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CHAPTER I

INTRODUCTION

For a semigroup S, let S0 be S if S has a zero and |S| > 1. Otherwise S0

means S with adjoined zero which is a new symbol.

Ring Theory is a classical subject in mathematics and had long been studied.

It is well-known that the multiplicative structure of a ring is a semigroup with

zero. For a semigroup S, if S is isomorphic to the multiplicative structure of

some rings, then S is said to admit a ring structure. It is equivalent to there exists

an operation + on S0 such that (S0,+, ·) is a ring where · is an operation on S0.

For various studies in this area, see [7], [12], [14], [15] and [16].

By the definition, every left [right] nearring generalizes rings and the multi-

plicative structure of a left [right] nearring is a semigroup. It is reasonable to ask

that for a semigroup S, whether S0 is isomorphic to the multiplicative structure

of some left [right] nearrings. Then a semigroup (S, ·) is said to admit a left [right]

nearring structure if there exists an operation + on S0 such that (S0,+, ·) is a left

[right] nearring. Some research of semigroups admitting the nearring structure

can be seen in [5] and [8].

If S is a semigroup and a ∈ S, the semigroup (S, ∗) defined by x ∗ y = xay

for all x, y ∈ S is called a variant of S and it is denoted by (S, a). Variants of ab-

stract semigroups were first studied by J. Hickey [6] in 1983. In fact, variants of

concrete semigroups of relations were earlier considered by Magill [11] in 1967.

In this thesis, we generalize some results in [5], [16] and [8]. The interested

semigroups are some variants of transformation semigroups and their subsemi-

groups. For a considered semigroup S, we characterize a transformation θ
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which (S, θ) is a semigroup. The main purpose is to determine when these semi-

groups admit a left [right] nearring.

Examples, basic definitions, some motivations, elementary results and quoted

results, regarded in this thesis, are contained in Chapter II.

In Chapter III, some results of [5] and [16] are generalized. We concern some

variants of transformation semigroups which shown in [5] and [16].

Chapter IV and Chapter V contain generalizations of the results in [8]. Some

linear transformation semigroups which do not admit a left [right] nearring will

be shown in Chapter IV.

In the last chapter, we still consider some subsemigroups of variants of lin-

ear transformation semigroups. We provide necessary and sufficient conditions

for each of these semigroups to admit a left [right] nearring structure.

Notice that some techniques in [5], [8] and [16] will be applied.



CHAPTER II

PRELIMINARIES

For a setX , the cardinality ofX will be denoted by |X|. The set of all integers

and the set of all real numbers will be denoted by Z and R, respectively. The

following proposition is well-known in set theory.

Proposition 2.1. Let X be an infinite set. Then there is a partition {A,B} of X such

that |X| = |A| = |B|.

Let S be a semigroup. A left [right] zero of S is an element z ∈ S such that

zx = z [xz = z] for all x ∈ S. An element 0 of S is called a zero if 0x = 0 = x0

for all x ∈ S. If S has a left zero z1 and a right zero z2, then z1 = z2 which is the

zero of S. A semigroup S with zero 0 is said to be a zero semigroup if ab = 0 for

all a, b ∈ S.

A left [right] nearring is a triple (N,+, ·) where

(i) (N,+) is a group,

(ii) (N, ·) is a semigroup,

(iii) z · (x+ y) = z · x+ z · y [(x+ y) · z = x · z + y · z] for all x, y, z ∈ N .

An element 0 is called a zero of left [right] nearring if 0 · x = 0 = x · 0 for all

x ∈ N . Throughout, for every x, y ∈ N , x · y is denoted by xy.

Proposition 2.2. ([4]) Let (N,+, ·) be a left [right] nearring with the additive iden-

tity 0. Then

(i) x0 = 0 [0x = 0] for all x ∈ N ,

(ii) x(−y) = −(xy) [(−x)y = −(xy)] for all x, y ∈ N .

Throughout, the image of a mapping α at x is written by xα. The following

examples show that every left [right] nearring is a generalization of rings.
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Example 2.3. ([4]) Let (G,+) be a group. Define an operation ∗ on G by

a ∗ b = a

for all a, b ∈ G. It is easy to see that (G,+, ∗) is a right nearring. If |G| > 1, then

(G,+, ∗) is neither a left nearring nor a ring. To see this, let a, b ∈ G be distinct.

Suppose that (G,+, ∗) is a left nearring. Then

a = a ∗ (a+ b) = a ∗ a+ a ∗ b = a+ a,

b = b ∗ (a+ b) = b ∗ a+ b ∗ b = b+ b.

So a = b = 0, the identity of (G,+), this is impossible. Hence (G,+, ∗) is not a

left nearring.

Example 2.4. ([4]) Let (A,+) be an abelian group with identity 0 and M(A) be

the set of all functions onA. It is clearly that (M(A),+, ◦) is a left nearring where

+ and ◦ are the usual addition and the composition of functions, respectively.

By Proposition 2.2(i), (M(A),+, ◦) is neither a right nearring nor a ring where

|A| > 1. To show this, let a, b ∈ A be distinct. Suppose that (M(A),+, ◦) is a

right nearring. Define f, g ∈M(A) by

xf = a and xg = b

for all x ∈ A. Let θ ∈ M(A) be such that xθ = 0 for all x ∈ A. Then θ is the

additively identity of M(A). By Proposition 2.2 (i),

f = θ ◦ f = θ = θ ◦ g = g

Hence a = b, a contradiction. Therefore (M(A),+, ◦) is not a right nearring.

Example 2.5. ([5]) Let M(R) be the set of all functions from R into itself,

C(R) = {f ∈M(R) | f is continuous on R} and

D(R) = {f ∈M(R) | f is differentiable on R} .
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Then (M(R),+, ◦), (C(R),+, ◦) and (D(R),+, ◦) are left nearrings which are not

rings where + and ◦ are the usual addition and the composition of functions,

respectively. We will show that (D(R),+, ◦) is not a ring. Suppose in the con-

trary that it is a ring. Let n be the natural number but not 2. Define f, g ∈M(R)

by xf = nx and xg = n2x for all x ∈ R. Then f, g ∈ D(R). Consider

nn
x+n2x

= (x)((f + g) ◦ f) = (x)(f ◦ f) + (x)(g ◦ f) = nn
x
+ nn

2x

for all x ∈ R. But if x = 0, then n2 = 2n, a contradiction. Hence (D(R),+, ◦) is

not a ring.

For a semigroup S, let S0 be S if S has a zero and contains more than one

element, otherwise, let S0 be a semigroup S with a zero 0 adjoined. Notice that

if |S| = 1, then S0 ∼= (Z2, ·). A semigroup S is said to admit a ring structure

if S0 is isomorphic to the multiplicative structure of some rings. Similarly, a

semigroup S is said to admit a left [right] nearring structure if there is an operation

+ on S0 such that (S0,+, ·) is a left [right] nearring where · is the operation on

S0. Let R, LNR and RNR denote the class of all semigroups admitting a ring

structure, the class of all semigroups admitting a left nearring structure and the

class of all semigroups admitting a right nearring structure, respectively. Then

R ⊆ LNR∩RNR.

Notice that in [16], S. Srichaiyarat showed that every zero semigroup admits

a ring structure. Then every zero semigroup always admit a left [right] nearring

structure too.

For a semigroup S and a ∈ S, define an operation ∗ on S by x ∗ y = xay for

all x, y ∈ S. The semigroup (S, ∗) is called a variant of S and (S, ∗) is denoted by

(S, a). We then have some properties as follows.

Proposition 2.6. Let (S, ·) be a semigroup with identity e, S1 be a subsemigroup of S

containing e and a ∈ S. Then S1 is a subsemigroup of a variant (S, a) if and only if

a ∈ S1.
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Proof. Assume that a /∈ S1. Since eae = a /∈ S1, we see that (S1, a) is not a

semigroup. The converse is obvious.

For a subsemigroup S and a ∈ S, we note that if S1 is a subsemigroup of

S satisfying Proposition 2.6, then the sentence “(S1, a) is a subsemigroup of

(S, a)” means “S1 is a subsemigroup of (S, a)” which is equivalent to “(S1, a)

is a semigroup”.

Proposition 2.7. Let (S, ·) be a semigroup, S1 be a subsemigroup of S and a ∈ S. If

(S1, ·) admits a left [right] nearring structure and (S1, a) is a semigroup, then (S1, a)

also admits a left [right] nearring structure.

Proof. Since 0ax = 0 = xa0 for all x ∈ S1, 0 is also a zero element in (S1, a).

Suppose that (S0
1 ,+, ·) is a left nearring for some operation + on S0

1 . Claim that

(S0
1 ,+, a) is a left nearring. It suffices to show that the left distributive law holds.

Let x, y, z ∈ S0
1 . Then xa(y + z) = xay + xaz. Hence (S1, a) ∈ LNR.

Proposition 2.8. Let (S, ·) be a semigroup, S1 be a subsemigroup of S and a ∈ S.

Assume that (S1, a) is a semigroup. If (S1, ·) ∼= (S1, a), then (S1, ·) admits a left [right]

nearring structure if and only if (S1, a) admits a left [right] nearring structure.

Proof. By Proposition 2.7, it suffices to prove the converse. Assume that (S1, ·) ∼=

(S1, a) and (S0
1 ,+, a) is a left nearring for some operation + on S0

1 . We remark

that both of (S0
1 , a) and (S0

1 , ·) have the same zero, 0. Let ϕ : (S1, ·) → (S1, a) be

an isomorphism. Define a mapping ψ : (S0
1 , ·)→ (S0

1 , a) by

xψ =

 xϕ if x ∈ S1 r {0} ,

0 if x = 0.

Then ψ is an isomorphism. Define ⊕ on S0
1 by

x⊕ y = (xψ + yψ)ψ−1 if x, y ∈ S1 r {0} ,

x⊕ 0 = x = 0⊕ x if x ∈ S0
1 .
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Clearly, (S0
1 ,⊕) is a binary operation on S0

1 . Let x, y, z ∈ S0
1 . Thus

(x⊕ y)⊕ z = ((xψ + yψ)ψ−1)⊕ z

= (((xψ + yψ)ψ−1)ψ + zψ)ψ−1

= ((xψ + yψ) + zψ)ψ−1

= (xψ + (yψ + zψ))ψ−1

= (xψ + ((yψ + zψ)ψ−1)ψ)ψ−1

= x⊕ (yψ + zψ)ψ−1

= x⊕ (y ⊕ z).

Hence (S0
1 ,⊕) is a semigroup. Since

0ψ−1 = 0⊕ (0ψ−1) = (0ψ + (0ψ−1)ψ)ψ−1 = (0ψ + 0)ψ−1 = 0ψψ−1 = 0,

we have 0ψ−1 = 0 is the identity of (S0
1 ,⊕). Let x ∈ S1 be such that x 6= 0.

Consider

x⊕ (−(xψ))ψ−1 = (xψ + (−(xψ))ψ−1ψ)ψ−1 = (xψ + (−(xψ)))ψ−1 = 0ψ−1 = 0,

where −(xψ) is an inverse of xψ under the operation +. Then we can see that

(−(xψ))ψ−1 is an inverse of x on (S0
1 ,⊕). Hence (S0

1 ,⊕) is a group. Next, we will

show that · is left distributive over ⊕. Let x, y, z ∈ S0
1 . Then

x(y ⊕ z) = x(yψ + zψ)ψ−1

= xψψ−1(yψ + zψ)ψ−1

= ((xψ)a(yψ + zψ))ψ−1

= ((xψ)a(yψ) + (xψ)a(zψ))ψ−1
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= (xyψ + xzψ)ψ−1

= xy ⊕ xz.

Therefore (S0
1 , ·) ∈ LNR.

Next, let X be a set and

P (X) = {α : A→ X | A ⊆ X}.

Let 0 be the empty transformation. For each α ∈ P (X), the domain of α and

range of α are denoted by domα and ranα, respectively. For α, β ∈ P (X), it is

well-known that

αβ =

 0 if ranα ∩ dom β = ∅,

α|(ranα∩domβ)α−1 ◦ β|(ranα∩domβ)
if ranα ∩ dom β 6= ∅.

Then P (X) is a semigroup with zero under the composition of all partial trans-

formations on X and the empty transformation is the zero element. The follow-

ings are standard transformation subsemigroups of P (X):

I(X) = {α ∈ P (X) | α is an injection} ,

C(X) = {α ∈ P (X) | | ranα| ≤ 1} ,

T (X) = {α ∈ P (X) | domα = X} ,

G(X) = {α ∈ T (X) | α is a bijection} .

Then G(X) ⊆ T (X) and G(X) ⊆ I(X). It is easy to see that I(X) and C(X)

alway have the zero. In the otherwise, G(X) and T (X) have no zero if |X| > 1.

For ∅ 6= A ⊆ X and x ∈ X , let Ax be the constant mapping whose domain and

range are A and {x}, respectively, and the identity map on A will be denoted

by 1A. Observe that 1X ∈ G(X), but 1X ∈ C(X) if and only if |X| = 1. For

distinct a, b ∈ X , the notation
(
a

b

)
means the mapping in I(X) such that the
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domain and the range are {a} and {b}, respectively.

Proposition 2.9. Let X be a set and S(X) be any transformation semigroups defined

as above. If X = ∅, then S(X) admits a left [right] nearring structure.

Proof. Assume that X = ∅. Then S(X) = {0}, so S0(X) ∼= (Z2, ·) ∈ R. Hence

S(X) ∈ LNR ∩RNR.

By Proposition 2.9, it suffices to consider a set X as a nonempty set. The first

purpose of this thesis is to determining when variants of transformation semi-

groups G(X), T (X), P (X), I(X) and C(X) belong to LNR and RNR. These

results are shown in Chapter III.

Next, let V be a vector space over a division ring R and LR(V ) be the semi-

group under the composition of all linear transformations on V . Then LR(V )

admits a ring structure under the usual addition of linear transformations. Re-

call that the image of v under α ∈ LR(V ) is written by vα. For α ∈ LR(V ),

let Kerα and Imα denote the kernel and the image of α, respectively. For any

subspace W of V , dimRW means the dimension of W . The identity map on V

and the zero map on V will be denoted by 1V and 0, respectively. The follow-

ing five propositions are provided in this thesis. They are simple facts of vector

spaces and linear transformations which will be used. The proofs are routine

and elementary, so then we omitted them.

Proposition 2.10. Let B be a basis for V . If u ∈ B and v ∈ 〈B r {u}〉, then (B r

{u}) ∪ {u+ v} is also a basis for V .

Proposition 2.11. Let B be a basis for V , A ⊆ B and ϕ : B r A → V a one-to-one

mapping such that (B r A)ϕ is a linearly independent subset of V . If α ∈ LR(V ) is

defined by

vα =

 0 if v ∈ A,

vϕ if v ∈ B r A,
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then Kerα = 〈A〉 and Imα = 〈B r A〉ϕ.

Proposition 2.12. Let B be a basis for V and A ⊆ B. Then

(i) {v + 〈A〉 | v ∈ B r A} is a basis for the quotient space V/ 〈A〉 and

(ii) dimR(V/ 〈A〉) = |B r A|.

Proposition 2.13. Let B be a basis for V and B1, B2 and B3 be disjoint subsets of B.

Then 〈B1 ∪B2〉 ∩ 〈B1 ∪B3〉 = 〈B1〉.

Proposition 2.14. Let B be a basis for V , α ∈ LR(V ) and B1 be a basis for Kerα such

that B1 ⊆ B. Then (B rB1)α is a basis for Imα.

Proposition 2.15. ([8]) Let B be a basis for V and C a nonempty subset of B. Then⋂
v∈C

〈B r {v}〉 = 〈B r C〉.

Let

GR(V ) = {α ∈ LR(V ) | α is an isomorphism} .

Then GR(V ) is the unit group of LR(V ). The following subsets of LR(V ) are

clearly subsemigroups of LR(V ) containing GR(V ),

MR(V ) = {α ∈ LR(V ) | α is a monomorphism} ,

ER(V ) = {α ∈ LR(V ) | α is an epimorphism} .

Observe that MR(V ) = ER(V ) = GR(V ) if and only if dimR V is finite. Next, if V

is an infinite dimensional vector space, let

OMR(V ) = {α ∈ LR(V ) | dimRKerα is infinite } ,

OER(V ) = {α ∈ LR(V ) | dimR(V/ Imα) is infinite } .

We knew from [2] that OMR(V ) and OER(V ) are both subsemigroups of LR(V )

containing the zero mapping. For this case, the semigroupsOMR(V ) andOER(V )
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may be referred to respectively as the opposite semigroup of MR(V ) and the oppo-

site semigroup of ER(V ). For a cardinal number k with k ≤ dimR V , let

KR(V, k) = {α ∈ LR(V ) | dimRKerα ≥ k} ,

CIR(V, k) = {α ∈ LR(V ) | dimR(V/ Imα) ≥ k} ,

IR(V, k) = {α ∈ LR(V ) | dimR Imα ≤ k} .

Then the zero mapping belongs to all of the above three subsets of LR(V ). By [1],

we can conclude that all of KR(V, k), CIR(V, k) and IR(V, k) are subsemigroups

of LR(V ). Observe that if dimR V is infinite, the notations OMR(V ) and OER(V )

defined previously denote KR(V,ℵ0) and CIR(V,ℵ0), respectively, that is,

OMR(V ) = {α ∈ LR(V ) | dimRKerα ≥ ℵ0} ,

OER(V ) = {α ∈ LR(V ) | dimR(V/ Imα) ≥ ℵ0} ,

where ℵ0 is the smallest infinite cardinal number. Notice that if dimR V is finite,

then for α ∈ LR(V ), dimRKerα = dimR(V/ Imα) = dimR V − dimR Imα since

dimR V = dimRKerα + dimR Imα and dimR V = dimR(V/ Imα) + dimR Imα. So

we have

Proposition 2.16. ([1]) If dimR V is finite, then

KR(V, k) = CIR(V, k) = IR(V, dimR V − k)

for every cardinal number k ≤ dimR V .

However, these are not generally true if dimR V is infinite. This is shown

by the following proposition. This proposition also shows that the semigroups

KR(V, k), CIR(V, k) and IR(V, k) should be considered independently if dimR V

is infinite.

Proposition 2.17. ([1]) Let V be an infinite dimensional vector space and a nonzero

cardinal number k ≤ dimR V . Then the following statements hold.
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(i) CIR(V, k) 6= KR(V, l) for every cardinal number l ≤ dimR V .

(ii) If k < dimR V , then IR(V, k) 6= KR(V, l) and IR(V, k) 6= CIR(V, l) for every

cardinal number l ≤ dimR V .

Next, let K ′R(V, k), CI
′
R(V, k) and I ′R(V, k) be subsets of KR(V, k), CIR(V, k)

and IR(V, k) respectively as follows:

K ′R(V, k) = {α ∈ LR(V ) | dimRKerα > k} where k < dimR V,

CI ′R(V, k) = {α ∈ LR(V ) | dimR(V/ Imα) > k} where k < dimR V,

I ′R(V, k) = {α ∈ LR(V ) | dimR Imα < k} where 0 < k ≤ dimR V.

Thus K ′R(V, k), CI
′
R(V, k) and I ′R(V, k) contain 0, moreover, they are respectively

subsemigroups of LR(V ) under the composition. For a cardinal number k, the

successor of k is the smallest cardinal number greater than k. Note that if k <

dimR V , then K ′R(V, k) = KR(V, k
′) and CI ′R(V, k) = CIR(V, k

′) where k′ is the

successor of k. Also, if 0 < k ≤ dimR V , k is a finite cardinal number and

k̃ = k − 1, then I ′R(V, k) = IR(V, k̃).

For α ∈ LR(V ), let

F (α) = {v ∈ V | vα = v}.

Then for α ∈ LR(V ), F (α) is a subspace of V and α is called an almost identical

linear transformation on V if dimR(V/F (α)) is finite. The set of all almost identical

linear transformations on V will be denoted by AIR(V ), that is,

AIR(V ) = {α ∈ LR(V ) | dimR(V/F (α)) <∞}.

Observe that 1V ∈ AIR(V ).

Proposition 2.18. ([2]) AIR(V ) is a subsemigroup of LR(V ).

Note that if dimR V is finite, thenAIR(V ) = LR(V ) which admits a ring struc-

ture. Moreover, the semigroupAIR(V ) does not contain the zero mapping when
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dimR V is infinite. We remark that every referred linear transformation semi-

groups S(V ), if 0 ∈ S(V ) and |S(V )| > 1, the zero mapping is a zero element in

S(V ).

Since every linear transformation on a vector space V can be defined on a ba-

sis for V , for convenience, we may write α ∈ LR(V ) by using a bracket notation.

For examples,

α =

 B1 v

0 v


v∈BrB1

means

vα =

 0 if v ∈ B1,

v if v ∈ B rB1,

and

β =

 u w v

w 0 v


v∈Br{u,w}

is equivalent to

vβ =


w if v = u,

0 if v = w,

v if v ∈ B r {u,w} ,

where B is a basis for V , B1 ⊆ B and u,w ∈ B are distinct.

If H and T are respectively subsemigroups of GR(V ) and AIR(V ), we show

in Chapter IV that if dimR V is infinite, the following systems

(OMR(V ), θ), (OER(V ), θ) where θ ∈ LR(V ),

(OMR(V ) ∪H, θ), (OER(V ) ∪H, θ) where θ ∈ H ∪ {1V } ,

(OMR(V ) ∪ T, θ) where θ ∈ (ER(V ) ∩ T ) ∪ {1V } ,

(OER(V ) ∪ T, θ) where θ ∈ (MR(V ) ∩ T ) ∪ {1V } ,

are subsemigroups of (LR(V ), θ). The main purpose of Chapter IV is to show
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that if dimR V is infinite, then (OMR(V ), θ) where θ ∈ ER(V ), (OER(V ), θ) where

θ ∈MR(V ) and some subsemigroups of variants LR(V ) containingOMR(V ) and

OER(V ), defined as above, do not admit the structure of both a left nearring and

a right nearring.

In the last chapter, we also show thatKR(V, k),K ′R(V, k),CIR(V, k),CI
′
R(V, k),

IR(V, k) and I ′R(V, k) are semigroups of (LR(V ), θ) where θ ∈ LR(V ). We will de-

termine when the following semigroups,

(KR(V, k), θ), (K
′
R(V, k), θ) where θ ∈ ER(V ),

(CIR(V, k), θ), (CI
′
R(V, k), θ), (IR(V, k), θ), (I

′
R(V, k), θ) where θ ∈MR(V ),

admit the structure of a left nearring and a right nearring.



CHAPTER III

VARIANTS OF SOME TRANSFORMATION SEMIGROUPS

ADMITTING THE NEARRING STRUCTURE

For this chapter, we consider well-known transformation semigroups on a

nonempty set X . They are recalled as follows:

P (X) = {α : A→ X | A ⊆ X} ,

I(X) = {α ∈ P (X) | α is an injection} ,

C(X) = {α ∈ P (X) | | ranα| ≤ 1} ,

T (X) = {α ∈ P (X) | domα = X} ,

G(X) = {α ∈ T (X) | α is a bijection} .

We knew that G(X), T (X), P (X) and I(X) contain the identity map on X .

So if we consider variants of them, we then confident that they will generalize

results in [5]. Since C(X) dose not alway contain the identity mapping on X ,

then we cannot conclude that variants of C(X) generalizes a semigroup C(X).

Since

ran(fθg) ⊆ ran g and | ran(fθg)| ≤ | ran g| ≤ 1,

fθg ∈ C(X) where f, g ∈ C(X) and θ ∈ P (X). Then C(X) is a subsemigroup of

a variant (P (X), θ) where θ ∈ P (X).

A question,“if we use θ ∈ P (X), are (G(X), θ), (T (X), θ) and (I(X), θ) semi-

groups?”, was answered by Proposition 2.6.

In this chapter, we will consider variants of G(X), T (X), P (X) and I(X) to
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admit the nearring structure. Moreover, C(X) will be considered as a subsemi-

group of all variants of P (X).

3.1 The Variants of G(X) and T (X)

Throughout this section, we assume that every left [right] nearring is addi-

tively commutative. The following lemma is useful.

Lemma 3.1.1. ([5]) (i) G(X) admits a left nearring structure if and only if |X| ≤ 2.

(ii) G(X) admits a right nearring structure if and only if |X| ≤ 2.

Theorem 3.1.2. (i) Every variant of G(X) admits a left nearring structure if and only

if |X| ≤ 2.

(ii) Every variant of G(X) admits a right nearring structure if and only if |X| ≤ 2.

Proof. Since the mapping ϕ : (G(X), θ) → (G(X), ◦) defined by αϕ = αθ is

clearly an isomorphism for all α, θ ∈ G(X), we have (G(X), θ) ∼= G(X) for all

θ ∈ G(X). By Lemma 3.1.1 and Proposition 2.7, the proof is complete.

Corollary 3.1.3. ([16]) Every variant of G(X) admits a ring structure if and only

if |X| ≤ 2.

We can see that Theorem 3.1.2 generalizes Lemma 3.1.1. Next, we charac-

terize when variants of T (X) admit the structure of a left [right] nearring. The

quoted result is used.

Lemma 3.1.4. ([5]) (i) T (X) always admit a left nearring structure.

(ii) T (X) admits a right nearring structure if and only if |X| = 1.

Theorem 3.1.5. (i) Every variant of T (X) always admit a left nearring structure.

(ii) Every variant of T (X) admits a right nearring structure if and only if |X| = 1.
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Proof. (i) is applied from Lemma 3.1.4 (i) and Proposition 2.7.

(ii) Let θ ∈ T (X). Suppose that |X| > 1. Let a, b ∈ X be distinct. Since fXa = Xa

and fXb = Xb for all f ∈ T (X), implies that a semigroup T (X) has no left zero.

Assume that (T (X), θ) ∈ RNR. Then there is an operation + on T 0(X) such

that (T 0(X),+, θ) is a right nearring. Thus Xa +Xb = f for some f ∈ T 0(X).

Case 1: f 6= 0. Thus

Xa = fθXa = (Xa +Xb)θXa = XaθXa +XbθXa = Xa +Xa.

That is, Xa = 0, which is a contradiction.

Case 2: f = 0. So 0 = (Xa + Xb)θXa = Xa + Xa. Since Xa + Xb = 0, we have

Xa = Xb, a contradiction. Hence |X| = 1.

The converse follows immediately from Lemma 3.1.4 (ii) and Proposition 2.7.

As a consequence of Theorem 3.1.5, the following corollary holds and Lemma

3.1.4 is also a speacial case.

Corollary 3.1.6. ([16]) Every variant of T (X) admits a ring structure if and only if

|X| = 1.

3.2 The Variants of P (X), I(X) and C(X)

Recall that we determine variants of both P (X) and I(X) and (C(X), θ) to

admit a nearring structure where θ ∈ P (X).

Lemma 3.2.1. ([5]) (i) P (X) always admit a left nearring structure.

(ii) P (X) admits a right nearring structure if and only if |X| = 1.

Theorem 3.2.2. For θ ∈ P (X),

(i) every variant of P (X) always admit a left nearring structure,

(ii) if (P (X), θ) admits a right nearring structure, then θ ∈ C(X),

(iii) if |X| = 1 or θ = 0, then (P (X), θ) admits a right nearring structure.
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Proof. (i) follows from Lemma 3.2.1 (i) and Proposition 2.7.

(ii) Assume that there is an operation + such that (P (X),+, θ) is a right near-

ring. Suppose on the contrary that | ran θ| > 1. Let x, y ∈ ran θ be distinct. Then

there exist a, b ∈ dom θ such that aθ = x and bθ = y. Since (P (X),+, θ) is a right

nearring, we have
(
a

a

)
+

(
a

b

)
= f for some f ∈ P (X). Then

fθ

(
x

x

)
=

(
a

x

)
+ 0 =

(
a

x

)
.

Case 1: fθ = 0. Thus
(
a

x

)
= 0, which is a contradiction.

Case 2: fθ 6= 0. Thus

fθ

(
y

x

)
= 0 +

(
a

x

)
=

(
a

x

)
.

So afθ = x and afθ = y, a contradiction.

(iii) If θ = 0, then (P (X), θ) is a zero semigroup, which implies that (P (X), θ) ∈

LNR. Otherwise, it is proved by Lemma 3.2.1 (ii) and Proposition 2.7.

If we choose θ = 1V , then (P (X), θ) = P (X). In this case, Lemma 3.2.1 and

Theorem 3.2.2 have the same results. Moreover, we can conclude that for θ ∈

T (X) and θ is surjective or injective, (P (X), θ) admits a right nearring structure

if and only if |X| = 1.

Lemma 3.2.3. ([5]) (i) I(X) admits a left nearring structure if and only if |X| = 1.

(ii) I(X) admits a right nearring structure if and only if |X| = 1.

Theorem 3.2.4. For θ ∈ I(X),

1. (i) if (I(X), θ) admits a left nearring structure, then θ ∈ C(X),

(ii) if |X| = 1 or θ = 0, then (I(X), θ) admits a left nearring structure,

2. (i) if (I(X), θ) admits a right nearring structure, then θ ∈ C(X),

(ii) if |X| = 1 or θ = 0, then (I(X), θ) admits a right nearring structure.

Proof. It suffices to show that 1. holds.

(i) Assume (I(X), θ) ∈ LNR. Then there is an operation + such that (I(X),+, θ)
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is a left nearring. Suppose on the contrary that | ran θ| > 1. Let x, y ∈ ran θ be

distinct. So there are distinct a, b ∈ dom θ such that aθ = x and bθ = y. Then(
x

x

)
+

(
y

x

)
= f for some f ∈ I(X).

Case 1: f = 0. Then 0 =

(
a

a

)
θf =

(
a

x

)
+ 0 =

(
a

x

)
, which is a contradiction.

Case 2: f 6= 0. Then (
a

a

)
θf =

(
a

x

)
=

(
a

b

)
θf .

Thus aθf = x and bθf = x, respectively. Since θf ∈ I(X), we have a = b which

is a contradiction.

(ii) If θ = 0, then (I(X), θ) is a zero semigroup, so that (I(X), θ) ∈ LNR. Other-

wise, it follows from Lemma 3.2.3 and Proposition 2.7.

Note that we can see Lemma 3.2.3 as Theorem 3.2.4 where θ is the identity

mapping on X . The last main purpose of this section is to determine when

(C(X), θ) admits the structure of a left [right] nearring where θ ∈ P (X). The

following tool is needed.

Lemma 3.2.5. ([16]) C(X) admits a ring structure if and only if |X| = 1.

Theorem 3.2.6. For θ ∈ P (X),

1. (i) if (C(X), θ) admits a left nearring structure, then θ ∈ C(X),

(ii) if |X| = 1 or θ = 0, then (C(X), θ) admits a right nearring structure,

2. (i) if (C(X), θ) admits a right nearring structure, then θ ∈ C(X),

(ii) if |X| = 1 or θ = 0, then (C(X), θ) admits a left nearring structure.

Proof. It suffices to show that 1. holds.

(i) Assume that (C(X), θ) ∈ LNR. Then there is an operation + such that

(C(X),+, θ) is a left nearring. Suppose that θ /∈ C(X). Then there exist distinct

x, y ∈ ran θ. So we have a, b ∈ dom θ such that a 6= b, aθ = x and bθ = y. Thus(
x

x

)
+

(
y

y

)
= f for some f ∈ C(X).
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Case 1: f = 0. Then 0 =

(
a

a

)
θf =

(
a

x

)
+ 0 =

(
a

x

)
, which is a contradiction.

Case 2: f 6= 0. Then
(
a

a

)
θf =

(
a

x

)
and

(
a

b

)
θf = 0 +

(
a

y

)
=

(
a

y

)
. So distinct

x, y ∈ ran f contradicts f ∈ C(X).

(ii) Assume that |X| = 1 or θ = 0. By Lemma 3.2.5, C(X) ∈ R. This implies that

C(X) ∈ RNR. By Proposition 2.7, (C(X), θ) ∈ RNR.

The above theorem yields an immediate corollary.

Corollary 3.2.7. (i) C(X) admits a left nearring structure if and only if |X| = 1.

(ii) C(X) admits a right nearring structure if and only if |X| = 1.

Finally, this section is ended by giving

Remark 3.2.8. Let θ ∈ T (X) be surjective or injective and S(X) be I(X) orC(X).

Then the following statements hold.

(i) (S(X), θ) admits a left nearring structure if and only if |X| = 1.

(ii) (S(X), θ) admits a right nearring structure if and only if |X| = 1.



CHAPTER IV

SUBSEMIGROUPS OF VARIANTS OF LR(V )

WHICH DO NOT ADMIT THE NEARRING STRUCTURE

These linear transformation semigroups on V , an infinite dimensional vector

space over a division ring R, given in Chapter II are recalled as follows:

LR(V ) = {α : V → V | α is a linear transformation} ,

GR(V ) = {α ∈ LR(V ) | α is an isomorphism } ,

MR(V ) = {α ∈ LR(V ) | α is a monomorphism } ,

ER(V ) = {α ∈ LR(V ) | α is an epimorphism } ,

OMR(V ) = {α ∈ LR(V ) | dimRKerα is infinite } ,

OER(V ) = {α ∈ LR(V ) | dimR(V/ Imα) is infinite } ,

AIR(V ) = {α ∈ LR(V ) | dimR(V/F (α)) <∞}

where F (α) = {v ∈ V | vα = v} ,

= {α ∈ LR(V ) | α is almost identical } .

The chapter is concerned with subsemigroups of variants of LR(V ) defined from

these linear transformation semigroups.

4.1 Generalizations of the Semigroups OMR(V ) and OER(V )

We begin this section by recalling that 0, the zero mapping on V , belongs

to both OMR(V ) and OER(V ), but the identity mapping 1V dose not contain in

bothOMR(V ) andOER(V ). First, we will show that (OMR(V ), θ) and (OER(V ), θ)
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are semigroups where θ ∈ LR(V ).

Lemma 4.1.1. ([2]) (i) OMR(V ) is a right ideal of LR(V ).

(ii) OER(V ) is a left ideal of LR(V ).

Next proposition follows immediately from Lemma 4.1.1.

Proposition 4.1.2. Let θ ∈ LR(V ). Then following statements hold.

(i) (OMR(V ), θ) is a subsemigroup of (LR(V ), θ).

(ii) (OER(V ), θ) is a subsemigroup of (LR(V ), θ).

In this thesis, we will show that semigroups

(OMR(V ), θ) where θ ∈ ER(V ),

(OER(V ), θ) where θ ∈MR(V )

do not admit both a left nearring structure and a right nearring structure.

Theorem 4.1.3. Let θ ∈ ER(V ). Then the following statements hold.

(i) (OMR(V ), θ) does not admit a left nearring structure.

(ii) (OMR(V ), θ) does not admit a right nearring structure.

Proof. Let B be a basis for V . SinceB is infinite, there is a partition {B1, B2} ofB

such that |B| = |B1| = |B2|. For each v ∈ B, we choose uv ∈ V such that uvθ = v.

Define α, β ∈ LR(V ) by

α =

 v B2

uv 0


v∈B1

and β =

 B1 v

0 uv


v∈B2

.

Then Kerα = 〈B2〉 and Ker β = 〈B1〉. That is, α, β ∈ OMR(V ). Observe that

αθα = α, βθβ = β and αθβ = 0 = βθα.

(i) Suppose that (OMR(V ),⊕, θ) is a left nearring. Let λ = α ⊕ β ∈ OMR(V ).

Then αθλ = α and βθλ = β. These show that
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for every v ∈ B1, vλθ = vαθλθ = vαθ = v,

for every v ∈ B2, vλθ = vβθλθ = vβθ = v.

Then we have λθ = 1V /∈ OMR(V ), which is a contradiction since OMR(V ) is a

right ideal of LR(V ). Hence (OMR(V ), θ) /∈ LNR.

(ii) Suppose that (OMR(V ),⊕, θ) is a right nearring. Let λ = α ⊕ β ∈ OMR(V ).

Then λθα = α and λθβ = β. Consequently,

for every v ∈ B1, vλθβ = vβ = 0,

for every v ∈ B2, vλθα = vα = 0.

Thus

for every v ∈ B1, vλθ ∈ Ker β = 〈B1〉,

for every v ∈ B2, vλθ ∈ Kerα = 〈B2〉.

So

for every v ∈ B1, vλθαθ = vλθ,

for every v ∈ B2, vλθβθ = vλθ.

Since λθα = α and λθβ = β, we have

for every v ∈ B1, vλθαθ = vαθ = v and

for every v ∈ B2, vλθβθ = vβθ = v

which imply that vλθ = v for all v ∈ B. This shows that λθ = 1V /∈ OMR(V )

contradicts the right ideal property of OMR(V ). Hence (OMR(V ), θ) /∈ RNR.

Theorem 4.1.3 generalizes the next corollary when θ = 1V .

Corollary 4.1.4. ([8]) OMR(V ) does not admit both a left nearring structure and a

right nearring structure.



24

We need the following fact for our next main theorem.

Lemma 4.1.5. OER(V )MR(V ) ⊆ OER(V ).

Proof. Let α ∈ OER(V ) and β ∈MR(V ). Define ϕ : V/ Imα→ V/ Imαβ by

(v + Imα)ϕ = vβ + Imαβ for all v ∈ V .

Since β is a monomorphism on V , we have ϕ is also a monomorphism. Let B

be a basis for V/ Imα. By Proposition 2.14 and ϕ is an injection, Bϕ is a basis

for Imϕ. Extend Bϕ to a basis C for V/ Imαβ. Thus dimR(V/ Imα) = |B| =

|Bϕ| ≤ |C| = dimR(V/ Imαβ). Since α ∈ OER(V ), dimR(V/ Imα) is infinite and

we obtain that dimR(V/ Imαβ) is also infinite. Therefore αβ ∈ OER(V ).

Our next target is showing that (OER(V ), θ) does not admit both a left near-

ring structure and a right nearring structure where θ ∈MR(V ).

Theorem 4.1.6. Let θ ∈MR(V ). Then the following statements hold.

(i) (OER(V ), θ) does not admit a left nearring structure.

(ii) (OER(V ), θ) does not admit a right nearring structure.

Proof. Let B be a basis for V . Then there is a partition {B1, B2} of B such that

|B| = |B1| = |B2|. Since θ is injective, by Proposition 2.14, we have Bθ is a basis

for Im θ and {B1θ, B2θ} is also a partition of Bθ such that |Bθ| = |B1θ| = |B2θ| =

|B|. Extend Bθ to a basis C for V . Set B3 = C r Bθ. Then C = Bθ ∪ B3. Define

α, β, γ ∈ LR(V ) by

α =

 v B2θ ∪B3

vθ−1 0


v∈B1θ

, β =

 v B1θ ∪B3

vθ−1 0


v∈B2θ

and

γ =

 v Bθ

v 0


v∈B3

.
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Then dimR(V/ Imα) = |B r B1| = |B2|, dimR(V/ Im β) = |B r B2| = |B1| and

dimR(V/ Im γ) = |C r B3| = |Bθ|. This implies that α, β, γ ∈ OER(V ). It is easy

to see that αθα = α, βθβ = β and αθβ = βθα = αθγ = βθγ = 0.

(i) Suppose that (OER(V ),⊕, θ) is a left nearring. Let λ = α⊕β ∈ OER(V ). Then

αθλ = α and βθλ = β. Hence

for every v ∈ B1θ, vλθ = vαθλθ = vαθ = v,

for every v ∈ B2θ, vλθ = vβθλθ = vβθ = v.

So, for every v ∈ Bθ, vλθ = v. Consequently, (Bθ)λθ = Bθ. This implies that

B(θλ) = (Bθλ)θθ−1 = (Bθλθ)θ−1 = Bθθ−1 = B since θ is an injection. Thus

B ⊆ Im θλ ⊆ Imλ, hence λ is onto, which contradicts λ ∈ OER(V ). Hence

(OER(V ), θ) /∈ LNR, as desired.

(ii) Suppose that (OER(V ),⊕, θ) is a right nearring. Let λ = α ⊕ β ∈ OER(V ).

Then λθα = α, λθβ = β and λθγ = 0. Thus

for every v ∈ B1θ, vλθβ = vβ = 0,

for every v ∈ B2θ, vλθα = vα = 0.

So we have

for every v ∈ B1θ, vλθ ∈ Ker β = 〈B1θ ∪B3〉 ,

for every v ∈ B2θ, vλθ ∈ Kerα = 〈B2θ ∪B3〉 .

Claim that for every v ∈ B1θ, vλθ ∈ 〈B1θ〉 and for every v ∈ B2θ, vλθ ∈ 〈B2θ〉.

Let v ∈ B1θ. Then vλθ =
n∑
i=1

aivi +
m∑
j=1

bjwj for some vi ∈ B1θ, wj ∈ B3 and

ai, bj ∈ R where i = 1, 2, . . . , n and j = 1, 2, . . . ,m. Thus

0 = (vλθ)γ = (
n∑
i=1

aivi)γ + (
m∑
j=1

bjwj)γ = 0 +
m∑
j=1

bjwj =
m∑
j=1

bjwj.
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Consequently, bj = 0 for all j = 1, 2, . . . ,m. So vλθ =
n∑
i=1

aivi ∈ 〈B1θ〉. Similarly,

vλθ ∈ 〈B2θ〉 for all v ∈ B2θ, and then the claim is proved. By the claim, we have

for every v ∈ B1θ, vλθ = vλθαθ = v,

for every v ∈ B2θ, vλθ = vλθβθ = v.

Hence

for every v ∈ B1θ, vλθαθ = vαθ = v and

for every v ∈ B2θ, vλθβθ = vβθ = v

we obtain that vλθ = v for all v ∈ Bθ. Similary (i), we have a contradiction.

Therefore the proof is complete.

Finally, the next corollary follows from the above Theorem.

Corollary 4.1.7. ([8]) OER(V ) does not admit both a left nearring structure and a

right nearring structure.

4.2 Generalizations of any Semigroups ContainingOMR(V ) and

Semigroups Containing OER(V )

In this section, let H be a subsemigroup of GR(V ) and T be a subsemigroup

of AIR(V ).

Remark 4.2.1. Let H be a proper subsemigroup of GR(V ) containing 1V and

θ ∈ GR(V )rH . Since 1V θ1V = θ /∈ H , it follows that both (OMR(V ) ∪H, θ) and

(OER(V ) ∪H, θ) are not semigroups.

To fulfill the above remark, we will show that there exist many proper sub-

semigroups of GR(V ) containing the identity map 1V .
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Example 4.2.2. Let B be a basis for V and for distinct u,w ∈ B, let αu,w ∈ GR(V )

be defined by

αu,w =

 u w v

w u v


v∈Br{u,w}

.

Then {1V , αu,w} is a proper subsemigroup of GR(V ) contaning 1V .

Remark 4.2.3. Let T be a proper subsemigroup of AIR(V ) containing 1V and

θ ∈ GR(V ) r T . Since 1V θ1V = θ /∈ (OMR(V ) ∪ T ) ∪ (OER(V ) ∪ T ), it follows

that both (OMR(V ) ∪ T, θ) and (OER(V ) ∪ T, θ) are not semigroups.

Next, we give examples for a proper subsemigroup ofAIR(V ) containing 1V .

Example 4.2.4. Let B be a basis for V and u ∈ B. Define αu ∈ AIR(V ) by

αu =

 u v

0 v


v∈Br{u}

.

Then {1V , αu} is a proper subsemigroup of AIR(V ) containing 1V .

By Remark 4.2.1 and Remark 4.2.3, it is valid to consider the followings:

(OMR(V ) ∪H, θ) and (OER(V ) ∪H, θ) where θ ∈ H ∪ {1V } ,

(OMR(V ) ∪ T, θ) where θ ∈ (ER(V ) ∩ T ) ∪ {1V } ,

(OER(V ) ∪ T, θ) where θ ∈ (MR(V ) ∩ T ) ∪ {1V } .

We will show that they are semigroups which do not admit the structure of

nearring.

Lemma 4.2.5. ([2]) GR(V )OMR(V ) ⊆ OMR(V ).

The following proposition is a direct consequence of Lemma 4.1.1, Lemma

4.1.5 and Lemma 4.2.5.
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Proposition 4.2.6. Let θ ∈ H ∪ {1V }. Then the following statements hold.

(i) (OMR(V ) ∪H, θ) is a subsemigroup of (LR(V ), θ).

(ii) (OER(V ) ∪H, θ) is a subsemigroup of (LR(V ), θ).

Lemma 4.2.7. ([2]) (i) AIR(V )OMR(V ) ⊆ OMR(V ).

(ii) OER(V )AIR(V ) ⊆ OER(V ).

Proposition 4.2.8. (i) If θ ∈ (ER(V ) ∩ T ) ∪ {1V }, then (OMR(V ) ∪ T, θ) is a sub-

semigroup of (LR(V ), θ).

(ii) If θ ∈ (MR(V )∩T )∪{1V }, then (OER(V )∪T, θ) is a subsemigroup of (LR(V ), θ).

Proof. (i) Let α, β ∈ OMR(V ) ∪ T . If either α ∈ OMR(V ) or β ∈ OMR(V ), we

then have αθβ ∈ OMR(V ) or βθα ∈ OMR(V ) by the right ideal property of

OMR(V ) and Lemma 4.2.7, respectively. If α, β ∈ T , then it is clear that αθβ,

βθα ∈ OMR(V ) ∪ T .

(ii) is similar to (i).

The following theorems are our main purposes.

Theorem 4.2.9. Let θ ∈ H ∪ {1V } and S(V ) be the semigroup OMR(V ) or OER(V ).

Then the following statements hold.

(i) (S(V ) ∪H, θ) does not admit a left nearring structure.

(ii) (S(V ) ∪H, θ) does not admit a right nearring structure.

Proof. Let B be a basis for V and u ∈ B be a fixed element. Since B r {u} is

infinite, Br{u} has a partition {B1, B2} such that |Br{u} | = |B1| = |B2|. Then

B = B1 ∪ B2 ∪ {u} and these three sets are pairwise disjoint. Define α, β, γ ∈

LR(V ) by

α =

 v B2 ∪ {u}

vθ−1 0


v∈B1

, β =

 B1 ∪ {u} v

0 vθ−1


v∈B2
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and

γ =

 u B1 ∪B2

uθ−1 0

 .

So Kerα = 〈B2 ∪ {u}〉, Ker β = 〈B1 ∪ {u}〉, Ker γ = 〈B1 ∪B2〉,

dimR(V/ Imα) = dimR(V/
〈
B1θ

−1〉) = |Bθ−1 rB1θ
−1| = |B rB1|,

dimR(V/ Im β) = dimR(V/
〈
B2θ

−1〉) = |Bθ−1 rB2θ
−1| = |B rB2|,

dimR(V/ Im γ) = dimR(V/
〈
uθ−1

〉
) = |Bθ−1 r

{
uθ−1

}
| = |B r {u} |.

Thus α, β, γ ∈ S(V ). Obviously,

αθα = α, βθβ = β, αθβ = βθα = γθα = αθγ = γθβ = βθγ = 0.

(i) Suppose that (S(V ) ∪ H,⊕, θ) is a left nearring. Let λ = α ⊕ β ∈ S(V ) ∪ H .

Clearly, αθλ = α, βθλ = β and γθλ = 0. Thus

for every v ∈ B1,vλθ = vαθλθ = vαθ = v,

for every v ∈ B2,vλθ = vβθλθ = vβθ = v,

uλθ = uγθλθ = 0.

That is,

λθ =

 u v

0 v


v∈B1∪B2

.

Thus Kerλθ = 〈u〉 and dimR(V/ Imλθ) = dimR(V/ 〈B1 ∪B2〉) = | {u} | = 1.

Hence λθ /∈ S(V ) ∪H which contradicts Lemma 4.1.1 and Lemma 4.1.5, respec-

tively. Therefore (S(V ) ∪H, θ) /∈ LNR.

(ii) Suppose that (S(V )∪H,⊕, θ) is a right nearring. Let λ = α⊕ β ∈ S(V )∪H .
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Clearly, λθα = α, λθβ = β and λθγ = 0. Then

for every v ∈ B1, vλθβ = vβ = 0,

for every v ∈ B2, vλθα = vα = 0.

It follows that

for every v ∈ B1, vλθ ∈ Ker β = 〈B1 ∪ {u}〉 ,

for every v ∈ B2, vλθ ∈ Kerα = 〈B2 ∪ {u}〉 .

Claim that vλθ ∈ 〈B1〉 for all v ∈ B1 and vλθ ∈ 〈B2〉 for all v ∈ B2. Let v ∈ B1.

Then vλθ =
n∑
i=1

aivi + au for some v1, v2, . . . , vn ∈ B1 and a1, a2, . . . , an, a ∈ R.

Since 0 = vλθγ =
n∑
i=1

aiviγ+auγ = au, we have vλθ ∈ 〈B1〉. Similarly, vλθ ∈ 〈B2〉

for all v ∈ B2. By the claim,

for every v ∈ B1, vλθαθ = vλθ,

for every v ∈ B2, vλθβθ = vλθ.

Since

for every v ∈ B1, vλθαθ = vαθ = v,

for every v ∈ B2, vλθβθ = vβθ = v,

for every v ∈ V, vλθγ = 0,

then we have that vλθ = v for all v ∈ 〈B1 ∪B2〉 and uλθ ∈ Ker γ = 〈B1 ∪B2〉. So

(u− uλθ)λθ = uλθ− uλθλθ = uλθ− uλθ = 0. Since B1 ∪B2 ∪{u} is a basis for V

and uλθ ∈ 〈B1 ∪B2〉, by Proposition 2.10, B1 ∪ B2 ∪ {u− uλθ} is a basis for V .
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Hence

λθ =

 u− uλθ v

0 v


v∈B1∪B2

.

Thus Kerλθ = 〈u− uλθ〉 and

dimR(V/ Imλθ) = dimR(V/ 〈B1 ∪B2〉) = | {u− uλθ} | = 1.

Then λθ /∈ S(V ) ∪ H contradicts Lemma 4.1.1 and Lemma 4.1.5, respectively.

Therefore (S(V ) ∪H, θ) /∈ RNR.

By the preceding theorem, we have the following corollary if θ = 1V .

Corollary 4.2.10. ([8]) Let S(V ) be OMR(V ) or OER(V ). Then S(V ) ∪ H does not

admit both a left nearring structure and a right nearring structure.

Theorem 4.2.11. Let θ ∈ (ER(V ) ∩ T ) ∪ {1V }. Then the following statements hold.

(i) (OMR(V ) ∪ T, θ) does not admit a left nearring structure.

(ii) (OMR(V ) ∪ T, θ) does not admit a right nearring structure.

Proof. Let B be a basis for V . Then there is a partition {B1, B2} such that |B| =

|B1| = |B2|. Since |B1| = |B2|, there exists a bijection ϕ : B1 → B2. It follows

from θ ∈ ER(V ) that we can choose uv ∈ V such that uvθ = v for all v ∈ V .

Define α, β ∈ LR(V ) by

α =

 v B2

uvϕ 0


v∈B1

and β =

 B1 v

0 uvϕ−1


v∈B2

.

Thus Kerα = 〈B2〉 and Ker β = 〈B1〉. Hence we have α, β ∈ OMR(V ) ∪ T . It is

easy to see that αθα = βθβ = 0,

αθβ =

 v B2

uv 0


v∈B1

and βθα =

 B1 v

0 uv


v∈B2

.
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(i) Suppose that (OMR(V )∪T,⊕, θ) is a left nearring. Let λ = α⊕β ∈ OMR(V )∪

T . Then αθλ = αθβ and βθλ = βθα. We then have

for every v ∈ B1, (vϕ)λθ = vαθλθ = vαθβθ = v = (vϕ)ϕ−1,

for every v ∈ B2, (vϕ
−1)λθ = vβθλθ = vβθαθ = v = (vϕ−1)ϕ.

Thus
(λθ)|B2

= ϕ−1 : B2 → B1 is a bijection,

(λθ)|B1
= ϕ : B1 → B2 is a bijection.

(*)

Since {B1, B2} is a partition of B, we have (λθ)|B : B → B is a bijection. So

λθ ∈ GR(V ). That is, λθ /∈ OMR(V ). Since OMR(V ) is a right ideal of LR(V ), λ /∈

OMR(V ). Claim that λθ /∈ AIR(V ). By (*), B1 ∩ F (λθ) = ∅ which is equivalent

to v + F (λθ) 6= F (λθ) for all v ∈ B1. Let v1, v2, . . . , vn ∈ B1 be distinct and

a1, a2, . . . , an ∈ R such that
n∑
i=1

ai(vi + F (λθ)) = F (λθ). Then
n∑
i=1

aivi ∈ F (λθ),

and we have

n∑
i=1

aivi = (
n∑
i=1

aivi)λθ ∈ 〈B2〉 .

Consequently,
n∑
i=1

aivi ∈ 〈B1〉 ∩ 〈B2〉 = {0} and ai = 0 for all i = 1, 2, . . . , n. This

implies that {v + F (λθ) | v ∈ B1} is a linearly independent set and v + F (λθ) 6=

w + F (λθ) for distinct v, w ∈ B1. It follows that dimR(V/F (λθ)) ≥ |B1|, so

λθ /∈ AIR(V ) and the claim is proved. If λ ∈ T , then λθ ∈ T ⊆ AIR(V ) which is

impossible. Then λ /∈ T , a contradiction. Hence (OMR(V ) ∪ T, θ) /∈ LNR.

(ii) Suppose that (OMR(V ) ∪ T,⊕, θ) is a right nearring. Let λ = α ⊕ β ∈

OMR(V ) ∪ T . Then λθα = βθα and λθβ = αθβ. We can conclude that

for every v ∈ B1, v(λθα)θβ = v(βθα)θβ = 0,

for every v ∈ B2, v(λθβ)θα = v(αθβ)θα = 0.
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Consequently,

for every v ∈ B1, vλθ ∈ Ker(αθβ) = 〈B2〉 ,

for every v ∈ B2, vλθ ∈ Ker(βθα) = 〈B1〉 .

Since

for every v ∈ B1, v(λθβ)θ = v(αθβ)θ = v = (vϕ)βθ,

for every v ∈ B2, v(λθα)θ = v(βθα)θ = v = (vϕ−1)αθ,

(βθ)|〈B2〉
and (αθ)|〈B1〉

are monomorphisms, we have vλθ = vϕ for all v ∈ B1 and

vλθ = vϕ−1 for all v ∈ B2. Thus

(λθ)|B1
= ϕ : B1 → B2 is a bijection,

(λθ)|B2
= ϕ−1 : B2 → B1 is a bijection.

Since {B1, B2} is a partition of B, (λθ)|B : B → B is a bijection. So λθ ∈ GR(V ).

That is λθ /∈ OMR(V ). Similarly to (i), λ /∈ OMR(V ) ∪ T , a contradiction. Hence

(OMR(V ) ∪ T, θ) /∈ RNR.

Corollary 4.2.12. ([8]) OMR(V )∪T does not admit both a left nearring structure and

a right nearring structure.

Theorem 4.2.13. Let θ ∈ (MR(V ) ∩ T ) ∪ {1V }. Then the following statements hold.

(i) (OER(V ) ∪ T, θ) does not admit a left nearring structure.

(ii) (OER(V ) ∪ T, θ) does not admit a right nearring structure.

Proof. Let B be a basis for V . Then there is a partition {B1, B2} such that |B| =

|B1| = |B2|. Since θ is injective, by Proposition 2.14, we then have Bθ is a basis

for Im θ such that {B1θ, B2θ} is a partition of Bθ and |Bθ| = |B1θ| = |B2θ|.

Extend Bθ to a basis C for V . Set B3 = C rBθ. Let ϕ : B1θ → B2θ be a bijection.
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Notice that θ−1 : V θ → V exists. Define α, β, γ ∈ LR(V ) by

α =

 v B2θ ∪B3

vϕθ−1 0


v∈B1θ

, β =

 v B1θ ∪B3

vϕ−1θ−1 0


v∈B2θ

and

γ =

 v Bθ

v 0


v∈B3

.

Then dimR(V/ Imα) = |B r B2| = |B1|, dimR(V/ Im β) = |B r B1| = |B2| and

dimR(V/ Im γ) = |C rB3| = |Bθ|. It follows that α, β, γ ∈ OER(V ). Observe that

αθα = βθβ = αθγ = βθγ = 0,

αθβ =

 v B2θ ∪B3

vθ−1 0


v∈B1θ

and βθα =

 v B1θ ∪B3

vθ−1 0


v∈B2θ

.

(i) Suppose that (OER(V )∪T,⊕, θ) is a left nearring. Let λ = α⊕β ∈ OER(V )∪T .

Then αθλ = αθβ and βθλ = βθα. We have that

for every v ∈ B1θ, (vϕ)λθ = vαθλθ = vαθβθ = v = (vϕ)ϕ−1,

for every v ∈ B2θ, (vϕ
−1)λθ = vβθλθ = vβθαθ = v = (vϕ−1)ϕ.

Then
(λθ)|B2θ

= ϕ−1 : B2θ → B1θ is a bijection,

(λθ)|B1θ
= ϕ : B1θ → B2θ is a bijection.

(*)

Since {B1θ, B2θ} is a partition of Bθ, (λθ)|Bθ : Bθ → Bθ is also a bijection. So

(Bθ)λ = (Bθ)λθθ−1 = (Bθ)θ−1 = B. This implies that B ⊆ Imλ. Conse-

quently, λ is onto. Hence λ /∈ OER(V ). Next, we claim that λ /∈ T . By (*),

B1θ ∩ F (λθ) = ∅. That is, v + F (λθ) 6= F (λθ) for all v ∈ B1θ. Let v1, v2, . . . , vn ∈

B1θ be distinct and a1, a2, . . . , an ∈ R such that
n∑
i=1

ai(vi + F (λθ)) = F (λθ). Then
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n∑
i=1

aivi ∈ F (λθ). It follows that

n∑
i=1

aivi = (
n∑
i=1

aivi)λθ ∈ 〈B2θ〉 .

So
n∑
i=1

aivi ∈ 〈B1θ〉 ∩ 〈B2θ〉 = {0}. Then ai = 0 for all i = 1, 2, . . . , n. Thus

{v + F (λθ) | v ∈ B1θ} is linearly independent and v + F (λθ) 6= w + F (λθ) for

different v, w ∈ B1θ. Hence dimR(V/F (λθ)) ≥ |B1θ|, which implies that λθ /∈

AIR(V ). If λ ∈ T , then λθ ∈ T ⊆ AIR(V ), which is a contradiction. Thus λ /∈ T .

Hence λ /∈ OER(V )∪ T , which is impossible. Therefore (OER(V )∪T, θ) /∈ LNR.

(ii) Suppose that (OER(V ) ∪ T,⊕, θ) is a right nearring. Let λ = α ⊕ β ∈

OER(V ) ∪ T . Then λθα = βθα, λθβ = αθβ and λθγ = 0. Thus

for every v ∈ B1θ, vλθαθβ = vβθαθβ = 0,

for every v ∈ B2θ, vλθβθα = vαθβθα = 0.

Consequently,

for every v ∈ B1θ, vλθ ∈ Ker(αθβ) = 〈B2θ ∪B3〉 ,

for every v ∈ B2θ, vλθ ∈ Ker(βθα) = 〈B1θ ∪B3〉 .

Claim that vλθ ∈ 〈B2θ〉 for all v ∈ B1θ and vλθ ∈ 〈B1θ〉 for all v ∈ B2θ. Let

v ∈ B1θ. Then vλθ =
n∑
i=1

aivi+
m∑
j=1

bjwj for some vi ∈ B2θ, wj ∈ B3 and ai, bj ∈ R

where i = 1, 2, . . . , n and j = 1, 2, . . . ,m. Then

0 = (vλθ)γ = (
n∑
i=1

aivi)γ + (
m∑
j=1

bjwj)γ = 0 +
m∑
j=1

bjwj =
m∑
j=1

bjwj .

This implies that bj = 0 for all j = 1, 2, . . . ,m. So vλθ =
n∑
i=1

aivi ∈ 〈B2θ〉.
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Similarly, vλθ ∈ 〈B1θ〉 for all v ∈ B2θ. The claim is complete. Since

for every v ∈ B1θ, v(λθβ)θ = v(αθβ)θ = v = (vϕ)βθ,

for every v ∈ B2θ, v(λθα)θ = v(βθα)θ = v = (vϕ−1)αθ,

(βθ)|〈B2θ〉
and (αθ)|〈B1θ〉

are monomorphisms, we have vλθ = vϕ for all v ∈ B1θ

and vλθ = vϕ−1 for all v ∈ B2θ, respectively. That is,

(λθ)|B1θ
= ϕ : B1θ → B2θ is a bijection,

(λθ)|B2θ
= ϕ−1 : B2θ → B1θ is a bijection.

Since {B1θ, B2θ} is a partition of Bθ, (λθ)|Bθ : Bθ → Bθ is a bijection and

(Bθ)λθ = Bθ. It follows that B(θλ) = B since θ is injective. So B ⊆ Im θλ ⊆ Imλ

Thus λ is onto. Consequently, λ /∈ OER(V ). It is similar to (i), we have λ /∈ T .

That is λ /∈ OER(V ) ∪ T , a contradiction. Hence (OER(V ) ∪ T, θ) /∈ RNR.

Therefore the theorem is proved.

Corollary 4.2.14. ([8]) OER(V )∪ T does not admit both a left nearring structure and

a right nearring structure.



CHAPTER V

SUBSEMIGROUPS OF VARIANTS OF LR(V )

ADMITTING THE NEARRING STRUCTURE

Throughout this section, let V be a vector space over a division ring R and

k be a cardinal number. We recall that the followings are linear transformation

semigroups on V .

KR(V, k) = {α ∈ LR(V ) | dimRKerα ≥ k} where k ≤ dimR V,

K ′R(V, k) = {α ∈ LR(V ) | dimRKerα > k} where k < dimR V,

CIR(V, k) = {α ∈ LR(V ) | dimR(V/ Imα) ≥ k} where k ≤ dimR V,

CI ′R(V, k) = {α ∈ LR(V ) | dimR(V/ Imα) > k} where k < dimR V,

IR(V, k) = {α ∈ LR(V ) | dimR Imα ≤ k} where k ≤ dimR V,

I ′R(V, k) = {α ∈ LR(V ) | dimR Imα < k} where 0 < k ≤ dimR V.

Note that these semigroups contain 0, the zero map on V .

5.1 Generalizations of the Semigroups KR(V, k) and K ′R(V, k)

We begin this section by showing both (KR(V, k), θ) and (K ′R(V, k), θ) are

subsemigroups of (LR(V ), θ) where θ ∈ LR(V ).

Lemma 5.1.1. (i) For k ≤ dimR V , KR(V, k) is a right ideal of LR(V ).

(ii) For k < dimR V , K ′R(V, k) is a right ideal of LR(V ).

Proof. The results are obtained immediately from Kerαβ ⊇ Kerα for all α, β ∈

LR(V ).
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The following proposition is a directly consequence from Lemma 5.1.1.

Proposition 5.1.2. Let θ ∈ LR(V ). Then the following statements hold.

(i) For k ≤ dimR V , (KR(V, k), θ) is a subsemigroup of (LR(V ), θ).

(ii) For k < dimR V , (K ′R(V, k), θ) is a subsemigroup of (LR(V ), θ).

In this thesis, we shall choose θ ∈ ER(V ) to determine when the semigroup

(KR(V, k), θ) admits the structure of a left [right] nearring. These facts are help-

ful for our main theorems.

Lemma 5.1.3. Let k ≤ dimR V and θ ∈ GR(V ). Then (KR(V, k), θ) ∼= KR(V, k).

Proof. Define a map ϕ : (KR(V, k), θ) → KR(V, k) by αϕ = αθ for all α ∈

KR(V, k). Since KR(V, k) is a right ideal, ϕ is well-defined. Moreover, ϕ is

also one-to-one. By the right ideal property of KR(V, k), αθ−1 ∈ KR(V, k) and

then α = αθ−1θ = (αθ−1)ϕ for all α ∈ KR(V, k), so ϕ is surjective. For any

α, β ∈ KR(V, k), we have αθβ ∈ KR(V, k) and (αθβ)ϕ = αθβθ = αϕβϕ. Hence ϕ

is an isomorphism.

Lemma 5.1.4. ([8]) Let k ≤ dimR V .

1. KR(V, k) admits the structure of a left nearring if and only if one of the following

statements holds.

(i) k = 0.

(ii) dimR V is finite and k = dimR V .

2. KR(V, k) admits the structure of a right nearring if and only if one of the following

statements holds.

(i) k = 0.

(ii) dimR V is finite and k = dimR V .

By Lemma 5.1.3, Lemma 5.1.4 and Proposition 2.8, the following theorem

holds where θ ∈ GR(V ). Then we will generalize these results by choosing

θ ∈ ER(V ).
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Theorem 5.1.5. Let k ≤ dimR V and θ ∈ ER(V ).

1. (KR(V, k), θ) admits the structure of a left nearring if and only if one of the fol-

lowing statements holds.

(i) k = 0.

(ii) dimR V is finite and k = dimR V .

2. (KR(V, k), θ) admits the structure of a right nearring if and only if one of the

following statements holds.

(i) k = 0.

(ii) dimR V is finite and k = dimR V .

Proof. Assume that (i) or (ii) holds. By Lemma 5.1.4, KR(V, k) ∈ LNR ∩RNR.

By Proposition 2.7, we know that (KR(V, k), θ) ∈ LNR ∩RNR.

Conversely, assume that (KR(V, k),⊕, θ) is a left nearring or a right nearring.

Suppose (i) and (ii) are all false. Then either k > 0 and dimR V is infinite or

0 < k < dimR V <∞.

Case 1: k > 0 and dimR V is infinite. Let B be a basis for V . Then there is a

partition {B1, B2} such that |B| = |B1| = |B2|. For each v ∈ B, we can choose

uv ∈ V such that uvθ = v. Define α, β ∈ LR(V ) by

α =

 v B2

uv 0


v∈B1

and β =

 B1 v

0 uv


v∈B2

.

Then Kerα = 〈B2〉 and Ker β = 〈B1〉, so dimRKerα = |B2| = |B| ≥ k and

dimRKer β = |B1| = |B| ≥ k. Thus α, β ∈ KR(V, k). Obviously, αθα = α, βθβ =

β and αθβ = 0 = βθα. Similar to the proof of Theorem 4.1.3, we have λθ = 1V .

Thus dimRKerλθ = 0 < k, this implies that λθ /∈ KR(V, k), which contradicts

the right ideal property of KR(V, k). Hence (KR(V ), θ) /∈ LNR ∪RNR.

Case 2: 0 < k < dimR V < ∞. Then θ ∈ GR(V ) and Lemma 5.1.4 shows that

KR(V, k) /∈ LNR ∪RNR. By Lemma 5.1.3 and Proposition 2.8, it follows that
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(KR(V, k), θ) ∼= KR(V, k) /∈ LNR ∪RNR.

Therefore the proof is complete.

Since K ′R(V, k) = KR(V, k
′) where k′ is the successor of k, the following theo-

rem will be proved. Moreover, this lemma will be used.

Lemma 5.1.6. ([8]) Let k < dimR V .

(i) K ′R(V, k) admits the structure of a left nearring if and only if dimR V is finite and

k = dimR V − 1.

(ii)K ′R(V, k) admits the structure of a right nearring if and only if dimR V is finite and

k = dimR V − 1.

Theorem 5.1.7. Let k < dimR V and θ ∈ ER(V ).

(i) (K ′R(V, k), θ) admits the structure of a left nearring if and only if dimR V is finite

and k = dimR V − 1.

(ii) (K ′R(V, k), θ) admits the structure of a right nearring if and only if dimR V is finite

and k = dimR V − 1.

Proof. Let k′ be the successor of k. Then k′ > 0 and K ′R(V, k) = KR(V, k
′). Sup-

pose that (K ′R(V, k), θ) ∈ LNR ∪RNR. By Theorem 5.1.5, dimR V < ∞ and

k′ = dimR V . So k = dimR V − 1.

Conversely, assume that dimR V < ∞ and k = dimR V − 1. Then by Lemma

5.1.6, K ′R(V, k) ∈ LNR ∩RNR. Hence (K ′R(V, k), θ) ∈ LNR ∩RNR is ob-

tained from Proposition 2.7.

Notice that we can generalize Lemma 5.1.4 and Lemma 5.1.6 by choosing

θ = 1V .

5.2 Genaralizations of the Semigroups CIR(V, k) and CI ′R(V, k)

First, we will show that (CIR(V, k), θ) and (CI ′R(V, k), θ) are subsemigroups

of (LR(V ), θ) where θ ∈ LR(V ).



41

Lemma 5.2.1. (i) For k ≤ dimR V , CIR(V, k) is a left ideal of LR(V ).

(ii) For k < dimR V , CI ′R(V, k) is a left ideal of LR(V ).

Proof. The results are obtained directly from the fact that Imαβ ⊆ Im β for all

α, β ∈ LR(V )

The following proposition is a direct consequence of Lemma 5.2.1.

Proposition 5.2.2. Let θ ∈ LR(V ). Then the following statements hold.

(i) For k ≤ dimR V , (CIR(V, k), θ) is a subsemigroup of (LR(V ), θ).

(ii) For k < dimR V , (CI ′R(V, k), θ) is a subsemigroup of (LR(V ), θ).

In this thesis, we will choose θ ∈ MR(V ) to determine when the semigroup

(CIR(V, k), θ) admits the structure of a left [right] nearring. The following lem-

mas are needed for our main theorems.

Lemma 5.2.3. Let k ≤ dimR V . Then CIR(V, k)MR(V ) ⊆ CIR(V, k).

Proof. Let α ∈ CIR(V, k) and β ∈MR(V ). Define ϕ : V/ Imα→ V/ Imαβ by

(v + Imα)ϕ = vβ + Imαβ for all v ∈ V .

It can be seen from the proof of Lemma 4.1.5 and α ∈ CIR(V, k) that

k ≤ dimR(V/ Imα) ≤ dimR(V/ Imαβ).

Therefore αβ ∈ CIR(V, k).

Lemma 5.2.4. Let k ≤ dimR V and θ ∈ GR(V ). Then (CIR(V, k), θ) ∼= CIR(V, k).

Proof. Define a map ϕ : (CIR(V, k), θ) → CIR(V, k) by αϕ = αθ for all α ∈

CIR(V, k). By Lemma 5.2.3, ϕ is well-defined. Since θ is one-to-one, so is ϕ.

Lemma 5.2.3 implies that αθ−1 ∈ CIR(V, k) and α = αθ−1θ = (αθ−1)ϕ for all

α ∈ CIR(V, k). Hence ϕ is surjective. For any α, β ∈ CIR(V, k), we then have

αθβ ∈ CIR(V, k) so (αθβ)ϕ = αθβθ = αϕβϕ. Hence ϕ is an isomorphism.

The following quoted result is useful.
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Lemma 5.2.5. ([8]) Let k ≤ dimR V .

1. CIR(V, k) admits the structure of a left nearring if and only if one of the following

statements holds.

(i) k = 0.

(ii) dimR V is finite and k = dimR V .

2. CIR(V, k) admits the structure of a right nearring if and only if one of the follow-

ing statements holds.

(i) k = 0.

(ii) dimR V is finite and k = dimR V .

The next theorem is obtained immediately from Lemma 5.2.4, Lemma 5.2.5

and Proposition 2.8 when θ ∈ GR(V ). We will generalize this result by consid-

ering θ ∈ MR(V ).

Theorem 5.2.6. Let k ≤ dimR V and θ ∈MR(V ).

1. (CIR(V, k), θ) admits the structure of a left nearring if and only if one of the

following statements holds.

(i) k = 0.

(ii) dimR V is finite and k = dimR V .

2. (CIR(V, k), θ) admits the structure of a right nearring if and only if one of the

following statements holds.

(i) k = 0.

(ii) dimR V is finite and k = dimR V .

Proof. Suppose that (i) or (ii) holds. It is direct from Lemma 5.2.5 thatCIR(V, k) ∈

LNR∩RNR. By Proposition 2.7, (CIR(V, k), θ) ∈ LNR ∩RNR.

Conversely, assume that (CIR(V, k),⊕, θ) is a left nearring or a right near-

ring. Suppose (i) and (ii) are false. Then either k > 0 and dimR V is infinite or
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0 < k < dimR V <∞.

Case 1: k > 0 and dimR V is infinite. Let B be a basis for V . Then there is

a partition {B1, B2} of B such that |B| = |B1| = |B2|. Since θ is injective, by

Proposition 2.14, we have Bθ is a basis for Im θ and {B1θ, B2θ} is also a partition

of Bθ with |Bθ| = |B1θ| = |B2θ| = |B|. Let C be a basis for V containing Bθ and

B3 = C rBθ. Then C = Bθ ∪B3. Define α, β, γ ∈ LR(V ) by

α =

 v B2θ ∪B3

vθ−1 0


v∈B1θ

, β =

 v B1θ ∪B3

vθ−1 0


v∈B2θ

and

γ =

 v Bθ

v 0


v∈B3

.

Then dimR(V/ Imα) = |B r B1| = |B2| = |B| ≥ k, dimR(V/ Im β) = |B r B2| =

|B1| = |B| ≥ k and dimR(V/ Im γ) = |C r B3| = |Bθ| = |B| ≥ k. Hence α, β, γ ∈

CIR(V, k). It is easy to see that αθα = α, βθβ = β and αθβ = βθα = αθγ = βθγ =

0. Let λ = α ⊕ β ∈ CIR(V ). The proof of Theorem 4.1.6 shows that λ is onto,

which contradicts λ ∈ CIR(V, k). Therefore (CIR(V, k), θ) /∈ LNR ∪RNR.

Case 2: 0 < k < dimR V < ∞. Then θ ∈ GR(V ). By Lemma 5.2.5, we have

CIR(V, k) /∈ LNR ∪RNR. It follows from Lemma 5.2.4 and Proposition 2.8

that (CIR(V, k), θ) ∼= CIR(V, k) /∈ LNR ∪RNR.

Since CI ′R(V, k) = CIR(V, k
′) where k′ is the successor of k, the neccessary

and sufficient conditions for (CI ′R(V, k), θ) admitting the nearring structure are

also obtained by Theorem 5.2.6 where θ ∈ MR(V ). The following quoted result

is helpful.

Lemma 5.2.7. ([8]) Let k < dimR V .

(i) CI ′R(V, k) admits the structure of a left nearring if and only if dimR V is finite and

k = dimR V − 1.
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(ii) CI ′R(V, k) admits the structure of a right nearring if and only if dimR V is finite

and k = dimR V − 1.

Theorem 5.2.8. Let k < dimR V and θ ∈MR(V ).

(i) (CI ′R(V, k), θ) admits the structure of a left nearring if and only if dimR V is finite

and k = dimR V − 1.

(ii) (CI ′R(V, k), θ) admits the structure of a right nearring if and only if dimR V is

finite and k = dimR V − 1.

Proof. Assume that dimR V is finite and k = dimR V − 1. By Lemma 5.2.7,

CI ′R(V, k) ∈ LNR ∩RNR. Finally, Proposition 2.7 shows that (CI ′R(V, k), θ) ∈

LNR ∩RNR.

Conversely, assume that (CI ′R(V, k), θ) ∈ LNR ∪RNR. Let k′ be the succes-

sor of k. Then k′ > 0 and CI ′R(V, k) = CIR(V, k
′). By Theorem 5.2.6, we have

dimR V <∞ and k′ = dimR V . Hence dimR V <∞ and k = dimR V − 1.

Therefore quoted results, Lemma 5.2.5 and Lemma 5.2.7, are special cases of

Theorem 5.2.6 and Theorem 5.2.8 where θ = 1V .

5.3 Generalizations of the Semigroups IR(V, k) and I ′R(V, k)

In the last section, we will show that both of IR(V, k) and I ′R(V, k) are sub-

semigroups of (LR(V ), θ) where θ ∈ LR(V ).

Lemma 5.3.1. (i) For k ≤ dimR V , IR(V, k) is a left ideal of LR(V ).

(ii) For 0 < k ≤ dimR V , I ′R(V, k) is a left ideal of LR(V ).

Proof. The results are obtained directly from the fact that Imαβ ⊆ Im β for all

α, β ∈ LR(V ).

Proposition 5.3.2. Let θ ∈ LR(V ). Then the following statements hold.

(i) For k ≤ dimR V , (IR(V, k), θ) is a subsemigroup of (LR(V ), θ).

(ii) For 0 < k ≤ dimR V , (I ′R(V, k), θ) is a subsemigroup of (LR(V ), θ).
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For IR(V, k) and I ′R(V, k), we will choose θ ∈ MR(V ) to determine whether

or not (IR(V, k), θ) and (I ′R(V, k), θ) admit the structure of a left [right] nearring.

These two lemmas are useful facts for our main theorems.

Lemma 5.3.3. For k ≤ dimR V , IR(V, k)MR(V ) ⊆ IR(V, k).

Proof. Let α ∈ IR(V, k) and β ∈ MR(V ). Let B be a basis for Imα. By Proposi-

tion 2.14, we have Bβ is a basis for (Imα)β = Imαβ. So dimR Imαβ = |Bβ| =

|B| ≤ k since β is injective and α ∈ IR(V, k). Hence αβ ∈ IR(V, k).

Lemma 5.3.4. ([8]) Let k ≤ dimR V .

1. IR(V, k) admits the structure of a left nearring if and only if one of the following

statements holds.

(i) k = 0.

(ii) k = dimR V .

(iii) k is an infinite cardinal number.

2. IR(V, k) admits the structure of a right nearring if and only if one of the following

statements holds.

(i) k = 0.

(ii) k = dimR V .

(iii) k is an infinite cardinal number.

Next, we begin the first main Theorem.

Theorem 5.3.5. Let k ≤ dimR V and θ ∈MR(V ).

1. (IR(V, k), θ) admits the structure of a left nearring if and only if one of the fol-

lowing statements holds.

(i) k = 0.

(ii) k = dimR V .

(iii) k is an infinite cardinal number.
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2. (IR(V, k), θ) admits the structure of a right nearring if and only if one of the

following statements holds.

(i) k = 0.

(ii) k = dimR V .

(iii) k is an infinite cardinal number.

Proof. First, assume that (i), (ii) or (iii) holds. By Lemma 5.3.4, IR(V, k) ∈

LNR ∩RNR. It follows from Proposition 2.7 that (IR(V, k), θ) ∈ LNR ∩RNR.

Conversely, suppose that (i), (ii) and (iii) are all false. That is, 0 < k <

dimR V and k is finite. Let B be a basis for V . Then there exists B1, a proper

subset of B such that |B1| = k. Since θ is injective, by Proposition 2.14, Bθ is a

basis for Im θ. Moreover, |B1θ| = |B1| = k and |Bθ| = |B|. Extend Bθ to C, a

basis for V . Set B2 = C rBθ. Notice that C = Bθ ∪B2 = B1θ ∪ (B rB1)θ ∪B2.

Let u ∈ (BrB1)θ be fixed. Then we have u0 ∈ BrB1 such that u0θ = u. Define

α, β ∈ LR(V ) by

α =

 v (B rB1)θ ∪B2

vθ−1 0


v∈B1θ

and β =

 u C r {u}

u0 0

 .

Then Imα = 〈B1〉 and Im β = 〈u0〉. It follows that dimR Imα = |B1| = k and

dimR Im β = 1 ≤ k, so we have α, β ∈ IR(V, k). It is easy to see that

αθα = α, βθβ = β and αθβ = βθα = 0.

1. If (IR(V, k),⊕, θ) is a left nearring, let λ = α⊕ β ∈ IR(V, k). Then αθλ = α and

βθλ = β. So we have

for every v ∈ B1θ, vλθ = vαθλθ = vαθ = v,

uλθ = uβθλθ = uβθ = u.

This implies that 〈B1θ ∪ {u}〉 ⊆ Imλθ. Thus dimR Imλθ ≥ |B1θ∪{u} | = k+1 > k

since k is finite. Then λθ /∈ IR(V, k), which contradicts to Lemma 5.3.3. Hence
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(IR(V, k), θ) /∈ LNR.

2. Suppose that (IR(V, k),⊕, θ) is a right nearring, let λ = α⊕ β ∈ IR(V, k). Then

λθα = α and λθβ = β. Thus

for every v ∈ B1θ, vλθβ = vβ = 0,

uλθα = uα = 0.

Consequently,

for every v ∈ B1θ,vλθ ∈ Ker β = 〈C r {u}〉 ,

uλθ ∈ Kerα = 〈C rB1θ〉 .
(*)

Claim that vλθ ∈ 〈B1θ〉 for all v ∈ B1θ and uλθ ∈ 〈u〉.

Case 1: C rB1θ = {u}. Then

for every v ∈ B1θ,vλθ ∈ 〈C r {u}〉 = 〈B1θ〉 ,

uλθ ∈ 〈C rB1θ〉 = 〈u〉 .

Case 2: (C r B1θ) r {u} 6= ∅. That is,
(
(B r B1)θ ∪ B2

)
r {u} 6= ∅. For each

w ∈
(
(B rB1)θ ∪B2

)
r {u}, define γw ∈ LR(V ) by

γw =



 w C r {w}

wθ−1 0

 if w ∈ (B rB1)θ r {u} ,

 w C r {w}

w 0

 if w ∈ B2.

If either w ∈ (B r B1)θ r {u} or w ∈ B2, we then have Im γw = 〈wθ−1〉 or

Im γw = 〈w〉, respectively. So dimR Im γw = 1 ≤ k. Thus γw ∈ IR(V, k) and
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αθγw = βθγw = 0 for all w ∈
(
(B rB1)θ ∪B2

)
r {u}.

Since (IR(V, k),⊕, θ) is a right nearring, it follows that λθγw = 0 for all w ∈(
(B rB1)θ ∪B2

)
r {u}. From (*), we have for every v ∈ B1θ,

vλθ ∈ 〈C r {u}〉 ∩
( ⋂
w∈((BrB1)θ∪B2)r{u}

Ker γw

)
= 〈C r {u}〉 ∩

( ⋂
w∈((BrB1)θ∪B2)r{u}

〈C r {w}〉
)

= 〈C r {u}〉 ∩ 〈B1θ ∪ {u}〉

= 〈B1θ〉

and

uλθ ∈ 〈C rB1θ〉 ∩
( ⋂
w∈((BrB1)θ∪B2)r{u}

Ker γw

)
= 〈C rB1θ〉 ∩ 〈B1θ ∪ {u}〉

= 〈u〉 .

Hence the claim is proved, and then we have

for every v ∈ B1θ, vλθ = vλθαθ = vαθ = v,

uλθ = uλθβθ = uβθ = u,

since λθα = α and λθβ = β. Thus 〈B1θ ∪ {u}〉 ⊆ Imλθ. Since k is finite,

dimR Imλθ ≥ |B1θ ∪ {u} | = k + 1 > k. Hence λθ /∈ IR(V, k) which contra-

dicts Lemma 5.3.3. Therefore (IR(V, k), θ) /∈ RNR.

The following quoted result will be used.

Lemma 5.3.6. ([8]) Let 0 < k ≤ dimR V .

(i) I ′R(V, k) admits the structure of a left nearring if and only if either k = 1 or k is an
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infinite cardinal number.

(ii) I ′R(V, k) admits the structure of a right nearring if and only if either k = 1 or k is

an infinite cardinal number.

Theorem 5.3.7. Let 0 < k ≤ dimR V and θ ∈MR(V ).

(i) (I ′R(V, k), θ) admits the structure of a left nearring if and only if either k = 1 or k is

an infinite cardinal number.

(ii) (I ′R(V, k), θ) admits the structure of a right nearring if and only if either k = 1 or

k is an infinite cardinal number.

Proof. Assume that k = 1 or k is an infinite cardinal number. Then, by Lemma

5.3.6, I ′R(V, k) ∈ LNR ∩RNR. Hence Proposition 2.7 shows that (I ′R(V, k), θ) ∈

LNR ∩RNR.

Conversely, suppose that 1 < k and k is finite. Thus I ′R(V, k) = IR(V, k − 1),

0 < k − 1 < dimR V and k − 1 is finite. By Theorem 5.3.5, (IR(V, k − 1), θ) /∈

LNR ∪RNR. Hence I ′R(V, k) /∈ LNR ∪RNR.

By Theorem 5.3.5 and Theorem 5.3.7, we have generalized Lemma 5.3.4 and

Lemma 5.3.6.

From Chapter IV and the current chapter, we can conclude that (OMR(V ), θ),

(OER(V ), θ), (KR(V, k), θ), (K ′R(V, k), θ), (CIR(V, k), θ), (CI
′
R(V, k), θ), (IR(V, k, θ)

and (I ′R(V, k), θ) are semigroups where θ ∈ LR(V ). In this thesis, we determine

when these semigroups admit the structure of a nearring where θ ∈ ER(V ) or

θ ∈ MR(V ). So we can continue this research by determining when these semi-

groups with the other linear transformations θ to admit the nearring structure.

Moreover, if we extend semigroups containing OMR(V ) and OER(V ) to sets

OMR(V )∪H andOER(V )∪H whereH is a subsemigroup of LR(V ), the research

works are finding necessary and sufficient conditions for (OMR(V ) ∪H, θ) and

(OER(V )∪H, θ) to be semigroups where θ ∈ LR(V ). Then these semigroups can

be characterized whether or not they admit the nearring structure.
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