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CHAPTER I
PRELIMINARIES

1.1 Introduction

Let Z[i] be the ring of Ga intey = a + bi be a nonzero element
in Z[i] and Z[i]/(7) ﬁ : N’y We know that Z[i]/()

is a commutative fini

Theorem 4 of [3]).

Z[i]/(v) and ged(u,y b5 , letely determined by Cross
[2].

Let GE,) be the digrap Z[i]/ () and the edge set is
given by

For simplicity, we sha .
I '
modulo 7. It is obv1os that G( ) has a2 + b2 vertices

edges. ; f] ﬂ ‘j

This digrﬂ gng by USI n 1&@ Somer and Kiizek [6, 7] who
studleat El] ic congruence
modulo }Whe;@;rap m}! ring of integers quﬁ EL , as a vertex

set V and there exists a directed edge from a € V to b € V if b = > mod n. An

and exactly a? + b? directed

application of this digraph on elliptic curves can be found in [4].

A component of a digraph is a subdigraph which is a maximal connected sub-
graph. The indegree [resp. outdegree] of a vertex pu € V., of G?), is the number
of directed edges entering [resp. leaving] the vertex p and denoted by indeg,, p

[resp. outdeg, u]. The definition of Gﬁf) implies that the outdegree of each vertex



is equal to 1. This yields the fact that each component has a unique cycle. We
call a cycle of length one a fized point. For an isolated fized point, the indegree
and outdegree are both one.

A cycle of length t > 1 is said to be a t-cycle and we assume that all cycles
are oriented counterclockwise. The distance from a vertex p € V, to a cycle is the
length of the directed path from rtex in the cycle.

It can be shown that eve . /ﬂ contains a unique cycle (Propo-

sition 1.1 of [7]). In addi er».!nd mermined the number of fixed

points, the number of
the component of G(n
A(n), which was first 1
universal order moditlo
properties are recalle

The exponent of a least positive integer n such

that ¢" = e for all g € he universal order for a group.

Note that exp G divides |G|"’Wé.br1e}f ‘diseuss some properties of the exponent

5

of a group in our

Theorem 1.1.1. Let G be a a s%mup of G.

o Zﬁﬁiﬁﬁgﬁﬂ“ﬁﬁ‘w gy

(2) exp H divides exp G.

o el e NI URIINANNY

(4) IfG is abelian, then there ezists a g in G such that o(g) = expG.

Proof. (1) — (3) are clear. To prove (4), assume that G is abelian. By the ele-
mentary divisor theorem, there exist positive integers nq,no,...,n; > 1 such that
ny|ng |- | ng and

G = ZLpy X Ly X -+ X L,.

Thus, exp G = n; and (0,0,...,0,1) in the rightmost group has order n. O



Our goal is to replace the Carmichael M-function with A(vy) = exp(Z[i]/(v))*,
the exponent of the unit group (Z[:]/(7))* and study the digraph ng), defined
above. We obtain results analogous to the work of Somer and Kfizek for the
structure of our new digraphs.

The thesis is organized as follows. The next section recalls some properties of
the quotient rings over the Gaussian integers including the formulas for computing
the Carmichael M-function (Proposition 1.2:6)" Basic structures and semiregular-
ity are presented in Section 2.1. Cydles, components and distances are studied
in Section 2.2. The final chapter gives five examples of square mapping digraphs
demonstrating the results'in the previ‘pus chapters.

This work will appeas insthe International Journal of Number Theory [5].

— -
i

.
W

1.2  Quotient Rings o_ye_r‘ th('}:-_}lq_aussian Integers

N
Consider the meaning of dlvmbﬂl‘rv and co,ngruences in the Gaussian integer.

Recall that in the Gaussmn mteger i 73‘ means there is a Gaussian integers «

s,-a. =

1.4

such that o - v = 6, and a = ﬁ mod ~ means that 'H ( — [3). This congruence

relation is an equlvalence relation. Dresden and Dymac—ek [3] gave representatives
for equivalence classes'of the corresponding quotientwing of Z[i] modulo 7 in the

following propesition,

Proposition 1:2.1. If d = ged(a, b) so that v = d(ay + byi), then the equivalence
classes of @)1 (o er@{@y Egi): DK |8 & diod ™% 07),0 &7 <d)E

Proof. We first show that the equivalence classes are distinct. Let [z; + y14], and
[22 + y2i], be any equivalence classes of Z[i] /(7). If [x1 + yii], = [2 + yoil. , then
d| (r1 —x2) + (11 — y2)i, so d | y2 — y1. But |yo — 1| < d, hence y; = yo.
Now v | @y — x1; but the least rational integer that v divides is d (a2 + b?) so
either |zy — x| > d(a? + %) or x5 = x;. Since the first of these is impossible
by definition of representation, we have that x; = x5. Therefore, the equivalence

classes are distinct.



Finally, we demonstrate that any x + y: falls into one of these equivalence
classes. Now determine ¢; and r so that y = dq; + r, where 0 < r < d. Since

ged (a, b) = d, there are integers u and v such that av + bu = dg;. Now
r+yi — (a+bi) (u+vi) =z — au+ bv + ri.

r’—d (a2 +03)ga+ 5,0 < s <d(a?+13).

///
\\\_

Determine ¢ and s so that x — au

Now

T+ yi— ) =s+71i;

that isx—i—yizs-l-{

Gaussian integer is con

and 0 < r < d. Hence any

ese equlvalence classes. O

Corollary 1.2.2. The ty of the lasses of Z[i]/(7y) is N (v) =

Note that there are fo +1 and £¢. Without any loss of

generality, 7 can be restric _g\g;é{;n first quadrant. For, if u is a unit,

then the ideals (y)-ai mm’!’!!“!’“! (ufy)
v

Remark. If v = a %@ is elen orm m(fy), is defined to be vy =

Iv]> = a? + b%, where 7ds,the complex-conjugate of 7.

Lot 7o FHLRLR gqngmg PRIV 55 contems the funde

mental propertis of the norm.
» AT IH UK INAY
(2) N(m72) =N ()N (12)-
(3) N () = 1if and only if v is a unit.
=0, ify=0;

(4) N(v) 4 =1, ify==1or+i;

| > 1, otherwise.



(5) If N (7) is prime in Z, then ~ is prime in Z][i].

Notation. It is convenient in the classification to call two Gaussian integers as-
sociates, written a ~ [, if o | f and § | «, that is, if a = [e where € is a

unit.

where n = (2m)!.

Proof. Consider the two

Each element of the  CONGT ‘modulo g to the element of the upper

row directly above, si
4m (4m —1) - - {I Sl WA - (=2m) mod gq.

which yields

Let n = (2m)!. Sing (4m. W1 mad g by Wilson’s theorem, it

follows that n?

e IHY 14 NAM el
o AR TRUIN I o 1

types:
(1) p, where p is a prime in Z satisfying p =3 mod 4;
(2) a=1+iand

(8) m or 7, where ¢ = 7T is a prime in Z satisfying ¢ =1 mod 4.



Proof. To prove the proposition, we show first that any prime o in Z[i| divides
exactly one positive rational prime r. For, N (o) = 05,80 0 | N (¢). Let N (o) =
r17r9---1; be the factorization in Z of N (o) into positive primes. Then o | rirg---7y,
so o divides one of the r;. Thus, o divides at least one rational prime. Suppose o

divides two distinct rational primes r; and ry. Then there exist rational integers

x and y such that ; ‘l’ ! !
This gives o | 1, so o is t a rin@a contradiction.
Hence, we can geh/ : ""h‘le once by considering the

factorization of all posi

elements of Z[i].

Now, let o be a pui 1 o ive rational prime for which
o |r. Then N (o) | N (#). ’ ' is a rational integer. Hence,
=rorz?+y?=r2

Divide r by 4. Accordi : ﬂ' sion. algotithm, this leaves a remainder of

Case 1. r = 3uﬁ0d 4. As’.sféiféa’jus : =rorx’+y*=ri It

s cannot occur. Since r

is odd, one of z andg say x, e oth@ odd; otherwise the sum of

their squares would beeven. Let x = —2b-|—1 If 22 4+ 92 =
A AT

ARASR Wﬁﬂ%ﬂ?wgﬂas

whereas = 3 mod 4. Thus, in this case 22 + y* =72, and N () = N (r). Since
o|r,r=or, where 7 € Z[i]. Then N (r) = N (o) N(7),N (1) = 1,7 is a unit,
and o ~ r. This accounts for the first part of Proposition 1.2.4.

Case 2. r =2 mod 4. In this case r = 2, since this is the only even prime.
But 2 = (1+1¢)(1—4), and 0 | 2, so 0 | (1+1) or ¢ | (1—14). Note that
N((1+1i) =2 = N(1-1i), a rational prime. By property of the norm, 1 + ¢

and 1 — ¢ are prime. Thus, 0 ~ 1+7ior o ~ 1—4. Since (1+14)/(1—1i) =1,



(141) ~ (1 —1i), and hence the second part of the proposition is done.

Case 3. r =1 mod 4. Since r is the form 1+ 4m, by Lemma 1.2.3, r | n? +1
for some rational integer n. But n? +1= (n+1i)(n—i)and o |r,s0o o |n+1ior
o | n—i. But r does not divide n+i or n —i, for otherwise one of (n % i) /r would

be a Gaussian integer; this cannot be, for 1/p is not a rational integer. Hence o

’W ) # N (r), so 2* + y* # r?. This

Then 06 = r. Now ssumptlon S0 is 0 = x — y1,

since N (a) = r. T}( werwise r+yi = e(x—yi),

where € = 1,—1,7 or 4. \ r, so r is not a prime. If

and r are not associated. It follo

leaves only alternative x? -

ows. If e = +i,x = +y and

r is even. All of th so x + yi and x — yi are not

associated. O
Let pr and ¢ be positi e / satisfying pr = 3 mod 4, and ¢ = 1
mod 4, 7m; denote a prime fac or—of ¢ i Jﬂ and « = 1 + ¢. By the Chinese

___,r-j.,,-’a"-z, oy e
remainder theorem;if we factor - fy in ﬁ[z v

(1.1)

where each «, p; and mpare distinct prlmes in Z[i], a,d > 0 and by,,c; are positive

s s @Y ANINTHYN S
e il (i /i) (12)
ammnmﬁ%wgw

(Z[Z]/( )" = "X H )" x H(Z[i]/(ﬁf’))*- (1.3)

Let w() denote the number of dlstlnct primes in Z[i] dividing 7.

and

From Cross ’s result [2], the structure for units group of Z[i|/(¢"), where o is

prime in Z[i], was completely solved for all n € N. We record his result in:

Lemma 1.2.5. [2] Let n be a positive integer and 7, p and o given in Proposition

1.2.4 Then:



(1) () (")) = Bypos X Tyt X Loy,
(2) (Zil/(7"))* = Tn_gns.
(3) (Zli)) (@) = {11}, (Zli]/(0) = T, (ZIi)/(e¥) = Zu, (Zl]/(aY))" =

Zo X Ly and
. . m—2 X Ly, if n=2m;
(Z[i]/ (™))" =
ifn=2m+1,
when n > 5.

- describe the values of the

e that A(up) = A(p) for all

Following the
Carmichael - funct

units «. The followin 1S -2l i 11 ate application of Theorem 1.1.1

Proposition 1.2.6. [2} L 10 X2K" mmes in 7, satisfying p = 3
mod 4, and ¢ =1 mod factor of q in Z[i], and o = 1 + 3.
Then 7

(1) X(z") = |(Z Tg’ﬁ;'?:#“ tin integers n.

s

(2) Ap") = (@ ") =D

ﬂwﬁ TN e
Q‘W’]@\ﬂ IRUINREN IS

sl (Z[i]/(a™) | =27 if n=2m+ L.

p” — 1) for ampositz've mtegers n.

(4) Mol'ol? .. ods) = lem{\(o?), M(03?),..., M%)}, where 0y,04,...,0, are
distinct primes in Z[i] for j; > 1 and 1 € {1,2,...,s}.
In the remainder of the thesis, we shall continue with the following notation:

p and g denote positive primes in Z satisfying p =3 mod 4 and ¢ =1 mod 4, 7

stands for a prime factor of ¢ in Z[i], and o = 1 + 1.



CHAPTER II
STRUCTURES OF THE DIGRAPH G

2.1 Preliminary St
T—

2

digraph.

 ithi digraph is equal to the number of its

In this section, we presen

Proposition 2.1.1. %2) has exactly one cycle.
Therefore, the number o

cycles.

onsider the path

If there is no cycle, then t finite and so is the order of p,

which is impossib ‘iliif:;———_;i? _ﬁiff‘ er, if C' possesses more
than one cycle, then mere ' Fde re%reater than one, which is a
contradiction. ¢a [y O
' 1
\
The follo‘%uﬂgsnﬂmuiﬂt&aﬁﬁjd points and isolated

=9 4

AN NN INLNA?

cycles
Proposition 2.1.2. The zero 0 is an isolated fixed point of iof and only if v

s square-free.

Proof. 1f n? | ~ for some prime 7, then v /n € Z[i] and

2
<1> =7-1250 mod 7.
Ui Ui

Thus, 0 is not an isolated fixed point. Conversely, assume that ~ is square-free. If

22 =0 mod 7, then z =0 mod 7. Hence, 0 is an isolated fixed point of Gﬁf). O
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Proposition 2.1.3. If ged(2,v) = 1, then there are no isolated cycles in ng)

except the isolated fixed point 0.

Proof. Assume that o f v and p is a vertex in an isolated cycle of Gﬁf). Let
v € Z[i] such that > = p mod 4. Then (—v)* = i mod 7. Since p is in an

isolated cycle, v = —v mod v, so 2v = 0 mod . Since ged(a?,7) =1, v =0

O

&ne degree. The digraph GSQ) is

r d such that each vertex of
B "y \‘ 0 and bx,c; are positive integers,
2

$EEA\\\\

mod ~ which implies that v =.

Gg) either has inde
If v = i%a? [
define

i

0, 0, if a#3;
P11 =

1, 1, if a=3,

0, if ais odd;
pP3 =

1, L1 d, if a is even.

7 1
Next, we considemwo disjoint subdigraphs Ggimad

Gg% of G,(YZ) induced on
the set of verti M‘i‘ i gj\ l\i Ej | ﬁ)ﬁ and induced on the
remaining veﬁe ich rT[ ;ler T{. ulo #," respectively. They are

called eﬁij,jﬂzﬁiﬁbﬂ ﬁ! gﬁ T ﬁzﬁoanﬁf ﬁrﬁ' tively. Observe
that there'are g twee (;‘[n @) {ht'ﬂﬁf —}AUG%.

7,20

Lemma 2.1.4. Let a,b and ¢ denote positive integers. Then we have the following

statements.
(1) The number of solutions of x> = ;1 mod p° is 0 or 2.
(2) The number of solutions of x> = u mod 7€ is 0 or 2.

(3) The number of solutions of x> = u mod a® is
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(i) 0 or 2rrtP2 4f 0 < a < 3,
(i) 0 or4 if a =4, and
(iii) O or 2%psT2patl 4f g > 4.

Proof. By Lemma 1.2.5 (2), (Z[i]/(7°))* = Zge—q—1. Multiplication in (Z[i]/(7))*

corresponds to addition in Zg_ corresponds to 2x. The map

V/g, B

c _ge—1 1s either the image of

is a ged(2, ¢¢ — ¢
ged(2,¢° —q') =2

For modulus p°, & Zpp1 X Lpp—1 X Ly2_1. In
5 (¢ d(27pb_1))2 ng(27p2 - 1)_

to-one, so an element i X, I the image of (ged(2, p*~ ))2

Zpb—l X Zpb—l X Zp2_

(@l () Hhsess
i)/ (")) = 7 ,
e S 7, ifa>3

If 0 < a < 3, then the multlphcatlon by 2 map is (gcgz 2))* (ged(2,4))"*-to-one,

o e ] 17 Y1 B~

2p.
elements or nofié. If a > 3, then the multlphcatlon by 2 map is 2 q-(’gcd 2_‘l 2)) ’

=ARIRAT VLA TR & -

Proposnzlon 2.1.5. For every nonzero element v € Zli], we have the digraph

Gf% i1s semareqular. More precisely,

(1) if0§a§3anduisaverte:cofG()

+1, then indeg, pp = 0 or indeg, u =

2p1 +p2+ni+n2
)

(2) If a =4 and p is a vertex of G? | then indeg, p = 0 or indeg, p = 2w+

7,1

and
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(3) If a > 4 and u is a vertex of ¥

22p3+2pa+w(v) |

~1, then indeg, pn = 0 or indeg, p =

Proof. Let E := [Ty (Z[i)/(pit))* > T2, (Z1i) /(7))
From (1.3) and Lemma 1.2.5 (3),

75 x 7 x E if 0 <a<3;

I

(Z[i]/(7))"
%,

272 Ty

i xZyx E, ifa>3.

For pi € (Zi]/ (7)),

By Lemma 2.1.4, we k 1l € {1,2,....noh, 22 = p
mod pi* and 22 = pu mod nf-have 00 olutions. For 0 < a < 3, 2% = u
mod a* has 0 or 27%72 solutiots. _ ten *) thus has 0 or 2r,rFrztnitnz,
When a = 4, z? ‘L‘;-E!’E’EEEQ’:‘E# implies that the system

1

(*) has 0 or 2mM*m2Ta od a® has 0 or 223 +2patl

M@
solutions. This again glves 0 or 22p3+2”4+”1+”2+1 = 223201+ () golutions for the

e ﬂ'lJEJ’J‘VlEWﬁWEJ']ﬂ‘E -
2 ¥RY SRS RO 2

We prove the main theorem about the ¢-cycles for the digraph G( ) (Theorem 2.2.1)
and derive its consequences in this section. Our main tool is the A-function given
by A(v) = exp(Z[i]/(7))* and their values given in Proposition 1.2.6. Furthermore,
we work on the number of components and study the maximum distance from the

cycle on each component.

Notation. If R is the ring of integers Z or the ring of Gaussian integers Z[i], for
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each p,v € R with ged(p,y) = 1, we write ord, u = t if ¢ is the least positive

integer such that u* =1 mod .

We also repeatedly use the following two facts.

(i) ordg(ab) = lem(ordy a, ord, b), and

d
(ii) ordga™ = — % forallneN.

ged(n, ordg a)
%zn Z[i] and have the factorization

gwen in (1.1). Then we ) follwz

Theorem 2.2.1. Let v be

(1) There exists a t-cy g — “if and only if t = orda2 for some

(3) If w is a vertex of @t Ggcle; then w = d where v = ~v/ged(p,7), d

s odd, and ordd2 = et ;_.;,:\u__ajz j is_on the same t-cycle as p, then

ord, pu = ord ;:, :‘
Proof. Clearly, G E‘talns s d point 0 and @Lﬂ =1 when d = 1. Next

assume that ,u is a fixed nt of G( )

AUB3TE eI
o RN DA TN THHAAL -1 e

where 7’: w/ ged(p, ). Hence, ordy p=d =1 and so ordg2 =t = 1.
Assume that t > 1 and G£,2) has a t-cycle containing a vertex p. Then ¢ is the

least positive integer such that

,uzt =pu mod 7.
Thus, we have

W' =1)=p* —p=0 mod~.
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Since ged(p, 2 ~' — 1) = 1 and ged(j1,7) | p, t is the least positive integer such
that 42 ~' =1 mod + and therefore ged(ged(p,7),~') = 1. Hence, we get 0 | v
whenever 7 | 7.

Now, assume that g and v are in the same t-cycle of G£,2). Then there exists

ajeq{l,2,...,t} such that

mod 7. (2.1)

1'= 1 mod +/, we have
ged(p,y') = 1. Let i t positive integer such that
d| (2" —1). Thus, t = “d-isSodd, 1 , d | A\(7') by the definition

of A. Since v/ | v, A ad $0 d, | A(%) s\ that ged(27,d) = 1 for all

.

j >0, we derive from and v lie on the same cycle

in G5 )

g
'*sﬁ-\

;i [sik

=
L

It remains to show the If v pa . Let t = ordy2 for some odd
positive divisor d of A(). By 4 -‘-;- rent 173 here eists a vertex € Z[i]/(7)

such that ord, p
dmﬂ'—lif1§j<ﬂwe

ﬂ‘IJEJ’JWEJﬂﬁWMﬂi

so we finally re ch

QW’]ﬂ\ﬂﬂimﬁ%’]’%@%Eﬂﬂﬂ

Therefore v is a vertex of a t-cycle in G( O

\‘ d. Since d | 2" — 1 but
S osﬁve integer for which

Corollary 2.2.2. (1) If there exists a t-cycle in GE,Q), then there exists a t-cycle

(2) The unit subdigraph G(ﬁ contains a t-cycle if and only if there exists a
positive odd integer d such that t = ord;2 and d | A(7y).
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Proof. (1) It suffices to assume that there exists a t-cycle in G% and t > 1. Let

1 be a vertex of this t-cycle. As in the proof of Theorem 2.2.1, we obtain

=0 mod ged(p,vy) and '=1 mod~. (2.2)
Since ged(ged(p,7),v') = 1, by the Chinese remainder theorem, there exists a
v € (Z[i]/(7))* such that ,’
§ /ﬂ =u mod 7. (2.3)
It follows from (2.2) s t ive integer such that

That is, v is an elem

(2) follows from (1 O
The numbers of fix. studied in
s
Corollary 2.2.3. Let C 1 ‘ enote the number of t-cycles in G( 1 and

-."‘_

G%, respectively.

Proof. Let v be a nonzeroelement in Z[i| and have the factorization given in (1.1).

We shall ﬁrsﬂuﬂ@ﬂ PR TR W T4 0 see that 0 and 1

are the only ﬁxed points modulo ¢ for any prime factor n of o, where h is the
ighedOP o 3 i b bl by 5 e
point modulo n" for any prime factor n of ~, so for each n we know that p = 0
mod 7" or 4 = 1 mod n". Conversely, by the Chinese remainder theorem, for

each ¢, e, &, € {0,1} there is a unique u € Z[i] such that
pw=¢e¢ mod a®,

for ke {1,...,n},

W =¢er mod pZ’“,
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and for [ € {1,...,ny},

— Cl
iw=¢g modm'.

Thus, y is a fixed point modulo 7. Since there are 21721 distinct ways to choose
the ¢, e, and g, Gg) has exactly 2"17"2+! fixed points.
Next, we shall prove that C’i 1 = 1. Let u be a fixed point in G . Then we

have

Since ged(u,y) = 1, inally, C}, = C) - C] ; =

2@ — 1. O

Corollary 2.2.4. Zlt| and have the factorization

given in (1.1). The" ontains a t-cycle if and only if
there exist a positive or 1 of v such that t = ordy 2

and d | X(y/n"), where nA.
Proof. 1t is clear for t = 1. Assi at ¢ > 1 and let 1 be a vertex of a t-cycle in
2o

G(2%. Then gcd(u, ) ere exists a prime factor

n of ~ such that |4 | \J of  in . By Theorem
1.1.1 (2), A(Y) | A ’ym" Let d = ord, p. It dlrectlﬂollows from Theorem 2.2.1

) that d is ﬂ;ﬂ | ie td| Ay/m").

Converselﬁf ﬁ; ﬁﬂ i] iﬁ\gﬁ il) d and a prime factor
n of fy such t at t i'dgﬁ where h is the highest power of 7 in
~v. Let q’ ﬂln El ﬁu /EJ * such that
ord,» v = \(v/ ) Then ord,» ")/ = d. Since d | 2! — 1 but d { 2/ — 1 whenever

1 < g <t tis the least positive integer for which
V(’\(7,,)/d)2t_1 =1 mod "
By the Chinese remainder theorem, we have p € Z[i] such that

p=0 modn" and p=1"0"" mod~”
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since ged(n®,4") = 1. Thus,

t t_
p? —p=pp® ' —=1)=0 mod 7.

Since ¢ is the least positive integer for which 42! =1 mod ~” and 7" | p, pis a

vertex of a t-cycle in Gf; O

Recall that a Fermat prime is umber of the form 22" + 1 for some

Corollary 2.2.5. SUP@ ‘ ' Suppose further that for each
positive integert, G Jifian has a t-cycle. Then v = a*

prime. If y = 7/ and j > 2, th@aﬁw,‘
s0 q | A(7y). Let ¢ F:brd 2. Thus, t > . cycle by Corollary 2.2.2
(2). If v =p/ and'y A(y) =p~Hp® — 1) and

so(p—1)| Ay p =3 mod 4, p 1s not a Fermat prime. Thus, p — 1 has

— fyﬁ a ﬁ MONSHEAHG =
. mmfmu SRR e

cycles in G 1 are of length 1. The result now follows.

Remark. For v = 3 +4i = (2 +1)?, the digraph G(ﬁ has a 4-cycle but G% does
not have a 4-cycle. Since 1+ 2 is a prime, Gﬁz% provides an example in which

both G7 1 and G  only have one fixed point.

The following example gives an instance in which GEYQ% has a t-cycle but G%

does not have a t-cycle when w(y) = 2.
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Example 2.2.6. By inspection, we find that a nonzero Gaussian integer ~ for
which w(v) > 2 and there exists a positive ¢ for which G has a t-cycle but G

does not have a t-cycle, is v = 147 + 196i = 7%(2 + 4)?. In this case G147+196i71
has a 12-cycle, whereas G§24)7 119612 does not have a 12-cycle. Note that A(147 +
1967) = 2*-3-5-7 and 35 | A(147 + 1964). However, 35 1 A(7%) = 2*- 3.7 and
351 A((2+4)*) = 2*-5. Moreove ’72 = 12, whereas ord32 = 2, ord; 2 = 4

@ of components is the same

r
ve unts the number of ¢-cycles

and ord; 2 = 3.

We know from Propos
as the number of cycle

in GEYZ% and G% and

Theorem 2.2.7. L ues of Z[i] /() given as in

Proposition 1.2.1. Le . : "  \ integers p in S such that

(2.4)

(v) and t = ord, 2, and

(2.5)

y
where the summation i taken over all gonzero Gaussian integers o' such that

et WA AL W BTN Ao o s

all positive odd integers for whichgd | A(~y anﬂt = ordy 2

o 3 W LAINL) 9.H WRIAnEa Y

Uln € @lil/(7)" : ord, p = d}

d

={u € Z[i]/(v) : pis a vertex in a t-cycle of Gfi},

where d runs over all positive odd integers such that d | A(vy) and ¢t = ordy 2.
Assume that there exists an odd integer d with d | A(y) and ¢t = ord;2. By
Corollary 2.2.2 (2), G(ﬁ contains a t-cycle. Let p € (Z[i]/(7))* be such that
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ord, . =d. Then u? =1 mod ~. Since t = ord,; 2, t is the least positive integer
such that x2~' =1 mod v, and hence p2 = p mod ~ which implies that x is a
vertex of a t-cycle. Theorem 2.2.1 (3) gives the converse.

(2.5): Similar to (2.4), it suffices to prove that

Utn e ziil/ () :

where the union is ta n integers 7/ such that v €

S,y" | v and ged(vy/7, or a given o/ the number d’ varies over all

positive odd integers fo ' _, i ) : \;\\\\'\.-, 2. Assume that there exists

a nonzero Gaussian in nd g /7 7') = 1, and let d' be

A\

a positive odd inte 9) d/ and ord, u = d'. Then
¥ =1 mod~/. T ﬁe- ast, Positi \\. or such that ,u - —-1=0
mod 7. Since ged(v/, = I—;i%;? AdChingseremainder theorem, we have

' T .i -J‘
v € Z[i] which satisfies e

-""f*-f"‘ 2/¥4e
. !/
0. 7/,

S gl

and hence B m

2t

—Z/_V =0 mod
al) 5.

e of] T et 1 ar T

[ is a vertex of a t-cycle in G2 ‘Aﬁm Theorem 2.2.1 ;] é[‘ds the converse.

hereBe b th kN i HN1INE :

Theorem 2.2.8 determines the distance from any vertex in G£,2) to the unique

cycle in its component.

Theorem 2.2.8. Let S be the complete system of residues of Z[i]/(vy) given as in
Proposition 1.2.1. Let p € S be such that

o= Ba‘“Hp H7T
k=1 =1



20

where the primes «, py and m are given in (1.1), ged(5,v) = 1 and ay, fx, g are

nonnegative integers. For a;, we define the nonnegative integer A,, by

(

0, Zf a; = O;

Aoy =19a, if 1<a<a

a1 > a,

fork=1, ...,

and forl =1,... ng, t
Ju...,
o (< N

. .In

DA

e

Let

Y,
/ Eu—min( Aa.,a) in(Bg,bk) ‘.[:i CZ—min(Cl,Cl)
= ! Dy e
Suppose that PTlu EJZ? th ?ngf])ﬂﬁ Then the component

of G7 containing the vertex i has a unique t- cycle Moreover the distance from

a "“ﬁ“ﬁtﬁkﬁﬁﬂﬁm NRIANYIAY
o (s, [ | o 1 o 2 ).

where Aal/al = Bk/fk = Cl/gl =1 ’ianl = a =Bk sz =Cl =g =0.

Proof. Let C' be the component of GEYQ) containing the vertex p. Let v be the

vertex in the unique cycle of C' which is of least distance s > 0 from p. Then

52 a2 prk2s H 7.‘.912 mod .
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By Theorem 2.2.1 (2), n" | v whenever 7 | i, where 7 is a prime factor of v and h
is the highest power of 1 in v. Thus, for each k € {1,...,n;} such that py | u, we
have

fx2° > by.

Similarly, for each [ € {1,...,ns} such that m | u, for a; such that « | pu, we also

have

These imply that s >
of k,l,a;. Ifntpt

s> max |lo
= nax [ 25

From the observati f‘ 20 i and 7 1 v implies 1 1 p, we

t = ord,, 2. Note that if 0 ST’E@,;

.--" e_,:,‘— ,

s, s > e, m = ordy v =

for 7 > 0, we see tﬂgtifj > e, then ord.
; teX on the t-cycle closest to

i
O

1, our result now follews from above.

‘o v
et UG RBHTNHAN T
Y 2
CorollarﬁZ.Q. If wis a verted in the subdﬁa h G ), thehthe distance from
W to taqc c :]za mamﬂl’w :Jo , 7?], ;larg»lstands for the
integer j such that 27||m. In particular, if p € (Z[i]/(7))*, then u is on a cycle if

and only if ord., p1 is odd.

The next theorem tells us that each vertex on a cycle of G,(yzi has a directed
path of length v, where 2V||A(7) terminating at this vertex. Somer and Kiizek also
had this result for their quadratic digraph. Their proof in [6] used the existence

of a primitive root modulo p" which is not the case for Z[i]/(n"). However, we
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*

found that only the existence of an element of order 2" in (Z[i]/(y))* obtaining

from Theorem 1.1.1 (4) is enough.

Theorem 2.2.10. For each component of G® | the mazimum distance from a

7,1

vertex in the component to the unique cycle of the component is equal to vo(A(7)).

Proof. Let v = v5(A(v)). From Theo e 1.1.1 (4), there exists a u € (Z[i]/(7))*
such that ord, p = A(y) =2 I ;)/ . Choose v = ™. Then

= 2"
Let w € (Z[i]/(7))* be Corollary 2.2.9, w is on a
t-cycle for some t = o a vertex in the component
to w of distance v. O ‘ _ o ord7 vw? = 2Yord,w and

, n
(vw? ) =¥ . Write —v mod ¢ for

the remainder when 1 " is the initial vertex of a
directed path of length v _ istance from a vertex in the

component to its unique cycl s—eqt ol 7 Ul

Remark. Let bxﬂ:.'}n element 0 distance v to the cycle in its

from 220008 -

component. By Théore I a;

hen v = 0 and p is the

Ol €Il
i - .
fixed point 1 of indegie 1. If N(y) > 2, then p lies l

mmm”ﬁﬁﬁﬁwﬂwsWQWﬂi
JRTRS I | AT IO 5 2

where vl= = 15(A(y)). We know that 1 is a fixed point and every vertex in 7' is

side of the cycle in C, and

pointing to 1. Hence, we have the following result.

Theorem 2.2.11. If v5(A(7)) = v, then

T ={ue (Z[i])/() : u* =1 for someje{0,...,v}}

consists of all vertices of the component containing 1. Moreover, every vertex in

T is on the tree attached to the fized point 1.
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If we (Z]i]/())* is of odd order and is on a t-cycle, the proof of Theorem
2.2.10 shows that

—vg(ord~ v)

T, = {vu? veT}

is a vertex on the tree attached to w. Furthermore, a simple calculation shows

that |T,,| = |T|. On the other hand, let u € (Z[i]/(~))* be a vertex on this tree

pointing to w. Then p* = w fo / 0,...,0}. Note that £ € (Z[]/(7))* is

aroot 22 = w if and only if & ro 1. Hence, we have a one-to-one
e —

correspondence betw? w

ser@ee structure. Therefore, we
have shown:

N

Theorem 2.2.12. a t-cycle. Then the tree

attached to w is iso

a vertex in G(2%

e N(v') < N(v), 7 | v and

Our final result is

Let w be the maxi

ged(y/+, ') = 1.

e ] _"_r—- e I
Theorem 2.2.13 )et k) be the mazi i a vertex in G to the

B (Mogs bk 1), nax ([log, 09) [logy al, w

pos. et s ElM ANENINHLD o) and let s be the

dlstance from ’1 to the c cle in C'f Let

imulag"ngﬂmaa

d = max

where the primes «, py, and m; are given in (1.1), ged(3,v) = 1 and a4, fi, g; are
nonnegative integers. But for at least one j € {ay, fx,q}, j > 1. Let A,,, By,
C) and 7' be defined as in Theorem 2.2.8. Then 7/ | v and ged(y/+,7) = 1 =
ged(p,y). Let ord, p = 2°d, where ged(2,d) = 1. Then by Theorem 2.2.8,

=max [ max |l ﬁ max |1 g 1 Aa
5= & 1§k%n1 082 fk ’1§l2n2 082 g1 » | 1082 aq )




24

From the definition of By, C; and A,,, we have
1<k<n; k 1<i<ng

max [log2 %—‘ < max (log, by),

1<i<n2 q 1<i<na

It follows from the definition of 4/

max [log2 g-‘ < max (log,¢;) and [logQA —‘ < log, a.
a

rom the definition of A that

Thus,
s < ma [log, a] ,w)
Next, we shall show 5 such that the distances
are equal to max (m S bull e , 2 ¢ 1 , [log, a]) and w, respec-
tively. 2

Consider the cycle 1 0 Then o [[;L, pr [12, m is in

"0 is equal to

x [logyal . gza]).
—
’y@y') = 1. By Theorem 1.1.1,

B lerid Lot o
the same component as 0 and/the distar

Let 7/ € ZIi]/(y )
there exists a u € Z| z] / ‘Jy such that

ﬂ'LlEJ’J ﬂﬂﬂjﬂﬂﬁﬂ‘i
oA R HWIAE I

w=0 mod~y/y and w=pu mod~.
Hence, we see that the distance from w to the cycle in its component is
vo(ordy w) = va(A(Y)).

Since the number of 4/ for which ' | v is finite, we can find such +' for which

vo(A(7)) is a maximum and this value is w. O
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The above theorem yields an immediate corollary.

Corollary 2.2.14. Let pu € GEYQ% be of the maximum possible distance & from the

cycle in its component. The following statements hold.

(1) if vy =n", where n is a prime in Z[i] and h > 1, then § = [log, h].

AULINENINYINg
PRIANTUUMINYAE



CHAPTER III
EXAMPLES

We illustrate the results of the : U s by the following examples.
1. Let v = 7. Note that-Fisa primé in Zis-andN (7) = 49. Then w(y) = 1 and

by Lemma 1.2.1, |Zs

& ~\"‘!: <7124 02),0<y <7} =
N(7) = 49. Since iy 2.2:3, the number of fixed points

N
R
is Cg — ow(n) — \\ ree, and Proposition 2.1.2

D OTOlla
1A NN
implies that 015 anfiso o d ced ? \\\.\- osition 1.2.6, A\(y) = 324,
s0 v = vp(A(7))= ddand tl od d: % v ding A(7y) are 1 and 3 which

givet = 1 and ¢ , respectivelyys, Tht s, G 72% has only 0 as an isolated

fixed point but fol co" point and one 2-cycle. We display
@) :

the digraph G
| 4

AU INENTNEINS
RININIUNNINYAE
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2. Let v = 3+4i = (2+1)2. By Corollary 2.2.14 (1), § = [log, 2] = 1. Note that
Z[i]/ ()] = Kz +yily - 0 <z < 1(3° +4%),0 Sy < 1} = N(3 + 4i) = 25.
Since w(y) = 1, by Corollary 2.2.3, the number of fixed points is C’; =
2¢() = 2. By Proposition 1.2.6, A(7) = 522, s0 v = 1»(\(7)) = 2 and the
odd numbers dividing A(vy) are 1 and 5 which yield ¢ = 1 and 4, respectively.
Thus, the number of 4-cycles i 1rand the trees attached to 6,11,16 and 21

are isomorphic to the tree ¢ ed'to_le"The digraph G,(f) is shown below.

AULINENINYINg
PRIANTUUMINYAE
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3. Let v =2+4i = (2 —1i)a? Since w(y) = 2, by Corollary 2.2.3, the number
of fixed points is C] = 2¢(") = 4. By Proposition 1.2.6, we have that \(y) =
lem{A(a?),\(2 — i)} = 22, so v = 1»(A\(7)) = 2 and the only odd number
dividing A(7) is 1, which yields t = 1. Also, for each n € {a, 2 — i}, the only
odd number dividing A(y/n") is 1. Then both G(ﬁ and G% contain only 1-

¢ of v3(A(7')), where 7 | 7, N (') < N(v)

= Muise(1p(A (1)), v2(Ma?)), 1a(M2 — 1)) =
@w <2(1242%),0<y <2} =

N(2+4i) = 20. By Lhetuéin 2. \“‘si 0g, 11, [log, 2], w) = 2. We

cycles. Let w be the maxi

and ged(y/v,7) = '

AU INENTNEINS
ARIANTAUNININGIAE
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4. Let v = 9+ 6i = 3(3 + 2¢). Then w(y) = 2,7 is square-free and so 0 is
an isolated fixed point. Since w(y) = 2, by Corollary 2.2.3, the number of
fixed points is C’,} = 2¥0) = 4. Tt follows that from Proposition 1.2.6 (4),
A(y) = lem{A(3),\(3 + 2i)} = 3- 23, Thus, v = 1u(\(y)) = 3 and the odd
numbers dividing A(y) are 1 and 5 which provide ¢ = 1 and 2, respectively.

1ax (15(A(1)), v2(A(3)), 2 (A(3 + 24))) = 3.

By Corollary 2.2.14 (2), 6 = w =

Note that |Z[i]/(7)] = 3(32+2%),0<y <3} =N(O+
67) = 117, and hence £l ﬁz The digraph G is shown

AU INENTNEINS
PRIANTUUMINYAE
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5. Let v = 12+6i = 3(1—2i)a?. Then A(y) = lem{A(3), A\(1—2i), A\(a?)} = 23,
so v = (A(y)) = 3 and the only odd number dividing A(v) is 1, which
yields ¢ = 1. Since w(y) = 3, by Corollary 2.2.3, C;g =2¢0) 1 =7
and CJ; = 1. This implies that Gfi has only one component and G%

has seven components. Let w be the maximum value of v5(A(7’)), where

Y | v, N(®) < N(y) and ged(y/9',7') = 1. Thus, w = 3. By Theo-

rem 2.2.13, we have

2/ ()] = |{[zind
180. The digraph”

an "‘ 28 i ’ [10g2 1—|7 ﬂog2 2—| ’ w) =3 A1807

6(2%15),0 <y <6} = N(12 + 6i) =

AU INENTNEINS
PRIANTUUMINYAE
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