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CHAPTER I

UNITARY CAYLEY GRAPHS AND THEIR ENERGY

The study of algebraJ s has become an exciting research topic

ults and questions. There

are many articles on assigni “oTd] 10 ;‘,\ as [1], [2] and [20].
Let R be a finite co ) 5@5 ing Wit “',‘ nity 1 # 0. Its unit group of all

invertible elements is de ary Cayley graph of R, Gr =

Cay(R, R*), is the Cayle set is R and edge set is {{a,b} :

a,b € Rand a—b ¢ E t*}—Forsomeotherrec n unitary Cayley graphs,
For two glﬁﬁﬂﬁ ﬂ Wgﬁ ﬁ ﬁw graph with vertex-

set V(G)xV (H), where ( E E G®H if and only if ((u,u’), (v,v")) €

W'F&*ﬂtﬂ ‘ail%M %4 W ’}ﬁh?:ll has a unique

maxunal ideal, and a finite commutative ring is a product of finite local rings

we refer the reader tmlél

(Theorem 8.7 of [3]). Furthermore, if R is a local ring with a unique maximal

ideal M, then R* = R~ M.

Example 1.1.1. (i) It is easy to see that every field is a local ring with maximal

ideal {0}.



(ii) The ring of integers modulo p°, Z,« = Z/p°Z, where p is a prime number

and s > 1, is a local ring with maximal ideal pZ/p°Z.

We have the following results.

Proposition 1.1.2. [2] Let R be a finite commutative ring.

then GR = ®GR

=1

5‘\o\~\'~ 2 15 a complete multipartite
~ \\

b \‘ 1s the graph with the same

vertex set as GG such tha - ces are adjacent if and only if they are

not adjacent in G.

Let G be a grap 'he ergenvalues |7 iectors of G are defined to
= ¥

.,

be the eigenvalues [rgp eigenvectors| © adjacexmr matrix A(G). The set of

all elgenvalueﬁaﬁ Q%Wﬁ W EJ ﬁkﬁﬁnvalues of G and its

complement GYare studied in the next proposmon

Pmp‘iltﬂl@\ﬁlﬂﬁfm&m DANLIAL, oo

G have the same eigenvectors. The eigenvalue associated with n-vector 1,,, whose
entry are all 1, is k for G and n — k —1 for G. If x # 1 is an eigenvector of G

for eigenvalue \ of G, then its associated eigenvalue in G is —1 — .

Akhtar et al. [2] studied and obtained all eigenvalues of the unitary Cayley

graph Gr. We now present these eigenvalues with multiplicities. As is standard,



if A\1,..., \x are eigenvalues of a graph G of respective multiplicities mq, ..., my,
Al M

we use the notation Spec G = to describe the spectrum of G.
my ... My

Proposition 1.1.4. Let R be a finite local ring with maximal ideal M of size m.

Then

| R
SpecGr =

Proof. Since R is a1
is a complete multipartite

view of the regularity of G R;;W% 1.1.3, if Ay, ..., \, are eigenvalues for

-

A(GR), that is notrassociated with 1 then —1T =X — =21 — ), are eigenvalues

; X
for A(GR). However,ﬁ g 1s a dis of |R|/ nﬂliques, each of size m. For

—|R*|—1=m—1, so its eigenvalue
NN,

O

the eigenvect()ﬁf ,its eigefivalue for G

for G is | R*| " Therefore, Spec GE =

ARAINTU U I TIEFTE Y

1.2 ]?Jnergy of Unitary Cayley Graphs

We first recall another fact.

Proposition 1.2.1. Let G and H be graphs. Suppose that \y,..., N\, are the
eigenvalues of G and iy, ..., py, are the eigenvalues of H (repetition is possible).

Then the eigenvalues of G @ H are \jjij, where1 <1 <n and1 <j <m.



Proof. The result follows immediately from the well known fact that A(G® H) is
the tensor product of the matrices A(G) and A(H), and that the eigenvalues of a
tensor product of matrices may be found by taking products of the eigenvalues of

the factors. O

/r/ obtain the following lemma.
ﬁwhere R=Ri X Ryx- xR,

Applying Propositions 1.1

Lemma 1.2.2. Let R

The sum of abs Lﬁmﬁﬁiimw--ﬁm;%”ﬁ h G is called the energy

i )
of G and denoted by E}gy . gy is a graph %ameter stemming from the

is gicept was introduced

)N
> QR TREATRANATNYIF Y = e

hteratuﬁes (see e.g., [12], [13], [17] and [18]). Note that it follows directly from

on molecular

Hiickel molecular orbitdl Troxnnatlon for'the total m-electron energy (for survey
@ g

Proposition 1.2.1 that:
Proposition 1.2.3. Let G and H be graphs. Then

Engy G ® H = Engy G Engy H.



We next proceed to compute the energy of the unitary Cayley graph of a finite

commutative ring R.

Theorem 1.2.4. Let R be a finite commutative ring, where R = Ry X Ry X« -+ X Ry

and R; is a local ring with mazimal ideal M; of size m; for all i € {1,2,...,s}.

‘§!l//

Proof. Recall from P OPOSILIoT 1/1.2 ‘h

Then

““ = ®;_, Gg,. In addition,
Engy Gr, = 2|R]| for alli g % ) ition 1.1.4. Thus, Propo-

sition 1.2.3 implies
Ry | = 2°| R

as desired. 0

Remark. The :.,(?_f.____f ------------------ : 2.3 of Ili¢ [14] on the unitary

Cayley graph Cay( ZEBZX His proof used some resmts on eigenvalues from [19]

and the fact tﬁtﬁ E] ﬁ ?TE‘] ﬁ %ﬂﬂpﬁd’TﬁTS sum for computing

its energy.

AFNAIDIRINRINI AL o

the energy of the complete graph K,,, or equivalently if Engy G > 2n — 2. Hyper-
energetic graphs are important because molecular graphs with maximum energy
pertain to maximality stable m-electron systems. It has been proved in [6] that
for every n > 8, there always exists a hyperenergetic graph of order n. Moreover,

Ili¢ [14] characterized all hyperenergetic unitary Cayley graphs when R = Z,.



Let R be a finite commutative ring, where R = R; X Ry X --- X R, and R;
is a local ring with maximal ideal M; of size m; for all i € {1,2,...,s}. Then

R* = R{ X R} x ---x R}. Since each R; is a local ring, R = R; . M, for all i.

1-—
é( )
Qﬂows that G'g is hyperener-

getic if and only if 25~ & / |\\ to have the inequality
951 > /¥ \\ il /mi (1.2.1)

R R e, (R /mi — 1)

Thus, we have

We conclude criteria t@ defer 1ne§' G Rriis h \ cetic as follows.
.ﬁ-

Theorem 1.2.5. Let R be ..5 m 5

e

and R; is a local ring wzth 104 W

Assume that ’-' —'

Rl .
X FO”ﬂﬁEWWE’m“ﬁW eI
(ii) Forw ’_1 %h erenegﬁzﬂﬁdfo] Jﬁz% Af 3.tnd |Ry|/ms > 4.

(1i1) For s > 3, Gr is hyperenergetic if and only if (|Rs— 2|/ms 9o > 3) or

g,whereR RixXRyx-- xRy

of size my; for all i € {1,2,...,s}.

(|Rs_1]/ms—1 > 3 and |Ry|/ms > 4).

Proof. Suppose that G is hyperenergetic. It follows from inequality (1.2.1) that

s> 2. If s =2, we have

| Ry|/ma | Ro|/mo

22 (Bil/rms — 1) (Raljma — 1)




and so |Ry|/my > 3 and |Ry|/msy > 4.
Next, we assume that s > 3 and |Rs_s|/ms 2 < 3. Then |R;|/m; = 2 for all
ie{l,2,...,s—2}. By (1.2.1), we get

‘R8—1|/R8—1 |RS|/ms
(|Rs—1|/ms—1 — 1) (|Rs|/ms — 1)

Wﬂsl > 3 and |R;|/ms > 4 as be-

fore. Another direction easily Ws‘iro 1 tions and computations using
——

inequality (1.2.1). 7 - O

2>

Hence, we obtain the same ¢

Example 1.2.6. w that |R| = N(2+1)3 =
125, R* 2 Zs . = 2(100) = 200 < 248 =

is not hyperenergetic.

—1)> 2 Ry X Ry. Then |R| =

N(5)° = 625, R* = Zgg % s 5 wwhith make |R*| = 20 x 20 = 400 and

mip = My = ‘VJ::;::_ """"""" - .;';‘ 5. By Theorem 1.2.4

we have Engy@; — 22(400) ='1,600 > 1 24@
e G ITEN S NN

3. LetR—% (L+4)%(244)% Z[i] /(1 + 3 x Z]i] /(2+i)2 & Ry X Ry. Then
A A ﬁ in e U LANREL D RGEL, it mase

_ _ _ 12[]/(+9)° |Z[i]/(2+0)*] _
|RX| —4X20—80, mi = TZE )] =4 and mo = TZE @R 5. Hence,

2(625) — 2 = 2|R| — 2.

1B 8 =2and % = 5. By Theorem 1.2.4 we have Engy G = 2%(80) =

mi

320 < 398 = 2(200) — 2 = 2|R| — 2. Hence, G is not hyperenergetic.

4. Let R = Z[i]/(2 + 3))(5) = Z[i]/(2 + 3i) x Z[i]/(2 + i) x Z[i]/(2 — i)

Ry X Ry x R3. Then |R| = N(2+3i) X N(2+41i) x N(2—1i) = 13x5x 5 = 325,



R* = 71y X 74y X Zy which make |R*| =12 x 4 x 4 = 192 and m; = my =
mg = 1. Hence, % = 13 and |Rz| = |ﬁz| = 5. By Theorem 1.2.4 we have

Engy Gr = 23(192) = 1,536 > 648 = 2(325) — 2 = 2|R| — 2. Thus G is

hyperenergetic.
5. Let R = Z[i]/(1+4)(5) = Zli]/ (2+i)x Z[i] /(2—i) = Ry x Ry X Rs.
1!//
Then|R|: 5)(5—50 RXNZ1XZ4XZ4

R
= mg = 1. Hence, % =2

which make |R*|

_—/ . : anda 7
TANR
and |R2| _ IRs| _ o \‘:-._‘_

ve Engy G = 2°(16) = 128 >

\\\

(. is not hyperenergetic.

m3

98 = 2(50) — 2

> the above example directly.

\‘\

Remark. We can u

FI‘NEJ’JVIEJVIﬁWEJ’lﬂi
ammnmumwmaﬂ



CHAPTER I1

GCD-GRAPHS AND COMPLEMENT OF UNITARY

The ged considered here | gumque up toe;somate We refer the reader to basic

OISR SOp Ry S p————

o ‘WT& It m’f’ﬁdﬂaﬂ’i AL

= Goyey = Cay(D/(c) ) previously studied in the first chapter.
The definition above generalizes ged-graphs or integral circulant graphs (i.e.,
its adjacency matrix is circulant and all eigenvalues are integers) defined over Z
(see [19] and [23]). For further development on integral circulant graphs, see [5],
[15], [16] and [4]. Note that the ged-graphs are circulant if and only if D/(c) is

cyclic under addition. This is the case for D = Z and we can apply the Gauss
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sum to compute the energy [23]. However, D/(c) may not be cyclic in general.

Fortunately, Theorem 1.2.4 can be used to determine the energy of our gcd-graphs.

Theorem 2.1.1. Let c = pi* ... p% be factored as a product of irreducible elements

and assume that D/(c) is finite. For 1 <i <mn, if a; =1, then we have

Engy D *”W)ﬂw/(e/pm

. i —
Proof. Let 1 <i<na that a; Qrst observe that the edge set
' \\\ d =1orp;}

= {{z + (¢), y #W Loy B \ co/p) =1}

)}z, y € D and

ged(z —y,c/pi) = 1}.

Thus, the graph D ({1, p;}) is-isome phi he graph Kp/(p,)| @G p/(c/p,)» Where
[O( \D/(p;)| 18 the |D [(P;)]-complete graph with a ol éach vertex and G'p;(c/p,)
V m— ‘)

denotes the unitary E;yle o1 t] ¢ D c/@). Since A(]O{|D/(pi)|) is the

T

Spec K /()=

RIAINTUNATRYIAY

Hence,
Engy D.({1,p;}) = |D/(p:)| Engy Gpj(ejpy = 2" D/ (pi)l| D/ (c/pi) ]
by Theorem 1.2.4. O

The Cartesian product of two graphs GG and H is the graph GUJH such that

V(GOH) =V(G) x V(H) and any two vertices (u,u’) and (v,v’) are adjacent in



11

GUOH if and only if either v = v and v’ is adjacent with v' in H, or ' = v' and u
is adjacent with v in G. Next, we recall that A(GOH) = A(G)® I + 1 ® A(H)

which implies our next proposition.

Proposition 2.1.2. Let G and H be two graphs. Suppose that A1, ..., \, are the

eigenvalues of G and iy, ..., are y/values of H (repetition is possible).

Then the eigenvalues of the gra -|— pi, where 1 < i < n and

)
" —

= 2°[D/(p1)"(|D/ (p2)"|-

Proof. Recall that ’, ---------------------

TN
[
we have Spec Gpp,) =

Ay hy WNEINT

Spec G (p,) =
Thus,avq E&in rom qu(]p:;s‘ltlon 2N2 that wp /( pl)g(za /(g is given by

1D/ (p)* [+ D/ (p2)*| [D/(p)*[ =1 [D/(p2)* =1 —2

1 1D/ (p2)"] [D/(p0)*[ 1D/ (p)*[|D/(p2)*]

en by Proposition 1.1.4,
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Consequently,

Engy(Gp/nBG /@) = (1D/(p1) [ + [D/(p2)*[) + 1D/ (p2)*[(1D/ (p1)*| = 1)

+ D/ () [(1D/(p2)*| = 1) + 2|D/ (p1) *[|D/ (p2) ]

=2*|D/(
as desired. Ty ' ‘ O
Theorem 2.1.4. Lfﬁ 4 tored as a product of irre-
ducible elements, wher: ! & {k + n}. Assume that D/(c) is

Proof. Let 1 <i<j<k.

P(D((p ) S ey Pl .0 = 5 or )
:{{.’L'+(C),y+ ‘.AE : ; a y,c/j)zland

ﬂusqwaﬂsWHWW%“% e

= {{(z+ (pwwy) =+ (0ipy), (y + (c/piy), v+ ()} g € D and

AN AINIUUBNIABIAL sy

Then D.({pi,p;}) is isomorphic to Gp/c/p,p,) ® G, Where G is the graph whose

vertex set V(G) = D/(pipj) = D/(p1) x D/(p2) by the Chinese remainder theorem,



13
and edge set
E(G) = {{z + (pipj).y + (pipj)} : #,y € D and ged(x —y, ¢) = p; or p;}

={{(x+ ),z + (pj), y+ (pi),y+ (p;))} : ,y € D and

x—y € (pipj) — (pij)}

- '@:x,yeDwd

T &y & (py) and 2 —y ¢ (B}

(v —ye

This implies that t\g/

product Gp/p)HG /).

Hence,
Engy D.({p;,
/e)HGD/(p)))
)(2%1D/(pi) 1D/ (ps)*])
7 X
by Theorem 1.2.4 armPropositlon 2. m O

Remark. Txﬂ %E}Q@%Wtj(w E\jo’q mmon 4 of [14]. Again,

Bl EXEPRbITRrTS

2.2 Complement of Unitary Cayley Graphs

This final section covers the energy of the complement of unitary Cayley graphs.
Recall from Proposition 1.1.3 that the spectrum of Gr consists of eigenvalues
|R|—|R*|=1,=1=As,..., —=1—=X\g, where J; is an eigenvalue of G'r not associated

to 1 for all i € {2,3,...,|R|}.
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Theorem 2.2.1. Let R be a finite ring, where R = Ry X Ry X --- X Ry, and R;

is a local ring with mazimal ideal M; of size m; for alli € {1,2,...,s}. Then
Engy Gp = 2|R| — 2+ (2 = 2)|R*| = [ [ 1Rl /mi + [ [ 2 = [Ril /).

Proof. Let Ay = |[R*|, A2,..., A\jg b cigenvalues of Gp and N = {1,2,...s}.

By Lemma 1.2.2 (i), we firs

Ni#0
i#1

A\ 11 ey 1
Z' + y " R m, +
~a

____-__;_--_* ______ 1R;|/m; 2.2.1
R it jm) 22.)

§
because |R| = |R; ﬁﬂ = |R;| —m; for all i € {1, 2 .

ﬁ%ﬂd&l o BM’iﬁEﬂﬂ‘i

z;él

AT ERTIAYA

= (IR = |R*| = 1) + Y [As + 1] + nullity G,
A0

.,$}. Hence,

where nullity G is the multiplicity of zero as the eigenvalue. Thus, Lemma 1.2.2

(ii) implies that

nullity G = |R| — H( L |> |R| — H|R|/mz

=1



15

Together with Eq. (2.2.1), we finally reach
Engy Gr = (IR| = [R*| = 1) + (2" = DR = 1+ [[@ - |Rl /)

+ (17~ T 1 )

Corollary 2.2.2. L die ¢ ;\\ ne that c = py'py’® ... pg is

factored as a produ

Moreover, we have tﬁ is0

ﬂus?ww%‘wmm
L T ok (Lt 1

Remark The above corollary generalizes Theorem 3.1 of [14].



CHAPTER III

ENERGY OF THE RESTRICTED UNITARY CAYLEY

Let n > 1beap ‘ of Z,, G, == Gy, =
Cay(Zn,ZY), is the yly g ertex set @zn and edge set is {{a, b} :
a,b € Z, and a 6 Z‘< Here Z,ﬂen%s the unit ﬁ ﬁ of Zy,.

Consider t@ exact sequence ngrou

AN mmmumwm 8 o

where 6 : a — a? is the square mapping on ZX with kernel K,, = {a € Z* :
a? = 1} and (Z))* = {a® : a € ZX} is the set of quadratic residues of n. Let
T, = K,(ZX)?. Define the subgraph H, of the unitary Cayley graphs by H, =
Cay(Zy,,T,), in which two vertices are adjacent if and only if their difference

is in 7T},. Observe that H, is undirected. The quadratic unitary Cayley graph
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Cay(Zy, (Z)?) was introduced by Beaudrap [7]. He bounded the diameter of such
graphs and characterized the conditions on n for Cay(Z,, (ZX)?) to be perfect.
However, sometimes his graphs are directed.

In what follows, we study the structure of the graph H,, and obtain its eigen-

at 7, is cyclic, so it has a unique
€ Lips =1} = {1,-1}.

- he next lemma.

\\\.\w

° , : \
where K ps-1 is the p*~'-comp ..a'ru ap loop on each vertez.

.,.,.,..,A.;,.:: nd degree k. G is said to

nd uch that:
“ﬁaﬁﬁl T W -

(i) every two non-adjacent vertices have p cemmon neighbours.

YRIANNIUNRTINET1AE

A graphqof this kind is sometimes said to be a strongly regular graph with param-

Let G = (V,E

be strongly reqular ie

eters (v, k, A, u). We can explicitly determine the eigenvalues of a strongly regular

graph as follows:

Lemma 3.1.2. [10] A strongly regular graph with parameters (v, k, A, 1) has ex-

actly three eigenvalues:
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(i) k whose multiplicity is 1,

(it) $[(A = p) + /(A — p)? + 4(k — p)] whose multiplicity is

%[(v _ 1) _ 2kt (=1)(A—p) ]’ and

v (A=p)2 +4(k—p)

(iti) L[(A—p) — /(A — p)? whose multiplicity is

Let r be a prime Note that this implies that

the unique finite fiel oot of —1. The Paley graph

is the graph whose vert “sof i s an a,b} ca,beF.and a—b €

Yo A -
U

AU NN MmN
QRN IUITTING N Y

Clearly,qx is a homomorphism from F onto {—1,1}. Note that y(a —b) = 1 if

if a =0;

and only if a is adjacent to b. Let a,b € F,.. To count the number of x in F, such
that x(a — x) = x(b — x), we first consider

N xa-ae-a= > 11— > 1

x#a,b TF#a,b T#a,b
x(a—z)=x(b—2) x(a—z)#x(b—2)
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For x # b, x(b—x) = x(b— )7, so the sum on the left can be written as

o) - S (1+i=) - S

z#a,b r#a,b 70,1

since exactly half of the non-zero elements of I, are quadratic residues. This

r—1

same reason also gives us that & = Now suppose that a adjacent to b.

Then 3., x(a —x) = / We have four equations in four

unknowns: define « to ber ft' (x—a)=1and x(x—b) =1,

B to be the numberM ( \ d x(z —b) = —1 and v and §

similarly in case x/( he total number of times
X(x—a) =1, which i 1 Her o imes x(z—a) and x(z —b)

\

\ ‘he other two equations give
A = 1(r—5). On the othe i@ isx adjacent to b, then we can solve again

to get p=I(r —1). O

We know that tlie adjace: j complete graph with a loop
on each vertex, [o( ps—m is the p*~" X p°~' matrix of all*1s, and hence

ﬂuﬂgua ANBMN3

1
vore) 1, LEY SNIBNRIATEI A, 1 -
Thus, H, is the Paley graph which is strongly regular with parameters (p, (p —
1)/2,(p—5)/4,(p—1)/4) by Lemma 3.1.3. Hence, from Lemma 3.1.2,

p—1 —14+yp —1—-\/p
2 2 2

Spec H, =

By Proposition 1.2.1, this leads to our first theorem.
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Theorem 3.1.4. Let p be a prime. If p=1 mod 4, then

P~ p-1) p Tl (=1+yp) pTH-1-\D) 0
2 2 2

Spec Hps =
1 b5 b

for all s > 1.

Next, we assume that ¢ is a prime ; 3 mod 4. Then —1 is a quadratic
non-residue of ¢, so of ¢°."Thus ( ) 2 — &. This implies
from the exactness h;=====E;m-=;E;7-==:«' - ZX Hence, Hys is the

7= A Y]

unitary Cayley graph G, anc , Al 1ts “', envalues from Proposition

ﬂ‘UEJ’JVIEJVIﬁWEJ’]ﬂi

Theorem 3.1%5. Let q be a pm@e If q = 3 mod 4, then H s 1S the unitary

conpirif o\ G4 71 3 T4 URINAY

(¢—1¢! =g 0
Spec Hys =

S

1 qg—1 ¢ —q

forall s > 1.

Theorem 3.1.6. Assume that p,...,ps are primes congruent to 1 modulo 4 and

qi, - - -, q are primes congruent to 3 modulo 4. Then the following statements hold.
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(i) If n=p5* .. psq? .. gl foralla; > 1 and b; > 1, then

(it) Hyor o & Hpoo @+ @ Hpes for all a; > 1.

(iii) Hyps =G @@ for all b; > 1.

1 +-Ds

Proof. Note that Z,, = S ﬁ isomorphisms 7, = Z;al pos X

X X2 (7 ’ kg i+ o
Z, o ad (Z) _ N ddltlon, Kn = Ko x
K . Thus, H, ] ST L o) =2 (Z75,) x -+ X
qll)l...q?t us, Iy e s) ( p11)

(Zos)? and Ko 0

Similarly, T’ L = ﬁ quals Z rJ - X qu,,t because ¢; = 3
o He“‘“’ﬁfuﬁ N ﬁ%‘%ﬁl il “% et
as desired. 0

Rkl AIUUBIINYAR B e

A dlrect computation from Theorems 3.1.4, 3.1.5 and 3.1.6 gives a formula for the

energy of the graph H,,, where n is odd.

Theorem 3.1.7. Assume that p,...,ps are primes congruent to 1 modulo 4 and

q1i, - - -, q are primes congruent to 3 modulo 4. Then the following statements hold.
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(i) If n=p5* .. psq? .. gl foralla; > 1 and b; > 1, then

Engy H, = (Engy Hye o) (Engy Hp, o).

(i) Engy Hyo e = 7 Engy Hpeo = 27 J[7, ( HA+ ).

(1i1) Engy H_ g = E@’”y q; — a -
—

3.2 Quadratic

Let IF, be the finite > € ‘ 5 of .« cteristic odd prime p. Let
A = F,[T], and let

sequence of groups
1 — Kp— 1+ j_*_ (A fA) ) — 1, (3.2.1)

where 6 : a — with kernel K = {a €

v,
(A/fA)* :a® =1} aﬂ

Let Ty = K¢((A/fA) }2 Define the gr H; = Cay(A/fA,Ty), in which two

e e b NBIHNENDT oo 15
%‘»i et e T

structuré of the graph H; and obtain its eigenvalues. Furthermore, we compute
the energy of Hy.

Let P € A be an irreducible polynomial and e > 1. Write | P| for ¢i¢”. We
recall that the group (A/P¢A)* is an abelian group of order (|P| — 1)|P[*7!. Tt
follows from the theory of finite abelian groups that as a group (A/P°A)*

product of cyclic group of order |P| — 1 (isomorphic to (A/PA)*) and a p-group
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P. Hence, (A/P°A)* has a unique element of order two, namely —1 which is
(=1,1) in (A/PA)* x P. Then Kpe = {a € (A/P°A)* : a®> = 1} = {1,—-1}.
Thus, Tpe = £((A/P*A)*)?. Next, we proceed by recalling Theorem 1.10 of [22]

that:

Theorem 3.2.1. [22] Let d be ,ynteger such that d | (|[P]| —1). Then

% =a mod P¢ has a sol —1 mod P in A.

Therefore, to dete( | > lwh

consider when (—1)|

which makes —1 € ((

s(deg P)) is even.

Lemma 3.2.2. Fore>1 : I olynomial P in A, we have

where K|P|e 1 1s the ]mF‘ -complete gmph with a log on each vertez.

Proof. Since ﬂ/% {J m& wﬁw Elnn ﬁp P of order |P|71,

we can write each element a rfﬁ ile az )* x P. Then

CL TRk iV A
¥

((A/PA)*)2. Thus, we have Hpe = Hp® Io{|p|e-1 as desired. O

Since the adjacency matrix of [O{|p|e—1 is the |P|°7! x |P|°~! matrix of all 1s,

we get

o |Plet 0

Spec K|pje-1=
1 |Plt—1
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Moreover, if —1 is a quadratic residue of P, then Tp = ((A/PA)*)%. Thus, Hp is
the Paley graph which is strongly regular with parameters (|P|, (|P|—1)/2, (|P]|—

5)/4,(|P| —1)/4) by Lemma 3.1.3. Hence, from Lemma 3.1.2
PL-1 —1+\/|? —1- \/F

’, |P|-1 [PL1
%mg theorem.

Theorem 3.2.3. Let 2 du ible _‘ hat (p=1 mod 4) or (p=3

mod 4 and s(deg P) 1 / \ -
[Pl / (. m.'-. PI) [Pl (—1-/1P])

)
Spec Hpe = :

Spec Hp =

By Proposition 1.2.1, this

-1

3 [Pl = |P]

foralle > 1.

P
Next, for the finite field F, w ents of characteristic p, we assume

that p = 3 mod 4 -; 1l i5 a quadratic non-residue

Y |

modulo P¢. Thus, " v [ &. This implies

ihiﬂ””ﬂ A}l

QWWMH%U’%&IW]’WIEI']GEI

9)(A/PA)”
| K pe|

= |(A/PeA)]
from the exactness of (3.2.1). Since Tpe C (A/P°A)*, we have Tpe = (A/P¢A)*.
Hence, Hpe is the unitary Cayley graph Gp. := Cay(A/P°A, (A/P°A)*) over the

finite ring A/P°A and we can obtain its eigenvalues from Proposition 1.1.4.
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Theorem 3.2.4. Let P € A be irreducible. Assume that p =3 mod 4, s(deg P)

is odd. Then Hpe is the unitary Cayley graph Gpe and

(1P| =DIPl=t =[Pt 0
Spec Hpe =

1 [Pl =1 [P|]°—|P|

1) H w =G Qe
() PL . .PY, T P

Proof. Note that A/ fA e J

; L PL) A induces the iso-
1 |
L

f

AnianEinns. .
o ARIRNNIUARTINYIR Y

((A/FA))? 2= ((A/(PP . P AY)? < (A (P - PEg) A))P.

T

morphisms

In addition, Kf = Kplelu.P:r X KPll plt - ThUS, Hf = lefflmpﬁr X HPll plt -

417 4t r+1" r4t

Since

(A/(Pf ... PEn)A))? = ((A/(PP)A) )" x - x (A (Prr)A))?
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and

KPfl...PfT = Kplel X X KP:‘I",

we have

Similarly, T,

r41" vt

and so H ph as desired. O

= ; 1
t et t
1Pl s ‘ P P

Finally, a direct 4 _5 d 3.2.5 gives a formula

for the energy of t ?—'} : A
'II i‘l'
J |

Theorem 3.2.6. Let P g, Pryy € A bayirreducible. Assume that p =3 mod 4,

v ot e ) e A LTI EL T ERR. L it e
e RTHINIUNRINYIA Y
(i) If f = Pf* ... PPl .. P, then

Engy Hy = (Engy Hper per)(Engy Hpn o ).

r4+1" r4t

(ii) Engy Hper| per = [];; Engy pri =27"TTie, (127 = | D) (1 4+ /I B).

(i) Bngy Hypy i = Engy Goy . = 2 TToy (1Pl = [Pl ).
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Corollary 3.2.7. Let P, € A be irreducible and e; > 1 for all i. Assume that

(p=1 mod 4) or (p =3 mod 4 and s is even). Then

Engy Hpei _per =277 [[ (121 = [P ") (1 + V/]P]).

=1

Al
(]

AULINYNINYINT
ARIAATAUIM TN



1]

[10]
[11]

[12]

[13]

[14]

[15]

REFERENCES

S. Akbari, D. Kiani, F. Mohammadi and S. Moradi, The total graph and
regular graph of a commutative ring, J. Pure Appl. Algebra, 213 Issue 12
(2009), 2224-2228.

R. Akhtar, M. Boggess, T. Jackson-Henderson, I. Jiménez, R. Karpman, A.
Kinzel and D. Pritikin, On the unitary Cayley graph of a finite ring, The
Electronic J. Comb., 16 (2009); #R117.

M. F. Atiyah and I. G. Macdonald, #ntroduction to Commutative Alge-
bra, Addison-WesleyPublishing 90, Reading, Mass.-London-Don Mills, Ont,
1969. 3

M. Basi¢, M. D. Petkowic,  Some classes of integral circulant graphs either
allowing or not allowingsperfoct state transfer, Appl. Math. Lett., 22 (2010),
1609-1615.

S. Blackburn and'l. Shparlinski. On the average energy of circulant graphs,
Linear Algebra Appl., 428 (2008),.1956 1963

R. A. Brualdi, Energy of @ Graph, =4
http://www.public.iastate: edu?[};:l_llogben/energyB .pdf.

N. Beaudrap, On restrickbd 'unitaryééa}hey graphs and symplectic transfor-
mations modulo n, The Electronic J. Comb., 17 (2010), #R69.

D. Cvetkovié,,_M Doob and H. Sachs. Spectra-of G;:mphs, 87: Theory and Ap-
plication (Pure € Applied Mathematics), 3rd edun, Johann Ambrosius Barth
Verlag, 1995. '

D. S. Dummit aﬁ-d R. M. Foote, Abstract Algebrc;, 3rd edn, Wiley, New York,
2003.

C. Godsiland G. Royle, Algebraic Graph Theory, Springer, New York, 2001.

LrGutman The enengyofa graply iBex. «AMathy Stat\Sekt. oForschungszent.
Graz, ' 103 (1978)y 1221

[. Gutman, The Energy of a Graph: Old and New Results, Algebraic Combi-
natorics and Applications, Springer, Berlin, 2001.

[. Gutman, D. Kiani, M. Mirzakhah and B. Zhou, On incidence energy of a
graph, Linear Algebra Appl., 431 (2009), 1223-1233.

A. Ili¢, The energy of unitary Cayley graphs, Linear Algebra Appl., 431
(2009), 18811889.

A. Tli¢, Distance spectra and distance energy of integral circulant graphs,
Linear Algebra Appl., 433 (2010), 1005-1014.



29

[16] A. Ili¢ and M. Basi¢, On the chromatic number of integral circulant graphs,
Comp. Math. Appl., 60 (2010), 144-150.

[17] A.Ili¢, M. Basi¢ and I. Gutman, Triply Equienergetic Graphs, MATCH Com-
mun. Math. Comput. Chem., 64 (2010), 189-200.

[18] M. R. Jooyandeh, D. Kiani, and M. Mirzakhah, Incidence energy of a graph,
MATCH Commun. Math. Comput. Chem., 62 (2009), 561-572.

[19] W. Klotz and T. Sander, n Wrmes of unitary Cayley graphs, The

[20] C. Lanski andA Mareti, Ring e me of units, Cent. Eur. J. Math.

[21] H. N. Ramaswa 2§ CenE Ju the Energy of Unitary Cayley
[22] M. Rosen, Number@hebry in' Eunelic \
[23] W. So, Integral circula apls ? ete A\

[24] D. B. West, Introdugtio f ol T \ ‘t\-n edn, Prentice-Hall, 2000.

pringer, 2002.
6 (2006), 153-158.

°)

J

ﬂ‘UEJ’J‘VIEJVI’ﬁWEJ’]ﬂ‘i
QW%Nﬂ‘iELI UA1AINYA Y



30

VITA

Name

Date of Birth

Place of Birth

Education Kasetsart University, 2007

-

AUEINENINEINS
ARIAIN TN INNAY



	Cover (Thai) 
	Cover (English) 
	Accepted 
	Abstract (Thai)
	Abstract (English) 
	Acknowledgements 
	Contents
	CHAPTER I UNITARY CAYLEY GRAPHS AND THEIR ENERGY
	1.1 Unitary Cayley Graphs
	1.2 Energy of Unitary Cayley Graphs

	CHAPTER II GCD-GRAPHS AND COMPLEMENT OF UNITARY CAYLEY GRAPHS
	2.1 GCD-Graphs
	2.2 Complement of Unitary Cayley Graphs

	CHAPTER III ENERGY OF THE RESTRICTED UNITARY CAYLEY GRAPHS ON QUADRATIC RESIDUES
	3.1 Quadratic Residues of n
	3.2 Quadratic residues of f

	References 
	Vita



