeetor (K from valence
state {», ) to conduction statey{; ). The & can be obtained by the transformation of
&,, Which is called Kramers-Kronig transformation” [45]. For solving the matrix

elements, the position operato)j €an be written in the momentum operatey &nd
their potentials. Moreover, the reflection coefficient and optical conductivity can be

obtained from the complex dielectric constant.
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2.2 Equation of States

From the solution of Kohn-Sham equations, we obtain a set of the total energy
value E) at an interested volum&) It is well known that the total energy depends
on the function of volume. We can find the equation of state (EOS) of a system from
fitting the E-V curve. The most suitable model in solids is Birch—Murnaghan equation
of state [46, 47]. In 1947, Murnaghan derived the Murnaghan equation of state from
the relations in thermodynamics. Murnaghan assumed that the partial derivative of

bulk modulus @) is to be a constant and unchanged under high pressi'e-&% .
Therefore, the bulk modulu8) can be written aB = B, + B;P, whereB, and B,

bulk modulus and their partial derivative at 0 GPa. The Murnaghan’s EOS is obtained
as

BV M/V) 4| BV
EV)=FK+ BO{B, ¥, } B 1 (2.55)

where Eg and V, are the total energy and dependence volume at 0 GPa. The best
fitting with E-V points by Eg. 2.55 was obtained from 4 suitable parameters.
However, the usages of partials derivative in this equation is still incomplete. Later,

Eqg. 2.55 was developed by Birch and Murnaghan [47], published in 1947, in form

EN)Eﬁ%W AL o o) ]} 256)
and pm:3_5{(@”3_(@5’3““;@5_4)[%}“_ }} .57

It is called "the third-order Birch—Murnaghan isothermal equation of state", derived in
Ref [46] and [47]. Eqg. 2.57 obtained from the first partial derivativié with respect

to V. For the isothermal solid-system, the third-order Birch—Murnaghan equation of
state is suitable, but the percentage error between EOS and data points will be
increased at very high pressure (more than 50 GPa). However, when studying up to
extremely high pressure, the discrete pressure in all phase can be evaluated from the
relation P=-AE/AV .
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2.3 Deter mination of high pressure structures

The phase transitions of high pressure structures will be determined by using

the 2aws of thermodynamics [48-49]. For a system in the isothermal surrounding,

the entropy of universey,,, ) is the combination of entropy of systerﬁw() and

surrounding §

surr

)- We haveAS,,, =AS, +AS,,, >0. If Q is heat transferred from

surr
the surrounding (isothermal reservoir with temperatliyeto the system, so the

entropy change of the surroundingAS,,, =—-Q/T . If the system is isobaric system,

thenQ, = AH . It can be written adS, +(-AH, /T)>0 or
AH,,-TAS,, =AG,, <O0. (2.58)

In Eq. 2.58, it can be obtained by assuming that the temperature and pressure are

constant. Therefore, Gibbs free enefgy, =H TS, is defined for describing a
system at both isothermal and isobaric. For chemical reactid@, <0 is favored

reaction, whileAG,, =0 is equilibrium point of reaction. In DFT, we calculated at

T=0 K; therefore,AG%WiII be reduced to the changing of enthalpy of systéi, .

The stable phase at a given pressure will be obtained from the minimum enthalpy
structure [49, 50], shown in Figure 2.4. From E-V data points in each phase, it can be
fitted by the ' order Birch~Murnaghan isothermal equation of state, shown as Figure
2.4 (a). We have the enthalpy in each phase, whickhlareE; + PV, andH; = E; +

P.Va. E;, Ep, Vi andV, refer to internal energy and their volume of phase 1 and 2 at
the pointH; = H,. At the transition pressure, we have the conditidns H, andP;

= P, the transition pressure could be estimated from

(2.59)

Moreover, the transition pressure can be evaluated from the cross lines hdtReen
curves, shown in Figure 2.4 (b). The main problem for fitting EOS is the percentage
error of P value. In this work, we have tested and found that the errd? {@-50

GPa) fitting by using the 3rd order Birch—Murnaghan equation of state is about 1 GPa
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when compare with calculated from the nearly discrete points by using the
relationshid® =—AE/AV . At the phase transition, we can calculate the volume
reduction between two phases. The types of phase transition can also be classified
from this volume reduction plot. The first order phase transition can be suggested by
its first energy derivatives shown discontinuous nature; while, the second order phase
transition can be suggested by its continuous first energy derivatives but the second
derivatives are discontinuous. In solids, the order of phase transition explained the
mechanism of phase transition. The first order phase transition is explicitly
reconstruction of the new structure, while the second order is the distortion between
two closely related phases. We can also discuss the order of phase transitiBevirom
curve. The percentage of volume reduction defines the order of phase transition,

shown in Figure 2.5.

2 ] 5F Lo
o D | d
. h = g -
PPy, | : X
e T 3 3k Il =
(E Vo, |
i\ £ /7~ Transition pressure
\\ glo: 52t ]
(Eq Vo) e ] ;
b | 1 | 1 |

10 20 30 40 50
\ P (GPa)

(@) (b)

Figure 2.4: (a) The transition pressure from the example E-V curves fitting by EOS,
while the E-V points are the solutions from KS equation. (b) The example of
transition pressure at 20 GPa from tfigdash line) and™ (solid line) stable phases

under high pressure.
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Figure 2.5: The example &f-P diagram shows the first order phase transition (I-1I)

14 GPa and the second order phase transition (Il -Ill) at 50 GPa.

2.4 Path of transfor mation

The phase transition can be determined by E-V or H-P curves. However, the
mechanism during phase transition cannot be obtained from this. In the present work,

we analyzed the path of transformation between cubic and orthorhombic phases. It is

well known thatCmem orthorhombic phase is the distorted structurdnf3m cubic

phase. At an interesting transition pressure, we have the initial and final structures,
shown in Figure 2.6. We can approximate path of transformation by calculating
energy at near the equilibrium point of two phases, shown in Figure 2.7, which are the
potential wells. We can find the enthalpy=E+PV) from Y=0 to Y=0.2. Finally, we
obtain the path of transformation and the barrier of transformation will be shown in

chapter Ill.
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Figure 2.7: The potential (of cubic a@incm phases) from the equilibrium point.

In summary, we started from the origin of basic laws in physiabanitio,
and solving the Kohn-Sham solution to get the ground state properties at a given set
of physical conditions. The EOS of a system can be obtained from the third-order
Birch—Murnaghan equation of state. Finally, the stability of the proposed structure,
phase transitions and their properties will be determined and evaluated under the laws

of thermodynamics in the next part



CHAPTER 1lI
High Pressure Phases and Electronic Properties

DFT has been proved to be the most powerful tool for prediction physical
properties in solids system as well as stability determination of high pressure phases
[8]. In this work, the calculation has been focused on the semiconductor system under
high pressure without the thermal effect (O K). The resultabomitio calculation of
high pressure phases as well as electronic properties of Guwegepresented in this
chapter. The first phase transition of CuGa®as studied also. The main aim of the
present research is to uak initio method to study the structural phase transition of
CIS, CGS and CIGS under high pressure. We reported the transition pressure and
volume reduction, compared with experimental reports. We also gave description on
the bonding under pressure. The band gap was estimated and the trend can be
compared with existing experimental and other theoretical data. Furthermore, we
proposed the path of transformation of CIS and CIGS fromRh8m to Cmcm
structure. This allowed us to estimate the potential barrier between the two phases.

This can provide a clue on the co-exist phases, reported by experiments [3].

3.1 Calculation details

In this work, theab initio method was firstly calculated in CIS and CGS by
using the self-consistent field (SCF) method as implemented in CASTEP code [51,
52]. From the SCF loops in Figure 2.1, all ground state properties are determined by
solving Kohn-Sham equations from the DFT [52]. From the functional test, the results
from widely used functionals, GGA and LDA, were compared. The results suggest
that GGA is suitable for energy calculation and also any electronic properties for CIS,
because the bulk modulus by using GGA gives a good agreement with the
experimental report, shown in Table 3.1. The results of CGS are shown in Table 3.2
and 3.3 also. Therefore, the GGA-PBE functional [53, 54] was adopted for the

exchange-correlation functional.
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Table 3.1: The lattice parameters and bulk modulus of CIS by using GGA-PBE at 0

GPa, compared with those of experiments, LDA and FPLAPW theory.

Phase a (A) c/a HAGPa) Method
5.7967 2.0071 54.45 GGA-PBE This work
5.7783 2.0026 Expt. [3]
B 5.733 1.988 53.22 FPLAPW-LDA [6]
| 42d
5.782 2.009 Expt.[55]
53.6 Expt. [56]
70.92 LDA[57]

Table 3.2: Comparison of lattice parameters in chalcopyrite phase of CGS at 0 GPa
with other works.

a (A) c (A) c/a Method

5.618 11.196 1.993 GGA-PBE This work
5.542 10.840 1.957 LDA [6]

5.614 11.030 1.965 Expt. [58]

5.596 11.003 1.966 Expt. [59]

In most cases, the pseudopotential was used for assuming the potential of ionic

cores, shown in Figure 3.Eor single point of total energy calculation and geometry

optimization, the ultrasoft pseudopotential is a suitable potential because it requires

the number of basis set or cutoff energy less than other methods such as norm

conserving. The calculation results from ultrasoft pseudopotential were compared

with other experimental report as well as another calculation technique, shown in

Table 3.1, 3.2 and 3.35GA functional used pseudopotential model which saves

computing time more than the full-potential linearized augmented-plane wave (FP-

LAPW).
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Figure 3.1: The scheme of all-electron (solid lines) and pseudoelectron (dashed lines)
potentials and their corresponding wave functions. The radius the match of
values [42].

Table 3.3: Comparison of CGS bulk modulus at ambient pressyyemih other
previous studies.

Compound Method Bo (GPa) Ref.
GGA PBE 66.23 This work
LDA 57.84 [6]
CGS
Theory 69.31 [60]

Experiment 71.0 [56]
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Figure 3.2: The examples of the primitive cell of ClI82d at 0 GPa for total energy
calculation.

The high pressure phases of CIS were taken from experiment [2, 3], which are the

| 42d , Fm3m, andCmem structures. First of all, the primitive cell 8#2d at 0 GPa,
shown in Figure 3.2, was observed the optimum parameters. The calculation
parameters were optimized by convergent tests, and they are as follows; the cutoff
energy was set to 500 eV for the total energy calculations, which the CIS energy
difference between 500 eV and 700 eV is 3.25 meV/atom, shown in Figure 3.3 (a),
comparison asSx5x 6 k-point. The electron energy tolerance per atom was 0.01

meV. Monkhorst-Pack grid size for the SCF calculation was sétxtox 6 k-points
(Figure 3.3 (b)) forl 42d, and5x 5x 5 for Fm3m andCmcm phases, which the total

energy tolerance was controlled as less than 5 meV/atom. The total energy (E) is
calculated as a function of their volume (V). The E-V data points were fitted to the
3rd order Birch-Murnaghan equation of state (EOS) [46, 47]. The stability of the high
pressure phases was determined from the lowest enthdlpy, E + PV. We
calculated the CIS energy gap and the electronic band structure at each pressure by
using sX-LDA with 3x 3x 4 k-points, cutoff energy of 800 eV. In CASTEP code, the
sX-LDA calculation supports only the norm-conserving pseudopotential. We also
used a higher cutoff energy at 880 eV, and it gave a slightly different total energy
within the range of 5 meV/atom.
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Figure 3.3: (a) The cutoff energy of CIiS#2d at 0 GPa being tested up to 700 eV,

and (b) The examples of k-point sampling in Ci82d being tested aPx 2x 3,
3x3x 4, 4x 4x 5, 5x 5x 6respectively.
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3.2 High pressure phases results

In order to verify our calculation, we calculated i#2d structure in CIS and
CGS at 0 GPa and compared with the existing theoretical and experimental data, as
shown in Table 3.1 and 3.2. E-V data points of the different phases in CIS and CGS

were calculated and fitted to the EOS, as shown in Figure 3.4 and 3.5. The E-V curves
showed that thd 42d phase has lowest energy at equilibrium volume. The lowest

energy has shifted to them3m as volume decreased. For CIS, it was studied up to

80 GPa andfound the Cmcm structures, while CGS was studied only the first

transition ( 42d — Fm3m). All stable phases were observed by using the enthalpy

(H) as a function of pressure (P). The Figure 3.5(b) is the enthalpy difference, using
the CIS442d enthalpy as a reference. The H-P curve clearly showed that CIS with

the 142d structure transforms into thBm3m structure at 12 GPa, and then to the
Cmem structure at 42 GPa. In addition, we plotted the volume-pressure relation, as
shown in Figure 3.4(b) (CGS) and 3.6 (CIS). These relations provided the information

on the volume reduction at each phase transitions. We found that the CIS volume

reduction at thel 42d to Fm3m transition is 13.9%, and at tHem3m to Cmcm
transition is 1.9%, compared with 11% and 1% respectively from the experiments [2,
3]. From the order of stable phases and the trend of volume reductions, it is readily

seen that the calculation gave good description to the experiment [3].

For CGS calculations, after it was optimized at 0 GPa, atomic coordinates of
Cu, Ga and Se are (0, 0, 0), (0, 0, 0.5) and (0.244, 0.25, 0.125) respectively. The
average minimum energy per atomp)( -980.469 eV at the volume of 22.008. A
The bulk modulus in chalcopyrite phase of CGS at minimum energy point or ambient
pressure is 66.23 GPa which has been compare with previous studies in Table 3.2.

From Table 3.2 and 3.3, one can conclude that DFT calculation is relatively reliable

tool for ground state energy calculations. The enthalpyl42d and Fm3m
structures is equal at 19.77 GPa, shown in Figure 3.4(a). At this point, the average
volumes per atom of the two phases are 18.123 and 15.283r Aetragonal and

cubic respectively. Therefore, the first phase transition can be predicted at this

pressure which accompanies a volume reduction of 14.54 %, shown in Figure 3.4(b).
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When compare with the experimental data using energy dispersive x-ray diffraction
(EDX) of T. Tinocoet al. [60], they have reported the transition pressure at 13 GPa
and volume difference is 13 %.

The transition pressures and the volume reductions of CIS and CGS were
summarized and compared with existing data from the experiment [3] and [60] in
Table 3.4. Moreover, the transition pressure of CIGS was also compared. The details
of CIGS structural phase transition and effect of Na on the phase transitions in CIGS
will be fully explained in chapter 4. The predicted transition pressure obtained from
this calculation appears to be higher than the experimental results (see in Table 3.4).

This can be explained by the effect of our simulation setup. In order to simulate the

homogenous distribution of Cu and In in space gro#we3m and Cmcm, the
symmetry imposed by atoms at the occupancy site can vividly higher than the real
crystal. This would affect the total energy in both structure and hence transition
pressure. In the real crystal, the distribution of both Cu and In site should have less
symmetry. Therefore, the total energy at each volume points should be less than those
approximated in the calculation and the predicted transition pressure should also be
lower. In addition, the small discrepancy was occurred due to the fact that our DFT

phase transition was calculated at low temperature which still neglects thermal effect.
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Figure 3.4: (a) The relation between H o Hhe difference enthalpy of high pressure
and chalcopyrite phase of CGS at 0 GPa, with pressure (P) 0 — 50 GPa. (b) P-V
diagram of CGS bet ween chalcopyrite and NaCl-like cubic phases which reduced
volume is 14.54 %.
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Figure 3.5: (a) E-V data points of the three phases and their fitted EOS. (b) The
markers are the enthalpy difference as a function of pressure, while the beelines link
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Figure 3.6: The equations of states (V-P relation) of the three phases of CIS between
0-80 GPa. This V-P curve allowed us to find the volume reduction at each phase

transitions. The inset showed the atomic movements as CIS transforms from the

Fm3m to Cmem gructure.

Table 3.4: Summary of the transition pressure and the volume reduction of CIS, CGS
and CIGS at each phase transitions, compared with the CIS and CGS experimental

data in parentheses from Bovornratanaraksal. [3] and Tinocoet al. [60]

respectively.
Material ~ Transition Pressure (GPa)  AV-(%) Phase Transition
s 12 (7) 13.9 (11) 142d to Fm3m
42 (39) 1.9(1) Fm3m to Cmcm
CGS 20 (13) 14.5 (13) 142d to Fm3m
IS 13 14.2 1 42d to Fm3m

24 2.2 Fm3m to Cmcm
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3.3 Path of transformation in CIS and CIGS

From the CIS structuresalculation, we obtained also the optimized atomic

positions of each phases. TRen3m and Cmcmatomic positions of CIS in the YZ

plane were shown in the inset of Figure 3.6. The atomic visualization in the inset

allowed us to construct the path of transformation from Em3m to Cmcm
structure. First, the Cu-Se layers in XY plane moves relatively parallel to the In-Se
layers. The magnitude of the relative atomic movement is 20% in the Y axis. Second,
the phase transition also involves some small strain because the shape of the unit cell
changes and volume reduces during the phase transition. By taking all these changes

into the account, we calculated the enthalpy along the path by starting at the perfect

Fm3m phase and moving the Cu-Se layer along the Y axis at each step by 0.05 in the
reduced cell units. During the movement of Cu-Se layer in Y axis, the pressure on a
system is still unchanged in all steps. After a few movement steps, the phase transition
is completed and th€mcm structure was obtained. The result of the enthalpy along
the transformation path was shown in Figure 3.7. Hence, our simulated path of
transformation has provided the upper bound to the barrier between the two phases. It
is an upper bound because the exact path of transformation will always have lowest

enthalpy.
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Figure 3.7: The enthalpy along the path of transformation. It showed the two
distinguish energy wells of the NaCl-like cubic and @racm phases, and also the

barrier of 17 meV, equivalent to 198 K.
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From Figure 3.7, we found that the barrier height is 17 meV per atom or equivalent to
the thermal energy at 198 K. This finding can be used to explain the co-existence of
the Fm3m and Cmem phases. In fact, this co-existence was reported in the x-ray
diffraction experiment [3] that th€mcm structure firstly appeared at 33.9 GPa in the
Fm3m phase, then they co-existed in the pressure range of 33.9-43.9 GPa. The

complete phase transition to the Cmetnucture occurred at 43.9 GPa onward.
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Figure 3.8: The potential wells of cubi€fi3m) and orthorhombicGmem) phases at

nearly transition pressure between two phases.

Figure 3.9: The path of distortion and the atomic positiorsre8m and Cmecm.

For mechanism of distortion in CIGS, The shape of CIGS potentiBh@m
and Cmcm were tested, shown in Figure 3.8. The x-y plane was displaced from the
equilibrium position. TheFm3m phase shows symmetric potential, while @recm

phase gives a non-symmetric potential. The left handed sidsmain potential is
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lower than the right handed side. This result supports the transformation path in
Figure 3.8. The cross lines between two potential from different structure shows the
maximum barrier of their phase transition. Nevertheless, this value still neglects the
effect of volume reduction. From Figure 3.9, we can estimate the transformation path
from Fm3m to Cmem structure. We found that the Cu-Se plane (xy plane in Figure
3.9) of the Fm3m structure was displaced along the y-axis, parallel to the (In,Ga)-Se
plane, which this gives cubic-orthorhombic distortion. The relative plane movement is
about 18%. We also took the volume reduction and unit cell distortion into the
account. We calculated the enthalpy along the estimated path at 25 GPa, close to the
Fm3m to Cmcm phase transitions. From the enthalpy curve, we found that there were
two energy wells with one barrier, as shown in Figure 3.10. The wells located the
local stability of the Fm3m and Cmcm structures accordingly. The barrier which
separates the two well has the magnitude of 0.020 eV/atom, which is equivalent to
thermal energy at 248 K. In addition, we found that 0.1%, 1.0% and 6.25% Na have a
little effect on the shape and magnitude of the barrier.
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Figure 3.10: The enthalpy along the estimated transformation path Fro8m to
Cmem structure of pure CIGS at 25 GPa. The Cu-Se (xy) plane was translated along

the y-axis relatively to the (In,Ga)-Se plane by 18%.
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Table 3.5: The CIS band gap from sX-LDA and the trend of gap under pressure,
compared with FPLAPW [6], LDA [61], sX-LDA [7] and experimental results [4, 5].

Structures Band Gap (eV) AEJAP (meV/GPa) Method
0.680 39.6 sX-LDA?
0.913 (5 GPa) 39.6 sX-LDA?
1.076 (10 GPa) 39.6 sX-LDA?
| 42d 0.98 30 Expf.
(0 GPa) 1.04 29 Expt.
0.26 - FPLAPW-LDA
0.96 - SX-LDA
0.12 31 LDA
Fm3m : .
Vanish - sX-LDA
(15 GPa)
Cmecm
Vanish 3 sX-LDA?
(50 GPa)
#This work.

PReference 4.
‘Reference 5.
YReference 6.
°Reference 7.
'Reference 61.

3.4 Band structure of CulnSe

Next, we calculated the band gap of the three phases. It is widely known that
the local scheme of DFT gives good description on the ground state of the system
only. However, the energy gap calculation involves the excitation states and the local
exchange-correlation functional can be inaccurate. It is also well known that the
typical GGA band gap is inaccurate, shown in Figure 3.11. Thus, we resorted to sX-
LDA functional. It uses non-local screened exchange scheme combining with LDA
correlation functional, and should provide a better energy functional than the pure
local scheme of the LDA or GGA [7]. Indeed, our gap values were in fair agreement
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with experimental data and other theoretical studies. We found that the sX-LDA band

gap at 0 GPa is 0.680 eV in the chalcopyrileldd) phase, and the band gap
increases as pressure increases. The band gap is improved by sX-LDA; however, it is
still underestimated from experiment value due to excluding another effect of excited

state. The increase rate of the band gap is 39.6 meV/GPa, compared with 30

meV/GPa from optical absorption experiment [4-5, 61]. In Eva3m and Cmcm

phases, the band gap vanishes because of the overlap between the valence band
maximum (VBM) and the conduction band minimum (CBM), shown in Figure
3.12(b). The electronic density of states (EDOS) also suggests the transition from

semiconductor to metallic. Typical band structures of #2d and Fm3m
structures were shown in Figure 3.4R@nd (b). The results of the sX-LDA gap
values were summarized in Table 3.5. The error in the DFT band gap value is seen
that it is systematic error. Zhaegal [61] showed that the band gap of CIS at 0 GPa

is 0.17 eV from LDA but it can be corrected by a adding constant shift of 1.04 eV
from experiments. Similarly, Vidaét al. [8] also showed that CIS the DFT gap

tendency closely resembles the more accurate GW gap tendency.
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Figure 3.11: The CIS band structure at 0 GPa calculated from GGA-PBE.
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Figure 3.12: Comparison the energy bands of CIS from sX-LDA. (a) The energy band
of the chalcopyrite phase at 5 GPa with the gap of 0.913 eV. (b) The energy band of
the NaCl-like phase at 15 GPa. The VBM and CBM are overlapped. The Fermi level
was set as references at 0 eV. (c) Comparisons the electronic density of states (EDOS)
of high pressure phases.
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Figure 3.14: Comparisons The HOMO-LUMO gap of Cy$eSea, CuSe and InSg
in 142d phase at 0 GPa and cubic phase at 15 GPa respectively.

Table 3.6: The bond length of the closest Cu-Se and In-Se pairs under high pressure.

P (GPa)
Bond length (A) | 42d Fm3m Cmem
0 5 10 15 40 60
Cu-Se 2.42 2.36 2.31 2.64 2.48 2.50

In-Se 2.65 2.59 2.55 2.64 2.47 2.45
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Table 3.7: The population analysis (fractional number of electrons) of C1g2

(0, 5 and 10 GPa}rm3m (15 and 40 GPa) and Cmf@0 GPa).

P Cu In Se
(GPa) s P d S p d s p

0 0.68 0.80 9.8 1.30 1.37 9.99 1.56 4.47
5 0.68 0.84 9.8 1.26 141 9.99 1.54 4.47
10 0.68 0.87 9.79 1.24 1.45 9.99 151 4.48
15 0.72 0.74 9.75 1.34 1.36 9.99 1.6 4.44
40 0.73 0.78 9.75 1.29 1.42 9.98 1.58 4.44
60 0.79 0.88 9.78 1.26 1.58 9.97 1.54 4.34

In addition, we have investigated the bond length and its relation to the band
gap. Maeda and Wada [7] explained that the valence band of CIS is dominated by Cu
3d and Se 4pvhereas the conduction band is dominated by enssSe 4p. They also
showed that in an isolated CuS& InSe molecule, the energy levels split due to
covalent bonding, shown in Figure 3.13 and 3.14. The key feature is that the
proximity of atoms in the molecule strengthens the bonding, and the energy levels
split further apart. Then, they replaced the In atom by a Ga or Al atom and found that
the 1lI-VI bonds are shortened. These shortened bonds are accompanied by the
widening band gap in the bulk I-1ll-VlI compounds as expected. This situation is

similar to CIS under high pressure where all the bonds are shortened, see Table 3.6,
and the band gap is widened in thd2d phase (0-12 GPa). Thus, this is just the
effect of the stronger bonding under high pressure. However, a#@te to Fm3m

phase transition, the Cu-Se and In-Se bonds suddenly become longer. This is

surprising at first because we would expect a more packed structure under high

pressure. By looking closely at the42d structure, we found that a Cu atom is

coordinated by 4 Se atoms, similar to an In atom which is also coordinated by 4 Se
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atoms. After the phase transition to tFe\3m structure, the Cu atom is coordinated

by 6 Se atoms, so as the In atom. The volume of unit cell per formula unit of CIS is
reduced by 14% from phase transition, but the bond lengths in the unit cell are
increased due to the characteristic of space group. Thus, the total structure is still

more packed under pressure, even though the bond lengths are longer. In order to
understand the gap closure at th42d to Fm3m phase transition, we look at the
isolated molecules of Cugand InSg which constituent thé 42d structure and the

isolated CuSgand InSg which constituent theFm3m structure. The Cu$eand

InNSe are a tetrahedral molecule, whereas the gu®el InSg are an S§type
molecule, shown in Figure 3.13(a) and (b). The HOMO-LUMO gap (see in Figure
3.13(c) and 3.14) can be used to indicate the strength of bonding. From our DFT-
GGA calculations, we found that at 0 GPa, the Gu&S® InSe molecules have
HOMO-LUMO gap of 4.94 eV and 3.49 eV respectively. At 15 GPa, the Lar8e

InSe have HOMO-LUMO gap of 4.84 eV and 4.33 eV respectively, whereas the
CuSe and InSg have HOMO-LUMO gap of 4.22 eV and 3.33 eV respectively. The
significant changes can be noticed from the |nS®lecules. For the Ingethe
HOMO-LUMO gap is widened under pressure. Nevertheless, at close to the phase
transition, the HOMO-LUMO gap has changed from 4.33 eV in the,[tt58.33 eV

in the InSg, shown in Figure 3.14. When these molecules form a bulk CIS, the solid
band gap would be reduced accordingly. It is worth noting that the energy levels in
the CuSg molecules are less sensitive to the bond reduction. This is because the
bonding in the I-VI is much weaker than in the 1lI-VI. The population analysis of CIS

in chalcopyrite was analyzed in Table 3.7. It shows that CIS has s-p hybridization.

3.5 Photoabsorption of CulnSe

From the Kohn-Sham orbitals and complete Hamiltonian, we can evaluate the
real and imaginary parts of the dielectric constant €hown in Figure 3.15(c). Most
of important optical properties such as refractive index, reflectivity and
photoabsorption can be obtained from the imaginary parts of the dielectric constant.
The GGA-PBE optical band structure, shown in Figure 3.15(a), gives a higher band
gap than the electronic band structure. This is because it has been calculated using

random k-point, which not along the high symmetry BfBZ. The electronic band
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structure is focused on valence band maximum (VCM) and conduction band
minimum (VBM) at the gamma point and another symmetry point, while the optical
band structure is focused on the average transition between valence band and
conduction band. The optical band gap will be converged to the electronic band gap at
very high k-point sampling. However, the higher band gap in the optical band
structure is suitable for calculating the optical properties. But the accuracy of the
optical properties outcome from optical band gap is still discussed. The optical band

gap increased at the rate 24 meV/GPa in chalcopyrite phase.
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Figure 3.15: (a) The calculated GGA-PBE optical band gap of CIS at 0 GPa. (b) The
electronic density of state obtains from the integral of band structure. (c) The

calculated dielectric function in real part (blue) and imaginary part (red).
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Table 3.8: The optical band gap and photoabsorption of CIS calculated from GGA-
PBE at 0, 5 and 10 GPa.

Properties\Pressure 0 GPa 5 GPa 10 GPa
Optical band gap (eV) 0.380 0.503 0.612
The best absorp. (nm) 134 127 124
Absorp.at400 nm (counts) 52000 54000 54000
Absorp.at700 nm (counts) 37500 33000 28000
Max absorp. (eV) 22.5 23.0 23.5
Absorption Absorption
Absorption h
_ 00000 oo | |
Absorption i || II| |\
\ HL it n_
111 | |
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Figure 3.16: Comparisons photoabsorption of CIS in all phases calculated from GGA-
PBE at 400 and 700 nm.
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In this research, the best absorption of CIS at 0, 5 and 10 GPa are predicted
134,127 and 124 nm respectively. The result is shown in Table 3.8. The incorrect
band gap is a cause of underestimation in wavelength-absorption. The visible light
absorptions at 400 and 700 nm has been calculated. In chalcopyrite phase, the CIS
photoabsorption at 400 nm increased by 3.7% at 5 GPa. But it decreased by 12% with
the pressure increasing. The photoabsorption has been studied up to 500G®@ in
phase and the results is shown in Figure 3.16. From this result, the trend of photo
absorption cannot be predicted. However, the result indicates that the highest
absorption occurred in high pressure non-semiconducting phase. Therefore, it cannot
be applied for solar cell materials. From studying photoabsorption in CIS, it was
found that the band gap obtained from GGA-PBE (or LDA) is found to be inaccurate

and not suitable for explaining the true optical properties.



CHAPTER IV
Na Effectson CIGS High Pressure Phases

From previous chapter, the CIS ternary compound has been fully investigated
for stability of the proposed structure under high pressure as well as their phase
transition and electronic. In this chapter, the investigation has been extended to
quaternary compound, and the doped semiconductor. This simulation can be
performed by incorporation of the impurity atoms. The study will be focused on the
most widely used impurity-atom for the photovoltaic materials which is
Culny sGay sSe or CIGS. The achievement of higher efficiencies can be obtained by
adding a small amount of Na into CIGS. This was supported by several previous
experimental reports [9-19]. In simulation works, the incorporation of Na into CIS
was first analyzed by Waeidt al. [18] and Liet al. [19]. Li et al. applied a supercell
method and replaced a Na atom on one of the Cu siteg)(N&ey observed that at
the concentration of 6.25% Na atom,d)ancreases the CIS band gap by 0.114 eV at
ambient pressure. Another effect is to increase the density of states near valence band
maximum (VBM). They also found that at the concentration of 6.25%,, Nas
stronger effect on the hole density of CIS than those of 8.33% and 12.5%

incorporation of Na atoms. The present works are motivated by this theoretical study.

Despite of extensive experimental and theoretical studies of CIGS at ambient
condition, none of them take high pressure effect into account. The high pressure
effect is of major interests for the present research because in the CIS compound
under high pressure, the band gap is getting wider in the chalcopyrite phase.
Furthermore, the CIS exhibits a series of phase transitions from chalcepyN&CI-
like cubic structure— orthorhombicCmem structures [3]. In this work, the CIGS
compound was investigated under high pressure, and it was firstly assumed that this
material shares a similar transitions sequence with CIS. In order to incorporate the
effects of Na atoms, the approximations of incorporation used two techniques which
are the supercell and the mixture atoms methods. We focused on the replacement of
Na on the Cu site, denoted by dNeand on the In/Ga sites denoted byi,bla The



55

effects on structural phase transitions and the electrical properties such as the
electronic band gap and the electronic density of states (EDOS) were also fully

investigated usingb initio calculations.

4.1 Calculation details

The simulation of Na effectavas also performed by CASTEP code. The
exchange-correlation function was the generalized-gradient approximation (GGA)
functional of Perdew-Burke-Ernzerhof (PBE). The ultrasoft pseudopotential (the
details shown in Figure 3.1) was used to represent the atoms in CIGS and Na. The
pseudopotentials were composed of the potential from nuclei and some inner core
electrons. The electronic structure solutions are governed by a number of valence
electrons, i.e. 10 valence electrons of Cu, 13 valence electrons of In, 13 valence
electrons of Ga, 6 valence electrons of Se, and 7 valence electrons of Na. From the
optimization procedure of the CIGS primitive cell, the total energy starts to converge
at 350 eV.

(a) Mixture atoms (b) Super cell

Figure 4.1: The type of Na-impurity methods (a) All Cu sites were mixed by Cu 99%

and Na 1%. (b) a Na atom was replaced on a Cu site in super cg)l.(Na

The higher cutoff, i.e. 500 eV, gives a little more accuracy within the range of 6

meV/atom. Therefore, the energy cutoff was chosen at 350 eV for geometry
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optimizations and at 500 eV for more accurate single point energy calculation. The
energy tolerance in single point energy calculation was set at 0.01 meV/atom. The
optimum k-point in Monkhorst-Pack grid size was found at 5x5x6 for chalcopyrite
phase, and 5x5x5 for cubic and orthorhombic phases. For the Na substitutes, the 2
methods were imposed, as follows; the first method is called the mixture atom
method, where we used the virtual crystal approximation (VCA) [62] to construct
mixed atoms between Cu and Na, In and Na, and Ga and Na, shown in Figure 4.1.
The similar method was successfully applied to study disorder in Pb(Z{B2Pand
BiScO;-PbTiG; [63]. The main idea of VCA is that the potential of the main atomic
species (Cu, In or Ga) can be weakly perturbed by directly adding a small magnitude
of the potential of the impurity (Na). For example, the potential of 1.0% Na on the Cu
sites (denoted by 1.0% Na is the summation of 0.99 times Cu potential and 0.01
times Na potential. To the lowest order, the physical properties of one 1.8% Na
atom is equivalent to the average over all configurations of the system of 99 Cu atoms
and 1 Na atom. In the other words, the mixture potential represents the physical
properties of a system of Cu majority with small amount of randomly distributed Na

substitutes. The mixture potentid¥/,(r), can be written in terms 0¥ (r) and

V,(r) as

Vlz(r) = lel(r) + Wzvz(r)’ (4.1)

where w, and w, are the percent by atom of mixed atoms respectively. By using

mixture atom, we can calculate with low content (0.1%, 1.0% and 6.25%) of Na
substitutes in CIGS and we can avoid counting large number of different random
configurations. For the case of Na substituting on In and Ga sites, we scope ourselves
to a special case where both sites were treated equally in terms of Na substitute. For
example, 1.0% Nga means that there is 1.0% of Na on both In and Ga sites. We
chose this special case because we wanted to compare the same composition as in the
case of Ng,, and again to avoid counting large number of different configurations.
The second method is called the supercell method, where we used a supercell of CIGS
of size 2x2x2 unit cells. This supercell contains 16 Cu atomic basis. Then we

replaced one of 16 Cu atomic basis by one Na so that the system contains 6.25% of
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Na, shown in Figure 4.1(b). This can be used for comparing and verifying the results
of mixture atom at 6.25% Nafrom the first method. In the supercell calculations,

the geometries optimization was performed by using the energy cutoff at 300 eV and
2x2x2 k-points, while the single point energy and EDO&walions were performed

by using the energy cutoff at 350 eV. For finding structural phase transitions, it was
considered the same as CIS by fitting the third order Birch-Murnaghan equation of
state [64]. We estimated the band gap from the EDOS calculation. However, the GGA
band gap is known to be underestimated. Instead, we chose to report only the trend of
the band gap under pressure as it is in fair agreement with the experimental result [5,
8].
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Figure 4.2: The E-V curves of pure CIGS show that the possible stable phases are

chalcopyrite( 42d ) , cubic(Fm3m) andCmcm phases, while the trend of E-V points

in zinc blende (ZB) show that it is unstable phase.
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Figure 4.3: The E-V curves of pure CIGS, 1.0%cNand 1.0% N@gca The high
pressure phases were taken to be the same as CIS [3].

4.2 High pressure phases of doped CIGS

In order to investigate the high pressure phases of CIGS, we proposed that
CIGS has the same series of phase transitions as of the CIS, which is chaleepyrite
NaCl-like Fm3m — Cmem structures [3]. The reason is that CIGS and CIS belong to
the same group of the I-lll-Ylcompounds which have similar bondings and the
similar structure at ambient condition. We also observed another phase. For example,
we tested on the zinc blende (ZB) structure, which is closely related to the
chalcopyrite phase and widely stable in binary compounds. The E-V curves in Figure
4.2 show that the possible stable phases of CIGS under high pressuré2dre

Fm3m and Cmcm structures, while the ZB structure is an unstable phase simply

because E-V curve of ZB gives the higher enthalpy in all high-pressure regions, the
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details shown in Figure 2.4. Figure 4.3 showed the E-V curves of pure CIGS, 1.0%
Nacy and 1.0% Ngca By substituting 1.0% Na, the total energy of the system
increased in all phases. At 0 GPa, the increasing energy per a formula unit from pure
CIGS energy (Furd areAE;, o gra= Ecu — Boure = 2.02 eV, and\E; g gpa= Ein,ca— Epure
=4.02 eV, where &, and g, g, are total energy per a formula unit of the system with
Nacy and Naca respectively. The increasing energy at 50 GPaA&feso gpa= 1.69
eV and AE;, 50 cpa= 3.67 eV. Hence, the positive mixing enthalpy otINia lower
than that of Nac.. From Figure 4.3, the EOS of CIGS with different contents of Na
exhibits slightly different slope. The slope of the EOS is related to the bulk modulus.
Large modulus leads to low compressibility. In the other words, the material with
large modulus is hard to be compressed. This term indicates the hardness of the
material. From the EOS, we found that the hardness of CIGS is slightly reduced when
Na substitutes are added. As a result, the enthalpy of CIGS with Na substitutes
increases a little slower than that of pure CIGS. This result indicates that the Na
substitutes can be easier added into CIGS at high pressure than at ambient pressure.
We found that Ngc, has larger effect on the energy thancNbecause the atomic
size and the number of the valence electrons of Na differ from both In and Ga more
than from Cu. This result confirmed that Na substituted on the Cu site is energetically
preferable, as reported in previous studies [18, 19]. We analyzed the concentration of
Na at 0.1% and found that the positive mixing enthalpy of 0.1% N&@.24 eV. The
estimated deviation is about 0.05 eV. However, there is no significant effect on the
transition pressure at small content of Na, i.e. 0.1% and 1.0% Na.

Next, we calculated the enthalpy of the system by ukirg E + PV. For
static calculation (T = 0 K), the enthalpy difference (b)-Was reported in pressure
range of 0-50 GPa. The example of the enthalpy difference was shown in Figure 4.4.
The pure CIGS has the phase transitions fio#2d to Fm3m at 13 GPa, and the
volume reduction is 14.2 %. The phase transition ffem3m to Cmcm occurs at 24
GPa, and the volume reduction is 2.2 %. The estimated error bar of the EOS is about 1
GPa. Therefore, we concluded that 1.0% Na has no significant effect on the transition
pressure and the volume reduction, whereas 6.25% Na produces noticeable effects on
the transition pressure and the volume reduction, as shown in Table 4.1.
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Figure 4.4: The example of the enthalpy difference (@ld$ a function of pressure of
the system with 1.0% Na The enthalpy of the chalcopyrite phase)(iWas used as
reference.

We also noticed that thémcm structure in the CIGS is different from tncm in

the binary compounds [65], due to the anti-symmetry of the 4 atoms in the CIGS unit
cell. To clarify this difference, we set the atomic positions of Cu and Se(l) in the
Cmcm CIGS unit cell to be the same as of thecm in the binary compound. We
found that the relative difference of the atomic positions at 25 GPa are Ga (-0.0083, -
0.0167, 0.0046), In (0.0000, -0.0412, 0.0045), and Se(ll) (0.0005, 0.0399, 0.0059). At
this pressure, the atomic positionsdmcm CIGS differ from theCmcm of the binary
compound by 4%, and it becomes close toGhem binary compound when pressure

increases, or volume of cell reduces.
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Table 4.1: The transition pressure and volume reductio¥ @6) of the 142d —

Fm3m— Cmcm phase transitions.

Structural Phase Transition

Percent of Na in Transition Pressur@Pa)andVolume reduction AV%)
CIGS

| 42d — Fm3m Fm3m — Cmcm

Pure CIGS 13 GPA-14.2%) 24 GPa(-2.2%)
1.0% Nay 13 GPa(-14.0%) 24 GPA(-2.2%)
1.0% Nanca 13 GPa(-14.2%) 25 GPa(-2.3%)
6.25% Nay 14 GPa(-13.6%) 19 GPA-1.6%)

6.25% Nahca 14 GPa (-14.0%) 18 GPa (-2.0%)

For 6.25% Na, we compared between the mixture atoms method and supercell

method. We found that the transition pressure offlv8m to Cmcm phase transition
was reduced about 5-6 GPa as shown in Table 4.2. We verified the results from the
mixture atoms method with the results from the supercell method, as shown in Figure

4.5. The enthalpy is slightly different between the two methods but it confirmed the

transition pressure of thEm3m to Cmcm phase transition. We also found that 0.1%

and 1.0% Na have no significant effect on the phase transition pressure. It is worth
noticing here that the volume reduction due to the distortian3m to Cmcm) phase
trasition is small, i.e. a few percent, whereas it was large in the reconstructizuh (

— Fm3m) phase transition.
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Table 4.2: The transition pressure and volume reduction dfthgm to Cmcm phase

transition.
Structural Phase Transition
Percent of Na on CIGS Fm3m — Cmcm
Pressure Volume Reduction
Pure CIGS 24 GPa 22 %
6.25 % Nay
_ 19 GPa -1.6 %
(Mixture Atoms)
6.25 % Na,
20 GPa -2.0%
(Super Cell)
0.10F 1 | | | | I =
v - = = Cubic
005} vV Cmcm - Mixture atoms =~ —
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Figure 4.5: The H-P curves of the CIGS with 6.25% Na, neafth8m to Cmcm
phase transitions. The data points showed the comparison between the mixture atoms

and supercell methods.
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The large volume reduction at tHet2d to Fm3m transition occurs because it is a

reconstruction phase transition, i.e. the Cu and (In,Ga) are coordinated by four
neighbor Se atoms in thé42d structure whereas they are coordinated by six
neighbor Se atoms in thEm3m. On the other hand, the small volume reduction
observed atFm3m to Cmcm transformation can be explained by the distortion of

primitive cell. The Fm3m structure becomes denser than td&d , as manifest itself

in the volume reduction.

4.3 Effects of Na on hole density and band structure

At this stage, we analyzed the trends of the EDOS and the electronic band gap
under pressure of the system with 6.25% /N&Ve found that the band gap only
occurs in the chalcopyrite phase. In the cubic and orthorhombic phases, the gap is
closed. The EDOS of the systems with 0.1% and 1.0% Na have no significant change
from the pure CIGS. However, we found that the density of states near the valence
band maximum (VBM) of the CIGS with 6.25% §las higher than that of the pure
CIGS at 5 GPa, see Figure 4.6 (a). In the semiconducting phase, the hole density or
hole carrier concentration can be calculated from the integration of the product
between the Fermi-Dirac distribution function and the EDOS near VBM. Therefore,
the increasing EDOS near VBM will affect the hole density of CIGS. From Figure 4.6
(a), the EDOS of pure CIGS is increased by adding 6.2584 Maile Na,c, reduced
the peak of EDOS as valence band. From these results, we proposed that the Na is
unlikely to substitute on In and Ga sites simply because size of Ga or In atom is
significantly higher than Na atom, when compare to size of Cu atom. Moreover, the
positive mixing energy of N@a is also higher than Na We also found that the
EDOS near VBM decreases as pressure increases, as shown in Figure 4.6 (b). Figure
4.6 (b) also compared the results from the mixture atoms and the supercell methods.
The results between the two methods have general agreement in that the 6.25% Na
has an effect on the increasing of the EDOS, and the EDOS decreases as pressure

increases.
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Figure 4.6: The EDOS near the VBM. (a) The comparison between the pure CIGS
and the CIGS with 6.25% Na and 6.25% Ngaca at 5 GPa, using the mixture atoms
method. (b) The trend of the EDOS near VBM at 0 and 5 GPa. The results were from

the super cell and mixture atoms methods.
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Table 4.3: The average bond length (A) of the closest Cu-Se, In-Se and Ga-Se pairs in
the 1 42d phase at 0, 5 and 10 GPa, andRim8m phase at 15 GPa and t@excm

phase at 25 GPa. The stars (*) showed the average bond length of the system with
6.25% Na..

P (GPa)
Bond length | 42d Fm3m Cmem
(A) 0 5 10 15 25
Cu-Se 2.43 2.36 2.31 2.58 2.57
In-Se 2.62 2.58 2.53 2.58 2.57
GaSe 2.45 2.41 2.37 2.57 251
Nac,-Se* 2.38 2.33 2.28 2.58 2.46
In-Se* 2.63 2.58 2.54 2.58 2.55
GaSe* 2.49 241 2.38 2.54 2.47

In addition, we can estimate the trend of the band gap under pressure from the
EDOS. It was reported in the previous works that the energy gap increases with
pressure in thé 42d phase [4]. We found that the band gap increases with the rate of
31 meV/GPa (mixture atoms) and 39 meV/GPa (super cell). These are in good
agreement with the experimental result of Céial. [5]. Moreover, we found that the
gap vanishes in th&m3m and Cmcm phases. The energy gap in thd2d phase
increases because the Cu-Se and (In,Ga)-Se bonds lengths are shortened under high
pressure. The gap closure in them3m and Cmcm structures needs more
sophisticated explanation. This could be because the local coordinations have changed
from four Se atoms in thé42d structure to six Se atoms in tfem3m andCmcm
structures. Although the size of primitive cell always reduces under pressure (Figure
4.3), the bond lengths substantially increase during th2d to Fm3m
reconstruction phase transition, as shown in Table 4.3. For example, Cu-Se bond
length at 0 GPa (2.43 A) is shorter than the bond length at 15 GPa (2.58 A) and 25
GPa (2.57 A). The different bondings and bond lengths lead to more of the metal
character. In CIGS, the bond lengths are increased due to phase transition; as a result,
the band gap reduced or vanished. This result related with the trend of HOMO-LUMO
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gap of CIS (Figure 3.15 and Table 3.6). It is worth noting also that even though the

bond lengths in theFm3m phase increase, but the overall volume is reduced by

14.0% as reported earlier.



CHAPTER YV
Conclusions

In conclusions, we have used ab initio method to calculate the high pressure
phases of CIS. It was found that CIS transform from the 142d structure to the

Fm3m structure at 12 GPa and then into the Cmcm structure at 42 GPa. The volume
reductions at the phase transitions are 13.9% and 1.9% respectively. The sX-LDA

band gap in the 142d structure increases at the rate of 39.6 meV/GPa, in fair
agreement with 30 meV/GPa from the previously reported photoabsorption

experiment [4-5, 56]. The band gap is closed in the Fm3m and Cmecm structures. This
indicates that, under high pressure, the semiconductor materials can transform their
property to non-semiconductor materials along with their changed structures. The

investigation on nature of bonding in the CIS under pressure has also been carried out
and gave an explanation to the gap closure during the 142d to Fm3m phase

transition. The path of transformation from Fm3m to Cmcm was derived. The barrier
between the two phases was estimated. The upper bound of the potential barrier is 17

meV. We can explain the co-exist phases found at room temperature experiment [3].

In the second articles, the ab initio calculation was used to investigate the
effects of Na atoms on high pressure structural phase transitions of CulngsGagsSes.

The high pressure phase transitions of CIGS to be the same has been reported to be

similar sequence as of the CIS transitions sequence, i.e. 142d — Fm3m — Cmcm
structures. The Na concentrations were chosen at 0.1, 1.0 and 6.25 %. The positive
mixing enthalpy of Nayga is higher than Nac,. Thus Na substitutes on Cu sites are
more energetically favorable than on Ga or In sites, in good agreement with previous
studies [18, 19]. From the EOS under pressure, we found that the Na substitutes
reduce the hardness (bulk modulus) of CIGS and they can be relatively easy to
incorporate Na into CIGS under high pressure rather than at ambient pressure. The
most significant effects occur at 6.25% Na. We found that the EDOS of CIGS near
the VBM s increased noticeably in the chalcopyrite phase. This should lead to the
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increase of the hole density. We found that the gap is close in the cubic and
orthorhombic phases. Also, the Nac,-Se bond length in the chalcopyrite phase is
significantly reduced at 6.25% Na, compared with pure Cu-Se bond length in the pure
CIGS. This effect is correlated with the widening of energy band gap, and the gap
increased at the rate of 31 meV/GPa under pressure. We also derived the path of

transformation from the Fm3m to Cmcm phase. The Cu-Se plane in the Fm3m
phase displaced relatively paralld to the (In,Ga)-Se plane by 18% in order to
transform to the Cmcm phase. The enthalpy barrier is 0.020 eV/atom. From this
finding, the coexist phases in room temperature experiments can be predicted.

From these studies, the novel information of the high-pressure structures and
properties in ternary and quaternary compounds has been obtained. For the phase
transition, most previous high pressure investigations were focus on elements and
binary compounds because of their relatively simple space group symmetry. In this
work, investigation on both structure phase transition and electronic phase transition
has been extended to more complicate compounds (ternary and quaternary
compounds). It is not trivial to get the stable high-pressure phase of a complex
compound due to their nature of relatively low-symmetry. As a result, we have
employed several possible space groups for the structure determinations. However,

the stable phases of a complex compound can be obtained from the binary analog

such as 142d phasein CIS can aso be viewed as a double c-axis structure of ZB. For
Na doping, it was found that the changing pressure has significant effect on EDOS of
CIGS more than the changing of impurity. The properties of the fabricating materials
can aso be changed by the externa force. However, the Na impurity models in this
work are assumed as the homogenous impurity incorporated into a solid which is not
complete for predicting the experimental result. However, from this pioneer work,
other complex materials maybe studied using the similar approach in order to disclose

their potential application under extreme conditions.
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CASTEP code

Cambridge Serial Total Energy Package or CASTEP is a commercial (and
academic) software package which uses density functional theory with a plane wave
basis set to calculate the electronic properties of crystalline solids, surfaces,
molecules, liquids and amorphous materials from first principles. First principle
calculations allow researchers to investigate the nature and origin of the electronic,
optical, and structural properties of a system without the need for any experimental
input. CASTEP is well suited to research problems in solid state physics, materials
science, chemistry, and chemical engineering where empirical models are lacking and
experimental data may be sparse. In these areas, researchers can employ computer
simulations to perform virtual experiments, leading to tremendous savings in costly
experiments and shorter developmental cycles.

CASTEP has been completely written for use on parallel computers by
researchers at the Universities of York, Durham, St. Andrews, Cambridge and
Rutherford Labs. The code is developed by the Castep Developers Group (CDG) who
are all UK based academics. Current CDG members are:

Matthew Segall - Main author of the code specification, responsible for all the
low-level communications and basis set coding, and the population analysis
algorithms.

Matt Probert - Responsible for the geometry optimization and molecular
dynamics coding, and keeper of the parameters module.

Stewart Clark - Responsible for the band structure, exchange-correlation
functional coding and keeper of the cell module, and co-author of the linear response
code.

Chris Pickard - Responsible all pseudopotential coding, and co-author of the
NMR code.

Phil Hasnip - Responsible for the electronic minimization coding, including
density mixing and ensemble DFT.

Keith Refson - Responsible for phonon and E-field calculations and co-author
of the linear response code.

Jonathan Yates - Co-author of the NMR and related spectoscopies code.
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Mike Payne - CASTEP creator and general overseer of the whole project.

Starting from the many-body wavefunction, an adiabatic approximation is
made with respect to the nuclear and electronic coordinates (the Born-Oppenheimer
approximation). The code also makes use of Bloch's Theorem which means a
wavefunction of a periodic system has a cell-periodic factor and a phase factor. The
phase factor is represented by a plane wave. From the usage of Bloch's Theorem, it is
ideal to write the wavefunction in plane waves for the cell-periodic factor and the
phase factor. From this the basis functions are orthogonal and it is easy to perform a
Fourier transform from real to reciprocal space and vice versa. Fast Fourier
Transforms are used throughout the CASTEP code, as is the Ewald summation
method for Coulombic energies. Along with plane waves and conjugate gradient
minimization, pseudopotentials are essential to the CASTEP code for reducing the
computational expense of the calculation. Pseudopotentials replace the atomic nucleus
and the core electrons by an effective numeric potential.

CASTEP permits geometry optimization and finite temperature molecular
dynamics with implicit symmetry and geometry constraints, as well as calculation of a
wide variety of derived properties of the electronic configuration. CASTEP can
simulate a wide range of properties of materials proprieties including energetics,
structure at the atomic level, vibrational properties, electronic response properties etc.
In particular it has a wide range of spectroscopic features that link directly to
experiment, such as infra-red and Raman spectroscopies, NMR, and core level
spectra. CASTEP can be used to calculate the full tensor of second-order elastic
constants and related mechanical properties of a crystal (Poisson coefficient, Lame
constants, bulk modulus). The transition-state searching tools in CASTEP enable you
to study chemical reactions in either the gas phase or on the surface of a material
using linear synchronous transit/quadratic synchronous transit technology. These tools
can also be used to investigate bulk and surface diffusion prodesgbsrmore, the
vibrational properties of solids (phonon dispersion, total and projected density of
phonon states, thermodynamic properties) can be calculated with CASTEP using
either the linear response methodology or the finite displacements technique. The
results can be used in various ways, for instance, to investigate the vibrational

properties of adsorbates on surfaces, to interpret experimental neutron spectroscopy
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data or vibrational spectra, to study phase stability at high temperatures and pressures,
etc. The linear response method can also be used to calculate the response of a
material to an applied electric field - polarizability for molecules and dielectric
permittivity in solids - and to predict IR spectvau can see the additional details of

CASTEP in website www.castep.org.
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