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CHAPTER I
INTRODUCTION & PRELIMINARY

Virtual stability was firstly introduced ir Ii is proved to be useful to relate some

/t and the convergence set via a
&ontinuity while there are still

S O

. ;.‘"J"‘I A
subsets of X, satisfying the following <

The collection Tﬁ rﬂ\eﬂaﬁaﬂ é] ﬂ %{)W eﬁ );] ﬁ ﬁf is called an open
i’;ﬁ;‘;?ie}mﬁiﬂ TN

Definition 1.3. A subset of a topological space X is a Gs-set if it is a countable

intersection of open sets.

Definition 1.4. The topological space X is said to be



1. A Hausdorff space if for any distinct points z,y € X, there exist a neigh-
bourhood G of x and a neighbourhood H of y such that GN H = @.

2. A regular space if every singleton is closed and for each x € X, each

neighbourhood G of z, there exists a neighbourhood H of = such that H C G.

Definition 1.5. Let X and Y be topological spaces. A map f: X — Y is contin-
uous at x € X if for each neighbour 0 f ), there exists a neighbourhood
H of z such that f(H) C G. We.

1s continuous if it is continuous

at every z € X.

—
Definition 1.6. Let X( gi¢ m be a subspace of X. A

continuous map 7 : X

a subspace A is called

Definition 1.7. Let : X — Y be continuous
maps. A homotopy fr g is i ap H : X x [0,1] — Y such
that H(x,0) = f(x) and '

is homotopic to g.

In this case, we say that f

of all continuous fun

Definition 1.8. A topj);glc

is homotopic to a constan} map.

thcrem 1.6 ANBINS WYV e o % 1

X 1s contractible, A 1s contractible. ¢

pesnitidh 110 Ghinkid o 1 NIANEIAREL) et

the followmg holds for any z, y, z € X :-

1blﬂif the identity map on X

1. d(z,y) =0iff z = y.

2. d(z,y) = d(y, x).

3. d(z,2) < d(x,y)+ d(y, 2).



A metric space is an ordered pair (X, d) where X is a non-empty set and d is a

metric on X.

Definition 1.11. Let (X, d) be a metric space. A sequence (x,,) in X is called a
Cauchy sequence if for every € > 0 there is N € N such that d(z,,, z,) < € for

all natural numbers m, n > N.

Definition 1.12. A metric space X i to be complete if every Cauchy se-

%

Definition 1.13. Let X r space. %X is said to be

—
1. Convex if (1 — t)x/ ' € [0, 1].

2. Star-convex if

and ¢ € [0, 1].

quence in X converges in X. .

x+tyeCforalyeC

It is easy to see that,

Definition 1.14. A nor
the following holds for any

3. p(r+vy) <plx +pgy

Detaition 113 IS LLVIS AR R A o 1 s

X is complete with respect to the mgtric d(zx, y) llz — vl

AL (R E B AT TE Atk I T TR

supremumqnorm l|z|| = sup |z,| is a Banach space.
n

Definition 1.17. Let X, Y be metric spaces and F be a family of functions from
X to Y. The family F is equicontinuous at x € X if for every ¢ > 0, there exists
d > 0 such that d(f(z), f(t)) < e for all f € F and t € X with d(z,t) < J. The

family is equicontinuous if it is equicontinuous at each point in X.



Let X be a Hausdorff space and f : X — X. Define f° = idx and f* = fo fm!
for each n € N. The fixed point set and the convergence set are respectively defined
to be F(f) = {z € X| f(x) =2} and C(f) = {x € X| li7rlnf”(x) exists}. It is
easy to see that F/(f) C C(f) and we will assume that F'(f) # @. Moreover, The
map [ : C(f) — X is defined by f*°(z) = lim f"(x). Note that F(f) C f>(C(f))
in general, and F(f) = f>*(C(f)) if f is conginuous.

Definition 1.18. Let (X, d) be a metric spaccs A map f is said to be
1. A nonexpansive mapifd(/f(z), f(y))=d(my) for all z, y € X.

2. An asymptotically nonéxpansive map if there is a sequence (a,) in R
converging to 1 such shatd(f"(x),f"(y)) = a,d(r,y) for all z, y € X and
n € N.

3. A quasi-nonexpansgive map if de(:L‘),p) < d(z,p) for all z € X and
p € F(f). Vo ¥

4. An asymptotically qua51-nonexpaﬂ31ve map if there is a sequence (a,) in

R+ converging to 1 such tlrat d(fn( )n@~< and(z,p) forallx € X, p € F(f)
and n € N. _ e ] =

5. A virtually nenexpansive map [1] if it is continuious and the collection

{f"|neN}is eq}-ncontinuous oy,

6. A Kannangmap,[4]3f there, is,n, €0, 2) such, that for every z,y € X,

d(f(x), f(y)) <Pd@, flw)) +ed(y, §(5)):

7. A Suzwukirgereralizedenenexpansive-mapa(6] if d(f (), f(y)) < d(z,y)
for all z,y € X satisfying 3d(, f()) < d(z,y):

8. An asymptotically regular map if lim d(f"" (), f*(z)) = 0 forall z € X.

It is easy to see that nonexpansive maps are asymptotically nonexpansive and

quasi-nonexpansive. Asymptotically nonexpansive maps and quasi-nonexpansive



maps are asymptotically quasi-nonexpansive. Moreover, by [1], continuous asymp-
totically quasi-nonexpansive maps are virtually nonexpansive, and f* is contin-
uous if f is virtually nonexpansive. Therefore, the fixed point set of a virtually
nonexpansive map is always a retract of its convergence set.

We now recall the original definition and properties of virtual stability from [2].

Definition 1.19. Let f be a continuous map and p € F(f). We say that

1. p is virtually stable if

bourhood H of p an&’;w
fEn(H) C G for all guedNe

2. p is uniformly virt

hood G of p, there are a neigh-
quence (k,) in N such that

quence (k) in N
H of p such that

ally stable with respect to't
ZZTH

Theorem 1.20. Suppﬁse X isa regular

continuous and henc 1) is a retr

ally stable, then > is

1] ﬂj
It is easy to see thatJirtually nonexpansive maps ar¢ uniformly virtually stable

e AR Wy
o 47 L thn 10 e (Y



CHAPTER 11
VIRTUAL STABILITY WITHOUT CONTINUITY

pt of virtual stability without continuity
t ﬁd point set of a virtually stable

e — )

In this chapter, we introduce the c
and give a sufficient condition
map is a retract of its con

Let X be a Hausdor

Definition 2.1. Let p

1. p is virtually stabl eli nei of p, there are a neigh-

ce (k,) in N such that

2. p is uniformly vir ble ) ‘to a strictly increasing se-

quence (k,) in N if for ac@ f p, there is a neighbourhood

s { vally stable.
4. f is uniformly vgtual
ally stable with respect, to the same sgquence.

AUEANEANENS .-

Example 2.2. et f:[0,1] — 1Tbe defined by?

i oy Y ANAIRURIANE AR

Pr0p051t10n 2.3. If f is continuous and uniformly virtually stable with respect to

ed pcﬂt of f is uniformly virtu-

NI= N

a sequence (n), then it is virtually nonerpansive.

Proof. To show that f is virtually nonexpansive, let p € F(f) and € > 0. There
is a neighbourhood H of p such that f*(H) C B(p;e¢) for all n € N. Let § > 0 be
such that B(p;0) C H. Then f™(B(p;d)) C f*(H) C B(p;e) for all n € N. O



The following propositions show that the class of virtually stable maps contains

many well-known maps in fixed point theory.

Proposition 2.4. If f is a Kannan map, then it is uniformly virtually stable with

respect to a sequence (n).

Proof Let (X,d) be a metric space and f be a Kannan map. Then there is

Then

Therefore f"(z) € B

to a sequence (n).

Proof. Let (X, d) be ametri '

‘otieally quasi-nonexpansive
map. Then there is a s@:enee ap) 1

onverging tml such that d(f"(z),p) <

apd(z,p) for all z € X ) and n € NsBecause lima,, = 1, there is N € N
o < LY mﬂmm Tt
Therefore

B E ,
Q W'] ﬂ'ﬂﬂﬁ”m‘ﬂw VIR Y
Then fV +A ) € B(p;€) and hence f is uniformly virtually stable. O

Now, let us introduce new classes of maps that are motivated by the definition

of Suzuki generalized nonexpansive maps.

Definition 2.6. Let (X, d) be a metric space. A map f is said to be



1. a conditionally lipschitzian map if there are r, L > 0 such thatif x,y € X
satisfying rd(z, f(x) < d(z,y), then d(f(x), f(y)) < Ld(x,y).

2. a conditionally uniformly lipschitzian map if there are r, L > 0 such

that d(f™(z), f"(y)) < Ld(x,y) for all n € N and z, y € X satisfying
rd(z, f(x)) < d(z,y).
It is easy to see that conditionally luniformly lipschitzian maps and Suzuki

generalized nonexpansive maps are conditionally lipschitzian. However, Suzuki

generalized nonexpansive maps may not_conditionally uniformly lipschitzian.
J

Proposition 2.7. If f asva condileonally lipschitzian - map with L < 1, then it is

uniformly virtually stable®with'respect toula sequence (1).

Proof. Let (X, d) be a mefic Spages and f be a conditionally lipschitzian map.
Then there is > 0 sueh that d(f (a;j )‘( )) < Ld(x,y) for all z, y € X satisfy-

ing rd(z, f(x)) < d(z, )LetpEF(f)e>0 n € N and z € B(p;e). Since
d(f(x), f(p)) < d(x,p) for all p e F(f) andJ—fw € X, then
(@), ) = (). ) Ay ) < < L) <

Therefore f*(z) € B(p;e) and heiice f is u-mfenrmly virtually stable with respect

to a sequence (n). = .ot O

Proposition 2.8. If f zs a conditionally uniformly lzpschztzmn map, then it is

uniformly virtually stable with respect to a sequence (n)

Proof. Let (X, d) bela metric.space and f be a conditionally uniformly lipschitzian
map. Then there'are r, L > 0 such shat d(f™(z), f"(y)) < Ld(x,y) for all n € N
and x, y.& X satisfying rd(2f (x)) < d(ziy). | Let p/€ ' F(T). Now, for each e >
0, n € Nand z € B(p; ). Since d(f"(z), f*(p)) < Ld(z,p) foralln € N, p € F(f)
and x € X, then

A(f"(2).p) = d(f" (@), () < Ld(e,p) < L(7) =

Therefore f"(z) € B(p;e) and hence f is uniformly virtually stable with respect

to a sequence (n). O



0; x#4
1;2=14
Then f is a Kannan and conditionally uniformly lipschitzian map with r = L and

L =1. Note that F(f) = {0} and C(f) = [0,4].

Example 2.9. Let f :[0,4] — [0,4] be defined by f(x) =

To show that f is a Kannan map, let x < y = 4. Then

F(@) = f)] = 1 y#// DI+ 21y~ )

1t21an map, let y < x = 4

and 1 = glz — f(z)| < | Tyl <l<d-y=|r—yl
for all n € N. Next, le o)} < |x —y| =4 — x. Then
1 <4 — x and hence |f" <AL |for all n € N.

J 0; v#3
Example 2.10. [6] Let f 410 )

L 4 \ l;2=3
Then f is a quasi-nonexpansi an : od nonexpansive map. Note
that F(f) = {0} and C(f) = —==

It is easy to see that f(z }. Then f is a quasi-nonexpansive

map. By the similar a is a Suzuki generalized

iﬂ :

nonexpansive map.

Example 2.11. Let X }R be equipped wzth the supremum norm and f : X — X

bedeﬁnedbyfﬂ/u “’WW?‘WMT}‘E
! A mﬁmﬂm@ﬁmﬁi pyrem

Firstly, let (a,b), (z,y) # (0,3). Then

1f(a;b) = f(2,y)l| = max {|a — =], [la] —[z][} = |a — 2|
< max{|a —z[,|b—yl} = [[(a,0) = (z, )]
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Secondly, let (z,y) be such that 1 = $|/(0,3) — £(0,3)[| < [(0,3) — (z,9)]|.
If 2| <1, 1£(0,3) = f(z,y)ll = max{|z|,1 — |z} <1 <[(0,3) = (z,9)].
If |z| > 1,
17(0.8) ~ £, )| = max (. Ja| ~ 1} = |z
< max {|z|, [y =3[} = [/(0,3) = (z, )|
Finally, let (z,y) be such that

— ||
2
Note that the case 1 < |[|(

1(0,3) = (=, y) (2.10.1)

has b@ in the previous paragraph,

(), e 1 and hence £ |x| > 0. So
2

_ \ \ | <1 (2.10.2)
f3<y<4, 1< y—TImI @:g' ,\ a ontradiction.

If2<y<3and |z| < N \
< ax {|#], 3 -y} =3 -y

we may assume max {|z

(2.10.1) becomes
y—lz| _

— |z|
2 _ *_r*.‘ _J‘ :
which is equivalent to y < 2 + A=

ﬂ-:-'?ﬂ,# 2
If2<y<3and3—y gl T T

y;' 05— ol = <=1
which is equivalent to y< 3|z|. - Iﬂ

Thus, the solution set of

; uﬁmwmﬂmm
e R TR o

If y < 3|z|, 1—]x|§3—3|x] <3 —y.
Then [[£(0,3) = f(x,y)|| = max {|], 1 — ||} < max {[z],3 —y} = [|(0,3) = (z,y)|.-

i,

The next example shows that the fixed point set of a virtually stable map may

not be a retract of its convergence set.
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r ;<
Example 2.12. Let f:[0,1] — [0,1] be defined by f(z) =

N =

1 ;x>
Observe that f is uniformly virtually stable with respect to a sequence (n) and f* =
f which is not continuous for all n € N. It is easy to see that F(f) =[0,3) U {1}
and C(f) = [0, 1].

The next theorem generalize Theo 20 to discontinuous maps.
Theorem 2.13. Suppose X &w and f>(C(f)) C F(f). If f is

virtually stable and fV is

N | =

for so , then f°° is continuous and

b 4

—
hence F(f) is a retract W
Proof. Let z € C(f) a\\/

a neighbourhood U of

there is a neighbourho
virtual stability, there exi
increasing sequence (k,
neighbourhood of f>(z),

= [ W) N C(f).
fe(H) C G, letaEH Note tliad

Thus f* is continuous a jxd F

It is easy to ﬂ % 2.11 satisfy all the
conditions in thﬁﬁ ﬁﬁ?ﬁﬁ ﬁOﬁ ﬁ ire retracts of their
convergence sets. eanwhlle the mép [V in Example 2.12 is net continuous for
av e QWIRNNTUURIINYIA Y

The next example shows that the result of the previous theorem may still be

true even when the continuity of f% is not assumed.

Example 2.14. Let X = R? be equipped with the supremum norm and

0,3" 1) ; (x,y) =(0,3") for somen € N
f: X — X be defined by f(x,y) = ( ) (z,y) = ( ) f

(z,]z|)  ; (z,y) #(0,3") for alln €N
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Then f is a Suzuki generalized nonexpansive map. (Note that fV is not continuous

for all N € N but f>(z,y) = (z,|z|) for all (z,y) € X which is continuous.)

Notice that ||f(2) — f(w)|| < ||z —w]| for all z, w ¢ A :={(0,3") | n € N} and
it is easy to see that ||f(z) — f(w)|| < ||z — w]| for all z, w € A.
Next, let n € N and (z,y) ¢ A be such that

3 = 2010, ~ @yl
If |2] < 3",
170,38 - f(a. < 0,3 - (&)
If 2| > 371,
1403

— (z,y)|| (2.13.1)

e by
paragraph, we may 3ol ). 3% — (z,y)]] < 3"! and
M

hence y_—|x| > 0. So (2. II ) becomes U

ﬁqﬂﬁ "Jfﬁﬁm'@ﬂfﬂﬂ? 212

If3”<y<3”+3” 1

AR QIAINYANLINY

which is a contradiction.

If2-3"1=3"-3"1 <y <3 and |z| < 3" —y,

Note that the case 3 “ 1< 1/(0,3") — (z,y)!l has bee it proved in the previous

y — ||

< (0,3") = ()| = max {Ja], 3" — g} =3y
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which is equivalent to y < 2-3""! + %
If2-3"1=3"-3"1<y<3and 3" —y < ||,

y— |z

5 = 110,3") = (z,9)]| = max{|z], 3" — y} =[]

which is equivalent to y < 3|x|.
Thus, the solution set of (2.13.2) is

2]

<2.3n—1 Lndl]
S + 3

or y< 3|x|}
S

£ (@h@,y)es,let () € 5
|z

S = {(x,y) € (=3" 13

To see that || f(0,3™)— f(x
Ify <2 31421 gn-
Ity < 3zf, 3" — 2| <
Then

1/(0,3") —

0,3") = (z,9)l-

The following lemma refifies/ Lk F 0 -em-' r discontinuous maps.

Lemma 2.15. Suppose niformly virtually stable
with respect to a sequ V o (K, M) such thal sup {k :J n € N} < oo and f¥

is continuous on F(f) for U i mly virtually stable with

)

Proof. Let h := ﬁ%ﬂ#@ﬂ EW}@ w Ejﬂlaﬂ (‘,jbe a neighbourhood

of p. We have to show that there is a gelghbourhood H of p such that f™H)C G

for all n 661/1 mﬁww a %J)ourhood H
of p such Fn or a ecause f"™'is continuous at p for all

ieNU {0} there is a neighbourhood H of p such that f*™(H) C H' N G for all
i=0,..,max{h,k }. Now let n € N.
If n S k’l,

respect to a sequence (n

fMMH)CH NG CG.
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If n > kq, then there is N € N such that n = ky + ¢ for some i =0, ..., h. So
fMH) = M) C fYYM(E N G) C fAYMH) C G
O

Theorem 2.16. Suppose X is a metric space. If f is continuous and uniformly

virtually stable with respect to a sequence ( such that sup {k,4+1 — kn | n € N} <

o0, then f is virtually nonexpansive. irige when X is complete, then C(f)

1s a Gg-set.

Proof. Take M = 1 in
with respect to a sequ

2.3. When X is compl em. 1L -set. 0

is uniformly virtually stable

expansive by Proposition

Corollary 2.17. Supp gz let a If f is uniformly virtually

/ -..,_ ! f \\ wtinuous for some M € N,

Proof. Let g = fM. It is ea 1’;- that” ntinuous and uniformly virtually
ious theorem, C(fM) = C(g) is
O

stable with respect to a

then C(fM) is a Gs-set.

stable with respect to a seque.-i, Byt
a Gs-set. ‘ '

ﬂ‘UEJ’JVIEJVIﬁWEJ’]ﬂ‘i
Q‘W%Nﬂ‘im UA1AINYA Y



CHAPTER III
SOME RESULTS ON CONVERGENCE SETS

combination of such condition

The first corollary in this chapter gi ’ want condition which makes the do-

main of a given map the conve
on a contractible domain a the contractibility of a fixed

point set.

Theorem 3.1. Let e, f: X - X andz € X.

Suppose that there is ¢

Proof. Let ¢ > 0and N € Nbe *l"‘r" at df z), " (2) < cd(f"(z), ()
for every n > N. Then d gy@ fé e for some integer n, > N. Let
mnENsuchthat > e

V—
d(f™ (@), f"(a)) < f"“( ) [" (@)
<(m1N+ vl )d(f Ha), V(@)

ﬂummmwmm
et fﬁ”ﬂ”fﬁ’@ﬂﬁ“fﬂﬁ%“ﬂ"m‘ﬂwfﬁﬂ -

Corollary 3.2. Let (X, d) be a complete metric space and f : X — X. If for each
xr € X, there is ¢, € [0,1) such that

d(f" (@), [ (@) < cod(f (@), fM(2)) (3.2.1)

for all sufficiently large n € N, then C(f) = X.
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Corollary 3.3. Let (X, d) be a complete metric space, f: X — X and 0 <c < 1.
If for all x € X,

d(f*(2), f(2)) < ed(f (), x) (3.3.1)
then C(f) =

Clearly, Condition (3.3.1) in Corollary 3.3 holds for a contraction but not vice

satisfying this condition in Corollary

versa. The next example shows tha

3.3 need not be even nonexpa

Example 3.4. Let f : [0,

—

2¢ and | f*(x) — f(x)] =

0,00). However, f is not

It is easy to see that | [
Ufw) — ol if 2 # 2.

nonexpansive because f is

Remark 3.5. Condition (3.5.1) in 5— 3’. implies Condition (3.2.1) in

Corollary 3.2. Condition (3.2. f implies asymptotic reqularity.

The next example s

Condition (3.3.1) in

:«- ollary 3.2 is weaker than

¢
-
O1C cl

Example 3.6. LetH—‘{g“tEC|r>vnd0<t<l} and f + H — H be

et 1A RH INBNINEINT

Note that f™( re”t) =t're™ foralln €N, r 20and 0 <t < 1.

- RRERIRHI T U ¢

|fn+2( zwt) fn+1(rez7rt)|: Ifn+1( 17rt) fn( wrt)|

for all n € N. So we can choose ¢ to be any number.

If t <1, it is easy to verify that

‘fn+2(,r,ei7rt) _ fn+1(,r,ei7rt)‘ — t‘fn+1(,r,ei7rt) _ fn(reiﬂ't)’
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for all n € N, r > 0. So we can choose ¢ =t
By Corollary 3.2, C(f) = H. Observe that ¢ can tend to 1, so f does not satisfy
Corollary 3.3.

The next examples show that asymptotic regularity is weaker than Condition
(3.2.1) in Corollary 3.2.

Example 3.7. Let f:R—>R b

for somen € N

alln € N

It is easy to see that li ' \R‘V\ eER but 1 ¢ C(f).
Example 3.8. Let s, = \

be defined by f(z) = ( | = N & < \ s

'-\

and let f:[1,00) — [1,00)

Note that lim | f"(

Hence if s <z < s41,

lim " () — /()] <

[Skt1, Skro) for all k € N.

fim £742(51) — (51|
,, n+1(5k) = f"(sk)| =

So lim |f"™(z) — f* )] .‘" = @. Also note that

this map is indeed Contmuous. — m
Lemma 3.9. l‘ﬁ\r ﬁuﬁ ﬂﬁﬁ X and M, N € N
such that ged( EH]If ﬁ ﬂ ﬁ

o S‘éiiﬁt]ﬁ Stk awh (1810} R

N = qlM + 7 (391)
M = qa271 + T (392)

Th—1 = Qr1Tk + 1
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By Equation (3.9.1), x € F(f™). And then by Equation (3.9.2), x € F(f"™).
Following these steps, x € F'(f) by the last equation. O

The next theorem is the combination of Theorem 2.12 in Chapter II and Corol-

lary 3.2 in Chapter III.

Theorem 3.10. If (X,d) is a contractible complete metric space and f: X — X

i1s a virtually stable map satisfying the

2. For each x € X, th@

d(f™2(x), 1 (z) <

f:X—=>Xuisa mrtually stable 7
""/“fr—'*:f:"l o TS

1. ™M and N ar }ntznuous for some

d(f(x), f(z)) < ﬁ

that ged(M, N) = 1.

X
| i
then F(f) is contractible. ¢ a

oo WS A BTN T
o ﬁﬁé%ﬁm% ey it ey

F(f) is contmctzble by Corollary 3.11. Note that F(f) is not convex.

Example 3.13. Let X be the closed unit ball in s and f: X — X be defined by
fzy,xq,...) = (21, %,0,0, ...). Then f is nonexpansive and it is easy to see that
1 /2(z) = f(2)|| < 5)f(z) — || for all x € X. So F(f) is contractible by Corollary
3.11. Note that F(f) is not star-conved.
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To show that f is nonexpansive, let x = (z1,22,...), ¥y = (y1,¥2,...) € X.
Then

2 2
1) = 760 =sup {Jos =l 15 - %1}

21 — 1|21 + 1
= sup [y — ], = r1 1

< sup {|z; — —tls = llz =yl

Al
(]

AULINYNINYINT
ARIAATAUIM TN
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