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CHAPTER I

INTRODUCTION & PRELIMINARY

Virtual stability was firstly introduced in [2]. It is proved to be useful to relate some

topological properties between the fixed point set and the convergence set via a

retraction. However, the original definition requires continuity while there are still

some interesting maps in fixed point theory that are not continuous. Therefore, in

this work, we generalize virtual stability to include some discontinuous maps and

investigate the topology of the convergence set for some discontinuous maps.

Let us recall some basic concepts in topology, fixed point theory and virtual

stability which will be used in this thesis. (See [2], [3], [5] for more details.)

Definition 1.1. A topological space is a set X together with τ , a collection of

subsets of X, satisfying the following :-

1. The empty set and X are in τ.

2. The union of any collection of sets in τ is also in τ.

3. The intersection of any pair of sets in τ is also in τ.

The collection τ is called a topology on X and every set in τ is called an open

set.

Definition 1.2. Let X be a topological space and x ∈ X. A neighbourhood of

x is any open set that contains x.

Definition 1.3. A subset of a topological space X is a Gδ-set if it is a countable

intersection of open sets.

Definition 1.4. The topological space X is said to be
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1. A Hausdorff space if for any distinct points x, y ∈ X, there exist a neigh-

bourhood G of x and a neighbourhood H of y such that G ∩H = ∅.

2. A regular space if every singleton is closed and for each x ∈ X, each

neighbourhood G of x, there exists a neighbourhood H of x such that H ⊆ G.

Definition 1.5. Let X and Y be topological spaces. A map f : X → Y is contin-

uous at x ∈ X if for each neighbourhood G of f(x), there exists a neighbourhood

H of x such that f(H) ⊆ G. We simply say that f is continuous if it is continuous

at every x ∈ X.

Definition 1.6. Let X be a topological space and A be a subspace of X. A

continuous map r : X → A is a retraction if r(a) = a for all a ∈ A. In this case,

a subspace A is called a retract of X.

Definition 1.7. Let X, Y be topological spaces and f, g : X → Y be continuous

maps. A homotopy from f to g is a continuous map H : X × [0, 1] → Y such

that H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X. In this case, we say that f

is homotopic to g.

It is easy to verify that being homotopic is an equivalence relation on the set

of all continuous functions from X to Y.

Definition 1.8. A topological space X is contractible if the identity map on X

is homotopic to a constant map.

Theorem 1.9. Let X be a topological space and A be a retract subspace of X. If

X is contractible, A is contractible.

Definition 1.10. A metric on a set X is a map d : X × X → [0,∞) such that

the following holds for any x, y, z ∈ X :-

1. d(x, y) = 0 iff x = y.

2. d(x, y) = d(y, x).

3. d(x, z) ≤ d(x, y) + d(y, z).
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A metric space is an ordered pair (X, d) where X is a non-empty set and d is a

metric on X.

Definition 1.11. Let (X, d) be a metric space. A sequence (xn) in X is called a

Cauchy sequence if for every ε > 0 there is N ∈ N such that d(xm, xn) < ε for

all natural numbers m, n ≥ N .

Definition 1.12. A metric space X is said to be complete if every Cauchy se-

quence in X converges in X.

Definition 1.13. Let X be a vector space. A set C ⊆ X is said to be

1. Convex if (1− t)x+ ty ∈ C for all x, y ∈ C and t ∈ [0, 1].

2. Star-convex if there exists x ∈ C such that (1− t)x+ ty ∈ C for all y ∈ C
and t ∈ [0, 1].

It is easy to see that a nonempty convex set is star-convex.

Definition 1.14. A norm on a vector space V is a map p : V → [0,∞) such that

the following holds for any x, y ∈ X and a ∈ R :-

1. p(x) = 0 iff x = 0

2. p(ax) = |a|p(x)

3. p(x+ y) ≤ p(x) + p(y)

Definition 1.15. A Banach space is a vector space X with a norm ‖ ‖ such that

X is complete with respect to the metric d(x, y) = ‖x− y‖.

Example 1.16. The space `∞ of all bounded sequences in R with respect to the

supremum norm ‖x‖ = sup
n
|xn| is a Banach space.

Definition 1.17. Let X, Y be metric spaces and F be a family of functions from

X to Y. The family F is equicontinuous at x ∈ X if for every ε > 0, there exists

δ > 0 such that d(f(x), f(t)) < ε for all f ∈ F and t ∈ X with d(x, t) < δ. The

family is equicontinuous if it is equicontinuous at each point in X.
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Let X be a Hausdorff space and f : X → X. Define f 0 = idX and fn = f ◦fn−1

for each n ∈ N. The fixed point set and the convergence set are respectively defined

to be F (f) = {x ∈ X| f(x) = x} and C(f) =
{
x ∈ X| lim

n
fn(x) exists

}
. It is

easy to see that F (f) ⊆ C(f) and we will assume that F (f) 6= ∅. Moreover, The

map f∞ : C(f)→ X is defined by f∞(x) = lim
n
fn(x). Note that F (f) ⊆ f∞(C(f))

in general, and F (f) = f∞(C(f)) if f is continuous.

Definition 1.18. Let (X, d) be a metric space. A map f is said to be

1. A nonexpansive map if d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ X.

2. An asymptotically nonexpansive map if there is a sequence (an) in R+

converging to 1 such that d(fn(x), fn(y)) ≤ and(x, y) for all x, y ∈ X and

n ∈ N.

3. A quasi-nonexpansive map if d(f(x), p) ≤ d(x, p) for all x ∈ X and

p ∈ F (f).

4. An asymptotically quasi-nonexpansive map if there is a sequence (an) in

R+ converging to 1 such that d(fn(x), p) ≤ and(x, p) for all x ∈ X, p ∈ F (f)

and n ∈ N.

5. A virtually nonexpansive map [1] if it is continuous and the collection

{fn | n ∈ N} is equicontinuous on F (f).

6. A Kannan map [4] if there is r ∈ [0, 1
2
) such that for every x, y ∈ X,

d(f(x), f(y)) ≤ rd(x, f(x)) + rd(y, f(y)).

7. A Suzuki generalized nonexpansive map [6] if d(f(x), f(y)) ≤ d(x, y)

for all x, y ∈ X satisfying 1
2
d(x, f(x)) ≤ d(x, y).

8. An asymptotically regular map if lim
n
d(fn+1(x), fn(x)) = 0 for all x ∈ X.

It is easy to see that nonexpansive maps are asymptotically nonexpansive and

quasi-nonexpansive. Asymptotically nonexpansive maps and quasi-nonexpansive
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maps are asymptotically quasi-nonexpansive. Moreover, by [1], continuous asymp-

totically quasi-nonexpansive maps are virtually nonexpansive, and f∞ is contin-

uous if f is virtually nonexpansive. Therefore, the fixed point set of a virtually

nonexpansive map is always a retract of its convergence set.

We now recall the original definition and properties of virtual stability from [2].

Definition 1.19. Let f be a continuous map and p ∈ F (f). We say that

1. p is virtually stable if for each neighbourhood G of p, there are a neigh-

bourhood H of p and a strictly increasing sequence (kn) in N such that

fkn(H) ⊆ G for all n ∈ N.

2. p is uniformly virtually stable with respect to a strictly increasing se-

quence (kn) in N if for each neighbourhood G of p, there is a neighbourhood

H of p such that fkn(H) ⊆ G for all n ∈ N.

3. f is virtually stable if each fixed point of f is virtually stable.

4. f is uniformly virtually stable if each fixed point of f is uniformly virtu-

ally stable with respect to the same sequence.

Theorem 1.20. Suppose X is a regular space. If f is virtually stable, then f∞ is

continuous and hence F (f) is a retract of C(f).

It is easy to see that virtually nonexpansive maps are uniformly virtually stable

with respect to a sequence (n). Therefore, its fixed point set is always a retract of

its convergence set by the previous theorem.

Theorem 1.21. Let X be a complete metric space. If f is uniformly virtually

stable with respect to a sequence (nh) for some h ∈ N, then C(f) is a Gδ-set.



CHAPTER II

VIRTUAL STABILITY WITHOUT CONTINUITY

In this chapter, we introduce the concept of virtual stability without continuity

and give a sufficient condition eusuring that the fixed point set of a virtually stable

map is a retract of its convergence set.

Let X be a Hausdorff space and f : X → X with F (f) 6= ∅.

Definition 2.1. Let p ∈ F (f). We say that

1. p is virtually stable if for each neighbourhood G of p, there are a neigh-

bourhood H of p and a strictly increasing sequence (kn) in N such that

fkn(H) ⊆ G for all n ∈ N.

2. p is uniformly virtually stable with respect to a strictly increasing se-

quence (kn) in N if for each neighbourhood G of p, there is a neighbourhood

H of p such that fkn(H) ⊆ G for all n ∈ N.

3. f is virtually stable if each fixed point of f is virtually stable.

4. f is uniformly virtually stable if each fixed point of f is uniformly virtu-

ally stable with respect to the same sequence.

Example 2.2. Let f : [0, 1]→ [0, 1] be defined by f(x) =

x
2 ; x 6= 1

2

1 ; x = 1
2

It is easy to see that 0 is a virtually stable fixed point but 1 is not.

Proposition 2.3. If f is continuous and uniformly virtually stable with respect to

a sequence (n), then it is virtually nonexpansive.

Proof. To show that f is virtually nonexpansive, let p ∈ F (f) and ε > 0. There

is a neighbourhood H of p such that fn(H) ⊆ B(p; ε) for all n ∈ N. Let δ > 0 be

such that B(p; δ) ⊆ H. Then fn(B(p; δ)) ⊆ fn(H) ⊆ B(p; ε) for all n ∈ N.
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The following propositions show that the class of virtually stable maps contains

many well-known maps in fixed point theory.

Proposition 2.4. If f is a Kannan map, then it is uniformly virtually stable with

respect to a sequence (n).

Proof. Let (X, d) be a metric space and f be a Kannan map. Then there is

r ∈ [0, 1
2
) such that d(f(x), f(y)) ≤ rd(x, f(x)) + rd(y, f(y)) for all x, y ∈ X. Let

p ∈ F (f), ε > 0, n ∈ N and x ∈ B(p; ε). Thus

d(fn(x), p) = d(f(fn−1(x)), f(fn−1(p)))

≤ rd(fn−1(x), fn(x)) ≤ rd(fn−1(x), p) + rd(p, fn(x)).

Then

d(fn(x), p) ≤ r

1− r
d(fn−1(x), p) ≤ d(fn−1(x), p) ≤ . . . ≤ d(x, p) < ε.

Therefore fn(x) ∈ B(p; ε) and hence f is uniformly virtually stable with respect

to a sequence (n).

Proposition 2.5. If f is an asymptotically quasi-nonexpansive map, then it is

uniformly virtually stable.

Proof. Let (X, d) be a metric space and f be an asymptotically quasi-nonexpansive

map. Then there is a sequence (an) in R+ converging to 1 such that d(fn(x), p) ≤
and(x, p) for all x ∈ X, p ∈ F (f) and n ∈ N. Because lim

n
an = 1, there is N ∈ N

such that 0 < an < 2 for all n ≥ N. Let p ∈ F (f), ε > 0, n ∈ N and x ∈ B(p; ε
2
).

Therefore

d(fN+n(x), p) ≤ aN+nd(x, p) < 2(
ε

2
) = ε.

Then fN+n(x) ∈ B(p; ε) and hence f is uniformly virtually stable.

Now, let us introduce new classes of maps that are motivated by the definition

of Suzuki generalized nonexpansive maps.

Definition 2.6. Let (X, d) be a metric space. A map f is said to be
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1. a conditionally lipschitzian map if there are r, L > 0 such that if x, y ∈ X
satisfying rd(x, f(x)) ≤ d(x, y), then d(f(x), f(y)) ≤ Ld(x, y).

2. a conditionally uniformly lipschitzian map if there are r, L > 0 such

that d(fn(x), fn(y)) ≤ Ld(x, y) for all n ∈ N and x, y ∈ X satisfying

rd(x, f(x)) ≤ d(x, y).

It is easy to see that conditionally uniformly lipschitzian maps and Suzuki

generalized nonexpansive maps are conditionally lipschitzian. However, Suzuki

generalized nonexpansive maps may not conditionally uniformly lipschitzian.

Proposition 2.7. If f is a conditionally lipschitzian map with L ≤ 1, then it is

uniformly virtually stable with respect to a sequence (n).

Proof. Let (X, d) be a metric space and f be a conditionally lipschitzian map.

Then there is r > 0 such that d(f(x), f(y)) ≤ Ld(x, y) for all x, y ∈ X satisfy-

ing rd(x, f(x)) ≤ d(x, y). Let p ∈ F (f), ε > 0, n ∈ N and x ∈ B(p; ε). Since

d(f(x), f(p)) ≤ d(x, p) for all p ∈ F (f) and x ∈ X, then

d(fn(x), p) = d(fn(x), fn(p)) ≤ Ld(fn−1(x), fn−1(p)) ≤ . . . ≤ Lnd(x, p) < ε.

Therefore fn(x) ∈ B(p; ε) and hence f is uniformly virtually stable with respect

to a sequence (n).

Proposition 2.8. If f is a conditionally uniformly lipschitzian map, then it is

uniformly virtually stable with respect to a sequence (n).

Proof. Let (X, d) be a metric space and f be a conditionally uniformly lipschitzian

map. Then there are r, L > 0 such that d(fn(x), fn(y)) ≤ Ld(x, y) for all n ∈ N

and x, y ∈ X satisfying rd(x, f(x)) ≤ d(x, y). Let p ∈ F (f). Now, for each ε >

0, n ∈ N and x ∈ B(p; ε
L

). Since d(fn(x), fn(p)) ≤ Ld(x, p) for all n ∈ N, p ∈ F (f)

and x ∈ X, then

d(fn(x), p) = d(fn(x), fn(p)) ≤ Ld(x, p) < L(
ε

L
) = ε.

Therefore fn(x) ∈ B(p; ε) and hence f is uniformly virtually stable with respect

to a sequence (n).
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Example 2.9. Let f : [0, 4]→ [0, 4] be defined by f(x) =

0 ; x 6= 4

1 ; x = 4

Then f is a Kannan and conditionally uniformly lipschitzian map with r = 1
3

and

L = 1. Note that F (f) = {0} and C(f) = [0, 4].

To show that f is a Kannan map, let x < y = 4. Then

|f(x)− f(y)| = 1 ≤ x+ 3

3
=

1

3
|x− f(x)|+ 1

3
|y − f(y)|.

To show that f is a conditionally uniformly lipschitzian map, let y < x = 4

and 1 = 1
3
|x− f(x)| ≤ |x− y| = 4− y. Then |fn(x)− fn(y)| ≤ 1 ≤ 4− y = |x− y|

for all n ∈ N. Next, let x < y = 4 and x
3

= 1
3
|x − f(x)| ≤ |x − y| = 4 − x. Then

1 ≤ 4− x and hence |fn(x)− fn(y)| ≤ 1 ≤ 4− x = |x− y| for all n ∈ N.

Example 2.10. [6] Let f : [0, 3]→ [0, 3] be defined by f(x) =

0 ; x 6= 3

1 ; x = 3

Then f is a quasi-nonexpansive and Suzuki generalized nonexpansive map. Note

that F (f) = {0} and C(f) = [0, 3].

It is easy to see that f(x) ≤ x for all x ∈ [0, 3]. Then f is a quasi-nonexpansive

map. By the similar argument in the previous example, f is a Suzuki generalized

nonexpansive map.

Example 2.11. Let X = R2 be equipped with the supremum norm and f : X → X

be defined by f(x, y) =

(x, |x|) ; (x, y) 6= (0, 3)

(0, 1) ; (x, y) = (0, 3)

Then f is a Suzuki generalized nonexpansive map, F (f) = {(x, |x|) | x ∈ R} and

C(f) = R2. Notice that f is not continuous and hence it is not nonexpansive.

Firstly, let (a, b), (x, y) 6= (0, 3). Then

‖f(a, b)− f(x, y)‖ = max {|a− x|, ||a| − |x||} = |a− x|

≤ max {|a− x|, |b− y|} = ‖(a, b)− (x, y)‖.
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Secondly, let (x, y) be such that 1 = 1
2
‖(0, 3)− f(0, 3)‖ ≤ ‖(0, 3)− (x, y)‖.

If |x| ≤ 1, ‖f(0, 3)− f(x, y)‖ = max {|x|, 1− |x|} ≤ 1 ≤ ‖(0, 3)− (x, y)‖.
If |x| > 1,

‖f(0, 3)− f(x, y)‖ = max {|x|, |x| − 1} = |x|

≤ max {|x|, |y − 3|} = ‖(0, 3)− (x, y)‖.

Finally, let (x, y) be such that∣∣∣∣y − |x|2

∣∣∣∣ =
1

2
‖(x, y)− f(x, y)‖ ≤ ‖(0, 3)− (x, y)‖ (2.10.1)

Note that the case 1 ≤ ‖(0, 3)− (x, y)‖ has been proved in the previous paragraph,

we may assume max {|x|, |y − 3|} = ‖(0, 3) − (x, y)‖ < 1 and hence y−|x|
2

> 0. So

(2.10.1) becomes

y − |x|
2

=
1

2
‖(x, y)− f(x, y)‖ ≤ ‖(0, 3)− (x, y)‖ < 1 (2.10.2)

If 3 ≤ y < 4, 1 < y−|x|
2
≤ ‖(0, 3)− (x, y)‖ < 1 which is a contradiction.

If 2 < y < 3 and |x| ≤ 3− y,
y − |x|

2
≤ ‖(0, 3)− (x, y)‖ = max {|x|, 3− y} = 3− y

which is equivalent to y ≤ 2 + |x|
3
.

If 2 < y < 3 and 3− y < |x|,
y − |x|

2
≤ ‖(0, 3)− (x, y)‖ = max {|x|, 3− y} = |x|

which is equivalent to y ≤ 3|x|.
Thus, the solution set of (2.10.2) is

S :=

{
(x, y) ∈ (−1, 1)× (2, 3) | y ≤ 2 +

|x|
3

or y ≤ 3|x|
}

To see that ‖f(0, 3)− f(x, y)‖ ≤ ‖(0, 3)− (x, y)‖ for each (x, y) ∈ S, let (x, y) ∈ S.
If y ≤ 2 + |x|

3
, 1− |x| ≤ 1− |x|

3
≤ 3− y.

If y ≤ 3|x|, 1− |x| ≤ 3− 3|x| ≤ 3− y.
Then ‖f(0, 3)−f(x, y)‖ = max {|x|, 1− |x|} ≤ max {|x|, 3− y} = ‖(0, 3)−(x, y)‖.

The next example shows that the fixed point set of a virtually stable map may

not be a retract of its convergence set.
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Example 2.12. Let f : [0, 1]→ [0, 1] be defined by f(x) =

x ; x < 1
2

1 ; x ≥ 1
2

Observe that f is uniformly virtually stable with respect to a sequence (n) and fn =

f which is not continuous for all n ∈ N. It is easy to see that F (f) = [0, 1
2
) ∪ {1}

and C(f) = [0, 1].

The next theorem generalize Theorem 1.20 to discontinuous maps.

Theorem 2.13. Suppose X is a regular space and f∞(C(f)) ⊆ F (f). If f is

virtually stable and fN is continuous for some N ∈ N, then f∞ is continuous and

hence F (f) is a retract of C(f).

Proof. Let x ∈ C(f) and G be a neighbourhood of f∞(x) in F (f). Then there is

a neighbourhood U of f∞(x) in X such that G = U ∩ F (f). Since X is regular,

there is a neighbourhood V of f∞(x) in X such that V ⊆ V ⊆ U . Now, by

virtual stability, there exist a neighbourhood W of f∞(x) in X and a strictly

increasing sequence (kn) ⊆ N such that fkn(W ) ⊆ V for all n ∈ N. Since W is a

neighbourhood of f∞(x), there is n◦ ∈ N such that fn(x) ∈ W for all n ≥ n◦. Let

H = f−Nn◦(W ) ∩ C(f). Then H is a neighbourhood of x in C(f). To show that

f∞(H) ⊆ G, let a ∈ H. Note that

f∞(a) = lim
n
fn(a) = lim

n
fkn(fNn◦(a)) ∈ V ∩ F (f) ⊆ U ∩ F (f) = G.

Thus f∞ is continuous and F (f) is a retract of C(f).

It is easy to verify that the maps in Example 2.9, 2.10 and 2.11 satisfy all the

conditions in the previous theorem. So their fixed point sets are retracts of their

convergence sets. Meanwhile, the map fN in Example 2.12 is not continuous for

all N ∈ N.

The next example shows that the result of the previous theorem may still be

true even when the continuity of fN is not assumed.

Example 2.14. Let X = R2 be equipped with the supremum norm and

f : X → X be defined by f(x, y) =

(0, 3n−1) ; (x, y) = (0, 3n) for some n ∈ N

(x, |x|) ; (x, y) 6= (0, 3n) for all n ∈ N
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Then f is a Suzuki generalized nonexpansive map. (Note that fN is not continuous

for all N ∈ N but f∞(x, y) = (x, |x|) for all (x, y) ∈ X which is continuous.)

Notice that ‖f(z)− f(w)‖ ≤ ‖z−w‖ for all z, w /∈ A := {(0, 3n) | n ∈ N} and

it is easy to see that ‖f(z)− f(w)‖ ≤ ‖z − w‖ for all z, w ∈ A.

Next, let n ∈ N and (x, y) /∈ A be such that

3n−1 =
1

2
‖(0, 3n)− f(0, 3n)‖ ≤ ‖(0, 3n)− (x, y)‖.

If |x| ≤ 3n−1,

‖f(0, 3n)− f(x, y)‖ = max
{
|x|, 3n−1 − |x|

}
≤ 3n−1 ≤ ‖(0, 3n)− (x, y)‖.

If |x| > 3n−1,

‖f(0, 3n)− f(x, y)‖ = max
{
|x|, |x| − 3n−1

}
= |x|

≤ max {|x|, |y − 3n|} = ‖(0, 3n)− (x, y)‖.

Now, let n ∈ N and (x, y) be such that∣∣∣∣y − |x|2

∣∣∣∣ =
1

2
‖(x, y)− f(x, y)‖ ≤ ‖(0, 3n)− (x, y)‖ (2.13.1)

Note that the case 3n−1 ≤ ‖(0, 3n) − (x, y)‖ has been proved in the previous

paragraph, we may assume max {|x|, |y − 3n|} = ‖(0, 3n) − (x, y)‖ < 3n−1 and

hence y−|x|
2

> 0. So (2.13.1) becomes

y − |x|
2

=
1

2
‖(x, y)− f(x, y)‖ ≤ ‖(0, 3n)− (x, y)‖ < 3n−1 (2.13.2)

If 3n ≤ y < 3n + 3n−1,

3n−1 <
y − |x|

2
≤ ‖(0, 3n)− (x, y)‖ < 3n−1

which is a contradiction.

If 2 · 3n−1 = 3n − 3n−1 < y < 3n and |x| ≤ 3n − y,

y − |x|
2

≤ ‖(0, 3n)− (x, y)‖ = max {|x|, 3n − y} = 3n − y
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which is equivalent to y ≤ 2 · 3n−1 + |x|
3
.

If 2 · 3n−1 = 3n − 3n−1 < y < 3n and 3n − y < |x|,

y − |x|
2

≤ ‖(0, 3n)− (x, y)‖ = max {|x|, 3n − y} = |x|

which is equivalent to y ≤ 3|x|.
Thus, the solution set of (2.13.2) is

S :=

{
(x, y) ∈ (−3n−1, 3n−1)× (2 · 3n−1, 3n) | y ≤ 2 · 3n−1 +

|x|
3

or y ≤ 3|x|
}

To see that ‖f(0, 3n)−f(x, y)‖ ≤ ‖(0, 3n)−(x, y)‖ for each (x, y) ∈ S, let (x, y) ∈ S.
If y ≤ 2 · 3n−1 + |x|

3
, 3n−1 − |x| ≤ 3n−1 − |x|

3
≤ 3n − y.

If y ≤ 3|x|, 3n−1 − |x| ≤ 3n − 3|x| ≤ 3n − y.
Then

‖f(0, 3n)− f(x, y)‖ = max
{
|x|, 3n−1 − |x|

}
≤ max {|x|, 3n − y} = ‖(0, 3n)− (x, y)‖.

The following lemma refines Theorem 1.21 for discontinuous maps.

Lemma 2.15. Suppose X is a topological space. If f is uniformly virtually stable

with respect to a sequence (knM) such that sup {kn+1 − kn | n ∈ N} <∞ and fM

is continuous on F (f) for some M ∈ N, then f is uniformly virtually stable with

respect to a sequence (nM).

Proof. Let h := sup {kn+1 − kn | n ∈ N} ∈ N, p ∈ F (f) and G be a neighbourhood

of p. We have to show that there is a neighbourhood H of p such that fnM(H) ⊆ G

for all n ∈ N. Because f is uniformly virtually stable, there is a neighbourhood H ′

of p such that fknM(H ′) ⊆ G for all n ∈ N. Because f iM is continuous at p for all

i ∈ N ∪ {0} , there is a neighbourhood H of p such that f iM(H) ⊆ H ′ ∩ G for all

i = 0, ...,max {h, k1} . Now let n ∈ N.

If n ≤ k1,

fnM(H) ⊆ H ′ ∩G ⊆ G.
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If n > k1, then there is N ∈ N such that n = kN + i for some i = 0, ..., h. So

fnM(H) = fkNM(f iM(H)) ⊆ fkNM(H ′ ∩G) ⊆ fkNM(H ′) ⊆ G.

Theorem 2.16. Suppose X is a metric space. If f is continuous and uniformly

virtually stable with respect to a sequence (kn) such that sup {kn+1 − kn | n ∈ N} <
∞, then f is virtually nonexpansive. In particular when X is complete, then C(f)

is a Gδ-set.

Proof. Take M = 1 in the previous lemma, then f is uniformly virtually stable

with respect to a sequence (n) and hence virtually nonexpansive by Proposition

2.3. When X is complete, by Theorem 1.21, C(f) is a Gδ-set.

Corollary 2.17. Suppose X is a complete metric space. If f is uniformly virtually

stable with respect to a sequence (nM) and fM is continuous for some M ∈ N,

then C(fM) is a Gδ-set.

Proof. Let g = fM . It is easy to see that g is continuous and uniformly virtually

stable with respect to a sequence (n). By the previous theorem, C(fM) = C(g) is

a Gδ-set.



CHAPTER III

SOME RESULTS ON CONVERGENCE SETS

The first corollary in this chapter gives a sufficient condition which makes the do-

main of a given map the convergence set. Then, the combination of such condition

on a contractible domain and virtual stability yields the contractibility of a fixed

point set.

Theorem 3.1. Let (X, d) be a complete metric space, f : X → X and x ∈ X.

Suppose that there is c ∈ [0, 1) such that

d(fn+2(x), fn+1(x)) ≤ cd(fn+1(x), fn(x))

for all sufficiently large n ∈ N, then x ∈ C(f).

Proof. Let ε > 0 and N ∈ N be such that d(fn+2(x), fn+1(x)) ≤ cd(fn+1(x), fn(x))

for every n ≥ N. Then cn◦−N

1−c d(fN+1(x), fN(x)) < ε for some integer n◦ > N . Let

m, n ∈ N such that m > n > n◦. Therefore

d(fm(x), fn(x)) ≤ d(fm(x), fm−1(x)) + . . .+ d(fn+1(x), fn(x))

≤ (cm−1−N + . . .+ cn−N)d(fN+1(x), fN(x))

< (
∞∑
i=n

ci−N)d(fN+1(x), fN(x)) < ε.

Then (fn(x)) is Cauchy and hence x ∈ C(f) by the completeness of X.

Corollary 3.2. Let (X, d) be a complete metric space and f : X → X. If for each

x ∈ X, there is cx ∈ [0, 1) such that

d(fn+2(x), fn+1(x)) ≤ cxd(fn+1(x), fn(x)) (3.2.1)

for all sufficiently large n ∈ N, then C(f) = X.
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Corollary 3.3. Let (X, d) be a complete metric space, f : X → X and 0 ≤ c < 1.

If for all x ∈ X,
d(f 2(x), f(x)) ≤ cd(f(x), x) (3.3.1)

then C(f) = X.

Clearly, Condition (3.3.1) in Corollary 3.3 holds for a contraction but not vice

versa. The next example shows that a map satisfying this condition in Corollary

3.3 need not be even nonexpansive.

Example 3.4. Let f : [0,∞)→ [0,∞) be defined by

f(x) =


x
4

; x = 2k for some k ∈ Z
x
2

; x 6= 2k for all k ∈ Z

It is easy to see that |f 2(x) − f(x)| = 1
4
|f(x) − x| if x = 2k and |f 2(x) − f(x)| =

1
2
|f(x) − x| if x 6= 2k. By Corollary 3.3, C(f) = [0,∞). However, f is not

nonexpansive because f is not continuous.

Remark 3.5. Condition (3.3.1) in Corollary 3.3 implies Condition (3.2.1) in

Corollary 3.2. Condition (3.2.1) in Corollary 3.2 implies asymptotic regularity.

The next example shows that Condition (3.2.1) in Corollary 3.2 is weaker than

Condition (3.3.1) in Corollary 3.3.

Example 3.6. Let H = {reiπt ∈ C | r ≥ 0 and 0 ≤ t ≤ 1} and f : H → H be

defined by f(reiπt) = treiπt ; r ≥ 0 and 0 ≤ t ≤ 1

Note that fn(reiπt) = tnreiπt for all n ∈ N, r ≥ 0 and 0 ≤ t ≤ 1.

If t = 1, reiπt = −r is a fixed point. And then

|fn+2(reiπt)− fn+1(reiπt)| = 0 = |fn+1(reiπt)− fn(reiπt)|

for all n ∈ N. So we can choose c to be any number.

If t < 1, it is easy to verify that

|fn+2(reiπt)− fn+1(reiπt)| = t|fn+1(reiπt)− fn(reiπt)|



17

for all n ∈ N, r ≥ 0. So we can choose c = t

By Corollary 3.2, C(f) = H. Observe that t can tend to 1, so f does not satisfy

Corollary 3.3.

The next examples show that asymptotic regularity is weaker than Condition

(3.2.1) in Corollary 3.2.

Example 3.7. Let f : R→ R be defined by

f(x) =

x+ 1
n+1

; x = 1 + 1
2

+ ...+ 1
n

for some n ∈ N

x ; x 6= 1 + 1
2

+ ...+ 1
n

for all n ∈ N

It is easy to see that lim
n
|fn+1(x)− fn(x)| = 0 for each x ∈ R but 1 /∈ C(f).

Example 3.8. Let sn = 1 + 1
2

+ ...+ 1
n

for each n ∈ N and let f : [1,∞)→ [1,∞)

be defined by f(x) = (x− sn)(n+1
n+2

) + sn+1 ; sn ≤ x < sn+1

Note that lim
n
|fn+1(sk)−fn(sk)| = 0 and f [sk, sk+1) = [sk+1, sk+2) for all k ∈ N.

Hence if sk ≤ x < sk+1,

lim
n
|fn+1(x)− fn(x)| ≤ lim

n
|sk+n+2 − sk+n| = lim

n
|fn+2(sk)− fn(sk)|

≤ lim
n
|fn+2(sk)− fn+1(sk)|+ lim

n
|fn+1(sk)− fn(sk)| = 0

So lim
n
|fn+1(x) − fn(x)| = 0 for each x ∈ [1,∞) and C(f) = ∅. Also note that

this map is indeed continuous.

Lemma 3.9. Let X be a Hausdorff space, x ∈ X, f : X → X and M, N ∈ N

such that gcd(M,N) = 1. If x ∈ F (fM) ∩ F (fN), then x ∈ F (f).

Proof. Suppose 1 < M < N. By the Euclidean algorithm, let q1, ..., qk+1 ∈ N∪{0} ,
r1, ..., rk ∈ N be such that 1 < rk < ... < r1 < M and

N = q1M + r1 (3.9.1)

M = q2r1 + r2 (3.9.2)

...

rk−1 = qk+1rk + 1
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By Equation (3.9.1), x ∈ F (f r1). And then by Equation (3.9.2), x ∈ F (f r2).

Following these steps, x ∈ F (f) by the last equation.

The next theorem is the combination of Theorem 2.12 in Chapter II and Corol-

lary 3.2 in Chapter III.

Theorem 3.10. If (X, d) is a contractible complete metric space and f : X → X

is a virtually stable map satisfying the following conditions :-

1. fM and fN are continuous for some M, N ∈ N such that gcd(M,N) = 1.

2. For each x ∈ X, there is cx ∈ [0, 1) such that for all sufficiently large n ∈ N,

d(fn+2(x), fn+1(x)) ≤ cxd(fn+1(x), fn(x)).

then F (f) is contractible.

Proof. Observe that for each x ∈ C(f), f∞(x) = lim
n
fnM(x) ∈ F (fM) and

f∞(x) = lim
n
fnN(x) ∈ F (fN). By the previous lemma, f∞ : C(f) → F (f). By

Condition 2., X = C(f) and hence F (f) is contractible.

Corollary 3.11. If (X, d) be a contractible complete metric space, 0 ≤ c < 1 and

f : X → X is a virtually stable map satisfying the following conditions :-

1. fM and fN are continuous for some M, N ∈ N such that gcd(M,N) = 1.

2. d(f 2(x), f(x)) ≤ cd(f(x), x) for all x ∈ X.

then F (f) is contractible.

The followings are examples of the previous corollary.

Example 3.12. Let f be the map in Example 2.9. It is easy to verify that f 2 = f 3

and they are continuous with ‖f 2(x) − f(x)‖ ≤ 1
2
‖f(x) − x‖ for all x ∈ R2. So

F (f) is contractible by Corollary 3.11. Note that F (f) is not convex.

Example 3.13. Let X be the closed unit ball in `∞ and f : X → X be defined by

f(x1, x2, ...) = (x1,
x21
2
, 0, 0, ...). Then f is nonexpansive and it is easy to see that

‖f 2(x)− f(x)‖ ≤ 1
2
‖f(x)− x‖ for all x ∈ X. So F (f) is contractible by Corollary

3.11. Note that F (f) is not star-convex.
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To show that f is nonexpansive, let x = (x1, x2, . . .), y = (y1, y2, . . .) ∈ X.

Then

‖f(x)− f(y)‖ = sup

{
|x1 − y1|, |

x21
2
− y21

2
|
}

= sup

{
|x1 − y1|,

|x1 − y1||x1 + y1|
2

}
= |x1 − y1|

≤ sup {|x1 − y1|, |x2 − y2|, . . .} = ‖x− y‖.
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