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CHAPTER 1
INTRODUCTION

Functions of one complex variable have many nice and interesting proper-
ties that are not valid for function of realvariables. One of such properties is
the rigidity phenomena: a eondition that eould be held by only a small group
(maybe unique) of funetions, For example, The Tdentity Principle states that ze-
ros of a nonzero holomorphic function"'fnust be diserete on its (connected)domain.
Nevalinna’s Five Value Theowern states}th.at two meromorphic functions that agree
at five points (ignoring multlphcnty)'mus't be identically equal. Indeed, these prop-
erties are not held by eal valued functlons Another example of rigidity phenom-
ena is the equality part of the Schwalz s lemma In this thesis , we denote D C C
the unit disc in the complex plaﬁe T denotqg JD and C; = {z € C|Re(z) > 0}.
Classical Schwarz’s Lemma: lf e DT%H‘?I_S holomorphic with f(0) = 0 then
Furthermore, if | f(z)}'= |z], for some z € D ~ {0} or'|f'(0)| = 1 then f(z) = Az
where A is a unimodular constant.

Schwarz’s lemmnia, “a simple’consequence of the maximum modulus principle,
has many_ interesting, generalizations and plays an important role in studying
geometric function theory. T 1938 ‘Lars Ahlfots gave-a geonietrie interpretation
of this theorem : A holomorphic function on the unit disc are distance decreasing
in Poincaré metric. One interesting consequence of this interpretation is a simple
proof of the great Picard’s theorem(see [7] ). Schwarz’s lemma can also be used
to classify the automorphisms on the unit disc (Aut(D)) which is used to define
Blaschke’s product. Another easy consequence of Schwarz’s lemma is that a non-

identity holomorphic function on the unit disc has exactly one fixed point inside



the disc. Farkas and Ritt also gave a condition that the iteration of function will
converge to the fixed point (see [7]).

Our main interest is the conditions on the boundary. Lowner (see [10]) con-
ducted a study in this direction with a motivation from distortion theorems. In
1994 Burns and Krantz [3] significantly improved the result of Lowner by removing

many restrictive conditions in the theorem. They proved

Theorem 1.1 (Burns-Krantz's Theorem). Let f : D — D be holomorphic and
Heh =1+ (2 = 1) +Ofz— 1)}
as z — 1. Then f(z).=% oa'the it disc.

Roughly, this theorem saysthat if a holomorphie function on the unit disc has
a fixed point at thebHoundary and f# app,roaches to that point at a certain rate
then f must be the identity gap. Thcy alqo prov1de an example to show that 4 in
this theorem is sharp. Also ‘17 1_n the t-heorem can be replaced by any points on
T. Note that it could be seen/from the p@fﬁtha’u O(z —1)* may be strengthened
to o(z — 1)3. i h Tﬂ_

Burns-Krantz’s. theOIem has bheen generalized to ihe finite Blaschke’s prod-

uct (see [4]); D. Chelest gave a condition on the boundary that forces the func-

tion to be a finite Blaschke’s product. In [2] R.Tausaro and F.Vlacci gave the

same result utider weaker,condition that lini,. o4 % which is equivalent to

(1 Z)

limit regiongysee Sectioned, 3o) with the wertex at pointyz =1,

lim, ; ReZ222, =70 where the limit is taken in Stolz angle (or nontangential

In this thesis, we present some new results on generalization of Burns-Krantz’s
theorem. In chapter III, we give the boundary rigidity for analytic functions
on more general simply connected domains with nice boundary and a result on
nontangential limit case and the case of the finite Blaschke’s product. We conclude

with some suggestions on future work.



CHAPTER II
PRELIMINARIES

In this section we summarize esults used in the next chapter. Their

proofs can be found in mos is textbooks except Definition 2.10,

Definition 2.11 and Theo which ave-taken from [5]. We include the proof
of Theorem 2.7 whic i

connected open sub

&
as 2 — @, g5 =

that does not con nlog : U — C such that

exp(logz) = z for a nﬁe up to addition of integer

multiple of 2mi.

Theorem 28 RJ:&L’JM&H@W B ) E1C3s o simply connccted

domain then there erists a bijective function £ : Q0 — D such that F, F-!

rolompliel ¥} QYNGR 13 Bl Wi k72 Y| £ 6 EJ

Furtherﬁwre for any zy € D, we can choose F so that F(z) =

Theorem 2.5 (Maximum Modulus Principle). Let @ # Q C C.

1 2

MVPQ)={feC():VweQ,30>0stV0<r <4, flw) = —

f(w+re®)doy
27 Jo

Note that f € C(Q) is harmonic if and only if f € MV P() and that every

holomorphic function on € is harmonic on §2.



Mazimum modulus principle states that if f € MV P(Q) then if In € Q,|f(n)] >
|f(2)|Vz € Q, then f is a constant function.

Theorem 2.6 (Schwarz Reflection Principle). If Q C C is a domain which is
symmetric with respect to the real axis and let QT = QN {z|Im(z) > 0} be the

part of Q in the upper half plane. Let u(z) be a real-valued harmonic function on

QF such that u(z) — 0 as z € QF

ris to a point of QN R. Then u(z) extends

jon f d/@a domain ) with free analytic

| — 1,as z — 0Q could be

to a harmonic function on €.
Consequently, an analyti ;
boundary arc (see De

holomorphically exte

Theorem 2.7 (Pick’s and satisfies lf(z)] <1 for

|z| <1, then

Furthermore, the equality s ifadin ' s a conformal self map of D.
Proof. This proof is taken fr - D and wg = f(z0). Let g(z) and
h(z) be conformalkﬁf maps of D may adl w)y to 0 respectively says,

e mﬁ ﬁ'mﬂﬁ %’Mﬁﬁ_ﬁ RO

1 |f o)l or the equality case conformal self-ma

;o'?'ammm IR aSAY

(R0 fog)(0)] = |h'(wo) f'(20)g(0)] = 1.

Conversely, if the equality holds at one point z; then by calculation above |(h o
fog)(0)=1. Then ho fog = Az,|\| = 1, is a conformal self-map so [ is a

conformal self map. O



Definition 2.8. Let X be a normed linear space. Let f, be a sequence in X*.
The weak* convergence of f, to f € X* means that f,(x) — f(x) pointwise as

n — oo for every x € X.

Theorem 2.9 (Banach-Alaoglu’s Theorem). If V' is a neighborhood of 0 in a
topological vector space X and if K = {A € X* : |Az| < 1IVzx € V} then K is

weak* compact.

/) (T)(Borel measure on T.) The
re lle@é‘tzeltjes coefficients. Fourier

e say that a measure [ is

Definition 2.10. Let B =
Fourier coefficients of ,
series of measure is
positive if u(E) >
whenever f € C(T
Lo(t)dt,g € L'(T)

g > Oa.e.

\ equivalently, if [ fdu > 0
tely continuous, that is, p =

L 1 1S positive if and only if

Theorem 2.12 (Hemlotz A numerical sequence an nez} s positive definit if

and only if thﬁ is a pbsitive measure [t such that a,, = fi(n) for all n.

?ﬂﬂﬂi k)
’QW'WNT]?EU UAIINYAY



CHAPTER III
MAIN RESULTS

In section 3.1, we present the i t Burns and Krantz used in their paper

[3]. We present our main re -3.4. In Section 3.2, we generalize

Burns-Krantz’s theorem% i
3.3 and 3.4, the condim-.r i

with Section 3.5 for

connected domain. In Sections

is investigated. We conclude

3.1 Burns-Kr

T 4
result in partial differentiallequatic Ve g

the idea given in [7]. I ) Sugh pent of Theorem 3.2, see [1].

Theorem 3.1 ( e, nonconstant real-valued

harmonic function e |

ontinuous at vy and u(z) >
u(y) for all z& D. Theén the outer normal dem’vatz’véaf u at 7y is negative.

Theorem 3. ﬂlﬂgﬂz’s}ﬁﬁﬁnw &5 ’Wﬁnf] ﬂg‘% a holomorphic func-

tion from D tolC, = {z € C|Re(z ‘) > 0}. Then there is a posztwe measure [ on

CRRAR I HETINYA Y

B 1 2w ez0+<-
00 =5 [ S ean0)+C.

Proof. For 0< r < 1 we define G,.(e??) = Re g(re?) which is positive and has mean

value g(0). Thus they form a bounded set in L'[0,27) C M[0,27) = C|0, 27)*.

Here C[0, 27) is the space of all continuous functions from [0, 27) to R and M0, 27)

is the space of real finite borel measure on [0, 27). By Banach-Alaoglu’s theorem,



there is a subsequence G, converging to a measure p in M|0,27) in the weak*

topology. Now using Poisson’s kernel we get

2m 1,9+<-
Re (€)= Jim Re g(r50) = im [ Re g(rse") G2

:/27r e 619_1_2 M(a)
0

Now [, o e fj du(0) defines an analytic function having the same real part as g.

It follows that g = [77 S24d

ett —

O

The idea of provi use the assumption on ap-

proaching rate to t fo construct a nonnegative

harmonic function nt is zero. Now we present

tz’s representation theorem

there is a positive mea 40, 27 ely imaginary constant C' such
that
Now using the hypothesis-on-g-and-geometric=s Sppnsion, we have
1+ ¢+
o(¢) = 20 +Ocl[l1 (140~ 1))

(g—l) 1—¢

o AUEINBENT
ab‘ai W ’%ﬁ'@lﬁ‘%@dﬁﬂs}%ﬂﬂe%}@’iéy fo-v and aply

HerglotZ's criterion of positive measure (see [5]) to conclude the positivity of v.

Taking real part , we have

0(4—1)2:Re(i/0r ),

2 e — ¢

Call the expression on the right h(f) which is a positive harmonic function taking
minimum at 1 (since it is zero there) and is O(z — 1)? there. Hopf’s lemma forces

h =0, that is v = 0. So f(2) = z. O



Example 3.3. In [3] the authors claimed that ¢(z) = z— 15(1—2)* maps D to D,
This means that 4 in the hypothesis of Theorem 1.1 couldn’t be replaced by 3. The
only thing that is nontrivial is that ¢ maps into D. By Maximum modulus principle
we consider only z = €. By calculation, |f(e")]> = —5cos(t) — 15cos?(t) +
mcos(t) + %. It can be verified by standard calculus that the above expression has
modulus at most 1. Our technique is useful for verifying or creating these kinds

of examples.

3.2 Burns-Krantz’s T'heorem on simply connected domain.

In this section westudy Burns—Krlantz’s theorem on a simply connected do-
main rather than theunit disg: It turns out that our main tool is that the Riemann
map (the map in Riemanu Mappmg Thoorem) locally maps boundary to bound-
ary. Therefore we focug'on the domam ﬂ'hat its boundary is locally mapped to the

boundary of unit disc bythe Rlemdnn map
-
il Z/N

Theorem 3.4. Let Q C € bela simply c%etted domain such that if F : Q) — D

15 a Riemann map then it_canbe 'extendeiﬂ"-i'écbliy holomorphically to its boundary.

This means that for— each-ac 0O there is nmnhhnrhnﬂd B of a such that F can
be extended holomorphtcally to BN O and F maps B ﬂ 0f) into the boundary of
disc. Now iof f: <) —Q is holomorphic such that N

f(2)=2+O0EHa)!
as z <+ a.0Then f(%) £ %

Proof. Suppose f : Q — Q is analytic and f(z) = 2 + O(z —a)', 2 — a,a €
0. Let ¢ : © — D be the Riemann map such that ¢(0) = 0. Hence ¢ can
be extended to a neighborhood of a. Now we have g o fogp ! : D — D is
holomorphic. Now by differentiability of ¢, we have ¢(z2+h) = ¢(2)+O(h),h — 0.
Also ¢ is a conformal map, ¢(0) = 0,¢071(0) = 0 We have ¢(h) = O(h) and
o Hz) — ¢ Hy) = O(x — y),|r — y| — 0. Suppose that = — ¢(a) € ID then



¢~ (z) — a € 99 Therefore, as z — ¢(a),

Invoking Burns-Krantz’s theorem on \'}i unit disc, we have that ¢o fop™1(2) = 2z

ie. f(z) =
U

| —

Example 3.5. In W hé strip {z ,—1 < Re(z) < 1}. We can
explicitly construct a Ra ) z) = 2log(i{=%) — 1. Here
log is the logarithm cut. "
(Note that if

z

Im(z) < 1}. F can b

ary azis and log(1) = 0.

half plane to {z € C|0 <
_ i , :D—{-1,1} - Q and F
maps the upper half of 2 zw\ r ) and maps the lower half of OD
onto the right half of 0S) inteed “Burns-Krantz’s theorem for analytic

functions on the strip.

Definitions 3.6, % -.--:—:.—»-:--_—.:;:;:——-f——— R‘
Definition 3.6. Lebg C C be a domain. An analym curve(analytic arc) v is a
curve vy suc Ej point o g ope hborhood U for which
there is a conﬁrﬂ ﬁﬁ(ﬂm ﬁ ﬂtﬁhih(z real line such that
imageﬁ DN ]R coincides with U A

AN TN I NeIa Y

Definition 3.7. If Q is a domain. An analytic arc v C 082 is a free analytic
boundary arc of ) if every point of v is contained in a disc U such that U\~

has two components , one contained in ) and the other disjoint from €.

Theorem 3.8. Let ) # C be a simply connected domain in C whose the boundary
18 free analytic boundary arc. Then the Riemann map ¢ of Q onto D extends locally

analytically across any free analytic boundary arc of ).
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Proof. For each € > 0, the set {z € Q||¢(z)] < 1 — €} is a compact subset of
Q2 , which is has positive distance from 2. Hence |¢(z)] — 1 as z — 0. Let
p € 0. Note that there is exactly one point w € Q such that ¢(w) = 0. Now
since ¢ is analytic on €2, log|¢| is harmonic on Q\l where [ is the branch cut of
log |¢| that does not intersect p. To see this, let ¢(zy) # 0,29 € Q\l then there
is a 0 > 0 such that f is nonzero on Bs(zp).This means that there is an analytic
function g on Bj(zg) such that ¢ = ¢? 59 log |¢| = Re(g) is harmonic on Bs(zp).
Now apply Schwarz’s Reflection Principle forhazmonic function to log |¢|, we have
that log |¢| extends harmemieally across any-freeanalytic boundary arc of Q\[ i.e.
¢ extends analytically acress any free analytic boundary arc of Q\l. This means

that ¢ extends analytically locally at b Il

Corollary 3.9. If Q) is a domam.with:fr'ee analytic boundary arc. Let f: Q) — Q
is analytic and p € 0QJf f(2) Ly O(z— p)t 2 = p then f(z) =

4
d

3.3 Non—Tangentlal lelt CéSe

£ _.‘
s

We begin with the deﬁmtwn of. non—tamgentl-al reglon (or Stolz region) taken

from [7]. Roughly W(‘ say that a sequence 2o mmr‘wes non-tangentially if zj is

convergent and zj heb in the non-tangential region.

Definition 3.10 (non#angential region ). Let ¢ € 0D, 1 < o < oo, then define
the Stolz region, (ox nontangential approach region ) with vertex ¢ and aperture

« to be

D) A le D |2F ) £ all =]z ) K

Now we present the result of theorem 1.1 in the case of non-tangential limit. In
general domains, it is difficult to define non-tangential convergence. However, in
the case of domains with free analytic boundary arc, we have a Riemann map that
maps locally from boundary to boundary. We define non-tangential convergence

as follows.
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Definition 3.11. Let g connected, don ain with free analytic boundary
D

p and $(z4) — $(p) v

qy that z, — p non-tangentially

if there is a Riemann ma aps boundary to boundary locally at

Jadl.

First recall that "(-/ TEE.Y.““‘T‘E‘“*-“"T':—‘* ,‘ m 1.1 could be replaced

Vi

by o(z — 1)3 m m

Theorem 3.12. Let Qfbesa simply connécted domain with free analytic boundary

o 11} S B I M NN < 00— 0

nontangentzally in the sense thatdf ¢ : Q@ — Duis a Riemanngnpap then ¢(z;) —

) STl b U A EBUR Ak — . e

f(z) =

Proof. Let g = ¢po fod™' : D — D and ¢(2;,) — ¢(p) € OD nontangentially.
Without loss of generality, let ¢(p) = 1. Firstly we follow idea in proving the
(D) (which

classical Julia’s theorem in [11]. For a € D, let ¢, (2) = =
interchanges a and 0). Define h(z) = @y) © g © ¥q, Hence h(0) = 0 and by the
classical Schwarz’s lemma, |¢4)(9(¢a(2)))] < |2|. Since ¢, 0 @, is the identity,
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we have |pg()(9(2))| < |@a(2)|. Next, a straightforward calculation shows that

(1~ o)1 —[2[%)

1—|pa(2)]* =
2a(2)] FE
Hence
1—gla)g(z)| _ 1—=]g(a)]* |1 —az| (3.1)
1 —1g(2)? L—Jal* 1—]22 '

Take @ = ¢(2;). By the same method in the proof of theorem 3.4, we have

9(¢(zk)) = d(21) +O(d(z) —1)* V@é %) |—1i|¢ 2k |+0( (z) = 1)*.

(ofa)
(( 2k )3

Therefore we have 1 — |g
1 —|g(o(z1)
1 —|o(zk

Note that we use the n mptlon in the last equality.

—~

Hence in equation

(Cy 2G|

(3.2)

Let £(z) = Re(22)

1=9(2) ; ~.' e harmonic function (by (3.3.2)

since 5(?5% g 1%8 — : |11__|zlz We also have from the
assumption that |g(¢ ﬂ, /11 - @(2)f < 1 for sufficiently large k. Therefore
S

by geometric series

1+g(o(z) _ ( "'h K

1 —g(¢(2x)) " ¢é_& & 1k ’ )+( o )
_ 25 — P(z Ug 2k .

e .
1 ?gk 10 o)
‘I ’J (Zk 1—¢Zk —9(0(z1)) qaﬂ
_ 1+ o(z) O(d(zr) —
L—d(z) 11— ¢(Zk) 1—¢(z) + 0(¢(Zk) —1)

— O o) — 1)

An application of Hopf’s lemma shows that £ = 0. Hence g(z) = z and hence
f(z) ==
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3.4 Finite Blaschke’s Product and Non-Tangential Limit.

In this section, we discuss the study of boundary rigidity condition for Blascke’s

product (see theorem 4.2). First recall that Aut(D) = =1,) e D}.

Definition 3.13 (finite Blaschke’s Product). The product of the form

Hu)] =1, €D

is called the finite Blaschke’s product 'of degree n. It is an n to 1 function from D
onto D. Also the productas modulus 1 on T. In fact , a holomorphic on D which

can be extended holomogphically to D I_Jmust be finite Blaschke’s product.

4 ¥

The following thegfends due to-D.Ghelest [4].

)
Theorem 3.14. If p#'D = D .be_analyti_tig‘ a_nd fis a finite Blaschke’s product i.e.
v e
10— D, =) = Hesme W] = 1, M| < 1
¥ [ ._,k

—t

Suppose that f equa/s T € b -ona ﬁm’te" Q'iéé!b-i}i-f C D and if:

1) For a given vy €2 “I, D=ty —a0 52— o and,
2) For all y € Ay — {%} (@)= f2) £ OUE=7) )1 ky > 2, as 2~y
then ¢ = f. i

The idea of proving this theorem in [4] is to define a hanmonic function similar
to the proof of theorem 3.12. Omir main tasksis to show the positivity of this
function. The first step lis to, use the ‘assumption to show, that it is positive
everywhere (the main property of finite Blaschke’s product we used it that it is
analytic through D and has modulus 1 on T.) then we can use the compactness
property to show the positivity of the harmonic function. We investigate the

above theorem in the case n=1 with non-tangential convergence condition.

Theorem 3.15. If ¢ : D — D is analytic and suppose f(z) = wli}\zz_ equals

TedDatyedD. Lee AeDN{z e C:|z—%| > 1}, w e dD. Suppose there is a
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sequence z € D, zp — 7, non-tangentially such that

w)\—Zk
1— Az

P(2k) = +O0(z, =)' k — oo.

Then ¢(z) = wd=2.

Proof. Without loss of generality,we may assume 7 = 1. Define a harmonic func-

tion on the unit disc g(z) = Re(+=22)) — Re(%). In the view of equation 3.3.1,

1-¢(z)

we have
= fR)1P
Now we have ¢(zy) -
\\b o, 7)4
So
M
That is
1—|¢(z))” _ 1—|f(= NeZ s 1 f ()] 3
EECEN R = ) TR
Now since f is an automorp _f n the disc. Invoking the equality part of
Pick’s lemma (theorem
Y3 (3.4)

Now f'(z) = (ll/\l)\_z)lz which.is bounded by l,as z — 7 since A € . Hence 2 |f(k’“)|2

ot 4 L) %W@W HINT
M N umm Ll

16 _ 1=
LR < O

It follows that g(z) = Re(i"'zg;) Re(i"‘}c( ;) is a nonnegative harmonic function.

Now we claim that f(z) — 1 is not o(zx — ),k — oo. To see this, Suppose

f(zr) =1 =o(zx — ), consider a positive harmonic function

Re(l = f(2)).
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Note that f has a continuous extension to the boundary. Since f(z) — 1 is
o(zx — 7y), it has a minimum at z = . This contradicts Hopf’s lemma, and we

have the claim. Next, write h = ¢ — f, we have

2h(z)
(1= f(2) = h(2))(1 = f(2))

Each term in the denominator is not o(z, — 7). Hence g is O(z, — )%,z — 7. By

g(z) = Re

Hopf’s lemma, we have g =01i.c. ¢ = f. ]

3.5 Conclusion. -

In this section weswillstigoest some more work that could be done further

on our results. In seetion 3.2 we prov'ed_Burns—Krantz’s theorem on simply con-

nected domain that itg'Rigiann map eould be extended holomorphically. In [11]

II #

it is proved a simply conngcted domam‘ Whose boundary is a Jordan’s curve has
a Riemann map that extended ’c'o'ntmubmly that maps boundary to boundary.
Hence if we can strengthen the hy pothesm fro,m holomorphically extended to con-

tinuously extended. We Would have the—result on a larger class of domains. In
"]‘
section 3.3 and we dﬁals Wlth non—tangentlal limit. It s interesting to ask if the

‘_‘ -

non-tangential condltlon is necessary. If we arbltrarlly _plck a sequence 2y, 2 — 1
and f(z1,) = 2 +O(z— 1)*,can we conclude that f(z) = 27 Finally we would like
to extend the result to"the case of genefal finite Blaschke’s product.This would
follow if we can demonstrate that

1—1f(z)?
sup ——If( k3| LPORAT O
keN LA 2

when f is a finite Blaschke’s product, v € f~!(1). Furthermore, since infinite
Blaschke’s product has many properties similar to finite Blaschke’s product, we

expect a similar rigidity condition for infinite product as well. We summarize the

property of infinite product as follow.

Theorem 3.16 (Properties of Infinite Blaschke’s Product.). Let {a,,} be a se-

quence in D with o, # 0 and > 07 (1-|ay|) <oco. If k is a non-negative integer
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then
k Qn — = |an|
—c H 1—o,z o
converges locally uniformly in D and defines an analytic function in D having
precisely the zeros «,, (and at 0 if k >1)and no other zeros. We have |f(z)|=1 a.e.

on T.Conversely, if f is bounded analytic on D which is not identically zero. If

zeros of f are a,, then X°° (1 — |ay,|

ﬂ‘UEJ’J‘VIEWI?WEﬂﬂ‘i
awwmnmummmaﬂ
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