
i

การประมาณคา่สมรรถนะและคา่ใช้จ่ายสําหรับเว็บแอพพลเิคชนั

บนการประมวลผลแบบกลุม่เมฆท่ียืดหยุน่ได้ของแอมะซอน

นายฐิตณิฐั ตรีนรเศรษฐ์

วิทยานิพนธ์นีเ้ป็นสว่นหนึง่ของการศกึษาตามหลกัสตูรปริญญาวิทยาศาสตรมหาบณัฑิต

สาขาวิชาวทิยาการคอมพิวเตอร์และเทคโนโลยีสารสนเทศ

ภาควิชาคณิตศาสตร์และวิทยาการคอมพวิเตอร์

คณะวิทยาศาสตร์ จฬุาลงกรณ์มหาวทิยาลยั

ปีการศกึษา 2554

ลขิสทิธ์ิของจฬุาลงกรณ์มหาวทิยาลยั

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR)
เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)
are the thesis authors' files submitted through the Graduate School.

ii

Performance and Cost Estimations for Web Applications on
Amazon Elastic Compute Cloud

Mr. Thitinut Treenorrseth

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in

Computer Science and Information Technology

Department of Mathematics and Computer Science

Faculty of Science

Chulalongkorn University

Academic Year 2011

Copyright of Chulalongkorn University

iii

Thesis Title Performance and Cost Estimations for Web Applications on
Amazon Elastic Compute Cloud

By Mr. Thitinut Treenorraseth

Field of Study Computer Science and Information Technology

Thesis Advisor Assistant Professor Chatchawit Aporntewan, Ph.D.

 Accepted by the Faculty of Science, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master’s Degree

 ……………………………………………….. Dean of the Faculty of Science

 (Professor Supot Hannongbua, Dr.rer.nat)

THESIS COMMITTEE

 ……………………………………………….. Chairman

 (Associate Professor Peraphon Sophatsathit, Ph.D.)

 ………………………………………….……. Thesis Advisor

 (Assistant Professor Chatchawit Aporntewan, Ph.D.)

 ……………………………………………….. External Examiner

 (Assistant Professor Kriengkrai Porkaew, Ph.D.)

iv

ฐิติณฐั ตรีนรเศรษฐ์ : การประมาณคา่สมรรถนะและคา่ใช้จ่ายสําหรับเว็บแอพพลิเค

ชนับนการประมวลผลแบบกลุม่เมฆท่ียืดหยุ่นได้ของแอมะซอน. (Performance and

Cost Estimations for Web Applications on Amazon Elastic Compute Cloud)

อ. ท่ีปรึกษาวิทยานิพนธ์หลกั : ผศ. ดร.ชชัวิทย์ อาภรณ์เทวญั, 65 หน้า.

 ในปัจจบุนัระบบเว็บแอพพลเิคชนัได้เข้ามามีความสาํคญัอยา่งยิง่ในการสนบัสนนุ

การทําธุรการตา่งๆผา่นทางระบบออนไลน์ เช่น อีบวิสเินส, การกระจายขา่วสารรวมถึงเป็น

ช่องทางการส่ือสาร เน่ืองด้วยความมีประโยชน์ของเว็บแอพพลเิคชนั ทําให้มีจํานวนผู้ เข้าใช้

บริการบนระบบเว็บแอพพลเิคชนัตา่งๆเพิ่มมากขึน้ซึง่ในบางครัง้เกินความสามารถท่ีระบบจะ

รับไหวทําให้เกิดปัญหา “ระบบลม่” ตามมา วิธีแก้ไขมาตรฐานในปัจจบุนัคือ การเพิ่มจํานวน

ของเซร์ิฟเวอร์ หรือ การเพิม่ประสทิธิภาพของเซร์ิฟเวอร์ (เพิ่มหนว่ยความจําชัว่คราว, หนว่ย

ประมวลผล หรือ หนว่ยความจําถาวร) แตก่ารแก้ปัญหาด้วยวิธีเหลา่นีทํ้าให้เกิดควาสิน้เปลือง

เน่ืองจาก อตัราการเกิดปัญหา “ระบบลม่” นัน้อยูท่ี่ ๒๕ เปอร์เซน็ต์หรือน้อยกวา่ ดงัปัญหาท่ีได้

กลา่วมา เราจงึได้นําเสนอวธีิการแก้ปัญหาวิธีใหมซ่ึง่นําบริการของแอมะซอนช่ือวา่ แอมะซอน

อีลาสตกิ คลาว คอมพิวต์ หรือ แอมะซอน อีซที ู มาเป็นเคร่ืองมือการแก้ปัญหา โดยอาศยั

ลกัษณะพเิศษท่ีเรียกวา่ ออโต้ สเกลลิง่ ท่ีสามรถเพิ่มและลดจํานวนเซร์ิฟเวอร์บนระบบได้โดย

อ้างอิงจากข้อกําหนดตา่ง ซึง่ในกรณีนีเ้ราได้กําหนดให้เป็นจํานวนผู้ เข้าใช้ระบบ ณ เวลานัน้

และหลงัจากผลการทดลอง วิธีของเราได้แสดงให้เห็นถงึผลลพัธ์ท่ีดีเย่ียม ยิง่ไปกวา่นัน้เรายงั

ได้ศกึษาเพิ่มเตมิถึงการปรับเปล่ียนคา่ตวัแปรตา่งบนระบบ ซึง่จากผลลพัธ์แสดงให้เห็นวา่การ

ปรับเปล่ียนคา่ “เวลาครอนแทป” นัน้มีประสทิธิภาพและสามารถทําได้ง่ายท่ีสดุในการปฎิบตัิ

จริง อยา่งไรก็ตามจากผลการทดลองแล้ว วิธีของเรานัน้เหมาะสมกบัการลกัษณะของผู้ เข้าใช้

ระบบท่ีมีการกระจายตวัแบบเอกซ์โพเนนเชียลเทา่นัน้

ภาควิชา คณิตศาสตร์และวิทยาการคอมพิวเตอร์ ลายมือช่ือนิสติ

สาขาวิชา วทิยาการคอมพิวเตอร์

 และเทคโนโลยีสารสนเทศ

ลายมือช่ือ อ.ท่ีปรึกษาวิทยานิพนธ์หลกั

ปีการศกึษา 2554

v

5273622023 : MAJOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

KEYWORDS : COST ESTIMATION / WEB APPLICATIONS / AMAZON ELASTIC

COMPUTE CLOUD

THITINUT TREENORRASETH : PERFORMANCE AND COST ESTIMATIONS

FOR WEB APPLICATIONS ON AMAZON ELASTIC COMPUTE CLOUD.

ADVISOR : ASST. PROF. CHATCHAWIT APORNTEWAN, Ph.D.,65 pp.

 Web base application plays an important role in supporting online activities,

such as E-business, contents distribution and a communication portal. There is a big

increasing in number of online activity usage that leads to an important problem to a

webserver which is a “traffic overload problem.” At present, the conventional solutions

are whether to increase the number of webserver or to increase the capability of the

server (more RAM, CPU, Cache, HDD). Unfortunately, these solutions bring about waste

resulting from overloading problem that accounts for less than 25 percents of the

operation time. In addition, hardware capacity has not been used to it maximum over

than 70 percent of the time, but left idle instead. This study proposes a new method to

solve this problem on Amazon Elastic Cloud Compute (EC2) service. The proposed

solution relies on Auto Scaling where the number of system instances (web server) can

be increased and decreased based on some pre-defined condition. In this case, the

number of current system users is the main focus. An experiment showed that this

method provided great performance. It was also found that focusing on tuning of system

crontab variable was the most effective method and easiest for real practice. However,

the proposed solution is only suitable for the system which predicted user distribution is

in exponential form.

Department : Mathematics and Computer Science Student’s Signature
Field of Study: Computer Science and

 Information Technology

Advisor’s Signature

Academic Year : 2011

vi

Acknowledgements

First, I would like to thanks to my advisor, Assistant Professor Chatchawit

Aporntewan, who always guide me the way, give me comments, ideas and advisement.

Without him I would never finish this thesis. And prior to his personality and interest, I

also consider him as a friend for now and future. Moreover, I would like to thanks to

Associate Professor Peraphon Sophatsathit who always provide me many academic

knowledge and tips since I was entering at Chulalongkorn, in my opinion, he is a role

model of good instructor. Also I would like to thanks to my friends at Chulalongkorn who

always provide me some information and remind me of an academic schedule,

especially Guile, Sand, Niel and Nuch without them, my time might be harder than this.

And above of all, thanks to my family member: my parents, without them I definitely not

be here, my brother who always be with me even we both are not a good speaker, my

dogs that always guard my home when I not be there and also my fiancée who always

with me and encouraged me.

Moreover, during my research and study period at Chulalongkorn, there were

many events occurred in my life, some was good some was bad. For all the good things,

I thanks you all related that make all those good things happen in my life. But for all

those bad things, even back in that time they were causing me pain and weary but after

all, they just can only make me stronger and more experienced. Therefore graduated my

Master Degree here at Chulalongkorn not just only the academic degree but also means

a “life” degree to me.

vii

Contents

 Page

Abstract (Thai).. iv

Abstract (English)... v

Acknowledgements.. vi

Contents... vii

List of Tables.. x

List of Figures... xi

Chapter

I Introduction.. 1

 1.1 Objectives.. 3

 1.2 Scope of the Work... 3

 1.3 Problem Formulation.. 3

 1.4 Expected Outcomes... 4

II Theoretical Background... 5

 2.1 Cloud Computing.. 7

 2.2 Amazon Cloud Service.. 11

 2.3 Amazon EC2………………………….. 17

 2.4 Auto Scaling……………………………………………………………………... 21

 2.5 Elastic Load Balancing…………………………………................................. 22

 2.6 Cloudwatch…….. 23

 2.7 AWS SDK………………………... 23

Chapter Page

viii

 2.8 Queuing theory……………….. 24

III Modeling and Tools... 26

 3.1 Launching EC2 instance and perform the configuration…......................... 28

 3.1.1 Launching EC2 instance.. 28

 3.1.2 Connect to the instance... 32

 3.1.3 Configure Putty... 33

 3.1.4 Configure the EC2 instance... 34

 3.2 Launch RDS and configuration... 36

 3.2.1 Launch RDS instance…………………………………………………... 36

 3.2.2 Create Database………………………………………………………… 39

 3.3 Enable and configuration an Auto Scaling…………………………………... 39

 3.3.1 Enable Auto Scaling……………………………………………………. 40

 3.3.2 Configure an Auto Scaling…………………………………………….. 42

a) Create launch configuration……………………………………… 42

b) Create Auto Scaling group……………………………………….. 43

c) Create Auto Scaling policy……………………………………….. 43

 3.4 Create PHP script on an EC2 instance……………………………………… 45

 3.4.1 Authentication………………………………………………………….. 45

 3.4.2 RDS connection………………………………………………………... 46

 3.4.3 Auto Scaling trigger…………………………………………………… 46

 3.5 System working process……………………………………………………… 47

Chapter Page

ix

IV Experimental Results... 50

 4.1 Functional testing……………………………………………………………… 50

 4.2 Cost compilation……………………………………………………………….. 52

V Discussion…………………………………………………………………………………... 57

 5.1 Solution………………………………………………………………………… 57

 5.2 Quality of service………………………………………………………………. 58

 5.3 The optimal parameters………………………………………………………. 62

VI Conclusion... 63

References... 64

Biography... 65

x

List of Tables

Table Page

1 Pricing table for EC2 instances………………….………………………….. 21

2 Database diagram for application……………………………………........ 39

3 The cost estimation for conventional method……………………………… 54

4 Conventional method compare with our method………………………….. 55

5 Result on round time tuning for “Best” user distribution………………….. 59

6 Result on round time tuning for “Bad” user distribution………………….. 59

7 Result on round time tuning for “Worse” user distribution……………….. 60

8 Result on round time tuning for “Worst” user distribution………………… 60

xi

List of Figures

Figure Page

1 Workload problem occur at T4 and T5……………………………………... 5

2 Solving problem by add more hardware.. 6

3 Solving problem by increase hardware capability................................... 6

4 Queuing model components.. 24

5 System model…………... 26

6 The EC2 user interface for launch instance.. 28

7 Select the OS for the new instance.. 28

8 Specify instance detail……... 29

9 Select the key pair using to connect to the created instance.................. 30

10 Configure instance firewall policy... 31

11 The detail summary of an instance…………………….............................. 31

12 New launched instance is ready…... 32

13 Foreign key import successful……………………………………………..... 33

14 Security key using for authentication……………………………………….. 33

15 Interface of Putty………………………………………………………………. 33

16 Connect to instance using Putty successful……………………………….. 34

17 Start httpd service on instance……………………………………………… 35

18 The interface for create new RDS instance………………………………… 36

19 Select the database engine for RDS……………………………………..…. 36

20 Specify RDS detail……………………………………………………………. 37

xii

21 Specify some additional configuration……………………………………… 38

22 Summary page before launching an instance…………………………….. 38

23 Security credential information………………………………………………. 41

24 Listing all the Auto Scaling command after finish an installation………... 42

25 Command for create Auto Scaling policy………………………………….. 43

26 Listing all of the scaling policy of the Auto Scaling group……………….. 45

27 System working process………………………………………………..……. 47

28 One instance to serve 4 users………………………………………………. 48

29 Two instance to serve 8 users……………………………………………….. 48

30 Four instances to serve 14 users……………………………………………. 49

31 Two instances to serve 7 users……………………………………………… 49

32 User distribution over 1 hour………………………………………………… 51

33 Demand and supply of EC2 instance over time…………………………… 51

34 Four kinds of user distribution……………………………………………….. 54

35 Crontab = 5 mins, Auto Scaling 0 – 10 mins………………………………. 55

36 Crontab = 1- 10 mins, Auto Scaling = 0 mins……………………………... 56

37 Overload time value with respect to crontab round time tuning………… 61

1

CHAPTER I

Introduction

Technology is one of the most important key for business to overcome

the other business competitors. In business, rather than costing, marketing,

management policies, technology is the most dominated factor to decide whether who is

going to be a winner or a loser. The one that owns better technology or can come up

with the most innovative product in that time is likely to be the one who will rise in the

market. As mentioned, the better technology brings up many competitive advantages,

such as better product quality and functions, lower the product or manufacturing cost.

As the importance of technology becomes higher level of the competition, the faster of

growth in technology goes. This fact can explain the reason why the growth of

technology at present is very fast. This also brings up what is called “technology

competition” in business and many other areas. In the field of information technology,

the most focusing factor in technology innovation is performance and cost reduction. In

order to come up beyond all the competitors, one of the above factors must be

achieved.

In this thesis, the new idea on doing an IT-related business is introduced;

moreover, I believe that this technology will emerge a big impact on IT business and

other related business by this coming year. This mentioned technology is “Cloud

computing”, Cloud computing is the technology which base on the concept of

centralization and share resourcing. For nowadays, cloud computing is normally

understood and is used as service to support many kind of operations and objectives

varied by end-users. With high level of comfort, and rapid time of implementation and

set up, cloud computing technology is becoming popular in IT area and the expected

growth rate for worldwide cloud computing in 2013 is 300 percents. With regarding to

the big coming trend of cloud technology, many enterprises are starting to pay their

attention on this technology and plan to shift their IT toward the cloud, in order to create

cloud-based IT infrastructure environment what is called “Private cloud.” But for end-

2

users and small companies (non-enterprise), pay for the “public cloud” service is

another interested option.

 At present there are many reliable cloud service providers likes, Amazon,

Google, Microsoft, and Symantec. The service provided is mainly computing resource

and storage, which are different for each provider in details. And in this thesis I desire to

use the cloud service from Amazon due to the reason that there are many varieties of

services and free of charge for some services and the most important is the features

provided by Amazon.

Amazon Elastic Compute Cloud (EC2) is one of the products in Amazon

Web Service (AWS), which is provided by Amazon. This service based on the concept

of “Cloud computing”; in short, I buy the computing resource in form of services not a

product. As a service on cloud, the wall of insufficient computing resource is totally

broken down because the service provided on cloud can be nearly called as unlimited.

Amazon also introduces the service highlight with definition “Pay as you use”, with this

notable characteristic, I decide to implement this technology as the solution for the web

service project to reduce cost and increase the performance.

The current approach for hosting a web service project on the internet is

to have a physical web server which can be either permanently purchased or

temporarily rented. However, with any of the proposed solutions, the quantity and the

performance of the server have to be large enough to handle the large amount of

incoming clients in the peak time. In order to prepare the computing resource to support

this kind of scenario, the current conventional approach causes waste of budget and

physical resource.

In this thesis, I propose an approach for increasing the performance of

web service while also reducing the cost by using Amazon Elastic Compute Cloud

(EC2) which is capable of expanding and shrinking the number of computing instances

in order to meet an application demand [1,2].

3

2.1 Objectives

• To investigate Amazon EC2, instance types, system setup and

configuration for web applications.

• To estimate the cost of running a web service, given a distribution of

user connections over a period of time.

• To reduce the cost of running a web service project.

2.2 Scope of the Work

• There are many cloud-computing providers in market, but on this

research I focus only on Amazon Web Services.

• I only interest in a web application with a known distribution of user

connections.

• Regarding to the expense, I conduct the experiments only with Micro

instance (Linux OS, PHP and MySQL).

• Most of the results come from simulation (not the actual run) due to

the budget limitation. For instance, if I perform a real testing for

500,000 user connections over two weeks, this will cost thousands of

dollars.

2.3 Problem formulation

The research problem is formulated as “parameter optimization.” There

are a number of parameters for using Amazon Compute Cloud. I develop a simulator

that takes these parameters and then calculates the cost. The simulation approach is

fast and not expensive for trial and error. After a thorough study in the simulator, I will

actually test a few cases on Amazon Compute Cloud.

4

2.4 Expected Outcomes

• A practical method for performance evaluation of an EC2 instance.

• A cost estimation model.

5

CHAPTER II

Theoretical Background

 In this research, we propose a new solution by implementation of

Amazon Cloud Service for solving the web service problem called “Traffic Workload

problem”, in this thesis; we will call this “Workload problem”. For more description,

Workload problem describe the situation when there are too many user connecting to

the webserver, so that it cause the webserver to be slow down and unresponsive. For

current, a conventional approach is to make sure that the allocated hardware is

sufficient for provide service at the peak of users which can be either increase the

number of the hardware (Figure 2) or increase the hardware capability (CPU, RAM,

Cache, HDD) (Figure 3). But in a real practice, the mentioned solutions bring a lot of

waste. As mentioned, our objective is not only to solve the problem bit also consider with

cost reduction.

Figure 1. Workload problem occur at T4 and T5.

6

Figure 2. Solving problem by add more hardware.

Figure 3. Solving problem by increase hardware capability.

First is to improve the performance, refer to the web service problem

when the web server itself crashing down due to a large number of incoming client

coming to the server in the same time [3]. Second, reduce the cost, in order to avoid the

mentioned problem, with current solution, more hardware is needed. But this will cause

a lot of waste if we consider on the actual usage and depreciation cost. Moreover, we

also represent the cost estimation model for dynamic instance usage, since there is still

few of the research which focusing on this aspect [5,6,7,8,9,10]. Therefore, in order to

be able to understand the concept of system architecture that we are going to introduce

7

for solving the problem in the next chapter, knowing of the basic information about some

of Amazon Cloud Service is needed.

2.1 Cloud Computing

The word “Cloud” originally comes from the diagram that represents the

telephone network in telecommunication field, and later was used in computer network

diagram to represent an abstraction of the infrastructure. Originally, Cloud computing is

term which describe the service that is delivered to the user over the internet

connection. The service in this case can be computation resource, software, data

access and storage service which the user does not have to know physical location of

the service or understanding of any component device or an infrastructure that is

required to provide the service. For example, when we go to Google and do the

searching, we do not know the source code or an algorithm behind Google, but we just

input the text and receive the result. As from the given example, web service is also one

of the Cloud computing services.

Normally, Cloud architecture consists of a large amount of server (may

up to ten or hundred thousand of physical server), sometime is called ‘Server farm ‘.

These cloud servers are connected together as grid architecture. And communicate

with customer through ‘User interaction interface’ which relies on a web protocol.

Customer can search for desired service on the web interface called ‘Service catalog’

which contains the list and briefly description of the available service. And when

customer ask for the desired service, the requisition will be send to ‘system

management’ which play role as a service manager to manage the queuing and

resource management to select the appropriate resource among all available at that

time. Then the service request will be forward to ‘provisioning services’ which will make

a resource reservation on cloud and activate the usage to the customer. After that all the

activity and service monitoring will be handled by ‘Monitoring and metering system’

8

which will monitor the resource usage, condition/health and also collect all the statistic

and billing procedure.

 For present, the term Cloud computing has been added in more details,

for better understanding, Cloud computing can be separate by models which are

Private cloud and Public cloud. Private cloud is infrastructure which provides the service

for a single organization, in this case propose of the cloud is to consolidate all the IT

service into one place in order to retain centralize IT resource management and

comfortable such as software maintenance, debug or patch update, usage monitoring

and system backup. Another proposes is to save the cost and gain maximum profit, for

example, instead of purchase 10 cabling design software license for each department

workstation, company can purchase only 5 licenses or less and put them on the cloud

and the user just use their thin-client computer to connect to the company cloud when

they want to use the software. But with private cloud, company still need to have IT

operation team to take care and manage the company cloud.

Another model is Public cloud, which describe the cloud service that is

provided by the cloud service provider company such as Amazon, Yahoo Google etc.

The Cloud service in this model is available to almost everyone in the world that can

connect to the internet. The service will be used by the connected user and the fees are

charged according to the actual usage time; mostly the fees will be calculated per hour.

As the cloud concept, the user is able to use the computing service without having to

know the physical location of the cloud server, or even the components inside.

The cloud can be also divided into following layer.

1) Application or software as a service (Saas) – the user pay for the

software service that is deliver to user over the internet as request

without needing of software installation computation resource on user

computer. With this model, the software and its associated data are

9

hosted in the cloud mostly through the web browser, for current, this

kind of model can be realize as thin-client.

2) Platform as a service (PaaS) – similar idea to SaaS, the complete ready

to use platform for user. This service is usually for software

development team, such that, the development is ready to use, so

there is no need for further setting up of underlying hardware or

software installation in order to meet the development environment

pre-condition. This provide speedy and comfortable to the developer

team since after pay for the service, they can start on writing their

application on the platform instantly.

3) Infrastructure as a service (IaaS) – all the needed things which is

required in order to establish the working infrastructure is provided; for

example, the data storage and networking. But typically, the

infrastructure is based on the virtualization instead of purchase those

server, software, rack space and network equipment.

Moreover, some new model of cloud computing service were introduced

likes, Community cloud and Hybrid cloud which refer to the composition of two or more

clouds (private or public), which will allows programs and data to be moved easily from

one system to another.

Regarding to benefit of the cloud, it also provide some characteristic with

many other technical terms likes; Client-server – the architecture form a model which

separate between service provider(server) and the service requester(clients) and Grid

computing – the physical hardware components are setup to operate in distributed and

in parallel form, where a virtual computer is composed of a cluster of network.

10

By the way, within this thesis, we will focus only on the implementation of

public cloud to solve the problem. Moreover the Public cloud service also provides

many benefits such as

Agility – an ability to change or re-provision the infrastructure resource as

desired.

Cost efficiency – lower start up cost and also break down the entry

barrier for the entrepreneur, as the infrastructure does not require a one-time purchase,

in contrast it is defined by usage-based as pay as the service you had use.

Location independence – the same concept of web service which

provide you the ability to access system over the internet with regardless of the location

and device.

Reliability – with using the cloud, the technique which multiple redundant

sites are used, this bring a well-designed system and suitable for business process

continuity and disaster recovery.

Scalability – with using cloud service, the resource is based on

virtualization; therefore, the sizing of the system is nearly unlimited and the responsive is

near real-time. So that system can be scale up or down in order to serve the change in

number of clients.

Maintenance – with using of cloud service, the maintenance is the part

that you do not have to worry, since it is the responsibility of the service provider.

In additional details, the public cloud service is the massively shared

computing resource which is provided by the third party company to the customer as

service rather than a product and can support up to multiple concurrent end-customers

at the time and the cost will be charged by amount of consumption (usually by hour).

Therefore the customer will not know (is no need to know) what hardware and software

are used as the combination to provide the service for them. The analogy is “If you need

milk, would you buy a cow?”, this word is completely explain everything about the cloud

11

technology, in fact the customer is require to know only on the service which they are

going to use on top, but they do not need to know what component are performing

underneath. For example, when you want to access you hotmail and send an E-mail,

what you need to do is only go to the Internet café, open the web browser, access your

hotmail account, compose and send the E-mail then pay you bill. You do not need to

know what is the web browser, the operating system, specification of the hardware or

even the chair you are sitting while using the computer, you just pay attention to

whatever you would like to do by leave the rest to be the business of service provider

(Internet café). With this characteristic, you can fully focus on the core business activity

rather than the IT environment setup, installation, configuration and maintenance.

 As the expectation for the big growing rate of cloud computing

technology, during the past ten year there are many cloud service provider step into this

market; for current such as Microsoft with “Azure” cloud, Google with “Google App

Engine”, IBM with “Blue cloud”, Verizon and Amazon with “AWS”. This is because of the

fact that they believe cloud technology will become the core of IT business and a

perfect tool for business support and enterprise back-end system in the near future. By

the way, for current, there is already on action commercial system that already

implemented with cloud computing already like: Google mail, Yahoo mail, Facebook etc.

2.2 Amazon Cloud Service

 Among all the cloud service provided on the market, in this thesis we

desire to choose “Amazon AWS” to be the tool in our research. The reason we choose

Amazon Web Services over other product is because in our personal idea, we believe

that Amazon Web Services is more reliable than the others since it is ranked as the

number 1 on the “top ten cloud computing service providers” in year 2010 and 2011.

The rankings are based on customer traction, solid technical innovation and

management track record. This means that this product should be able to survive on the

market since they are the best in the area for now and as current status and our

12

prediction, Amazon seem to be a permanent leader in the market for at least 5 years, so

our research can be brought to implement in the real business. And another reason is

about the provided service and feature which we feel that Amazon Web Services

features is the right tool for the problem.

Amazon Web Services (AWS) is one of the products that are provided by

Amazon.com which is originally started their business as an E-commerce core-company

likes an online bookstore, DVDs, CDs, MP3, computer software, game etc. Amazon Web

Services is a collection of web services which can be together make up a cloud

computing platform provided over the internet.

Amazon Web Service was first launched in 2002. In that time, Amazon

Elastic Cloud (Amazon EC) was introduced and only compatible with Microsoft Window

Server and Microsoft SQL server, but in later, it supports many various kind of platform

and such as Linux and OpenSolaris. List of available important web services are shown

as following.

• Amazon AWS Authentication - the authentication embedded service which

provides authenticate access to the AWS services.

• Amazon CloudFront, a content delivery network (CDN) for distributing objects

stored in S3 to so-called "edge locations" near the requester.

• Amazon CloudWatch - provides monitoring capability on all AWS cloud

resources and applications including Amazon EC2.

• Amazon DevPay - is a billing and account management system for applications

that developer has builded on AWS.

• Amazon Elastic Beanstalk – is a tool for application deploy and manangement

• Amazon Elastic Block Store(EBS) – is a persistent memory block storage for EC2

service.

• Amazon Elastic Compute Cloud(EC2) – is a private server service which allow

fully management power to user,and also come with scalable feature.

13

• Amazon Elastic MapReduce – is a tool which mainly target on researcher data

analyst and developer to perform big amount of data processing for cheaper

price. With Hadoop framework, it also support Parallel processing application.

• Amazon Elastic Cache – internal caching feature for web server instance.

• Amazon Product Advertising API – In former, it is known as Amazon E-

Commerce Service which used for supporting of the electronic commerce.

• Amazon Relational Database Service(RDS) – Database server component.

• Amazon Route53 – Web service domain name management

• Amazon Simple Email Service – E-mail transaction management.

• Amazon Simple Storage(S3) – provides application storage service

• Amazon Simple Queue Service(SQS) – web application message queue

management.

• Amazon Simple Notification Service(SNS) – provides web application

multiprotocol messaging.

• Amazon SimpleDB – allow database queries function on EC2 and S3.

• Amazon Virtual Private Clour(VPS) – allow secure communication of Amazon

Cloud Service with already exist infrastructure.

• AWS Import / Export – provides portable storage device to manage the data

transfer into/out of AWS.

• AWS Management Console – Graphic User interface for manage and monitor all

the service of AWS.

• AWS Simple Monthly Calculator – support monthly cost estimation.

Naturally, Amazon Web Services is the online service for other web sites

or client-side applications; therefore, most of these services are not exposed directly to

the end user, but instead, it is tend to offer functionality which is more useful to the

developer site. Likewise, in our solution, the services that we gather to making up our

system are Amazon CloudWatch, Amazon Elastic Compute Cloud (EC2), Amazon

Relational Database Service (RDS) which we can manage and monitor the infrastructure

14

via AWS Management Console. In the following, we will describe more in depth details

about all those services.

Amazon Elastic Compute Cloud (Amazon EC2) is a cloud based web

service which provides developer the scalability of computing resource in the cloud.

Moreover Amazon EC2 also come with the web interface which allow developer to

configure, monitor and complete control over all the resources. Amazon EC2 also

reduce the server instances boot time and terminate time to minutes, likewise, this allow

the system to quickly scale-up or scale-down with respect to the change. And as a

cloud service, Amazon EC2 fee is charged for the actual capacity usage.

Service Highlights

Elastic – Amazon EC2 enables the developer to whether increase or

decrease the system capacity of the system not by hours or days but within minutes.

Also with using the Web interface control, the developer can control and monitor even

hundreds or thousands of server instances simultaneously.

Complete Controlled – Within Amazon EC2 service, the developer have

complete control over instances as it located right next to them. With the root access

permission on each one, the developer can stop/start or even restart instance while

retaining the data on the boot partition. And all those activity can be done through the

web control interface.

Flexible – Amazon EC2 come up with many type of server instances,

operating systems and also various software packages. Moreover, the developer can

select the allocation of instance memory, CPU, instance storage. This option allows the

developer to work on any type of desired environments, and also support the

development on any platform.

15

 Compatibility – All of Amazon EC2 instance can work in conjunction

with other cloud service of Amazon likes Amazon Relational Database Service (RDS),

Amazon Simple Storage Service (S3) Amazon SimpleDB etc.

Reliable – With Amazon EC2, replacement of instance can be rapidly

performed. Moreover Amazon EC2 Service License Agreement commitment is 99.95%

availability for each region.

Features

Amazon EC2 instance also come up with useful add-up features

Amazon Elastic Block Store (EBS) – offer persistent storage for Amazon

EC2 instance. Amazon EBS volumes provide off-instance storage that persists

independently from the life of an instance. This mean that when developer stop the

instance when unused the state of the instance still maintain that state and when the

instance is started again, it will be boot with the recently state. This allow developer to

stop the instance when unused in order to minimize the cost. Moreover, Amazon EBS

provides option to create point-in-time (snapshot) of the volumes and store in Amazon

S3. So that the snapshot can be replicate across regions, and also can be shared with

other developer and co-worker for using as the starting point for new Amazon EBS

volumes.

Multiple Location – Amazon provide many available location for the user,

therefore; user can place their system instances in multiple regions and locations

around the world as needed in order to perform load balancing, failure protection or

even location based service. For current, Amazon EC2 is available in North America (3

locations), South America (1 location), Asia(2 locations) and Europe (1 location).

Amazon Virtual Private Cloud – is a service which is provided for

company, with this service, company existing IT infrastructure can be expanded and

connect with AWS cloud instance securely through a Virtual Private Network(VPN).

16

Amazon Cloudwatch – is a service which allow user to monitor their AWS

resource via the web interface. Many parameters are provided such as CPU utilization,

Memory usage, HDD I/O traffic, network usage etc. Amazon Cloudwatch also provide

statistic view and graphical view of those parameters, so the user can view historical

data of those parameter. Moreover alarm trigger can be perform based on changing of

parameter value, for example, alarm when CPU usage is more than 80 percents.

 Auto Scaling – allow us to design the system with an ability to scale the

system capacity up or down according to the pre-defined conditions. With Auto Scaling,

the number of EC2 instances can be increase during highly demand to maintain the

performance and decrease when the demand is dropped to minimize the cost.

Elastic Load Balancing – is a component which manages all the

incoming traffic across EC2 instances in the system equally. Not only manage the traffic,

load balancing also able to detect for unhealthy device in the system and reroute those

instance traffic to other healthy instance. Moreover, Load Balancing can also manage

the traffic across multiple instances that are located in multiple location.

VM Import – this service enable developer to import their virtual machine

images from the existing environment to Amazon EC2 instances. So, developer can

immediately migrate their server into Amazon cloud quickly and easily without having to

start from the ground up.

High Performance Computing Clusters – is suitable for the job that

requires more computation power and complexity than normal, for example, parallel

programming job which require both computing power and network performance also,

the need of cluster computing and cluster GPU. With this service, the same performance

as custom-built infrastructure is served to the user with less cost but more flexibility.

17

2.3 Amazon EC2

Amazon EC2 provides several type of instance which may suitable to

various kind of implementation. The followings are the available instance type.

Micro instance – suitable for low data computation and throughput

application, and also suitable for web application that is not require much computation

and data transfer.

1) Micro Instance

No. of CPU 2 ECU

Memory 613 MB

Local storage (EBS storage only)

Platform 32,64 bits

Standard instance – suitable for standard application and general

purpose, there are 3 type of standard instance.

1) Small Instance

No. of CPU 1 ECU

Memory 1.7 GB

Local storage 160 GB

Platform 32-bits

2) Large Instance

No. of CPU 2 ECU (2 virtual cores)

Memory 7.5 GB

Local storage 850 GB

Platform 64-bits

3) Extra Large Instance

No. of CPU 2 ECU (4 virtual cores)

18

Memory 15 GB

Local storage 1690 GB

Platform 64-bits

High-Memory instance – suitable for application that require high

throughput rate, for example database related application and memory caching

application, there are 3 type of High-Memory instance.

1) Extra large Instance

No. of CPU 3.25 ECU x 2

Memory 17 GB

Local storage 420 GB

Platform 64-bits

2) Double Extra Large Instance

No. of CPU 3.25 ECU x 4

Memory 34 GB

Local storage 850 GB

Platform 64-bits

3) High-Memory Extra Large Instance

No. of CPU 2 ECU (4 virtual cores)

Memory 15 GB

Local storage 1690 GB

Platform 64-bits

19

High-CPU Instances – suitable for application that requires high

computation power (intensive computing).

1) Cluster computer Quadruple Extra Large

No. of CPU 33.5 ECU

Memory 23 GB

Local storage 1690 GB

Platform 64-bits + 10 Gigabit Ethernet

2) Cluster Computer Eight Extra Large

No. of CPU 88 ECU

Memory 60.5 GB

Local storage 3370 GB

Platform 64-bits + 10 Gigabit Ethernet

Cluster GPU Instance – suitable for graphic processing task that require

high parallelized processing which have to be on both computation power and network

performance. The example is HPC rendering and media processing application.

1) Cluster GPU Quadruple Extra Large

No. of CPU 33.5 ECU + 2x NVIDIA Tesla M2050 GPU

Memory 22 GB

Local storage 1690 GB

Platform 64-bits + 10 Gigabit Ethernet

*** One EC2 Compute Unit (ECU) computing power is equivalent to CPU capacity of a

1.0-1.2 GHz 2007 Xeon processor.

20

Operating Systems and Software

Amazon EC2 is compatible with many kinds of operating system and

software, so the developer can create the most suitable environment for their application.

The list of available software is listed as below.

Operating Systems

- Linux Red Hat Enterprise - Window Server
- Oracle Enterprise Linuz - SUSE Linux Enterprise
- Amazon Linux AMI - Ubuntu Linux
- Fedora - Debian Linux

Database Software

- IBM DB2 - IBM Informix Dynamic Server
- Microsoft SQL Server Standard - MySQL Enterprise
- Oracle Database 11g

Resource Management Software

- StackIQ Rocks+ - Hadoop

- Condor

Web Hosting

- Apache HTTP - IIS/Asp.Net

- IBM Lotus Web Content

Management

- IBM WebSphere Portal Server

Application Development Environments

- IBM Smash - JBoss Enterprise Application Platform

- Ruby on Rails

21

Application Servers

- IBM Websphere Application Server - Java Application Server

- Oracle WebLogic Server

Video Encoding and Streaming

- Window Media Server - Wowza Media Server Pro

Pricing

As a cloud service, the service charge for Amazon EC2 is calculated by

actual usage hour and the minimum usage is not required. Moreover, for recently,

Amazon has allow the instance reservation from 1 year up to 3 years, with the service

reservation the developer can ensure that the instance will be always available when is

needed (suitable for real business usage implementation). And the service prices on

each Region are different , as mentioned, the price on the list will show for the Asia

Pacific Regions only (Singapore).

 Linux/Unix Windows
Micro Instances $0.02 per hour $0.03 per hour
Standard Instances small
 large
 extra

$0.085 per hour
$0.34 per hour
$0.68 per hour

$0.12 per hour
$0.48 per hour
$0.96 per hour

High-Memory Instances extra large
 double extra
large
 quadruple
extra large

$0.05 per hour
$1.00 per hour
$2.00 per hour

$0.62 per hour
$1.24 per hour
$2.48 per hour

High-CPU Instances medium
 extra large

$0.17 per hour
$0.68 per hour

$0.29 per hour
$1.16 per hour

Table1. Pricing table for EC2 instances.

2.4 Auto Scaling

Auto Scaling is the feature that allows the system to scale-up and scale-

down its capacity according to the pre defined condition. With this feature the

22

developer can ensure that their system will not crash or corrupt by the increasing

amount of incoming traffic with the cost minimization.

Features

• Automatically increase the number of instance in the system pool

when demand is increase.

• Automatically terminate instance when the demand is decreased

• Scaling policy and trigger action are based on Amazon

CloudWatch metrics and alarm.

• Auto Scaling feature can be used with all type of Amazon Elastic

Compute Cloud service(EC2) instances.

• No additional charge for enabling of Auto Scaling feature

2.5 Elastic Load Balancing

 Elastic Load Balancing is the service that will automatically distributes

incoming traffic across EC2 instances. With this service, Application fault tolerance is

greater. Moreover, Elastic Load Balancing also able to detects unhealthy instances and

redirect the traffic to other instance instead. For the world-wide application that may

located servers in many regions, Elastic Load Balancing also able to distribute the traffic

across those servers.

Features

• Elastic Load Balancing manages all the incoming traffic of system instances

which can be cover in one location or multiple location.

• Additional security and network option can be create when implement with

Amazon Virtual Private Cloud (VPC)

• Elastic Load Balancing can detect the health of Amazon EC2 instances. When it

detects unhealthy load-balanced Amazon EC2 instances, it no longer routes

23

traffic to those Amazon EC2 instances and spreads the load across the

remaining healthy Amazon EC2 instances.

• When the unhealthy instance is detected in the system, Elastic Load Balancing

will reroute the traffic to others healthy instances.

• Elastic Load Balancing also play role in managing of user session on each EC2

instances.

• Elastic Load Balancing supports both IPV4 and IPV6.

• Can also be monitoring by Cloudwatch metrics.

2.6 Cloudwatch

 Amazon Cloudwatch provides customer ability to easily monitoring the

entire running AWS instance for both real time and statistic monitoring. This feature allow

system administrator can keep track of their system instance by monitor each instance

standard metrics variable such as instance memory usage, system overall memory

usage, CPU utilization, data transaction volume. Moreover the user can create custom

metrics for specific purpose monitoring such as number of client connected to the

system etc. With Cloudwatch the all the activity can be track and monitor for abnormal

event and keep the system in healthy. The example for the

As mentioned, result retrieve from Cloudwatch is not only in the form of

raw metric number but also can be represent in form of statistical and graph in order to

track back or forecasting. Moreover system administrator can create an alarm to help in

monitoring, such as an alarm is on when the CPU usage is more than 80 percents.

2.7 AWS SDK

AWS SDK for provide the language library (.NET,PHP) which allow

developer to build up PHP-based application that can work on Amazon Web service

platform, such as, show information of the system instance, create or terminate instance,

create/update/delete the database and many more. With the current provided library,

24

the developer can create the application which can interact with almost every type of

Amazon Web Service instance.

2.8 Queuing Theory

Queuing theory or Waiting line is mainly concentrate in simulating the

customer queuing in order to clarify the total cost of queuing in term of business

management. The total cost can be divided into 2 categories.

• Service cost – is the cost which related in establishing of service, support

such as staff salary, equipment cost.

• Cost of waiting – is the cost which related to the loss the cause by customer

waiting such as dissatisfaction.

To be able to calculate the cost, some parameters must be known, such

as amount of people in queue, time spend on waiting.

Figure 4. Queuing model components.

As describe in Figure x, there are five components,

1) Calling population – the total possible customer which can be divided into 2 cases

• Finite – in this case, the size of the population is not too big, so that the

number of people currently in queue is affect to the size of the queue in the

future.

• Infinite – the size of the population is big enough, so that the number of

25

people currently in queue is not affect to the size of the queue in the future.

2) Customer arrival – incoming customer can be divided into 2 categories

• Arrival rate – number of incoming customer in one specific time period.

• Interarrival time – time spend on each customer (waiting time for next

customer).

3) Waiting line – number of people currently in queue.

4) Processing order – the queue management technique, usually will be First-in-First-out

(FIFO), but sometimes can be FIFO with priority queue.

5) Service – property of the service,

• Number of channel -> single channel, multi channels

• Number of step -> single step, multiple steps

26

CHAPTER III
Modeling and Tools

Modeling and tools

In this chapter we will describe in more details about the solution model

and all of the procedure required in setup and configuration the system. As shown

below is the system model which we introduce for solving the problem.

Figure 5. System model.

Mainly, the system combines of Amazon RDS which acts as system

database, an EC2 instance as a main web server of the system plus with the Auto

Scaling function which will control the number of instances in the group, which designs

whether to add more web server instance (a copy of the predefined instance image) into

the system to share the incoming traffic or to remove some instances from the group for

saving the cost. The Load balancing will distribute and manage the incoming traffic from

the client side equally among the instances on the system at that time.

27

In able to use the cloud service from Amazon, first we have to sign up for

an EC2 user account, and then the system setup procedures are preceded as following

steps

1) Launch EC2 instance and perform the configuration

2) Launch RDS and create the database

3) Launch an Auto scaling and perform the configuration.

4) Embedded PHP script in EC2 instance

28

3.1 Launching EC2 instance and perform the configuration

3.1.1 Launching EC2 instance

a) Log in to the account > EC2 > and click launch Instance

Figure 6. The EC2 user interface for launch instance.

b) Once the launch instance wizard is appear, the first page will let us to select

the desired Operating system. In this system we choose “Basic 32-bits Amazon

Linux”

Figure 7. Select the OS for the new instance.

29

c) This page will let us to specify the instance details

 - number of instance to create (use “1”)

 - Instance type (use “Micro (t1.micro, 613 MB)

 - Availability Zone (us-east-1a)

Figure 8. Specify instance detail.

d) Then the wizard will let us to identify the key pair to use with the instance (the

key pair is the tool which allow us to perform the securely connect to the

instance after it launches). If we are already have an existing key-pair, just

select “choose from your existing Key pairs, but in this case we are just to

create our first instance,

- select “ Create a new Key pair” and type in the name of the key pair

- click “Create and Download your new Key Pair” (You're prompted to save the

private key from the key pair to your system.)

- Save the private key in a safe location in your computer, because it will be

used later to connect to the instance.

e) After the new Key pair is created, the page will refresh again and in this time

select “Choose from your existing Key pairs” and select your created key pair

in the drop down box.

30

Fi

Figure 9. Select the key pair using to connect to the created instance.

f) Next the wizard will display the page for configure the firewall, where we will be

asked to create the security group. A security group defines firewall rules for

the instances. These rules specify which incoming network traffic should be

delivered to our instance (e.g., accept web traffic on port 80). All other traffic is

ignored. Therefore we can modify rules for a group at any time. The new rules

are automatically enforced for all running instances.

In this case, we will select “Create a new Security Group” and specify the

name and the short description for the Security group.

Group name : quick-start-1

Group Description : quick-start-1

With the Security group, we can allow any traffic to come to our instance

by open the port and also able to select the source of the traffic that we allow. Likewise,

for our instance, we allow 4 kind of traffic

 - HTTP (port 80) for web service traffic

 - HTTPS (port 443) for web service traffic

 - MYSQL (port 3306) for MySQL database traffic

 - SSH (port 22) for SSH connection (In real production, the source IP address

 should be specified in order to retain security).

31

Figure 10. Configure instance firewall policy.

g) After finish with entire launching configuration, the last page of the wizard will

display the Review of you our configuration, if there is nothing to change, just

click “Launch” and within minutes, the instance is ready to use.

Figure 11. The detail summary of an instance.

32

Figure 12. New launched instance is ready.

3.1.2 Connect to the instance

Now we have our instance, in order to connect to the instance by remote

access, using the free software name “Putty” is the easiest solution, and also provide

comfortable. The following section will provide briefly description on how to remote

connect to the instance via the SSH tunnel (refer that Putty is already installed on the

PC).

With using Putty, the key pair that we got from creating an instance in

previous section is incompatible. Anyway, with the Putty software package there is a tool

named “PuTTYgen” which can be used to convert the Amazon giving key pair to the

require PuTTY key format. The steps are described as following.

a) Start PuTTYgen (Program > PuTTY > PuTTygen)

b) Click Load and browse to the Key location (for example keyname.pem)

c) Select the .pem key file and click Open, then PuTTYgen will display the

following message, just click OK

33

Figure 13. Foreign key import successful.

d) Another dialog will appear to confirm the new Key generating, click YES, the

new key format will be generate (keyname.ppk) which is ready to use with

PuTTY.

Figure 14. Security key using for authentication.

3.1.3 Configure PuTTY

a) Start PuTTY, the PuTTY interface can be seen as Figure 15, on the left side is a

Category menu and the detail for each menu will be displayed on the right

side.

Figure 15. Interface of Putty.

34

b) Select Session and fill in the “Host Name” using the EC2 instance ID which

can be found in the EC2 instance information (Figure 15), For the “port”, we

use port 22 which is a standard port for SSH connection.

c) In the Menu Category select Connection > SSH > Auth then in the “Private

key file for authentication” input area, browse to navigate to the

authentication key location which we just generate using PuTTYgen in the

previous section (keyname.ppk)

d) Click ‘Open’, then PuTTY will connect to the instance and prompt for log in

name which is “ec2-user” (ec2-user is the default user that is granted when

the instance is launched along with root user).

Figure 16. Connect to instance using Putty successful.

3.1.4 Configure the EC2 instance

Once we connect to the instance, as see in the Figure 16, that now we

are in the instance console. With the starting condition of an instance, we need to setting

up a web server on an instance. The step are describe as following

a) Update all the current installed packages on the instance

$ sudo yum –y update

35

b) Install all the software we need in order to initiate the linux web server, for current

instance condition we need to install Apache, PHP and the PHP extension a

c) After finish the installation, we need to start the service and configure the

service, so that they will automatically start up on instance boot time.

d) After the service is started, we can check for the service condition with

command

If the service is running it will show the result like in Figure 17, now we

are ready to create the web service on this web server instance already.

Figure 17. Start httpd service on instance.

$ sudo yum ‐y install httpd php php‐cli php‐gd php‐intl php‐mbstring php‐
mysql php‐pdo php‐soap php‐xml php‐xmlrpc php‐pspell

$ sudo /sbin/chkconfig httpd on
$ sudo /sbin/service httpd start

$ sudo service httpd status

36

3.2 Launch RDS and configuration

3.2.1 Launch RDS instance

After finish with setting up the web server instance, this chapter will show

the step in establishing of the Relational Database Service(RDS)

a) First at the service management console, go to RDS > launch DB Instance to

start the launch RDS DB instance wizard.

Figure 18. The interface for create new RDS instance.

b) Select MySQL as an database engine, then input the configuration details as in

Figure 19.

Figure 19. Select the database engine for RDS.

37

Figure 20. Specify RDS detail.

Important parameter

Engine : mysql – Use MySql database

 DB Instance Class : db.m1.small – Depend on the size of the web application

 Multi-AZ Deployment : No – This feature allow database that locate in multiple

 zone to automatically replicating database update.

 Auto Minor Version Upgrade : Yes – Enable the Database instance to

 automatically receive minor engine upgrades when available.

38

Figure 21. Specify some additional configuration.

Figure 22. Summary page before launching an instance.

39

3.2.2 Create Database

After the database instance was created, next we will create the data

table. First we need to connect to the EC2 instance via SSH then use the LINUX

command

Then we will be at the RDS commandline console, perform the step as following

Now we will create two tables in the database which will use to keep

track of the number of current online user on the web application and another one is for

a number of web server instances at current time.

Table : User

- Count (int)

Table : Server

- Handle (int)

Table 2. Database diagram for application.

3.3 Enable and configure an Auto Scaling

Configuration of an Auto Scaling is need to be performed through the

command line interface (window command prompt) in the local machine. Therefore, we

need to set up the environment in our local computer first. The steps for setting up the

command line are described as following.

$ mysql – u username –ppassword –host=RDS_AMI_ID

mysql> show databases;
mysql> use database_name;
mysql> show tables;

40

3.3.1 Enable Auto Scaling

a) Download the AWS command-line tools at

http://aws.amazon.com/developertools/2535

b) Save and unpack the archive file in local PC

c) In order to install the package, at least Java v1.5 or newer is required, to check

the current version of Java, open the command prompt and enter

If the java version is not v1.5 or newer, go to http://www.java.com/en/download/index.jsp.

to get the newest version and install.

d) Set the JAVA_HOME environment variable to point to Java folder.

e) Set the AWS_AUTO_SCALING_HONE environment variable to point to AWS tool

folder.

f) Before we can use Auto Scaling, we must provide the AWS credentials to the

command-line tools, therefore we need to use the AWS access keys.

- Go to http://aws.amazon.com/security-credentials

- Scroll down to ‘Access Credentials’ to get the ‘Access Key ID’ and

Secret Access Key.

C:\> java ‐version

C:\> set JAVA_HOME = <path>
C:\> set PATH=%PATH%;%AWS_AUTO_SCALING_HOME%\bin
C:\> set AWS_AUTO_SCALING_HOME=<path>
C:\> set PATH=&PATH%;%AWS_AUTO_SCALING_HOME%\bin

41

Figure 23. Security credential information.

- Add the ‘Access key ID’ and ‘Secret access key to the file named

credential-file-path.template in the AWS tool folder at our local PC.

g) Set the AWS_CREDENTIAL_FILE environment variable to the fully qualified path

of the credential file

h) After perform all the steps, in order to check the completeness, enter the

command

The command prompt screen will display all the commands of the Auto Scaling

tool, the real environment set up is show as below.

C:\> set AWS_CREDENTIAL_FILE=<path>

C:\> as‐cmd

42

Figure 24. Listing all the Auto Scaling command after finish an installation.

3.3.2 Configure an Auto Scaling

After finish with the command-line tool setup, next we will configure the

Auto scaling. The step can be divided mainly into four parts.

1) Create launch configuration

2) Create Auto Scaling group

3) Create Auto Scaling policy

a) Create launch configuration

The launch configuration specifies the type of Amazon EC2 instance that

Auto Scaling creates for the system. To create a launch configuration with as-create-

launch-config, we must specify an Amazon Machine Image (AMI) ID and an Amazon

EC2 instance type. As following we create launch config “MyLC” using the following

instance.

43

b) Create Auto Scaling group

After we have defined the launch configuration, we are ready to create

an Auto Scaling group. To create an Auto Scaling group with as-create-auto-scaling-

group, we must specify a group name, a launch configuration, one or more Availability

Zones, a minimum group size, and a maximum group size.

In our system we name an Auto Scaling group "DewASGroup" and use

the launch configuration you created previously. The ‘Availability Zones’ determines the

physical location of our Auto Scaling instances. For this example, specify a single zone:

us-east-1a. Set the minimum size to 0 and maximum size to 20.

To check the completeness enter the following command

Figure 25. Command for create Auto scaling policy.

c) Create Auto Scaling policy

A scaling policy command Auto Scaling on how to change the size of the

application fleet in response to the desired variable (in this case is the number of

C:\> as‐create‐launch‐config MyLC ‐‐image‐id ami‐8c1fece5 ‐‐instance‐type

C:\> as‐create‐auto‐scaling‐group DewASGroup ‐‐launch‐configuration MyLC
‐‐availability‐zones us‐east‐1a ‐‐min‐size 0 ‐‐max‐size 20

C:\> as‐describe‐auto‐scaling‐groups ‐‐headers

Instance AMI ID : ami-8c1fece5
Instance Type : t1.micro

44

concurrent user), enabling us to specify not only whether we want to scale the group up

or down, but also how much. We can express the desired change in capacity as an

absolute number, an increment, or as a percentage of the current group size. When a

policy is executed, Auto Scaling uses both the current group capacity and the desired

change specified in the policy to compute a new desired capacity. Auto Scaling then

updates the desired capacity. Moreover each Auto Scaling group can have up to 25

policies.

In our Auto Scaling group, we want to have 10 scaling policies inside the

group. 5 policies are using for adding more instances to the group and the other 5 are

using for terminate instances from the group. And the properties are as following

Scale-up1 = add 1 instance to group Scale-down1 = terminate 1 instance from group

Scale-up2 = add 2 instances to group Scale-down2 = terminate 2 instances from group

Scale-up3 = add 3 instances to group Scale-down3 = terminate 3 instances from group

Scale-up4 = add 4 instances to group Scale-down4 = terminate 4 instances from group

Scale-up5 = add 5 instances to group Scale-down5 = terminate 5 instances from group

 Here is an example for creating of Scale-up1

Figure D2:Create Scaling policy for “scale up”

 Figure D3 : Create Scaling policy for “scale down”

C:\> as‐put‐scaling‐policy Scalingpolicy1 ‐‐g DewASGroup
“‐‐adjustment=1” –type ChangeInCapacity –cooldown 120 –name scale‐up2

45

After finish with creating of all the Scaling policies, we can check the

configuration using the describe-policies command.

Figure 26. Listing all of the scaling policy of the AutoScaling group.

3.4 Create PHP script on an EC2instance

 PHP script is response for communicate with the database(RDS) periodically to

check for the number of current system user. If the number of current user is more than

current system capacity, the PHP script will call the scaling policy to add more instances

to the application, but if the number of current user is less than the current capability,

some instance will be terminated.

 The PHP script mainly can be divided into 3 main parts which are

1) Authentication

2) RDS connection

3) Auto scaling trigger

3.4.1 For Authentication , inside the PHP script has to define ‘AWS_KEY’,

‘AWS_SECRET_KEY’, ‘AWS_ACCOUNT_ID’ and ‘AWS_CANONICAL_ID’ which can be

define in the script as following

C:\> as‐describe‐policies –g DewASGroup

define('AWS_KEY','AKIAIW6ANSYGLAAF6KVA');
define('AWS_SECRET_KEY','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');
define('AWS_ACCOUNT_ID','960159034735');
define('AWS_CANONICAL_ID','7ecdb900c35fa0db195b0c3540b2a8b9e4855ba5f1265295d30a82185f5da9
7d');

46

3.4.2 For RDS connection, we can create the connection to our application database

instance using basic SQL connection command

The important parameters are

UserCount – describe the number of current system online user at the time

CHandle – describe the number of instances which are operating on the system at the

time

3.4.3 Auto Scaling trigger, by comparing between UserCount and CHandle, the script

can desire whether to add more instance or terminate some instance from the group.

$con = mysql_connect("db1.cxzpsqxsoz4f.us‐
east1.rds.amazonaws.com","dew","852456");
 if (!$con)
 {
 die('Could not connect: ' . mysql_error());
 }

// Get from DB
 mysql_select_db("test2", $con);

 $GetUserT1 = mysql_query("SELECT * FROM User");
 $GetUserT2 = mysql_fetch_assoc($GetUserT1);
 $UserCount = $GetUserT2['Count'];

 $GetServerT1 = mysql_query("SELECT * FROM Server");
 $GetServerT2 = mysql_fetch_assoc($GetServerT1);
 $CHandle = $GetServerT2['Handle'];

if($UserCount >= $CHandle) //need to add instance

elseif($CHandle > $UserCount) //need to terminate instance

47

After comparing the different between two variables will be store to $temp

variable, then $temp will be used for choosing to fire the rule. Triggering of rules is

performed through the if-else condition as in following example.

In the example code, describe the case when the number of user more

than current application capacity, the script will call for execute Auto Scaling policy

“scale-up5” which will add 5 more server instance into the group. In the last line, while

defines that one instance serves 50 users, after adding 5 server into the group, the

script will call for add number of current users for 250 users (for full source code,

please see the Appendix).

After creating the PHP script, In order to make it able to be run-able, we

need to set the LINUX crontab function to run the script periodically, in this application is

every 5 minutes.

Figure 27. Configure the Linux crontab to run the script

3.5 System working process

For better understanding of the architecture and how it work, Figure 28 to

Figure 31 illustrate of how the system work in basic. In this example, suppose that an

instance can handle up to 4 users for maximum. Fig. 5 describes the starting condition

 if ($temp >= 250)
 {
 $CreateMore = $as‐>execute_policy('scale‐up5', array(
 'AutoScalingGroupName' => 'DewASGroup',
 'HonorCooldown' => 'false'
));
 mysql_query("UPDATE Server SET Handle = Handle + 250");
 }

48

which there is only one server instance that can handle 4 concurrent users. In Fig. 6 the

number of concurrent user is increase to 8, then one more instance is automatically

added into the group (by calling the an Auto Scaling policy). In Fig. 7, the concurrent

user increase to 14, then two more instances are added. In Fig.8, the concurrent user

decrease down to 10, so one instance will be terminated and there will be only 2

instances left.

Figure 28. One instance to serve 4 users.

Figure 29. Two instances to serve 8 users.

Elastic Load Balancing

Elastic Load Balancing

49

Figure 30. Four instances to serve 14 users.

Figure 31. Two instances to serve 7 users.

Elastic Load Balancing

Elastic Load Balancing

50

CHAPTER IV
Experimental Results

In this chapter we will perform the experiment which will be divided into

two parts. First, the functional testing (the proof of concept test) will demonstrate how

the system really works by modifying the number of parameters in the database (RDS) in

order to track the sizing behavior of the system to verify the correctness and

completeness of the system configuration and to prove the idea of auto scaling using

group policy with the PHP script. Second, the experimental result will be presented in

plots to show the cost estimation and total project cost compared to the old-fashion web

application practice.

4.1. Functional testing

a) In this experimental, the system parameter is set up as following.

Auto Scaling group

Max size 20 instances

Min size 0 instance

Cool down time 0 second

Parameters description

• Max size – the maximum number of instance that Auto Scaling can handle.

• Min size – the minimum number of instance that Auto Scaling must handle.

• Cool down time – the period that Auto scaling have to wait before able to take

another action

51

b) Crontab frequency = 5 minutes

Remark: One instance can support 50 users, Experimental period = 1 hour.

Figure 32. User distribution over 1 hour

Figure 32 represents the number of users on each second of an

experimental period. During the experimental, the parameter value that is used to

represent the number of current incoming users in the database will be update at every

minute.

Figure 33. Demand and supply of EC2 instances over time.

Figure 33 describes the result of the experiments. The dash line

represents the number of instances that is needed at that period of time which is based

on the number of the incoming users at that time. The solid line represents the actual

52

number of instances operating at that time. As in the graph, we can see that once the

demand is increased the system also react to the need of the incoming users by adding

more servers into the system with the delay around 5 minutes. Also at the 20th minute,

the system show that this technique can support even the rapidly increasing of incoming

user by adding four more instances in a row in order to support the number of users at

that period. And from 30th minute to 60th minute, the graph shows how the system reacts

when the number of users is decreasing. From this experiment, we can conclude that

our solution is capable of handling with increasing and decreasing of the incoming

users.

4.2. Cost compilation

 This part shows the experimental result of total project cost compilation between

our solution and current practice method (static number of web server instance). In this

experiment we introduce four different kinds of user distribution which are Best, Bad,

Worse and Worst as depicted in Figure 34. These user distributions represent the

possibility of incoming users of a web project that operates over a predefined period of

time. In this experiment, we set the operating period at 14 days and the total number of

incoming users is set at 500,000.

This experimental result is simulated by the simulator, therefore the

parameters meaning are need to be clarified in order to understand the experimental

result.

• User Mean = 10 min, , User SD = 1. A user spends 10 minutes in average to

accomplish using web application. The standard deviation is 1 minute.

• User per Instance = 50. In our experiment we define that there must be one

instance per 50 active users. In practice, this parameter can be determined

easily.

53

• Auto Scaling = 0 min. This parameter is the “cool-down time” suggested by

Amazon. After Auto Scaling takes an action, it will wait for a cool-down time

before being able to take another action. This parameter prevents too fast

response. If it is zero, Auto Scaling checks the conditions, and takes action

every second.

• Crontab = 5 min. Linux Crontab round time that is set up to run a PHP script

for every 5minute.

• Boot Mean = 5 min, Boot SD = 0.5. Boot time for duplicating a new instance

is 5 min in average. The standard deviation is 0.5 min or 30 sec. The billing

starts immediately after booting. The new instance is ready to use in about 5

minutes later.

• Termination Mean = 8 min, Termination SD = 0.8. An average termination

time of an instance is 8 min. The standard deviation is 0.8 min or 48 sec.

• Rental Cost = 0.085 US dollar. The cost of renting a “micro” instance per

hour is 0.085 US dollar (in US East and Linux usage). It is important to note

that pricing is per instance-hour consumed for each instance, from the

time an instance is launched until it is terminated. Each partial instance-

hour consumed will be billed as a full hour

• Daily user distribution. As shown in Fig. 9, there are four kinds of user

distributions. Each of them holds 500,000 users

54

Figure 34. Four kinds of user distribution.

The total estimated project cost for those mentioned user distributions by

using the traditional method is shown as following

Distribution Possible largest user per day Total estimate cost ($)

Best ~ 35,718 ~ 142.80

Bad ~ 167,242 ~ 685.44

Worse ~ 250,015 ~ 999.6

Worst ~ 300,000 ~ 1199.52

Table 3. The cost estimation for conventional method.

As in the table 3, in order to maintain the system effectiveness, the total

cost of the project is affected directly by the user distribution, moreover, the less random

level of user distribution (most users likely to use the service at the same time) the more

total project cost is.

In contrast to our solution, with the same set of user distributions, the total

project cost estimation is extremely reduced except for the “Best case” (ideal user

55

distribution). And from the result, we can see that the more number of “possible largest

user per day” is the more cost saving our solution provides, compare to the traditional

approach.

Distribution Possible largest

user per day

Total estimate

cost for Our

method($)

Total estimate cost

for Conventional

method($)

Difference

($)

Best ~ 35,718 ~ 191.45 ~ 142.80 +48.65
Bad ~ 167,242 ~ 179.96 ~ 685.44 - 505.48
Worse ~ 250,015 ~ 180.84 ~ 999.6 -818.76
Worst ~ 300,000 ~ 179.53 ~ 1199.52 -1019.99

Table 4. Conventional method compare with our method (Crontab = 5, AutoScaling=0).

Moreover, with our solution more cost saving can be achieved by tuning

of the system variable such as the crontab round time and the auto scaling cool-down

time. But tuning the crontab round time and leave the auto scaling cool-down time to

zero is more preferred since it is easier to be changed which is more comfortable when

performing in the real presentation.

Figure 35. Crontab = 5 mins, AutoScaling 0 – 10 mins

56

In Figure 35, represent an example on tuning the parameter, the

decreasing in project cost estimation is shown with regarding to the tuning of the Auto

Scaling cooldown time from 0 to 10, from the graph, the cost drops only when cool-

down time equal or more than 5 minutes, this is because any changes during 5 minutes

are not observed (crontab round time = 5 minutes). Therefore it is useless to set the

cool-down time to be less than the round time. Moreover in Figure 36, the cost

estimation for tuning the crontab round time is shown. In this experimental, the Auto

scaling cool-down time is set to 0, then the value of the crontab round time can be any

number that more than 0. As a result, tuning the crontab value from 1 to 10 shows that

the cost is decreased as the crontab round time is increased.

Figure 36. Crontab = 1 – 10 mins, AutoScaling = 0 mins.

57

CHAPTER V
Discussion

In this chapter we will discuss on two topics. First will discussion on our

problem solution including the result and possible further improvement. Second, we

discuss on possible way of measuring the quality of service.

5.1. Solution

Originally, our solution is designed to used Amazon Cloudwatch as an

main component to play role in measure the amount of an incoming traffic but after

some development and research, comparing between using of Amazon Cloudwatch

and RDS + PHP script, we see that using the PHP script is a better solution since it is

more comfortable, free, agile and also can be further implement with more advanced or

complicated techniques, for example, with using a PHP script, we can defined the round

time to any number but with Amazon Cloudwatch, the round time is fixed to only 1 and 5,

also additional fees is charged when using round time as “:1” (detailed monitoring).

Therefore, our final result does not require using of the Cloudwatch as a main system

component.

For further development of this solution, the algorithm for trigger the

event is still wide-open for development, since this part rely on the coding technique of

the PHP script. For current, the event trigger measures the amount of user at a certain

point of time (similar to pick up the sample every 5 minutes). Development on this

portion can be done with many different ideas such as: finding the average between

time period and call for new instance with respect to the average value, or even perform

the prediction for an amount of incoming user in the next time period with respect to the

58

passed user amount. As mentioned, implementation of PHP script brings up wide open

for better solution.

5.2. Quality of service

As seen from the experimental, although we can tune some parameters to
cut the cost, but in realistic, there is no such thing as a free lunch. The quality of service
might be deteriorated to compensate the cost reduction. We define two quantities for
measuring the badness of service. First, “overload time” is defined as the sum of time
period that EC2 instance has been overloaded (an instance is serving smaller amount of
user than its capacity). Second, “overload users” is defined as a set of numbers of
excessive users per an instance in every second of the overload time. In our simulator,
the time period scale is changed into seconds. Hence, the number of overload users is
reported as min, max, and average. The quality of service is depicted in Table 5, 6, 7 and
Table 8. It is seen that the cost drops with increasing of crontab round time, but the
quality of service obviously deteriorates (as in Figure 37). The increasing of overload
users describes the degrading of the service quality. Users have to wait longer for a
response. Finally, the system becomes unresponsive.

Once the system has degraded, users will stay on the system longer due
to large response time. If an instance dies, all users on the instance have to restart the
application. However, our simulator does not take the effect of system degradation into
account. Therefore, the overload users may produce an additional cost as mentioned.

59

Crontab
round time

Best

Cost
Overload

time

Overload user
(per intance per

second)
Hrs Min Avg Max

10 178.93 52.59 0.17 2.23 188.80
20 169.24 67.65 0.17 2.96 210.70
30 165.84 73.66 0.17 3.39 219.20
40 162.78 75.78 0.17 3.84 221.80
50 160.40 76.57 0.17 4.31 228.30
60 161.25 76.95 0.17 4.69 234.80

3 hours 154.39 84.89 0.17 9.16 240.60
6 hours 149.16 84.27 0.17 16.26 241.60

12 hours 137.74 88.78 0.17 29.42 252.10
24 hours 121.32 97.29 0.17 52.70 249.20
48 hours 97.32 120.66 0.17 83.07 255.70

Table 5. Result on round time tuning for “Best” user distribution.

Crontab
round time

Bad

Cost
Overload

time

Overload user
(per intance per

second)
Hrs Min Avg Max

10 172.41 30.53 0.04 2.42 29.29
20 166.94 37.81 0.04 3.29 37.28
30 165.40 41.36 0.04 3.90 34.75
40 163.27 42.70 0.04 4.19 37.25
50 162.32 43.00 0.04 3.63 34.05
60 147.98 44.60 0.04 4.72 36.34

3 hours 135.29 60.53 0.04 8.57 42.30
6 hours 126.71 73.39 0.04 11.17 43.75

12 hours 119.87 107.79 0.04 15.23 49.25
24 hours 106.10 166.27 0.07 17.33 44.16
48 hours 95.10 183.63 0.12 33.46 86.34

Table 6. Result on round time tuning for “Bad” user distribution.

60

Crontab
round time

Worse

Cost
Overload

time

Overload user
(per intance per

second)
Hrs Min Avg Max

10 174.64 22.96 0.03 2.93 49.91
20 170.62 29.28 0.03 4.43 62.46
30 169.41 32.00 0.03 5.39 62.60
40 167.86 31.27 0.03 6.26 61.54
50 167.10 31.73 0.03 5.37 63.94
60 141.61 32.65 0.03 8.14 70.89

3 hours 129.29 46.28 0.03 14.45 70.13
6 hours 123.07 57.35 0.03 20.66 71.41

12 hours 112.51 84.52 0.03 25.42 66.49
24 hours 94.03 132.06 0.09 36.02 78.46
48 hours 73.54 136.32 0.16 64.91 152.64

Table 7. Result on round time tuning for “Worse” user distribution.

Crontab
round time

Worst

Cost
Overload

time

Overload user
(per intance per

second)
Hrs Min Avg Max

10 174.65 19.39 0.02 2.97 75.64
20 171.36 23.39 0.02 4.75 80.38
30 170.61 25.11 0.02 6.77 90.74
40 169.24 25.47 0.02 7.87 87.57
50 168.91 24.49 0.02 6.10 93.26
60 138.04 27.65 0.02 10.88 94.35

3 hours 123.62 36.16 0.02 21.41 92.78
6 hours 115.14 48.47 0.02 33.67 105.79

12 hours 104.73 67.73 0.02 44.78 101.47
24 hours 83.78 111.04 0.08 50.98 97.11
48 hours 59.89 111.20 0.20 111.69 289.58

Table 8. Result on round time tuning for “Worst” user distribution.

61

Figure 37. Overload time value with respect to Crontab time round time tuning.

62

5.3. The Optimal parameters

Lastly, everyone wants to know the optimal parameters, but this is a multi-
objective optimization. There are two objectives, 1) minimizing cost and 2) maximizing
quality of service. The two objects seem to be contradictory to each other. In our opinion,
a wide range of parameters is applicable. For instance, as seen from Table 5, 6, 7 and
Table 8, choosing the Crontab round time between 10 and 60 min is fine for all user
distribution. But setting the Crontab round time at 10 hours is unacceptable because in
the worst case the system is overloaded by 21.97 / 50 = 43.94% in average for 60.71
hours. A tradeoff between the cost and the quality of service is up to your decision.

63

CHAPTER VI
Conclusion

With this research we have represent the new solution on running the web
application project which bring better in both efficiency and effectiveness. For efficiency,
compare to the traditional method (using the static number of web server instance), our
solution provide the 24/7 of availability to the system user. Mainly discuss in this thesis is
the issue about the nature of the system user for the applicant project that most of the
user will try to login and submit the application around last 2 -3 days before closing
date(deadline), such as an entrance examination or contest. Which the opening period
for submit the application is fixed. Finally with implementation of PHP script, further
development is wide-opened for any developer and any algorithm.

 Moreover, we also show how to estimate the cost of running a web
application on Amazon EC2. Our simulation shows that the cost is subjected to user
distributions. The exponential distributions better utilize EC2 instances, hence lowering
the cost compared to that of uniform distribution. The most important parameter that
reduces the cost is tuning of the round time, but the quality of service degrades in the
exchange of cutting cost. A key issue of parameter optimization is to find an acceptable
tradeoff between the cost and the quality of service which will be different on each
project based on the priority level and concerning of the project manager.

64

References

[1] M. Armbrust et al., A view of cloud computing, Communication of the ACM 53

 (4)(2010) : 50-58.

[2] Amazon EC2. Available from: http://aws.amazon.com/ec2.

[3] Case Studies. Available from : http://aws.amazon.com/solutions/case-studies/.

[4] Simple Monthly Calculator. Available from :

 http://calculator.s3.amazonswa.com/calc5.html.

[5] E. Deelman, G. Singh, M. Livny, B. Berriman, J. Good, The cost of doing science

 on the cloud: The Montage example. International Conference for

 High Performance Computing, Networking, Storage and Analysis

 (SC’08) (2008) : 1-12.

[6] A. Spellmann, R. Gimarc, M. Preston, Leveraging the cloud for green IT:

 predicting the energy, cost and performance of cloud computing.

 Computer Measurement Group Conference (CMG’09) (2009).

[7] D. Kondo, B. Javadi, P. Malecot, F. Cappello, D.P. Anderson, Cost-benefit analysis

 of cloud computing versus desktop grids, The 23rd Parallel and

 Distributed Processing Symposium (IPDPS’09) (2009) : 1-12.

65

Biography

Mr. Thitinut Treenorraseth was born in 1986. He obtained his degree in

Computer Science from the Mahidol University, Bangkok, Thailand, in 2007. And in the

same year, he joined Card System and Marketing Co.,Ltd as a system support staff. In

2009, he resigned from Card System and Marketing and join YIC Asia Pacific

Corporation Limited as IT operation staff and still working for this company for present.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	2.1 Objectives
	2.2 Scope of the Work
	2.3 Problem formulation
	2.4 Expected Outcomes

	Chapter II Theoretical Background
	2.1 Cloud Computing
	2.2 Amazon Cloud Service
	2.3 Amazon EC2
	2.4 Auto Scaling
	2.5 Elastic Load Balancing
	2.6 Cloudwatch
	2.7 AWS SDK
	2.8 Queuing theory

	Chapter III Modeling and Tools
	3.1 Launching EC2 instance and perform the configuration
	3.2 Launch RDS and configuration
	3.3 Enable and configuration an Auto Scaling
	3.4 Create PHP script on an EC2 instance
	3.5 System working process

	Chapter IV Experimental Results
	4.1 Functional testing
	4.2 Cost compilation

	Chapter V Discussion
	5.1 Solution
	5.2 Quality of service
	5.3 The optimal parameters

	Chapter VI Conclusion
	References
	Vita

