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CHAPTER1I
INTRODUCTION

For a semigroup S, let S° be S if S hasja zero and |S| > 1. Otherwise S°
means S with adjoined zero which is a new symbol.

Ring Theory is a classicalsubject innmathematies and had long been studied.
It is well-known that the muléiplicative structure of a ring is a semigroup with
zero. For a semigroup 5, if Sdsisomorphic to the multiplicative structure of
some rings, then S'is said te admit @ ring structure. It is equivalent to there exists
an operation + on S° sch that (5°, %, )‘is a ring where - is an operation on S°.
For various studies in this area, see [7], [f2], [14], [15] and [16].

By the definition, every left [fight] near}‘mg generalizes rings and the multi-
plicative structure of a left [sightj nearringiis asemigroup. It is reasonable to ask
that for a semigroup S, whethgir STis isomgf_ipasl}ic to the multiplicative structure
of some left [right] nearrings. Tﬁen a semiérbap (S, -)isfsaid to admit a left [right]
nearring structure if thél; exists an oi;efation + on S° s-uch that (S, +,-) is a left
[right] nearring. Some research of semigroups admitting the nearring structure
can be seen in [5] and [8]:

If S is a semigroup and a € S, the semigroup (S, ¥) defined by z x y = zay
for all z,y € S is called a variant of $ and it is denoted by (.5, a). Variants of ab-
stract semigroups were first studied by J. Hickey [6] in 1983, Ii fact, variants of
concrete semigroups of relations were earlier considered by Magill [11] in 1967.

In this thesis, we generalize some results in [5], [16] and [8]. The interested
semigroups are some variants of transformation semigroups and their subsemi-

groups. For a considered semigroup S, we characterize a transformation ¢



which (S, 6) is a semigroup. The main purpose is to determine when these semi-
groups admit a left [right] nearring.

Examples, basic definitions, some motivations, elementary results and quoted
results, regarded in this thesis, are contained in Chapter II.

In Chapter III, some results of [5] and [16] are generalized. We concern some

variants of transformation semigroups which shown in [5] and [16].

Chapter IV and Chapter V c izations of the results in [8]. Some
linear transformation semigro mit a left [right] nearring will
be shown in Chapter IV.

In the last chapter, we sti det some su roups of variants of lin-
ear transformation semigroups. (OVi ecessary. and sufficient conditions
for each of these semigrou dmi > 1eft [ri i rring structure.

Notice that some teChnifues in.[5], I [16] will'be applied.

AUEINENINYINg
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CHAPTER II
PRELIMINARIES

For a set X, the cardinality of X will be denoted by | X|. The set of all integers
and the set of all real numbers will be dencied by Z and R, respectively. The

following proposition is well-known in'set theory:

Proposition 2.1. Let X be gusinfuniiic set. Then thereis a partition {A, B} of X such
that | X| = |A| = |B|. |

Let S be a semigroups Adeft [right] ;25}0 of Sis an element z € S such that
zr = z [xz = z| for all z & S4 An 'elemei}t 0 of S is called a zero if 0x = 0 = 20
forall x € S. If S has aleftzero 7, and arlght ZEero 2o, then z; = z5 which is the
zero of S. A semigroup S with zero 0 is §éid_ to be a zero semigroup if ab = 0 for

alla,b € S. St 2

A left [right] nearring is a triple (N, -+, )Where
(i) (N, +)isa group; =
(i7) (N, -) is a semigroup,
(i) z- (t+y) =z-c+z-y[(w+y)-z=x-2+y- 2 forallz,y, z € N.
An element O'isicalled azero ofleft [right]) hearting if 0« = 0 = z - 0 for all

x € N. Througheut, for every xz,y € N, = - y is denoted by zy.
Proposition 2:2:7([4]) Let (=) \be @ left {right]\medtring with the ddditive iden-
tity 0. Then
(i) 20 = 0 [0z = 0] forall x € N,
(1) (—y) = —(wy) [(=2)y = —(zy)] forall z,y € N.
Throughout, the image of a mapping « at z is written by za. The following

examples show that every left [right] nearring is a generalization of rings.



Example 2.3. ([4]) Let (G, +) be a group. Define an operation * on G by
axb=a

for all a,b € G. Itis easy to see that (G, +, *) is a right nearring. If |G| > 1, then
(G, +, *) is neither a left nearring nor a ring. To see this, let a,b € G be distinct.

Suppose that (G, +, %) is a left nearring. Then

a=ax(a+b) =axd #u*xb=a+a,

b=>bx(a=+b)=lpa+bFb=0+0.

So a = b = 0, the identity of(Cy-+), this is impossible. Hence (G, +, *) is not a
left nearring. IJ

Example 2.4. ([4]) Let(*, ¥) be an abelian group with identity 0 and M (A) be
the set of all functions onfA. It is clearly tﬁl,a_lt. (M(A), +.,0) is a left nearring where
+ and o are the usual addition and. the éﬁfnﬁosition of functions, respectively.
By Proposition 2.2(i), (M (A), +, o} is neitﬁ_&;ﬁ right nearring nor a ring where
|A] > 1. To show this, let a,b_€ A be d1s§1,ct Suppose that (M(A), +,0) is a

right nearring. Define \f, g € M (A) by
zf = a and G

forall x € A. Let § € M(A) be such that 26 = 0 for all z € A. Then 6 is the
additively identity of V.(A). By Proposition 2.2 (¢),

f=0cf=0=00g=yg
Hence a = b, a'contradiction. Therefore!(M(A), +. o) is not a rightnearring.

Example 2.5. ([5]) Let M (R) be the set of all functions from R into itself,

C(R)={f € M(R) | f is continuous on R} and

D(R) = {f € M(R) | f is differentiable on R} .



Then (M (R), +,0), (C(R),+,0) and (D(R), +, o) are left nearrings which are not
rings where 4 and o are the usual addition and the composition of functions,
respectively. We will show that (D(R), +, o) is not a ring. Suppose in the con-
trary that it is a ring. Let n be the natural number but not 2. Define f, g € M(R)
by zf = n* and xg = n** for all z € R. Then f, g € D(R). Consider

= @)(f +9) o £) 5 @) p 1) + (@)(go f) =n" + 0

for all x € R. Butif x = 0, then n* = 2n, aContradiction. Hence (D(R), +, o) is

not a ring.

For a semigroup S, let Y be S it S has a zero and contains more than one
element, otherwise, let 5% bea semigroﬁp S with a zero 0 adjoined. Notice that
if |S] = 1, then S° = (4, ) A semig.f‘(d;ﬁp S is said to admit a ring structure
if S° is isomorphic to the multiplicativéI,. structure of some rings. Similarly, a
semigroup S is said to admita left [right] ﬁéq_rring structure if there is an operation
+ on S° such that (5°, +,*) is a left.[right]mearring where - is the operation on
S0 Let R, LN'R and RA'R denote the Claé of all semigroups admitting a ring
structure, the class of all semigrotips admit’fihé‘ a left nearring structure and the
class of all semigroups adimitting-a-right-nearring stiucture, respectively. Then
RCLNRNRNR.

Notice that in [16], S. Srichaiyarat showed that every zero semigroup admits
a ring structure Then| evéry zero semigtotp always admit aleft [right] nearring
structure too.

For a;semigroup~S and-¢ £-Srdefine an operation #on-S by xyqy = zay for
all z,y € S. The semigroup () *) is called a variant of S"and (.9, *)is denoted by

(S, a). We then have some properties as follows.

Proposition 2.6. Let (S, -) be a semigroup with identity e, Sy be a subsemigroup of S
containing e and a € S. Then S, is a subsemigroup of a variant (S, a) if and only if

CLGSl.



Proof. Assume that @ ¢ S;. Since eae = a ¢ 5;, we see that (S, a) is not a

semigroup. The converse is obvious. O

For a subsemigroup S and @ € S, we note that if S is a subsemigroup of
S satisfying Proposition 2.6, then the sentence “(S;,a) is a subsemigroup of
(S,a)” means “S; is a subsemigroup of (S,a)” which is equivalent to “(51, a)

is a semigroup”.

Proposition 2.7. Let (.S, -) be a semigroup, S .be.a subsemigroup of S and a € S. If
(S1,-) admits a left [right] nearring structure aind (Sy. a) is a semigroup, then (Sy,a)

also admits a left [right] nearring sérvicture.

Proof. Since Oaz = 0 = ra@for all x € S;, 0 is also a zero element in (S, a).
Suppose that (S}, +, -)is a léftnearring ‘{0;‘ some operation + on S}. Claim that
(SY,+, a) is a left nearring. It suffices'to show that the left distributive law holds.
Letz,y,z € SY. Then xa(y +2) = :iay v faz Henee (S;,a) € LNR. O
Proposition 2.8. Let (S,-)ibe a se-'m%'group; 31‘:be a subsemigroup of S and a € S.
Assume that (51, a) is a semigroup; If-_t(.Sl, ) %{ESQ,, a), then (Sy, -) admits a left [right]

nearring structure if and only if (Sy, a) admits a left [right] nearring structure.

Proof. By Proposition 2.7, it suffices to prove the converse! Assume that (5, ) =

(S1,a) and (S, +,a) i5-a left nearring for some operati6h + on S}. We remark
that both of (S?,a) and*(S?, -) have the same zero, 0. Eet ¢ : (Sy,:) — (S1,a) be

an isomorphism«Define a mapping tpn:+(S¢s ) = £.S0ea )by

xg ifx e S {0},
Xah, =
0,/ .ifv= 0.

Then ¢ is an isomorphism. Define ¢ on S{ by

c@y=(xp+y) " ifx,ye S~ {0},

r®d0=2=00z if v € SY.



Clearly, (SY, ®) is a binary operation on S}. Let z,y, z € S}. Thus

((z +y)p ) @
= (9 + y)p ) + zp)yp!
= ((x¢ + yv) + 2p)p "
= (

(z@y) @

Hence (S}, ®) is a semi

0~ =0® (0p~") = f i i U 0)yp~ = 0yy~! =0,

| I Ty
.
-

s dke | » \
we have 0y~! = 0 is the'id '-E': ). Let ¥ € S; be such that x # 0.

TR
Consider (adadini s, = 2h

® (—(zy))y~" =

where —(:mp) is an inVBse of z¢) under the operatio LJ Then we can see that

1 is an inverse 0f=.on SO ). Hence SO is a group. Next, we will
% p-

vt i 3&9 nangia;
AN FNSRENIINY N Y

= oy~ (yo + 2y
((zy)alyy + z))p~"
= ((@v)alyy) + (@)a(zy))y~"



= (zy + 2

=xyDrz.

Therefore (SY,-) € LNR. O

Next, let X be a set and

Let 0 be the empty transf. .
—
range of o are denoted

well-known that

ings are standard transformatio A-C'ﬂ
S ),

A =300 & FtA) ]l O1S an in

T(X) ={a € P(X) | doma = X},

P66 ¥ 3 i 3

Then G ﬁm ?m e; 3] ) and C(X
alway have the zero. In the ot M ave no zero if | X| > 1.

For o # A C X and = € X, let A, be the constant mapping whose domain and
range are A and {z}, respectively, and the identity map on A will be denoted
by 14. Observe that 1x € G(X), but 1x € C(X) if and only if | X| = 1. For

distinct a,b € X, the notation Z means the mapping in /(X) such that the



domain and the range are {a} and {b}, respectively.

Proposition 2.9. Let X be a set and S(X) be any transformation semigroups defined
as above. If X = @, then S(X) admits a left [right] nearring structure.

Proof. Assume that X = @. Then S(X) = {0}, so S°(X) = (Z,,-) € R. Hence
S(X) € LNR N RA'R. 0

By Proposition 2.9, it suffices to consideraset X as a nonempty set. The first
purpose of this thesis is to determining when.variants of transformation semi-
groups G(X), T'(X), P(X), I(X) and C(x) belong to LA'R and RANR. These
results are shown in Chapter 1k

|

Next, let V be a vectopSpace over-a division ring R and L(V') be the semi-
group under the composition of all line‘_ér transformations on V. Then Lg(V)
admits a ring structure tinder the usual addition of linear transformations. Re-
call that the image of v under a & LR(V) iié written by va. For a € Lg(V),
let Ker  and Im a denote the kéernel and tiei-image of a, respectively. For any
subspace W of V, dimr W means the dimg;_tsion of W. The identity map on V
and the zero map on ¥ will be denoted by 1,- and 0, tespectively. The follow-
ing five propositions are provided in this thesis. They are simple facts of vector
spaces and linear transformations which will be used. The proofs are routine

and elementary,so then, we-omitted them.

Proposition 2.10./Let B be a basis for V. If u € B and v € (B~ {u}), then (B ~
{u}) U {a ¥ w}isals0a basisfor V4

Proposition 2.11. Let B be a basis for V, A C Band ¢ : B~ A — V a one-to-one
mapping such that (B \ A)y is a linearly independent subset of V. If « € Lgr(V) is
defined by

0 ifveA,

vp ifve BNA,

va =
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then Ker a = (A) and Ima = (B \ A) .

Proposition 2.12. Let B be a basis for V and A C B. Then

(i) {v+ (A) | v € B~ A} is a basis for the quotient space V/ (A) and

(i1) dimp(V/ (A)) = |B N A|.

Proposition 2.13. Let B be a basis for V and By, By and Bs be disjoint subsets of B.
Then <Bl U B2> N <Bl U Bg> = <Bl>

Proposition 2.14. Let B be a basis for V', v € Lg(V )and B, be a basis for Ker o such
that By C B. Then (B \ By)ewis-a basis for Inicw

Proposition 2.15. ([8]) Let.B"be basis for V' and € a nonempty subset of B. Then
() (B~ {v}) =(B\C), |

veC i
Let £

Gr(V)'= {& @ Lp(V)] als an isomorphism} .

2 7
all ol il

Then Gx(V) is the unit group'6f-L;(1/). The following subsets of Lr(V) are

clearly subsemigroups of Lz (17 ) containing_-_G,'R(l/ ),

Mr(VW={a € Lg(V) | ais a monomorphism},

Er(V)y={a € Lr(V) | ais an epimorphism} .

Observe that M (V)&= ER (V) =Gr(V) if and only if dimp, W is finite. Next, if V/

is an infinite dimensional vector space, let

OMpg(V) ={a € Lr(V) | dimg Ker « is infinite },

OEg(V) ={a € Lg(V) | dimg(V/Im «) is infinite } .

We knew from [2] that OMg(V') and OER(V') are both subsemigroups of Lg(V')
containing the zero mapping. For this case, the semigroups OMz(V') and OEx(V)
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may be referred to respectively as the opposite semigroup of Mr(V') and the oppo-

site semigroup of Er(V'). For a cardinal number k£ with £ < dimp V/, let

Kr(V k) ={a € Lg(V) | dimg Kera > k},
CIr(V,k) ={a € Lg(V) | dimp(V/Ima) > k},
Ir(V.k) ={a € Lg(V) | dimgIma < k}.

Then the zero mapping belongs to all of the'above three subsets of Lz (V). By [1],
we can conclude that all of K5(V, k), OTR(V, k)yand I(V, k) are subsemigroups
of Lr(V). Observe that it dimy; \#is infinite, the notations OMg(V') and OEg(V)
defined previously denoted (1 iN,) and C'1x(V, Ry), respectively, that is,

OMp(M) = a€fLr(V) TdiJmR Kera >R},
OEr(V=Acf€ Lp(V) |fdi;nR(V/ Ima) > N},
Pzl N
where N is the smallest infinite ‘cagdinal nther. Notice that if dimp V' is finite,
then for o € Lg(V), dimg Ker o = dilllR(‘_ﬁ:TiI; a) = dimg V — dimp Im o since

dimp V = dimg Ker a % dimp Ima and dim;g-Vq: dimp(V/Im o) + dimg Im av. So

we have ;
Proposition 2.16. ([1])4f dimp V' is finite, then

Kp(Woik )= CH VWi =1 p(V, dimp Ve ko)
for every cardinal mumber k < dimp V.

Howevet, these dre 'not|genérally true if diy V7 is'infinite} This is shown
by the following proposition. This proposition also shows that the semigroups
Kgr(V, k), CIgr(V, k) and Ig(V, k) should be considered independently if dimp V'
is infinite.

Proposition 2.17. ([1]) Let V' be an infinite dimensional vector space and a nonzero

cardinal number k < dimpg V. Then the following statements hold.
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(i) CIr(V, k) # Kgr(V,1) for every cardinal number | < dimp V.
(i7) If k < dimp V, then Ig(V k) # Kg(V,l) and Ir(V, k) # CIg(V,l) for every

cardinal number | < dimp V.

Next, let K (V, k), CIL(V, k) and I(V, k) be subsets of Kg(V, k), CIg(V, k)

and Iy (V, k) respectively as follows:

KRp(V k) ={a € Lr(V) | dimg Ker @ > k} where k < dimgV,
CIx(V k) = {a € Lr(V) L dimp(V/ hnd) >k} where k < dimgV,
In(V, k) = {a edmW ) jodimr Im ae < £} where 0 < £ < dimp V.

Thus K (V, k), CIL(V. kyand T 4(V k) cg‘_ntain 0, moreover, they are respectively
subsemigroups of Lr(V funder the comig;bsition. For a cardinal number k, the
successor of k is the smallest carcinal nﬁ;mBer greater than k. Note that if £ <
dimp V, then K4(V,k) £ MWk and Gl k) = CIn(V, k) where K is the
successor of k. Also, if 0 < k sudim RV,J{: is a finite cardinal number and
F=k—1,then I',(V, k) = In(Viki £
For o € Lg(V), let s -

Flo)={veV|va=uv}. .

Then for a € Li(V), F(a) is a subspace of V' and « i called an almost identical
linear transformationron VW if.dimag(V// Fi{a) )ds finite, The set ofall almost identical

linear transformations on V"will be'denoted by ATz(V/), thatis,
ALY =Y éretlpg(W) || dintg(VF(a) ) < o0 )

Observe that 1, € AIz(V).

Proposition 2.18. ([2]) Alr(V') is a subsemigroup of Lr(V).

Note that if dimp V is finite, then AIp(V') = Lg(V') which admits a ring struc-

ture. Moreover, the semigroup AI(V') does not contain the zero mapping when
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dimp V' is infinite. We remark that every referred linear transformation semi-
groups S(V),if 0 € S(V) and |S(V)| > 1, the zero mapping is a zero element in
S(V).

Since every linear transformation on a vector space V' can be defined on a ba-
sis for V, for convenience, we may write a € Lz (V') by using a bracket notation.

For examples,

means

and

is equivalent to

!;' B
where B is a basis for V%, B

If H and T' are resp¢ ctlvely subsemigroups of G(V') and AIz(V'), we show

oy ﬁsww%’mﬂﬁ‘s

R(VYUT,0) where § € (Ex(V)NT)U {1y},

(OERr(V)UT,0) where 0 € (Mr(V)NT)U{ly},

are subsemigroups of (Lg(V),#). The main purpose of Chapter IV is to show
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that if dimp V' is infinite, then (OMg(V), 0) where 6 € Ex(V), (OEg(V),0) where
8 € Mg(V') and some subsemigroups of variants Ly (V') containing OMg (V') and
OFER(V), defined as above, do not admit the structure of both a left nearring and
a right nearring.

In the last chapter, we also show that Kr(V, k), KR (V. k), CIr(V. k), CIL(V, k),
r(V),0) where 6 € Lr(V'). We will de-

Ir(V, k) and I(V, k) are semigroups of (L

admit the structure o

ﬂUEJ’JVIEJVI‘ﬁWEJ’]ﬂﬁ
Q‘mﬁﬂﬂ‘im UA1AINYA Y



CHAPTER III
VARIANTS OF SOME TRANSFORMATION SEMIGROUPS
ADMITTING THE NEARRING STRUCTURE

For this chapter, we consider well-knowf. transformation semigroups on a

nonempty set X. They are recalled as follows:

o Als X | AC X,

(X)

( ):{aePX)la is an injection} ,
C(X):{aEPX)|jrana]<1}
( ):{aEPX)|domoz-X}
(X) )

1_1

We knew that G(X), T'(X), P(X) and [ (X-) contain the identity map on X.
So if we consider variants-of them, we then confident that they will generalize
results in [5]. Since C'(X ) dose not alway contain the identity mapping on X,
then we cannot conclude that variants of C'(X) generalizes a semigroup C'(X).

Since
ran(ffg) C rang and |ran(ffg)|.< |rang| <1,

f0g € C(X) where'fg € C(XY) and'0'e P(X).' Then C'(¥) is a’subsemigroup of
a variant (P(X),0) where 0 € P(X).

A question,”if we use § € P(X), are (G(X),0), (I'(X),0) and (/(X), #) semi-
groups?”, was answered by Proposition 2.6.

In this chapter, we will consider variants of G(X), T'(X), P(X) and /(X) to
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admit the nearring structure. Moreover, C (X)) will be considered as a subsemi-

group of all variants of P(X).

3.1 The Variants of G(X) and 7'(X)

Throughout this section, we assume that every left [right] nearring is addi-

tively commutative. The following lemma is useful.

Lemma 3.1.1. ([5]) (¢) G(X) admits a left neatiing structure if and only if | X| < 2.
(i1) G(X) admits a right nearring strcture if and-only if | X| < 2.

Theorem 3.1.2. (i) Everty vagianiof G X') admits a left nearring structure if and only
if1X] < 2 ,
(1) Every variant of G( X admits a right nearring structure if and only if | X| < 2.

Proof. Since the mapping ¢ : (G (X),0) — (G(X). o) defined by ap = af is
clearly an isomorphism for all o, # & G(X), we have (G(X),0) = G(X) for all
0 € G(X). By Lemma 3.1.1 and:Proposition 2.7, the proof is complete. O

Corollary 3.1.3. ([16]), Every variant of G(X) zz_ciﬁits a ying structure if and only
if1X] < 2. ' |

We can see that Theorem 3.1.2 generalizes Lemmnia 3.1.1. Next, we charac-
terize when variants of 7/( X)) admit,the strticture of.a left [right] nearring. The

quoted result is'used:

Lemma 8.1.4. ([5]) (<) 7% )\always admit a left néarring structufre.
(1) T'(X) admits a right nearring structure if and only if | X | = 1.

Theorem 3.1.5. (i) Every variant of T'(X) always admit a left nearring structure.

(1) Every variant of T'(X) admits a right nearring structure if and only if | X | = 1.
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Proof. (i) is applied from Lemma 3.1.4 (i) and Proposition 2.7.

(i1) Let @ € T'(X). Suppose that | X| > 1. Let a, b € X be distinct. Since fX, = X,
and fX, = X, forall f € T(X), implies that a semigroup 7'(X) has no left zero.
Assume that (T'(X),6) € RN'R. Then there is an operation + on 7°(X) such
that (7°(X), +, ) is a right nearring. Thus X, + X, = f for some f € T°(X).
Case 1: f # 0. Thus

X, = f0X, = (Xo +Xp)0X0 = XIOX .+ Xp0X, = X, + X

That is, X, = 0, which is a contradiction.
Case 2: f = 0. So 0 = (XgF Xp)0X, = X, + X, "Since X, + X;, = 0, we have
X, = X,, a contradictien. Hence | X'/ = }
The converse follows immediately from Lemma 3.1.4 (ii) and Proposition 2.7.
’ | O
As a consequence of Thegrem 3.1:5, th;_following corollary holds and Lemma

3.1.4 is also a speacial case. ‘)

Corollary 3.1.6. ([16]) Every variant of T()Q_ﬂ_z-iﬁmits a ring structure if and only if
1X| = 1. Fd-

3.2 The Variants of P(X), [(X) and C'(X)

Recall that we determine variants.of both ,P(X).and./(X) and (C(X),0) to

admit a nearring stracture where 6-€ P(X).

Lemma 3:2.1.5([5)) () R(X)always admita leftnearning structure:
(i1) P(X) admits a right nearring structure if and only if | X = 1.

Theorem 3.2.2. For § € P(X),

(i) every variant of P(X) always admit a left nearring structure,

(1) if (P(X), 0) admits a right nearring structure, then € C(X),

(149) if | X| = 1or 8 = 0, then (P(X), 0) admits a right nearring structure.
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Proof. (i) follows from Lemma 3.2.1 (i) and Proposition 2.7.

(i7) Assume that there is an operation + such that (P(X), +,6) is a right near-
ring. Suppose on the contrary that |[ran | > 1. Let x, y € ran 6 be distinct. Then
there exist a,b € dom 6 such that af = = and b0 = y. Since (P(X), +, 0) is a right

nearring, we have (Z) + (Z) = f for some f € P(X). Then

oDl ()

Case 1: f0 = 0. Thus 2 0, which is a confradietion.

Case 2: f0 # 0. Thus ‘
f9<y> =D A (a) oS, (a)
& i\ Z x

Soaff =z and aff =y, agontradiction: «
(i11) If @ = 0, then (P(AF), 6)fis a zero semigroup, which implies that (P(X),0) €
LNR. Otherwise, it is proved by Lemma{lﬁ.Z.l (/1) and Proposition 2.7. O

If we choose 6 = 1y, then (P (X)) 0) :';-R(X ). In this case, Lemma 3.2.1 and
Theorem 3.2.2 have the same results. Mo@\';er, we can conclude that for 6 €
T'(X) and 0 is surjective or injective, (P(X);0) admits a right nearring structure

if and only if | X| = L =

Lemma 3.2.3. ([5]) (¢) L(X) admits a left nearring structure if and only if | X| = 1.
(1) 1(X) admits a right nearring structure if and only if | X | = 1.

Theorem 3.2.4. For 0'c T(X),

1. (i) if (I(X) 0).admits a left nearring structure, then 6 .€ C(X),

(1) if | X| = Y or =0, then (I(X), 0y admits a left nearring-structure,
2. (4) if (1(X), 0) admits a right nearring structure, then 0 € C(X),

(1) if | X| =1 or 8 =0, then (1(X),8) admits a right nearring structure.

Proof. It suffices to show that 1. holds.
(i) Assume (I(X),0) € LN'R. Then there is an operation + such that (I(X), +, )
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is a left nearring. Suppose on the contrary that [ranf| > 1. Let 2,y € ran#6 be

distinct. So there are distinct a,b € dom 6 such that a0 = = and b8 = y. Then

(z) " (i) = f for some f € I(X).

Casel: f =0. Then0 = (Z) Of = (Z) +0= (i) , which is a contradiction.

Case 2: f # 0. Then
(o) or

Thus aff = x and b0 f = z, respectively. Sinieé Of € 1(X), we have a = b which
is a contradiction. 4
(it) If @ = 0, then (1(X), 0) issaZero semigroup, so that (1(X),0) € LNR. Other-

wise, it follows from Lemuma 3:2.8 and Proposition 2.7. O

Note that we can seedLemma 8.2.3 a‘i Theorem 3.2.4 where 0 is the identity
mapping on X. The last‘main piirposé';' of this section is to determine when

(C(X),0) admits the structure of a left [£i.ght] nearring where § € P(X). The

following tool is needed. ia /N

cud A

Lemma 3.2.5. ([16]) C(X) adm;'is axing str@w”g if and only if | X| = 1.

Theorem 3.2.6. For 0 € LX)

1. (i) if (C(X), 0) admitsa left nearring structure, then 6 € C(X),

(i1) if | X| =1orf =0, then (C(X),0) admits a right nearring structure,
2. (i) if (C(X), OradmitsalriChtmeatring Stritctuie, then 0 € \G€X),

(1) if | X| = Lor 6= 0, then (C(X), 0) admits a left nearring structure.

Proof. It suffices to show that 1. holds.

(i) Assume that (C(X),0) € LNR. Then there is an operation + such that
(C(X),+,0) is a left nearring. Suppose that § ¢ C(X). Then there exist distinct
x,y € ranf. So we have a,b € dom @ such that a # b, al = x and b0 = y. Thus

(x) i (Z) = [ for some f € C(X).

xz
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Case1l: f =0. Then 0 = Z Of = Z +0= Z , which is a contradiction.

Case 2: f # 0. Then (a) 0f = (a> and (“) 0f =0+ (“) = (“) So distinct
a x b Y Y

x,y € ran f contradicts f € C(X).
(1) Assume that | X| =1 or # = 0. By Lemma 3.2.5, C(X) € R. This implies that
C(X) € RNR. By Proposition 2.7, (C( ) € RN'R. O

. Woﬂary

The above theorem yields an.i

Corollary 3.2.7. (i) C'(X) ] °ft ne rr re ifand only if | X| = 1.
(i1) C(X) admits a right l( | = 1.
Finally, this section is . vihg'
Remark 3.2.8. Letf € T jecti -? je and S(X) be I(X) or C(X).
Then the following state 14 ﬁ. \\\
(i) (S(X),0) admits a left near %% and only if | X| = 1.
(i7) (S(X),0) admits a right nearring i and only if | X| = 1.

feerk

ﬂ‘UEJ’J‘VIEJVIﬁWEJ\’m‘i
wnmmzu UA1AINYA Y



CHAPTER IV
SUBSEMIGROUPS OF VARIANTS OF Lz(V)
WHICH DO NOT ADMIT THE NEARRING STRUCTURE

These linear transformation semigroupson.#4, an infinite dimensional vector

space over a division ring R, given in Chapter IT are recalled as follows:

Lr(V) ={a#' V>V ais a linear transformation} ,
Gr(V) = {afe L (V)| - is'an isomorphism },
Mgp(V) = {afe La(V) |lais amonomorphlsm },

OMgr(V

OER(V

V)
V)
(V) =
Er(V) =T € Bp(V/ mls an.epimorphism } ,
(V) =
(V) ={a € Ly !dlmeV/Ima ) is infinite } ,
(V)

)
)
)
{o LAY dimigler o i infinite }
)
)

V)& fa e Lr(V) | d1mR(V/F( s 65}
where F(a)={v eV |va= v}

={a € Lr(V) | ais almost identical } .

The chapter is concerned with subsemigroups of variants of L z(V') defined from

these linear transformation semigroups.

4.1 Generalizations of the Semigroups OMpz(V) and OFER(V)

We begin this section by recalling that 0, the zero mapping on V, belongs
to both OMz(V') and OER(V'), but the identity mapping 1, dose not contain in
both OMg (V) and OER(V). First, we will show that (OMg(V),0) and (OER(V),0)
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are semigroups where 6 € Ly(V).

Lemma 4.1.1. ([2]) (i) OMg(V') is a right ideal of Ly (V).
(i1) OER(V) is a left ideal of Lr(V').

Next proposition follows immediately from Lemma 4.1.1.

Proposition 4.1.2. Let § € Lg(V'). Then following statements hold.

(i) (OMg(V),0) is a subsemigro

do not admit both a left nedrring structure and a right nearring structure.

Theorem 4.1.3. Let 0 € Er(V). _ lowing statements hold.

(i) (OMg(V),0) does not admit a;kf@‘q
(i1) (OMg(V),0) doe%t admit a right nea

Proof. Let B be a basis
such that |B| = |B;| = |B%j Foreachv € B, we choose u, € V such that u,0 = v.

e < U AN INTNEINT
awﬁmﬁ)w swpaGnsha s

Then Kera = (By) and Ker § = (By). Thatis, o, 5 € OMg(V). Observe that
aba =, 06 = fand aff = 0 = [la.

(i) Suppose that (OMg(V),®,0) is a left nearring. Let A = a ® 8 € OMg(V).
Then af\ = o and 50X = 5. These show that

partition {B;, By} of B
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for every v € By, vA0 = vald\d = val = v,
for every v € By, vA0 = vON0 = vf30 = v.

Then we have \0 = 1, ¢ OMg(V'), which is a contradiction since OMg(V) is a
right ideal of Lz(V'). Hence (OMRz(V),0) ¢ LNR.

(1) Suppose that (OMg(V), @, 0) is a right nearring. Let A = a & 8 € OMg(V).
Then Mo = o and A0 = 5. Conse u

Thus

So

e > B d
fomveryv € By, vAI50 = v/30 :m

ich ooty o S IR A TIEADT - 1 ¢ o)

contradicts the riqéht ideal propertyrof OMg(V).. Hence (OMg(V),0) ¢ RNR.

ARIANIUININGINY

Theorem 4.1.3 generalizes the next corollary when 6 = 1.

Corollary 4.1.4. ([8]) OMRg(V') does not admit both a left nearring structure and a

right nearring structure.
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We need the following fact for our next main theorem.
Lemma 4.1.5. OEg(V)Mg(V) C OER(V).

Proof. Let v € OER(V) and 8 € Mg(V). Define ¢ : V/Ima — V/Imaf by
(v+Ima)p =v6+Imafforallv e V.

\l/
or I/

Since 3 is a monomorphism on V/,

be a basis for V/Ima. By Pr

e p is also a monomorphism. Let B
kﬁ ¢ is an injection, By is a basis
E—

us dimg(V/Ima) = |B| =

for Im¢. Extend By to a

—
|By| < |C| = dimg(V/1 r(V/Im«) is infinite and

<

we obtain that dim g( af € OEg(V). O

Our next target is sho LOBR@ not admit both a left near-

r(V).

i ]
L

(i) (OER(V),0) does not admi | letjfwé‘:zy_m‘ :

700\ 7 N

L e (' g ] .
Proof. Let B be a basis for V. Then therw

|B| = |B1| = | By|. Since f is injective, | , we have B0 is a basis
for Im # and { B0, Bgeﬂ also a parti ¢ such tﬂt |BO| = |B10| = | B20| =
| B|. Extend B# to_a basis’Ofor V. Set B; .0 ~. Bf. Then C = B U Bs. Define

rreno B UE IVEVITWEINT
RRORepIpln nedy

vEB16

1, Bo} of B such that

and
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Then dimg(V/Ima) = |B \ By| = |Bs|, dimg(V/Im ) = |B \ Bs| = |B;| and
dimg(V/Im~) = |C \ Bs| = |B#|. This implies that , 8,7 € OEg(V). It is easy
to see that afla = o, f08 = B and ol = 0o = aby = By = 0.

(i) Suppose that (OEg(V), @, 0) is a left nearring. Let A\ = a® 5 € OEg(V). Then
af)\ = a and S0 = 5. Hence

for every v € Byf = vaf\d = valb = v,

for every v

ﬂ@ = vf0 = v.
So, for every v € B, v\ = = r@& = B0. This implies that

B(O)) = (BONGO = 1 — PBrsince 0 is an injection. Thus
BC ImoAC Im) ' "

(OER(V),0) ¢ LA'R, iz 9\
(1) Suppose that (OE : . n g. Let A = a® f € OEg(V).

So we have 3
for e\gry v € B, u\d € Kerﬁ (B @U Bs),

ﬂﬁ“ﬁ‘meﬁﬂmﬂ lE(iEl
cuns mﬁﬁ?@wﬁﬁﬁiﬁm e,

a;,b; € R where i = nandj = 1 2,...,m. Thus

0= (vA0)y Zazvﬂy—k waa —O—I—waj ibjwj.
j=1
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Consequently, b, =0 forall j =1,2,...,m. So vAd = Z a;v; € (B16). Similarly,
i=1
vAf € (By) for all v € Byf, and then the claim is proved. By the claim, we have

for every v € B10,v\0 = vAfab = v,
for every v € By, v\0 = vA0p0 = v.

Hence

for every.w € B0, vAdall= el = v and

for eVeR U EB,0, DA S=1BO0= v

we obtain that v\ = v forfalliy ¢ /B0. Similary (i), we have a contradiction.

Therefore the proof is complete. A 4 O

Finally, the next corollary follows froip the above Theorem.

Corollary 4.1.7. ([8]) OFEx(V ) does not admit both a left nearring structure and a

s T
A

right nearring structure.

oo id A4

g

4.2 Generalizations of aﬁy Semigrbups Containing OMpz(V') and
Semigroups Containing O Ex(V/)

In this section, let H be a,subsemigroup.of Gr(V') and T be a subsemigroup

Remark 4.2.1..Let H be a.proper subsemigroup of.Gz(V.). containing 1, and
0 € Gr(V)~\'H. Sin¢e 101y = 0°¢"H it follows that both (OM (V) U H, 0) and
(OER(V) U H, 8) are not semigroups.

To fulfill the above remark, we will show that there exist many proper sub-

semigroups of G (V') containing the identity map 1.
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Example 4.2.2. Let B be a basis for V' and for distinct u, w € B, let a,,, € Gr(V)

be defined by
( u w v )
Qg p = .
w u v
veEB~{u,w}

Then {1y, ., } is a proper subsemigroup of G(V') contaning 1y.

Remark 4.2.3. Let T" be a proper subsemigroup of AIz(V) containing 1, and
0 € Gr(V)\T. Since 1,61y - ) & ) U (OER(V)UT), it follows
that both (OMRg(V)UT,0) and (OF (1) U ot semigroups.

Next, we give examM ; 1bs Qf AIR(V) containing 1.

Q, € AIR(V) by

Then {1y, a,, } is a proper s migroup of Al containing 1y.
___:.-:;.l,‘:"fa'_._; }')‘ Ty
By Remark 4.2.1 a&d Remark 4.2.3, it is vali consider the followings:
1 I

(OMg(V) u]ﬁe e_ﬁ@ e HU {1y},
(OMgr(V)UT, 0) where 0 € ER(@ NT)U{ly},

orf Uy ’M% AN 013
i, WI“'%“W”T AN TR T e

nearring. g
Lemma 4.2.5. ([2]) Gr(V)OMg(V) C OMg(V).

The following proposition is a direct consequence of Lemma 4.1.1, Lemma

4.1.5 and Lemma 4.2.5.
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Proposition 4.2.6. Let 6 € H U {1y }. Then the following statements hold.
(i) (OMg(V)U H,0) is a subsemigroup of (Lr(V),0).
(i1) (OER(V) U H,0) is a subsemigroup of (Lr(V'), ).

Lemma 4.2.7. ([2]) (i) AIR(V)OMg(V) C OMg(V).
(it) OER(V)AIR(V) C OEgR(V).

Proposition 4.2.8. (i) If 0 € (Ep(V) (1 1T) U {1y}, then (OMg(V) U T,0) is a sub-
semigroup of (Lr(V'),6).
(43) If 0 € (Mr(V)NT)U{ Lty then (O Ex(V )OTF: 0)isa subsemigroup of (Lr(V), ).

Proof. (i) Let o, 8 € OMg(V U 1 If either oo € OMg(V) or B € OMg(V), we

then have a3 € OMg(V') or o < (L_)MR(V) by the right ideal property of

OMpg(V) and Lemma 4.2.7, respecﬁyel}‘ljlf a, € T, then it is clear that a3,

B0 € OMp(V)UT. e Vo

(i7) is similar to (7). . J ; O
v dia

The following theorems are, Aou‘-r_ﬂmain purposes.

Theorem 4.2.9. Let 0 € H U {1y} and S(V)iszét-.he semigroup OMg(V') or OER(V).
Then the following statemtieiitstiolde

(1) (S(V)) U H, 0) does not admit a left nearring structure.

(13) (S(V')U H, 0) does not admit a right nearring structure.

Proof. Let B beia basis/for ¥V and;u & B be a'fixed element. Since B ~ {u} is
infinite, B \ {u} has a partition { B, ¢B>} such that | B\ {u} | = |Bi| = | Bs|. Then
B = By W By U {u} and these three sets are pairwise disjoint.yDefine «, 5,7 €
Lr(V) by

v ByU{u} Byu{u} v
o= 8=
vt 0 0 vt
vEB] vE B2
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and

u Bl U B2
v = :
uf! 0

So Kera = (By U {u}), Ker § = (B U {u}), Kery = (B; U By),

dimp(V/Ima) = dimp(V/ <Ble—1>) = |BO B0 =B\ By,

dimp(V/Im ) = dimg(V/. (1 071\ Byt = |B \ By,

dimg(V/Im~) = w7} =B~ {u} .

That s,

ﬂ‘LlEJ’J ‘VI %El’lﬂ‘i
Thus Ker A0 = ) and dim(V/Tp 20) = dime(V/ (51U By) = [{u}] =
Hence A .1.5, respec-
tively. Tﬁm q:gﬁ ‘Eﬂiy mé} w%ft]ﬂanﬁ

(1) Suppose that (S(V) U H, @, 0) is a right nearring. Let \=a® € S(V)UH.
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Clearly, o = a, A0 = [ and A0y = 0. Then

for every v € By, v\ =vf3 =0,

for every v € By, vA0a = va = 0.

It follows that

for every v } (BiU{u}),
for eve ) UG I&z U{u}).
) |

Claim that v\0 € (Bl)/ a -\\\ § or allv € B,. Letv € B;.

and ay,as,...,a,,a € R.

& 1
Since 0 = v A0y = Z a; W ’ \ 3 31 Similarly, v\0 € (B,)

Since

ﬂuﬂevemiﬁﬁiﬁﬂﬁﬂ‘i

QWWﬂWﬂ?EﬂW’T’mEI’]ﬁEI

then we have that vA0 = v forall v € (B; U By) and u\d € Kery = (B; U Bs). So
(u —uA)ANO = urd —uNONO = uld — uAd = 0. Since By U By U {u} is a basis for
and u\d € (B; U By), by Proposition 2.10, B; U By U {u — uAd} is a basis for V.
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Hence

u—uNd v
A0 = )
0 )
vEB1UB2

Thus Ker A0 = (u — u\d) and
dimp(V/Im M) = dimg(V/ (B1 U By)) = [{u — uld} | = 1.

Then A0 ¢ S(V) U H contradicts
Therefore (S(V)U H,0) ¢ R.

.1 and Lemma 4.1.5, respectively.

O

By th: d h % 1 fo
y the preceding theorem, C corollary if 6 = 1y.
Corollary 4.2.10. ([8])/ M \ Y V). Then S(V) U H does not

admit both a left nearrin, g structure.

Theorem 4.2.11. Let 0+ the fe lowing statements hold.

(1) (OMg(V)UT,0) doe i g tructure.
£ J 2SN\
(i7) (OMg(V)UT,0) does arightmearring structure.

Proof. Let B be a basis for | partition {B1, By} such that |B| =

|B1| = |Bs|. Since |By| =.|Bs], there exists a ion ©.: By — B,. It follows

from 6 € ER(V) th : f':_,:,—.:::—,—,::: ————————— 1:"7 1]9 = v for all v e V.
Define a, f € Lp(V) b)ﬁ ' m

Afrnemifnd

vEB1 vEB3
¢

s %) Y8 RS b RV I Vb o7 1

easy to see that afo — BOB =0,

v BQ Bl v
abp = and fla = .
U, O 0 U,
vEB] vE B2
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(i) Suppose that (OMg(V)UT, @, 0) is a left nearring. Let A = a® € OMz(V)U
T. Then af\ = aff and SOX = S0a. We then have

for every v € By, (vo) A0 = vad\d = valdBl = v = (ve)p
for every v € By, (v~ ')A = vBIN = vB0al = v = (vp ).

Thus

*)

ai,as,...,a, € Rsuch 1; (1 “(N\0). Then Zazvz € F(\9),
; i i=1
and we have

Consequently, Z a;v; E
implies that {v + F M) |@w £ Bi} is a linearly independent set and v + F'(A0) #

w + FOO) for ﬂstuty@ b8 T el BT F00) = 181, 50

N ¢ AlR(V V) and'the claim is proved. If \ € T, then N eT C AI r(V') which is
P

pie L\ WL R ATy DY TR RlevR

(i1) Suppose that (OMg(V) U T,®,0) is a right nearring. Let A = a & § €
OMpg(V)UT. Then Ma = Bea and )\HB = aff. We can conclude that

—Oﬁ)rallz—12 .,n. This

for every v € By, v(Ma)0p = v(p0a)fs =0,
for every v € By, v(Mf)b0a = v(adf)fa = 0.
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Consequently,

for every v € By, v\0 € Ker(abf) = (By),
for every v € By, v\0 € Ker(pba) = (By).

Since

(ﬁe)l(By and (ad)
v\ =vp~!forallv €

ligyy &

Since {By, B,} is a partition of B {Bisa bijection. So A0 € G(V)
Thatis A0 ¢ OM R(V),BSImﬂaﬂ‘Té; -(' /) | contradiction. Hence
(OMgr(V)UT,0) ¢ O
Corollary 4.2.12. ([8]) O YUT does ot admit both'ﬂeft nearring structure and

a right nearring ﬁctum " i

Theorem 4.2.13 y EJAE y] gj m{g}w"en the/gowmg statements hold.
oo oA ot AN Y

Proof. Let B be a basis for V. Then there is a partition { By, B2} such that | B| =
|B1| = |B.|. Since @ is injective, by Proposition 2.14, we then have Bf is a basis
for Im @ such that {B,0, Bo6} is a partition of Bf and |Bf| = |B16| = |B2f|.
Extend B6 to a basis C for V. Set B; = C' \ Bf. Let ¢ : B16 — B, be a bijection.
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Notice that 6! : Vf — V exists. Define «, 3,7 € Lg(V) by

v B0 U By v B0 U Bs
“= 1 , B= 1p—1
U(pe 0 vEB160 vy 0 0 vE B2

@9’%’;

ﬁmﬂ) = |[B~ Bi| = |Bs| and
| T——

and

Then dimg(V/Ima) =
dimg(V/Im~) = |C\ B
aba = PO = aby =

v 320
abdp =

B0 U By
vfh~! 0 .
vEB2H

(i) Suppose that (OER(V) B)is: J:'? nearring et ) = a®pf € OER(V)UT.
Then afA = a0 and B6X — Ve ha

for every v @ B0, - w000 =R — = (vp)p ",

for every v ? ' ;'.- v = (v ).
ﬂWEI’WIETWWﬂ"WT‘J o

=p: 31«9 — By0 isa b1]ect10n

Then

|B 0
since (2 P F QP%?‘WW 4497370 ) R .
(BOX = (BONY = (BO)OP~' = B. This implies that B C Im ). Conse-
quently, A is onto. Hence A ¢ OEx(V). Next, we claim that A ¢ 7. By (¥),
B0 N F(\) = @. Thatis, v + F(\0) # F(\0) forall v € By6. Let vy, vs,...,v, €
B0 be distinct and a4, as, . . ., a, € R such that z”: a;(v; + F(A\9)) = F(\). Then

=1
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Z a;v; € F(A\9). It follows that

=1

zn:aiv,- = (zn: aivi)/\ﬁ € <B29> .
=1

i=1

So » awi € (Bi6) N (By0) = {0}. a; = 0 foralli = 1,2,...,n. Thus

{v 41;=117()\0) | v € B16} is lineatly ind d v+ F(N0) # w + F(\) for
different v,w € B;6. Hen @ﬂ which implies that A0 ¢
Alg(V). If X € T, then , ontradiction. Thus A\ ¢ T..
Hence A ¢ OEg(V)U 1 \ OERr(V)UT,0) ¢ LN'R.
(it) Suppose that (O S A ~.\\ g. Let A\ = adf €

AR
OER(V)U T. Then N0 Thus
A \\\

Al Y

for - Bi0; vh0al Gi= .’\.\. p5 =0,
:mf: .

for everyw € By, vA0BbBa, = v

Consequently,

T

for every v B0U B3),

for every v E 320 vl € Ker(ﬂ&a) (B0 U Bs) .

cm i s Ey HEAN D AWML < 0 1
i;if;_j@ﬁﬁ%ﬁﬁu“ﬁ el al )

0= (vAf)y Z‘%%V‘f‘ wa] —O—I—wa] ibjwj.
j=1

This implies that b; = 0 for all j = 1,2,...,m. So v\ = Zawi € (By0)
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Similarly, vAf € (B;0) for all v € Byf. The claim is complete. Since

for every v € B16,v(\5)0 = v(abf)0 = v = (vp)30,
for every v € By, v(\a)d = v(B0a)) = v = (v~ ')ad,

(80)),,6, and (), , , are monomorphisms, we have vA6 = vy forall v € B¢

W/That is,
b s ton

and v\0 = vp ! forallv € Bof, r

B0 is a bijection and

(BO)AO = BA. Tt follow ~ Bsince () is injective. So B C Tm 6\ C Tm A

Thus A is onto. Conseq rER(Y ). It nilar to (i), we have A ¢ T.
Thatis A ¢ OER(V)UT, adiction. He Er(VYUT,0) ¢ RNR.
Therefore the theorem is pr O

Corollary 4.2.14. ([8]) OEr ;E’ fg,_'. both a left nearring structure and

a right nearring structure.

X

j /]
AU INENTNEINS
RINNIUUNIININY



CHAPTER V
SUBSEMIGROUPS OF VARIANTS OF Lz(V)
ADMITTING THE NEARRING STRUCTURE

Throughout this section, let / be a vectot space over a division ring R and
k be a cardinal number. We recall that the followings are linear transformation

semigroups on V.

Kgr(V k) ={a'e Lg(\J) [fdimp Kerer > k} where k£ < dimg V,
Kr(Vik) = {o€ LA1J [dim Ker @ > &} whee k < dimp V.,
CIg(Vk) ={a e Ly(V)| di_mR(V}'-I_I‘n_'a) >k} where k < dimpg V,
CIL(V, k) = {a € Lg(V) | dimiz(V/Im o) > kY where k < dimgV,
Ix(V, k) = {a € Lp(V ) fdimg Im a—gk} where k < dimp V,
I4(V, k) (V)] i o & < e} iwhererd < k < dimp V.

Note that these semigroups contain 0, the zero map on V.

5.1 Generalizations of the Semigroups Kz (V| k) and K,(V, k)
We begin this section by showing both (Kz(V. k),0) and (4{,(V. k),0) are
subsemigroups of (Li(V), 8) where 0t L (V).

Lemma 5.1.1. (i) For k < dimgr V, Kg(V, k) is a right ideal of Lr(V).
(i1) For k < dimp V, K,(V. k) is a right ideal of Lr(V').

Proof. The results are obtained immediately from Ker a8 O Kera for all o, 5 €

Lr(V). OJ
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The following proposition is a directly consequence from Lemma 5.1.1.

Proposition 5.1.2. Let § € Lg(V'). Then the following statements hold.
(i) For k < dimgp V, (Kr(V,k),0) is a subsemigroup of (Lr(V), 0).
(i1) For k < dimp V, (K%(V, k), 0) is a subsemigroup of (Lg(V'), 0).

In this thesis, we shall choose § € Ex(V) to determine when the semigroup
(Kgr(V,k),0) admits the structure of a left [right] nearring. These facts are help-

ful for our main theorems.
Lemma 5.1.3. Let k < dimp V' and 6 € Gr(V2). Then (Kr(V, k),0) = Kr(V, k).

Proof. Define a map ¢ o (Iig(Vik),0) — Kp(V. k) by ap = af for all a €
Kr(V, k). Since Kr(V k) is/@a right idle_al, v 1s well-defined. Moreover, ¢ is
also one-to-one. By the right ideal prop;éi*ty of Kr(Vik), ad~t € Kg(V, k) and
then a = a0 = (af Yy for all a E.':,. Kr(V k), so ¢ is surjective. For any
a, B € Ki(V, k), we have o € K4(V. k)and (065 = abB0 = apBe. Hence ¢

is an isomorphism. ) e dia O
Lemma 5.1.4. ([8]) Let k < dimp V- T

g

1. Kg(V, k) admits.the structure of a left nearring if and-only if one of the following
statements holds:
(i) k= 0.
(1) dimp V.is finite and'k = dimpg V.

2. Kg(V, k) admits the structure of a right nearring if and only if one of the following
statements holds:
(i) k= 0.
(1) dimpg V' is finite and k = dimp V.

By Lemma 5.1.3, Lemma 5.1.4 and Proposition 2.8, the following theorem

holds where § € Gr(V). Then we will generalize these results by choosing

0 e ER(V)
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Theorem 5.1.5. Let k < dimgp V and 6 € Ex(V).

1. (Kgr(V,k),0) admits the structure of a left nearring if and only if one of the fol-
lowing statements holds.
(i) k=0.
(1) dimp V' is finite and k = dimp V.

2. (Kg(V,k),0) admits the structure of a right nearring if and only if one of the
following statements holds.
(i) k = 0.
(i1) dimp V' is finite and k=diny; V.

Proof. Assume that (i) o#(72)holds: By temma 514, Kz(V k) € LNRNRNR.
By Proposition 2.7, we know;that (KR(V;‘];’.), §) € LNRNRNR.

Conversely, assume that (K z(V, k), Sy0Yis a left nearring or a right nearring.
Suppose (i) and (i7) are all false. .Then éi{_cher k > 0 and dimgV is infinite or
0<k<dimpV < . \ s
Case 1: £ > 0 and dimp V' 1s infinite. Letiﬁ’%e a basis for V. Then there is a
partition {By, B2} such that |Bf=1B,| = |Bgi- For each v € B, we can choose

u, € V such that u, 0= v=Define-asf-c-Lp{i )by

v BQ Bl (4
o= and § = .
Ugyy ) 0 oty
vEB1 € Ba

Then Keraw = (B;) and Ker§ = (B;), so dimgKeraw = |By|.= |B| > k and
dimp Kem@ =/{B;| =\B] > k. Thus &, B € Kr(V, k). Obviouslyynfa = o, 505 =
p and aff'= 0 = B0c. Similar to the proof of Theorem 4.1.3, we have A0 = 1y.
Thus dimg Ker A0 = 0 < k, this implies that A0 ¢ Kz(V, k), which contradicts
the right ideal property of Kg(V, k). Hence (Kg(V),0) ¢ LNR U RNR.

Case2: 0 < k < dimgV < oo. Then 6§ € Gg(V) and Lemma 5.1.4 shows that
Kr(V,k) ¢ LNR URNR. By Lemma 5.1.3 and Proposition 2.8, it follows that
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(Kr(V,E),0) = Kg(V, k) ¢ LNRURNR.
Therefore the proof is complete. O

Since K5 (V, k) = Kgr(V, k') where £’ is the successor of k, the following theo-

rem will be proved. Moreover, this lemma will be used.

Lemma 5.1.6. ([8]) Let k < dimp V.

(i) KR(V, k) admits the structure of a left nearring if and only if dimp V' is finite and
k=dimgV — 1.

(i1) K (V, k) admits the structuieof a right nearring-ifand only if dimp V is finite and
k=dimgV — 1.

Theorem 5.1.7. Let k < dith /' and 6 & Ex(V).

(1) (K%(V, k), 0) admits the'stricture of a leﬁ nearring if and only if dimp V' is finite
and k = dimgp V — 1. - i

(1) (K% (V. k), 0) admits the skrueture of o right nearring ifand only if dimpg V' is finite
and k = dimp V — 1.

Proof. Let k' be the successor of k. Then k’? JO and K5 (V, k) = Kg(V, k). Sup-
pose that (K%(V,k),0), € LNRURNR. é?fheorem 5:1.5, dimp V' < oo and
k' =dimpV.So k =dimg V — L.

Conversely, assume that dimp V' < coand &' = dimz V' — 1. Then by Lemma
51.6, Kp(V,k) € LNRARNR. Hence (K(V,k),0) € LNRNRNR is ob-

tained from Proposition-2.7. O]

Notice that we can generalize Eemma 5.1.4sand Lemma 5:1.6 by choosing

0= 1y.

5.2 Genaralizations of the Semigroups CIz(V, k) and CI,(V, k)

First, we will show that (C1z(V, k), 0) and (CIy(V,k),0) are subsemigroups
of (Lr(V),0) where 6 € Lg(V).
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Lemma 5.2.1. (i) For k < dimp V, CIr(V. k) is a left ideal of Lr(V').
(i1) For k < dimp V, CIR(V, k) is a left ideal of Lr(V).

Proof. The results are obtained directly from the fact that Im o3 C Im 3 for all
o, 5 S LR(V) U]

The following proposition is a direct consequence of Lemma 5.2.1.

Proposition 5.2.2. Let 0 € Lp(V'). Then the following statements hold.
(i) For k < dimg V, (CIg(V, k). 6) is a subsemigroiip of (Lr(V),0).

-
(1) For k < dimp V, (CI(V, k)e6) is a subsemigioup of (Lr(V),0).

In this thesis, we will chebse ¢ & ]\/ﬂﬁ(V) to determine when the semigroup
(CIg(V,k),0) admits the staticttive of a left [right] nearring. The following lem-

mas are needed for ournmain theorems.

, :} b
Lemma 5.2.3. Let k < dimp V. Then CIR('V, k)MR(V) C CIr(V k).

Proof. Leta € CIg(V. k) andf € Mi(V/). ]jef,me »:V/Ima — V/Imaf by
Ja

(U+Ima) -—v/)’—f—lgﬁforallvev

—_—r =

It can be seen from the proof of Lemma 4. 1 5 and o € C’] »z(V, k) that

k= dimg(V/Ima) < dimg(V/Im dﬁ).

Therefore o € Clg(V, k;) O
Lemma 5.2.4. Let k <idimp V and 0.€ GRr(V).'Then (Clg(V, k),0) = CIg(V, k).

Proof. Defineca mapyp g € In(¥ak),8)1 o0 CLrlV k), by e = @b for all a €
CIg(V,k).; By Lemma 5.2.3, ¢ is well-defined. "Since ¢"is one-to-one, so is ¢.
Lemma 5.2.3 implies that af~' € CIg(V,k) and o = a0 = (af~ ') for all
a € CIr(V,k). Hence ¢ is surjective. For any «, 3 € CIg(V, k), we then have
abff € Clg(V, k) so (adp)e = abffl = apfp. Hence ¢ is an isomorphism. O

The following quoted result is useful.
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Lemma 5.2.5. ([8]) Let k < dimp V.

1. CIg(V, k) admits the structure of a left nearring if and only if one of the following
statements holds.
(i) k= 0.
(1) dimp V' is finite and k = dimp V.

] /z/rring if and only if one of the follow-
, L,
E——

2. CIgr(V, k) admits the structu
ing statements holds. 7
(i) k= 0.

(i1) dimpg V' is finite an

The next theorem i ma 5.2.4, Lemma 5.2.5

and Proposition 2.8 wh ‘ v ‘-If: generalize this result by consid-

(i3) dimp V is ﬁniﬁan

(CIg(V,k),0) admits the structure of %t nearrmﬁzf and only if one of the

e sﬁi s hotds. | EJ 4]
w@amawa ATMUNIINYINY

Proof. Suppose that (¢) or (ii) holds. Itis direct from Lemma 5.2.5 that CIz(V, k) €
LNRNARNTR. By Proposition 2.7, (CIg(V, k),0) € LNR N RNR.
Conversely, assume that (CIz(V, k), ®,0) is a left nearring or a right near-

ring. Suppose (i) and (ii) are false. Then either £ > 0 and dimg V' is infinite or



43

0<k<dimpV < 0.

Case 1: £ > 0 and dimp V is infinite. Let B be a basis for V. Then there is
a partition {B;, By} of B such that |B| = |B;| = |Bz|. Since 6 is injective, by
Proposition 2.14, we have B# is a basis for Im # and { B;6, B,0} is also a partition
of BO with |Bf| = |B,6| = | B20| = | B|. Let C be a basis for V' containing B6 and
Bs = C ~\ Bf. Then C = BA U Bs. Define «, 8,7 € Lg(V') by

v 329 U B3 v 319 @) Bg
o = s /3 ol
vh~1 0 J uas 0
vEB16 vE B2l

( v 139 )
~ \ 4 )
v

il vEB3

Then dimp(V/Tma) = [BA B = Bof 2 (B| % b, dimp(V/Im 8) = |B < B| =
|Bi| = | B| > k and dimp(Vf Tl 1) <4C e Byfl=|BO| — |B| > k. Hence o, 8,7 €
CIg(V, k). Itis easy to see that afa'= «, Béy_é‘_:_ﬁ and afp = pa = alby = [0~ =
0. Let \ = a® B € CIz(V). The i)roof of;iﬂﬁéorem 4.1.6 shows that A is onto,
which contradicts A €,CIp(Vik) Therefore (CLIWk), )¢ LAR URNR.

Case 2: 0 < k < dimgV =< oo then ¢ € Gi(V ). By Lemma 5.2.5, we have
CIgr(V,k) ¢ LNRU ’RN R. It follows from Lemma 5.2.4 and Proposition 2.8

that (CIR(V,k),0) = CIx(V.k) ¢ LN'R URNR. 0

and

Since CIL(VL k) = CIg(V, k') whete k'ds thesuccessor of k, the neccessary
and sufficient conditions for (CI},(V, k), ) admitting the nearring structure are
also obtained by Theorem 5.2,6 where.f & Mpy(V,). The following quoted result
is helpful.

Lemma 5.2.7. ([8]) Let k < dimp V.
(i) CIL(V, k) admits the structure of a left nearring if and only if dimpg V' is finite and
k= dll’IlR V-1
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(it) CIR(V, k) admits the structure of a right nearring if and only if dimpg V' is finite
and k = dimp V' — 1.

Theorem 5.2.8. Let k < dimpg V and 6 € Mg(V).

(i) (CIR(V, k), 0) admits the structure of a left nearring if and only if dimp V' is finite
and k = dimp V' — 1.

(i1) (CIR(V,k),0) admits the structure,of a right nearring if and only if dimpg V' is
finite and k = dimp V' — 1.

Proof. Assume that dimp ) is finite and £ = dimz V' — 1. By Lemma 5.2.7,
CIL(V k) € LNR N RNR: Finally, Proposition 2.7 shows that (C1,(V,k),0) €
LNRNRNR. .|

Conversely, assumethat(CI (V. k), é),le LNR U RNTR. Let k' be the succes-

sor of k. Then k' > 0 and @74(V. k)= €1(V,k"). By Theorem 5.2.6, we have
dimp V < oo and k' = diuly /. Hence dinly V < so.and k = dimg V — 1. 0

Therefore quoted results, Lemma 5.2.5:’Jéln&1 Lemma 5.2.7, are special cases of

Theorem 5.2.6 and Theorem 5.2:8 where 6 = lv

d ol

5.3 Generalizations of the Semigroups /;(V k) and [,(V, k)

In the last section, we will show that both of Ixz(V, k) and I(V, k) are sub-

semigroups of (Lp(V'), ) where 6 € Lr(V )
Lemma 5.3.1. () For'k <*dimpg V, Ig(V. k) is a'left'ideal'of Lp(V').
(it) For 0 < k < dimg V', I5(V. k) is a left ideal of Ex(V).

Proof. Thejresults are obtained directly from the fact that Ima C Im 3 for all
Q, 5 S LR(V) [

Proposition 5.3.2. Let § € Lg(V'). Then the following statements hold.
(i) For k < dimg V, (Ir(V, k), 0) is a subsemigroup of (Lr(V'),0).
(i1) For 0 < k < dimg V, (I5(V, k), 8) is a subsemigroup of (Lr(V),0).
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For I(V, k) and I(V, k), we will choose § € Mg(V) to determine whether
or not (Ig(V,k),0) and (I5(V, k), §) admit the structure of a left [right] nearring.

These two lemmas are useful facts for our main theorems.
Lemma 5.3.3. For k < dimgV, Ir(V,k)Mgr(V') C Ix(V, k).

Proof. Let a € Ix(V. k) and 5 € Mg(V). Let B be a basis for Im a. By Proposi-
Imaf. So dimgImaf = |BB| =
e af € In(V, k). O

tion 2.14, we have Bf is a basis.

|B| < k since f is injective
Lemma 5.3.4. ([8]) Let k

1. Ig(V, k) admits the st
statements holds.
(1) k= 0. ’
(ii) k = dimp V.

(14i) k is an mﬁnzte cardznal number.

e e WBARBRT NN
T sl N N Y

(Ix(V, k), ) admits the structure of a left nearring if and only if one of the fol-
lowing statements holds.

(i) k= 0.

(it) k = dimp V.

(i13) k is an infinite cardinal number.
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2. (Ir(V.k),0) admits the structure of a right nearring if and only if one of the
following statements holds.
(i) k= 0.
(i1) k = dimg V.

(i19) k is an infinite cardinal number.

Proof. First, assume that (z), (i) or (#4) holds. By Lemma 5.3.4, Ip(V k) €
LNR N RNTR. It follows from Propoesition?2.7 that (Iz(V, k), 0) € LNR N RNR.

Conversely, suppose that (i), (i7) and (iii)-are all false. Thatis, 0 < k <
dimp V' and k is finite. Let*8 bea basis for I”. Then there exists B;, a proper
subset of B such that [B{| —#. Since 0.is injective, by Proposition 2.14, Bf is a
basis for Im §. Moreover, | Bi0|/= || |:k and |Bf| = |B|. Extend Bf to C, a
basis for V. Set By = C' X B. Notic.e,thaﬁ;‘lC = BOU By = B10U (B~ B1)0 U Bs.
Letu € (B ~ By)0 be fixed: Then we havé Uy € B By such that uyf = u. Define
o, € Lp(V) by 7

sid I
v (B~ BB 22 u O~ {u}
o= ~and (= .
vh~1 Qs Y= () 0
W vEB10

Then Ima = (By) and Im 3 = (ug). It follows that di;&lﬁ Ima = |By| = k and

dimpIm g =1 < k,sowe have a, 5 € Ig(V, k). It is easy to see that

aba = «a, 505 = f.and aff= 0o = 0.

1. If (Ir(V, k), &, 0) ista left nearring,let A = a & f.€ [x(Vik): Then af\ = aand
BON = 5. So we have

for every v € B0, v\ = vabId = val = v,

uNd = uPBON) = ufB0 = u.

This implies that (B10 U {u}) C Im A0. Thus dimr Im A0 > |B10U{u} | = k+1 > k
since k is finite. Then \0 ¢ Ig(V, k), which contradicts to Lemma 5.3.3. Hence
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(Ir(V.k),0) ¢ LN'R.
2. Suppose that (Iz(V, k), ®, 0) is a right nearring, let A\ = a & g € Ir(V. k). Then
Ma = «and \d§ = . Thus

for every v € B0, vA0p = v =0,

uNa = ua = 0.

Consequently,

*)

25) \ {u} # @. For each
N

I
RIaNBat

If either w € (B \ B;y)0 ~ {u} or w € B,, we then have Im~, = (wf') or

Im ~y,, = (w), respectively. So dimp Im~,, = 1 < k. Thus ~,, € Iz(V, k) and



48

aby, = B0y, =0 forall w € ((B ~ By)du Bz) ~ Au}

Since (Ig(V,k),®,0) is a right nearring, it follows that A\fv, = 0 for all w €
(B~ By)0 U By) ~ {u}. From (*), we have for every v € B0,

v € (C'~A{u}) N ( ﬂ Ker ’yw)

we((B\B1)0UB2)~{u}

and

Hence the claim is preved, and then w re has -

oy T
ﬂumwaﬁ%%‘fﬁﬁ

since Ma = « and AB = B. Thus (B10U{u}) C Im M. Since k is finite,

g9 FEVTHY B 83 A RIDER B o

dicts Lemma 5.3.3. Therefore (Ir(V,k),0) ¢ RNR. O

M
) = v,

The following quoted result will be used.

Lemma 5.3.6. ([8]) Let 0 < k < dimp V.
(i) In(V, k) admits the structure of a left nearring if and only if either k = 1 or k is an
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infinite cardinal number.
(1) IR(V, k) admits the structure of a right nearring if and only if either k = 1 or k is

an infinite cardinal number.

Theorem 5.3.7. Let 0 < k < dimgr V and 0 € Mg(V).

(i) (IR(V, k), 0) admits the structure of a left nearring if and only if either k = 1 or k is
an infinite cardinal number.

(i1) (Ix(V, k), 0) admits the structure of a right sicarring if and only if either k = 1 or

k is an infinite cardinal number.

Proof. Assume that k = 1 ou# isan infinite cardinal number. Then, by Lemma
5.3.6, I,(V, k) € LN'R N RN Hence Proposition 2.7 shows that (I(V, k), 0) €
LNRNRNR. A

Conversely, suppose that I < & and k ig finite. Thus I(V, k) = Ir(V,k — 1),
0<k—1< dimgV and k= 1 is finite.i_By Theorem 5.3.5, (Ix(V,k — 1),0) ¢
LNRURNR. Hence I, 1) & LNTR w\m 0

By Theorem 5.3.5 and Theorem 5.3.7, V\gé}-‘igve generalized Lemma 5.3.4 and
Lemma 5.3.6. = Yo

From Chapter IV afid-the eurrent chapter, we can-eoticlude that (OMz(V),0),
(OER(V),6), (Kn(V, k)70, (Kh(Va k), 0), (CLalVA k), 0)(C T(V. k), 0), (In(V, k. 0)
and (I5(V, k), 0) are semigroups where 6 € Lp(V). In this thesis, we determine
when these semiigroups admit the sttuicttre 'of la neatring ‘where § € Ex(V) or
8 € Mr(V). So wie can continue this research by determining when these semi-
groups withythe-other linear transformations¢ to admit the nearring structure.
Moreover, if we extend semigroups containing OMpz(V') and OEg(V) to sets
OMpg(V)UH and OER(V)UH where H is a subsemigroup of Lz(V), the research
works are finding necessary and sufficient conditions for (OMz(V) U H,#) and

(OERr(V)UH, 6) to be semigroups where § € Lr(V'). Then these semigroups can

be characterized whether or not they admit the nearring structure.
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