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ABSTRACT

I review how static hedges for Thailand’s popular sophisticated derivatives are constructed from 

portfolios of vanilla options. The hedges are simple, and rebalancing is not needed or rare. Although 

the hedges are designed under restrictive assumptions, and sometimes the replication is approximate, 

previous empirical tests showed that the hedges outperformed the conventional dynamic hedges for 

most derivatives and practical market conditions.
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บทคัดย�อ

ผูเขียนประมวลวิธีถัวความเส่ียงแบบสถิตสําหรับอนุพันธชนิดซับซอนซ่ึงเปนที่นิยมในประเทศไทยโดยใชกลุ มออปชัน

ชนิดเรียบงาย การถัวความเส่ียงทําไดงาย การปรับกลุมออปชันที่ใชไมมีความจําเปนหรือทําเพียงนอยครั้ง แมวิธีที่ใช

จะไดรับการออกแบบภายใตสมมติฐานที่เครงครัด และการลดความเสี่ยงเปนเพียงการประมาณ การศึกษาเชิงประจักษ

ในอดีตพบวา สวนมากสําหรับอนุพันธชนิดซับซอน วิธีถัวแบบสถิตใหผลลัพธที่เหนือกวาวิธีถัวแบบพลวัตภายใตภาวะตลาด

ทั่วไป

คําสําคัญ : อนุพันธ การถัวความเส่ียง

วันที่ไดรับตนฉบับบทความ : 2 กุมภาพันธ 2562

วันที่แกไขปรับปรุงบทความ : 1 พฤษภาคม 2562

วันที่ตอบรับตีพิมพบทความ : 24 พฤษภาคม 2562

การถัวความเส่ียงให�อนุพันธ�ชนิดซับซ�อน
ด�วยวิธีท่ีเรียบง�าย

บทความวิชาการ



35คณะพาณิชยศาสตร�และการบัญชี มหาวิทยาลัยธรรมศาสตร�

ป�ที่ 42 ฉบับที่ 163 กรกฎาคม - กันยายน 2562

INTRODUCTION
The Thai market grows, evolves, and becomes more connected with the world’s capital markets. 

As a result, fi nancial technologies improve, investors and fundraisers are better educated and informed, 

and regulations and taxes continually change to accommodate market effi ciency. Competition in these 

business environments pressures fi nancial engineers (FEs) to design products even more effectively to 

accommodate target investors and fundraisers’ needs. The products must be innovative. They must 

improve on or make a signifi cant contribution to existing ones.

Despite the innovative designs, from an FE’s viewpoint, innovative products are structured 

products. It is likely that the risks of these products are extremely high. Together with the product 

designs, the FE will have to propose effective hedging strategies to decrease the risks to acceptable 

levels.

Structured products can be decomposed into two components. The fi rst component is the 

core. It is a straight bond whose function is for the second component to embed into it. The second 

component is the performance component. It pays returns with respect to certain market conditions 

being demanded by investors or fundraisers. The FE embeds sophisticated, exotic derivatives for the 

performance. Because the risks associated with the straight bond are low and easy to manage, it is 

the risks from the sophisticated derivatives with which the FE is concerned.

Conventional approaches to manage the derivatives’ risks are dynamic delta and delta-gamma 

hedging. In the dynamic delta-hedging strategy, the hedged portfolio consists of the derivatives and 

hedging assets. Their deltas are equal and of opposite signs so that the resulting profi t and loss from 

the underlying price movement cancel each other out. As the underlying price is moving with time, 

the portfolio is dynamically rebalanced to maintain a delta-neutral position. The dynamic delta-hedging 

strategy fails when the underlying price jumps. The dynamic delta-gamma-hedging strategy, in which 

both the deltas and the gammas of the derivatives and hedging assets are equal, is proposed to 

mitigate the problem (Raju, 2012).

Continuous, dynamic rebalancing is time-consuming, incurs large transaction costs, and suffers 

large losses from extreme price reversals. It is not very practical. Meanwhile, discrete, dynamic rebalancing 

risks under- or overhedging. Bowie and Carr (1994) and Derman, Ergener, and Kani (1995) added that 

dynamic hedging, especially for sophisticated derivatives, required an extensive knowledge of advanced 

mathematics, the strategies were not very intuitive, and the hedges were diffi cult. Static hedging is 

preferred. Its construction makes no assumptions beyond those of standard options theories. Once the 

hedging structure is selected, portfolio rebalancing is no longer needed or rarely adjusted.
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Static Hedging
To construct a static hedging strategy, the FE designs a portfolio of vanilla call or put options 

with varying exercise prices and expirations but fi xed member options and weights. This portfolio 

replicates the values of the target derivatives under all possible underlying prices and times from today 

onward to the expiration. In addition to being applied for hedging, the static strategy can be applied 

for valuation. Premiums are sometimes reduced and traders are more competitive due to lower 

transaction costs and times.

According to Thailand’s Securities and Exchange Commission, from January 1, 2018, to July 31, 

2018, commercial banks and securities companies issued structured notes amounting to 32.03 billion 

baht. Approximately 30 billion baht worth of these notes had embedded options on one underlying 

price, while the remainder had rainbow features. Sophisticated, exotic features, e.g. barrier, lookback, 

and digital features, or their combination or modifi cation were sold by leading issuers such as Phatra 

Securities. In this article, I review the static hedges for the barrier, lookback, and digital features. I will 

discuss rebates because some issuers bundle them with barrier features. The underlying price is the 

stock-futures price. The specifi cation is made with respect to the common practices in the Thai market.

Barrier Option Features

Barrier options can be knock-in or knock-out. The knock-in options start their lives when the 

underlying price crosses predetermined barriers. Otherwise, the options expire as worthless. The knock-

out options are vanilla options. However, if the underlying price crosses the barrier, the options expire 

immediately.

Dynamic hedging strategies are diffi cult. Despite being closed formed, the pricing formulas for 

barrier options are highly complicated (Rubinstein & Reiner, 1991). Closed-formed deltas and gammas 

are unknown. For hedging, these Greeks are estimated numerically. Most importantly, when the underlying 

price is at the barrier, the gammas are infi nite. The risk cannot be hedged.

To construct a static hedge, turn fi rst to the simplest, down-and-in call feature with equal 

barrier and exercise prices. A down-and-in call is alive only when the underlying price falls from its 

current level and crosses the barrier before the expiration date. The option is equivalent to a vanilla 

put if the underlying price fi nishes higher than the exercise price. The two options pay nothing at 

expiration. This fact suggests to the hedger to hedge the down-and-in call using the vanilla put.

It is important to note that when the barrier is crossed, the down-and-in call becomes an 

active vanilla call, while the hedging vanilla put is not equivalent to the vanilla call. The static hedge 

is imperfect.
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Bowie and Carr (1994) recalled the put-call parity (Stoll, 1969) in equation (1).

C(X) – P(X) = e–rT(F – X) (1)

C(X) and P(X) are the call and put option prices, respectively. The exercise price is X. F is the 

underlying futures price, r is the riskless interest rate, and T is the time to expiration. When F crosses 

X, F = X. The call and put are equal in value. The hedger can sell the hedging put, and then use the 

receipt to buy exactly the target call. The hedge now becomes perfect.

In the market, the barrier and exercise price can differ. If this is the case, the static hedge that 

relies on the put-call parity no longer works. The hedge must be redesigned. To proceed, put-call 

symmetry is introduced.

The put-call symmetry relates the prices of vanilla puts and calls at exercise prices X and K 

on opposite sides of the futures price F, as in equation (2) (Carr, 1994; Carr, Ellis, & Gupta, 1998).

C(X)
1

= P(K)
1

(2)
√X √K

The relationship of the exercise prices with the underlying futures price is imposed by √XK = F. 

Bowie and Carr (1994) applied the relationship for the redesign. Let X be the exercise price of the 

down-and-in call, and H ≤ X is its barrier. When the underlying price crosses the barrier, H = F. The hedging 

put’s exercise price K is 
H2

X
, thus resulting in the put price of P (

H2

X
). From the put-call symmetry, the 

hedger will have to hold 
X
H

 units of the hedging put so that the sale receipt 
X
H

 P (
H2

X
) can buy the 

emergent call for C(X).

To conclude, the static hedge is to hold 
X
H

 units of the hedging put whose exercise price is 
H2

X
. The hedger sells the put when the underlying price crosses the barrier and then buys the call for 

C(X) to continue a perfect hedge.

The two examples from Bowie and Carr (1994) demonstrated that hedging puts gave the same 

cash fl ows as the target barrier calls. The prices must equal, hence constituting a simple pricing 

approach alternative to that of Rubinstein and Reiner (1991). For the static hedging of other types of 

barrier options, readers may consult Bowie and Carr (1994), Reiner et al. (1995), Carr et al. (1998), and 

Jun and Ku (2015).
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Lookback Option Features

Lookback options set the exercise prices in retrospect based on the most benefi cial underlying 

prices over their lives. To construct the static hedge, note that the call gives the same cash fl ow 

FT – F0 as does the futures contract if the underlying price never falls below the current futures price. 

FT and F0 are the futures prices on the option’s expiration date and today’s date, respectively. However, 

if the lowest underlying price is Ft≤T < F0, the option pays FT – Ft = (FT – F0) + (F0 – Ft). FT – F0 is the payoff 

from the futures contract, while F0 – Ft > 0 is the contribution from the option’s lookback feature. A 

long position in the futures contract alone cannot hedge the lookback call perfectly.

To hedge for the F0 – Ft part, Bowie and Carr (1994) introduced a down-and-in bond (DIB). This 

derivative is hypothetical. It pays 1 baht on the expiration date T if Ft≤T touches the barrier Hi < F0.

Let us assume for the moment that Ft≤T = F0 – 1, where 1 is the assumed tick size of 1 baht. 

The option’s payoff is (FT – F0) + 1. To hedge for the additional 1-baht payout, the hedger must add 

the DIB, whose exercise price is H1 = F0 – 1, to the hedge. There are F0 possible values for the exercise 

price Ft≤T, ranging from F0 – 1 to F0 – F0. This fact leads the hedger to hold one unit each of F0 DIB(Hi)s 

with barriers Hi = F0 – i. i = 1,…,F0. The static hedge by a portfolio of a futures contract and F0 DIBs is a 

perfect hedge. Because the value of the futures contract is zero, the replication portfolio for the target 

lookback call is the summed values of the F0 DIBs.

Readers may argue that the replication portfolio does not fi t the static-hedging defi nition (Loucks, 

2010). It does not hold vanilla options. To ensure that the strategy is static, recall the put-call parity. 

A futures contract is equivalent to a portfolio that longs one unit of vanilla call and shorts one unit 

of vanilla put with the same F0 exercise price. Moreover, a DIB(Hi) with barrier Hi is equivalent to a 

portfolio that longs 2 units of digital put DP(Hi) with exercise price Hi and shorts 
1
Hi

 units of vanilla 

put P(Hi) with exercise price Hi (Bowie & Carr, 1994).

DIB(Hi) = 2DP(Hi) –
1

P(Hi) (2)
Hi

A DP (digital call or DC) pays 1 baht on the expiration day if the underlying price fi nishes at 

or below (above) the exercise price Hi. Otherwise, it pays nothing. Furthermore, Reiner and Rubinstein 

(1991) and Chriss and Ong (1995) showed that a DP (DC) could be replicated by a portfolio of vanilla 

puts (calls).
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Digital Option Features

Although the pricing formulas and the Greeks of digital options are closed-formed and simple 

(Reiner & Rubinstein, 1991), the dynamic hedging is diffi cult and very risky, especially when the underlying 

price fl uctuates around the exercise price and the expiration date is near.

The options can be hedged by static portfolios of vanilla options. For a digital put and call with 

exercise price Hi, the replication portfolios are the vertical put spread limn→∞ 
n
2

 {P(Hi + 
1
n

) – P(Hi – 
1
n

)} 

and the vertical call spread limn→∞ 
n
2

 {C(Hi – 
1
n

) – C(Hi + 
1
n

)}, respectively (Reiner & Rubinstein, 1995). This 

replication converges faster than that of Chriss and Ong (1995) (Bowie & Carr, 1994).

The replication by these limit spreads is impractical. Carr et al. (1998) applied the Richardson 

extrapolation to construct portfolios that could replicate the spreads approximately. I use the modifi ed 

Geske-Johnson formula over the original formula used by Carr et al. (1998). Not only does the modifi ed 

formula overcome the nonuniform convergence found in the original formula, but it also gives more 

accurate results (Chang, Chung, & Stapleton, 2007).

The DC(Hi) and DP(Hi) with the exercise price Hi are replicated by the portfolios of vanilla calls 

C(Hi ± 
1
n

) and puts P(Hi ± 
1
n

) in equations (4) and (5), respectively.

 DC(Hi) = 10 
2
3

 C(Hi – 
1
4

) – 10 
2
3

 C(Hi + 
1
4

) – 4C(Hi – 
1
2

) + 4C(Hi + 
1
2

) + 
1
3

 C(Hi – 1) – 
1
3

 C(Hi + 1), (4)

 DP(Hi) = 10 
2
3

 P(Hi + 
1
4

) – 10 
2
3

 P(Hi – 
1
4

) – 4P(Hi + 
1
2

) + 4P(Hi – 
1
2

) + 
1
3

 P(Hi + 1) – 
1
3

 P(Hi – 1), (5)

Although the approximation is accurate (Chang et al., 2007), Carr et al. (1998) cautioned that 

it deteriorated near expiration when the underlying price was near the exercise price.

Other Option Features

The exotic option features that can be statically hedged are not limited to the barrier, lookback, 

and digital features. The features that I did not cover are not popular in the Thai market, or the 

analyses of the features do not lead to useful theoretical and practical extensions. However, interested 

readers may see Rubinstein (1991) for chooser options; Levy (1996) for Asian options; Thomas (1996) 

for compound options; Su (2005) for basket options; Chung and Shih (2009) for American vanilla options; 

Chung, Shih, and Tsai (2009) for American exotic options; and Molchanov and Schmultz (2010) for 

rainbow options.



40 วารสารบริหารธุรกิจ

Sophisticated Derivatives,
Simple Hedging

Rebates
Sometimes, knock-out options offer rebates when they are knocked out, and knocked-in options 

pay rebates at expiration when the options expire out of the money. Rebates are valuable derivatives.

Down-and-In Rebates

Readers can apply the DIB(Hi) to the price and statically hedge the rebates for knock-in options. 

Suppose the payoff of a down-and-in rebate DIR(Hi) with barrier Hi is R baht. It is paid at expiration 

only if the futures price F never crosses Hi. The hedger can construct a static replication portfolio by 

fi rst longing R units of a zero-coupon bond that pays 1 baht at expiration. Next, he shorts R units of 

the DIB(Hi). The value of this portfolio is

DIR(Hi) = Re–rT – R × DIB(Hi) (6)

For this portfolio, if the option expires out of the money, the bond pays R baht and the DIB(Hi) 

is worth nothing. Otherwise, the bond and DIB(Hi) are worth R baht and therefore cancel each other 

out. The rebate for these two cases are R and 0.00, respectively, thus satisfying the obligation of the 

DIR(Hi).

Up-and-In Rebates

I introduce an up-and-in bond, UIB(Hi), with the exercise price Hi to analyze an up-and-in rebate 

UIR(Hi) with respect to barrier Hi. The UIB(Hi) is a derivative that pays 1 baht at expiration if F rises 

and reaches Hi prior to the expiration. Otherwise, it pays nothing. Carr et al. (1998) showed that the 

UIB(Hi) can be priced and statically replicated by the hedger longing two units of DC(Hi) and 
1
Hi

 units 

of C(Hi). The static portfolio is

UIB(Hi) = 2DC(Hi) +
1

C(Hi) (7)
Hi

To price and hedge the UIR(Hi), the hedge may follow similar steps to construct the replication 

DIR(Hi) to obtain

UIR(Hi) = Re–rT – R × UIB(Hi) (8)
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Even Simpler Hedging

Static Hedging of Vanilla Options

It should be clear to readers now that static hedging is simple. Despite its static simplicity, at 

times it is diffi cult to fi nd the prescribed vanilla options. The question is whether it is possible to use 

readily available vanilla options to substitute for the prescribed ones?

Carr and Wu (2014) showed that the substitution was possible. A European call can be replicated 

by a portfolio of calls with a shorter expiration. Suppose that the target call C(K,T) has the exercise 

price K and expiration T, while the M calls, Cj=1,…,M (Kj,τ), in the replication portfolio have the exercise 

prices Kj and the same expiration τ < T. The portfolio is

C(K,T) = ∑
M

j=1
WjCj(Kj,τ) (9)

Wj is the portfolio weight, which is equal to

Wj =
ω(Kj)Kjσ √2(T – τ)

wj, (10)
e–x2

j

where ω(Kj) = 
N (dj)

Kjσ √(T – τ)
, dj = 

Ln (
Kj ) + (r +

σ2

) (T – τ)K 2

σ √(T – τ)
, and Kj = Kexjσ √2(T – τ) – (r +

σ2

) (T – τ)2 . σ2 is the 

variance of the log underlying return. N (dj) denotes the probability density of a standard normal 

variable evaluated at dj. Finally, (xj, wj)j=1,…,M are the node-and-weight pairs of the Gauss-Hermite 

quadrature. The pairs for M = 2,…,6 are shown in Table 1.

Table 1: Nodes (xj) and Weights (wj) of the Gauss-Hermite Quadrature

j
m = 2 m = 3 m = 4 m = 5 m = 6

xj wj xj wj xj wj xj wj xj wj

1 –0.7071 0.8862 –1.2247 0.2954 –1.6507 0.0813 –2.0202 0.0200 –2.3506 0.0045

2 0.7071 0.8862 0.0000 1.1816 –0.5246 0.8049 –0.9586 0.3936 –1.3358 0.1571

3 1.2247 0.2954 0.5246 0.8049 0.0000 0.9453 –0.4361 0.7246

4 1.6507 0.0813 0.9586 0.3936 0.4361 0.7246

5 2.0202 0.0200 1.3358 0.1571

6 2.3506 0.0045

Source: https://keisan.casio.com/exec/system/1281195844
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The Original Geske-Johnson Formula

Digital options are important options. From both theoretical and practical perspectives, the 

options can be used to replicate, hedge, and price various sophisticated derivatives (Ingersoll, 2000). I 

propose that the readers use the modifi ed Geske-Johnson formula together with the Reiner-Rubinstein 

portfolio to replicate the DC(Hi) and DP(Hi) because the approach is more accurate. However, the 

replication requires 6 options, while the less accurate, original Geske-Johnson formula together with 

the Chriss-Ong portfolio requires only 4 options. Readers who prefer simpler hedging may choose the 

original formula, which gives

 DC(Hi) = 6C(Hi) – 0.5C(Hi + 1) + 8C(Hi + 
1
2

) – 13.5C(Hi + 
1
3

), (11)

 DP(Hi) = 6P(Hi) – 0.5P(Hi – 1) + 8P(Hi – 
1
2

) – 13.5P(Hi – 
1
3

). (12)

Performance Comparison of Static and Dynamic Hedging 
Strategies

Static hedging needs no or few rebalancing routines. Its performance should be superior to 

that of dynamic hedging due to low transaction costs and no under- or overhedging (e.g., Bowie & 

Carr, 1994). Tompkins (2002) argued that this claim was not necessarily true. A static-hedging portfolio 

is constructed under certain restrictive assumptions. In reality, these assumptions may not be satisfi ed. 

Examples include hedging costs, bid-ask spreads, stochastic volatility, and model risks.

In the literature, researchers compared the performance of static hedging against that of dynamic 

hedging for various types of exotic options. In most studies, static hedging showed superior performance.

Using a Monte-Carlo simulation approach, Tompkins (2002) made the comparison under the 

positive-transaction-costs and stochastic-volatility conditions for the compound, digital, chooser, Asian, 

barrier, and lookback options. The researcher reported that static hedging performed better than dynamic 

hedging in most cases. Engleman, Fengler, Nelholm, and Schwender (2006), Nalholm and Poulsen (2006), 

and Jun and Ku (2015) consistently reported the superior performance of static hedging over dynamic 

hedging for barrier options of different types and under various market conditions. Chung and Shih 

(2009) examined the static hedging performance for American vanilla options and reported that the 

numerical effi ciency of the static hedge portfolio was comparable to advanced numerical methods. 

Moreover, the resulting delta and gamma calculations were very accurate. Finally, the static hedging 

of vanilla options is superior to the conventional dynamic hedging in practical situations when the 

analysis was based on the S&P 500 index options data (Carr & Wu, 2012).
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CONCLUSION
To compete successfully in today’s market, fi nancial engineers are under great pressure to 

design products in innovative ways to best satisfy investors’ and fundraisers’ needs. The innovative 

products almost always exhibit the features of high-risk, sophisticated, exotic derivatives. The high risk 

must be managed.

The derivatives can be hedged statically by a portfolio of vanilla options. The portfolio needs 

no or few rebalancing routines over the life of its target. The hedge is simple and intuitive. It does 

not require advanced mathematical knowledge and skills. Moreover, it can save many transaction costs 

over the conventional dynamic hedge.

In this article, I reviewed the static hedging strategies for barrier, lookback, and digital options. 

In the Thai market, these options are sold over the counter, and the option features are popular and 

embedded in structured notes.

Although static hedging strategies are designed under restrictive assumptions that are hardly 

satisfi ed in reality, previous studies tested and found that the strategies outperformed the dynamic 

hedging strategies for most options and practical market conditions.
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