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The first part of the thesis treats the problem of characterizing the trigonometric
and hyperbolic sine-cosine functions. QOur method arises from Kannappan’s work of 2003
which solved the functional equation f{x — y)} = f(z)f(y) + g(z)g(y) for functions whose
domain is a group, whose range is a subset of the complex field and without any additional
conditions. We use Kannapan's technique to determine the general solutions of the func-
tional equation f{z +y) = f(z) f(y) - g{z)g{y) which together with Kannappan's result give

" a complete characterization of the trigonometric sine-cosine functions. Next, the functional
equation f(z — y} = f(z)f(y) — g{z)g(y) is used to characterize the hyperbolic sine-cosine
functions, and inter-relations among the solution functions, resemble certain well-known hy-
perbolic sine-cosine identities and generalizing the classical d’Alembert functional equation,
are obtained.

The second part of the thesis gives characterizations of the trigonometric and
hyperbolic tangent-cotangent functions. There are two approaches in this part. The first
approach is along the line treated by Dobbs in 1989 for the trigonometric tangent function.
It is analytic in character and makes use of continuity and differentiabilty at one specific
point. Dobbs defined the class of real-valued functions T" of real variable, called tangential
functions, as those satisfying the functional equation T{x + v) = IT \J fg'; . We apply

the result of Dobbs to characterize the trigonometric ootangent function and then proceed

to use Dobbs’ approach to characterize the hyperbolic tangent-cotangent functions through
their respective functional equations. The functions considered are to have the real numbers
and /or its subset as their domain and range. The second approach is discrete in character
and stems from the work of Rhouma in 2005 which gave a closed form solution to the
recursive difference equation y,,9 = %. This is a discrete functional equation of
much recent interests in itself. We generalize the techrique of Rhouma to find the closed
form solutions of dertain rational recursive equations and use the results to characterize t.he "
cota.ngent—ta.ngent anhd the hyperbolic cotangent-tangent functions. )
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CHAPTER I

INTRODUCTION

The principal investigation of this thesis deals with the problem of characterizing
trigonometric and hyperbolic funetions through the use of functional equations. Apart
from the introduction, there are two main parts. The first part treats the problem of
characterizing the trigonometric and -hyperbolic sine-cosine functions and the second
part treats a similar characterization for the trigonometric and hyperbolic tangent-
cotangent functions.

Functional equations are equations in which the unknown (or unknowns) are func-
tions. The origin of functional equations came about the same time as the modern
definition of function. The best known, and most thoroughly studied, functional equa-
tions are those connected to the famous Cauchy functional equation, whose additive

form, referred to as the additive Cauchy functional equation, is

Alx +y) = A(z) + A(y), (1.1)

and whose solution is collectively referred to as.an additive function. Through suitable
change of variables, the additive Cauchy functional equation can be transformed to

an-exponential Cauchy funetional equation of the form

E(r+y) = E(x)E(y), (1.2)



whose nontrivial solution is referred to as an exponential function.

After the Cauchy functional equation, the next best known functional equations
are those related to identities satisfied by the trigonometric sine and cosine functions
and commonly called functional equations of d’Alembert type. During 1747 to 1750,
J. d’Alembert published three papers. Thesethree papers could be considered as first
principal works on functional equations. The early significant growth of the discipline
of functional equations was stimulated by the problem of the parallelogram law of
forces, see e.g. Aczél (1966). In 1769, d’Alembert reduced this problem to finding

solutions of the functional equation

flz )+ fl@ =~ y)=2f(2)f(y), (1.3)

which is known as the d’Alembert functional equation. In 1821, Cauchy, [1], proved

that the continuous nontrivial solution f : R —.R of (1.3) is either

f(z) =rcosh(az) or f(x) = cos(fz),

where o and 8 are arbitrary real constants. There have been numerous related works
since then. Let us mention some which are of interest to us: In 1924, Kaczmarz, [1],
extended this result by showing that the same conclusion still holds if the continuity
condition is replaced by measurability; his argument covers the case in which f takes
complex values. Flett, [6], in 1963-proved that if f: C —C satisfies the d’Alembert
functional equation (1.3) for all z,y € C and f is continuous at a point, them frhas

one of the following forms

=0, f=1, f(x+iy)=cosh(ax+Py) (z=x+1iyeC),



where «, § are complex constants, not both zero. Over the domain of an arbitrary

group, (G, *), the d’Alembert functional equation (1.3) takes the form

“alil
\ | //l/?/m)f(y) (14)
This equation with ~ : ‘/@Kannappan, [7] in 1968.
AT ot e

Kannappan prov

of (1.4) which a

has the form

(1.5)
where E is an expone A 0} and E*(z) = 1/E(x).
b i {0} and E*(2) = 1/E()

Since the cosine function satisfi =i Alembert functional equation (1.3)

1S sometimes known as e two trlfonometrlc functions

= COS .’Eg‘l glL ) — Slll L SAULISLY

q 1

ot

Il flx—y

.l_'
|

w'y+9@M@%ﬂm (1.6)

ﬂummn INHINI
ammnmummmaﬂ



three functional equations:

flx+y) =f(2)f(y) — g9(x)g(y) (1.7)
g(r+y) = g(x)f(y) +f(@)9(y) (1.8)
g(r=y) = g(v) fly)=F(z)g(y). (1.9)

The functional equation (1.6) was treated by Gerretsen (1939) and Vaughan (1955).
The functional equation(1.7) was considered by Vietoris (1944) and also by van der
Corput (1941). In the direction of finding inter-relations among the four functional
equations (1.6)-(1.9), V.L. Klee, [11], in 1953 posed the following problem.

Suppose that f, g :R — R satisfy the funetional equation (1.6) with f(t) =1 and
g(t) = 0 for somet # 0. Prove that f and g satisfy the functional equations (1.7),
(1.8) and (1.9).

A solution to this preblem by T.S. Chihara appeared in [3], but it unfortunately
had a gap. In 2003, Kannappan, [8}, gave the following general solution of (1.6) for

functions with.more general domain and without any additional conditions.

Theorem 1.0.1. Let (G,+) be a two-divisible abelian group (i.e., a group for which
to each x € G, there erists a unique y € G such that x = 2y). If the functions

f, g: G — C satisfy.the functional equation

f@=yl=f@)f )+ glx)g(y), (1.6)

then they also satisfy the equations (1.7), (1.8) and (1.9).

Moreover, the solution functions are given by

g(x) = 5 (E(x) + E7(z)), [f(x) =bo(E(x) — £ (x)),

DN | —



1 1
where b = vt E : G — C* is an exponential function and E*(x) = BE@)
x

/ t solutions of (1.6) and g is con-

functwns are of the form

Theorem 1.0.1 leads to ([1], [7]):

El( -

ﬂumw{awmm
ammmﬂuuiﬁ‘%ﬂmaﬂ

where B, By, E5 are exponential functions, A is an additive function and 3 is a nonzero

complex constant.



Regarding the equation (1.9), the following result, whose proof can be found in

Aczél, 2] pages 213-217, is known.

Theorem 1.0.4. Let (G,+) b ‘ e abelian group and f,g : G — C. If f
and g satisfy

(1.9)

then
or

or

here E, E* e ol functions, A i wtion and 7, 3 € C.
where iﬁe iﬁn)an ol

As we areku .

mm ) ﬂ;ﬁ Wﬂ’lﬂm -

1.0.1-1.04 give a complete characte"Zation of the trigo etric sine-cosine fulvns

yperboli 1c sine functlon F(z) =coshz, G(x) = smhx sa 1sfy the unctlonal equatlons

Flr—y) = F(z)F(y) — G(x)G(y), (1.10)




using a modification of Kannappan’s technique in the trigonometric case, we prove a
hyperbolic counterpart of Theorem 1.0.1, which renders a desired characterization of
the hyperboloic sine-cosine function.

In Chapter 3, we take up the problem of charactering the trigonometric and hy-
perbolic tangent-cotangent functions. We attack this problem through two different
approaches; one is analytical and the other is discrete in nature.

The analytical approach is‘based on a techmique of Dobbs, [5], which makes use
of the functional equation

() 1 7= %,

satisfied by the trigonometric tangent function. Dobbs showed that by imposing
certain analytical condition, the only solution to this equation is the trigonometric
tangent function. We complement Dobbs’ result by characterizing the trigonometric
cotangent and the hyperbolic tangent-cotangent functions using the functional equa-
tions satisfied by them with some differntiabilty condition. All functions considered
in this approach are to have the real field R or its subset as both their domain and
range.

The discrete approach involves the concept of recursive equations, which is a
functional equation with discrete arguments. \In 2005, Rhouma, [14], gave a closed

form solution to the recursive difference equation

YnYnt1 — 1
Yn+2 — T 1.11
I Yn A Yn+1 ( )

which was originated from an open problem in the book [12], see also [13], as follows:

Theorem 1.0.5. Let yg and yy be arbitrary real numbers such that those y, satisfying



(1.11) emists for alln € NU{0}. Let F,, be the Fibonacci sequence defined by

Fy =

F1=1,

w1 arccot yp).  (1.12)

Moreover,

hen either {y,} diverges in finitely

= - o
'~ e

1. if Oy and 01 are both f.,f;-f Tulti

many steps or {yn} is ﬂy ) J

Q rational multiple of w_and 01 is not (or vie rsa ), then {y,} is

Zf 90
aperiodic and de =

| {

It is easily check d that the cotangent functlon in (1.12) satisfies (1.11) showing

£l ﬂiﬁ ok it mgiﬂﬁ’mﬁfffff )

yn+2_i=yn+1_i.yn_i
yn+2+i yn+1+i yn+'i,




which is a difference equation of the shape

Lpt1Lp-

_‘_h‘

A closed form solution ’ Qé/}rived without difficulty. The

sting# lea

ts. First, it resembles the

g Yy, = cot z,, with the

values of z,, restri ' 1(0,7) the d ce equation leads to the

Fibonacci sequence ‘ I ) = 2y +2,+1 mod 7. In the final part of

_cot ngent functions. The functions

or sequences conszder% “approach ar wve diserete domain and the real field

AUt InenineIng
ARIANTAUUNIING 1A



sroup G as their domain

Since the genera the ar functional equations (1.6)—(1.9) are already
known, but we have n 1 ’:"’1’.‘.-?- of for that of (1.7), we give here only

a complete proof for this equa ion

.’5& 2 35’ :
Theorem Zﬁ) ‘

solutions of & .

ﬁ Then the general

i 9 | (17

ﬂUEJ’M%M‘EW%J’]ﬂ‘i

where 15 an exponential functzon‘nd A is an addztz unction.

qRIaRIR: NRAINYIA L

fx+y) = f(@)f(y),
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i.e., f is an exponential function.
Assuming now that g(x) # 0, and let a € G be such that g(«) # 0. Using the

functional equation (1.7) twice,

and
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Equating (2.3) and (2.4), we get

()] (2.5)

—

The general solutlo? of (2.7) are, by Theorem 1.0.3, of the form

ﬂﬂﬂ?ﬂ&lﬂ]‘iwﬂ']ﬂ‘i
q W’] ammmmm d

where E, F1, E5 are exponential functions, A is an additive function and 3 is a nonzero
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complex constant.

Since F(x) = f(x) + %g(az), the solutions of the equation (1.7) are given by

(2.8)

(2.10)

Replacing y = —x, noti &) 3 < and / = —A(z) in the equation

(2.10), we get

Then

, .

g ‘[‘I%(WOEJ'] na
IfA(zp= 0, t erﬂx f(z) ) k ‘
Ifl—1—o then v = 2.

q W’rﬂ*&ﬂ?ﬁl um'mma 4

g(x) = E(x)A(z), f(x)=F
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Substituting the equation (2.9) into the equation (1.7) and using v = +2, we have

Ey(x)Ey(y) — (2.11)

r@n

Ao
y 4. Y
g ,..", .' , (2.12)
where f,g,h: G — Cand G J?H’i " ..g'. wh *h contains (1.8). They deter-

mined its general solutlon €0 Lﬂ;&j”]‘? y er of possibilities too complicated

to put down@

2.2 Hypeerlic S | |.;

Since the hype‘@me cosine functions G(z) = sinhx, F(r) = coshx satisfy

ﬁﬂﬂ?ﬂﬂﬂiﬂﬁﬁﬂi
ammné HAINeIa

we ask whether results analogous to Theorem 1.0.1 and Corollary 1.0.2 hold for the

10)

hyperbolic sine-cosine functions. We affirmatively answer this by proving:
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Theorem 2.2.1. Let (G,+) be a two-divisible abelian group and let F,G : G — C.

Assume that F and G satisfy the functional equation (1.10).

" /n unction, then so is the other, and the
@ith > =c? —c.

(2.13)

(2.14)

2 _
where b] = —,

Proof. By sy metry;

implying that F is ‘1 a n function.

S ﬁﬂm NeInNT

into 1 10) yields

QW’]&\‘IH‘SM%&%’]’JV]W&B

and so d? = ¢?

Next assume G(z) = d, a constant function. Replacing y by —y in (1.10) and
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using the evenness of F, we obtain

(2.16)
Putting « = “
i.e., F is a constant ed as shown before
II. Consider nonc ation (1.10). Using (1.10)
and the evennes: N
Flz+y) )F(y) = G(2)G(—y)
(2.17)

Similarly,

Fla +y) = E(“x — y) = F(-2)F(y) - G~ @)E () — (-9 ().

The equations ( 7 and (2.18) together glve

ﬂuﬂqwﬂ%@wawnﬁ
awﬁﬁﬁﬁ“ﬁm si‘vf'rmmaﬂ

Qx—— —1) = kG(—x) = k*G(x



9

17

where k := G(—a)/G(a). Thus, k =+ 1.

If £k =1, then G(z) = G(—x), i.e., G is an even function. This together with (1.10)

Putting z = « au no
Il

(Q’y;f(a = dly

+a)). Replacing = by —z in (2.21), using the

where Q’y = G

oddness of G and the evenness of f‘ we

NSy :"5 * g)ﬂ

F( :vg(y) (y) (

— x_ —
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and so
G(x —y) = =F(@)G(y) — h(y)G(z). (2.22)
Incorporating (2.21) and (222\Njcly///
% g (@- y/zﬁw). (2.23)
— S
Interchanging x and y i sing the oddn we have
' 1\
(2.24)
Adding (2.23)
(2.25)
Combining (2.21) and ’E’f‘f"ﬁ 1
and so '“;-
) T __glo) z) = —h(z ‘
¢ o @ S
Putting hﬁtﬂtﬂ)aﬂtﬁ wtﬁ 21), ‘H!one ﬂﬁ relations
in (2.14); namely, k. ul = Soab

ARIANTRAMAINY A
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Replacing y by —y in (2.26), using the oddness of G and the evenness of F, we have

G(x)F(y) — F(2)G(y) (2.27)

(2.28)

which is the d’ s result, [7] see also

the equation (1.5

(2.29)

fuddnundnanns..
QRadn Sl Ingan



20

Consequently,

= b (E(z) — E*(x)), (2.30)

\\\V// |

.,‘,' f—“——b

Corollary 2.2.2. [ [ a 1 : s of (1.10) and F is

d ) % %, . .
continuous, then s,-and the two sol: nctions are given by

1 .
where b? = e € Cf

JJJJJJJ

ﬂﬂﬂ’)ﬂ&lﬂ‘iwmﬂi
QW’]MT]‘?M%W]'JVIH']&EJ
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ive eq 1a ions in order to characterize

the trigonometric and he h ...- -.r. co al tangent functions.

3.1 Dob@
\

Pl
From the adjiv
I

2 ,"_ IAT/E

s o

‘ﬂ tanu+v tan +tanv
tanh(u + tanhu+tanhv
(u ‘ 1 + tanh v tanhw

am AN TRAHER N A



22

have appeared several articles, see e.g. [5], [14], [13], on the functional equations

having the trigonometric tangent-cotangent function as the only possible solutions.
red y Dobbs in [5] is based on the addition
. y deﬁmng the class of tangential

T is called a tangential

A particular functional equation ¢

formula (3.1) for the tange

functions. % ;

Definition 3.1.1.

function if T satis

(3.5)

for all u,v € D wit

It is shown in [5] S nay sess sov | 1 olutions such as

1. T(z) =1 (

2. T(z) =—1 (z € R);

3. Let p b

othervvls

Dob u ﬂ q mwﬂ relullsﬁcl“j ﬂ\e fl ﬂ 2& certain
regularity conditions, the only solu’ﬁn of (3.5) is the fangent function.

o ks3] SAUNIINYIAY

number v # 5 +mn (m € Z) is in the domain of T. Then T is the trigonometric

tangent function.
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We now apply this result of Dobbs to characterize the trigonometric cotangent

function.

(3.6)

Assume that

-

(i) C is differentiable at ’7’}5@’
(i) C(x) = 0 if and only
Then C' s
Vi

—

Proof. Define L|| ,

AU INDNSHTNS

We claﬂ that S is a tangential funition.

QRN IIMTINENa Y
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To see this, by the functional equation (3.6), we have

Hence,

) = S() + S().
Thus S is a tangential functios "r Sttt = —(C'(Z) = 0. Since C is differen-
tiable at J and C'(5) = g.--" a e —1= | —5'(0), i.e., S is a differentiable

at 0 with S’@ ‘

By Theorem k i

m'. {
—tanx (xG]R\{— meE 7Z

ﬂLlEJ’WIEJVI?WEJ’]ﬂ‘i

=—tan x—— —cotx xER\{— mEZ}

q W’%@ﬁﬂ“’ﬁﬂ%%ﬁﬂ%‘lﬂ JebY

Clx)=cotx (zeR~{mr:mecZ}).
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O

As the hyperbolic tangent-cotangent functions satisfy, respectively, the functional

equations, similar to those satls ometric tangent-cotangent functions,
namely, \X /‘

and

this prompts usto i , asses verbolic tan gential and hyperbolic cotan-

gential functions

Definition 3.1.5. A. G — R 7 C R I'he function hr is called a
hyperbolic-tangential atis he functi eqation

e (@)l (0)]) o (0 v () + hr(v), (3.7)

ZIWIN T

for all u,v € %wz h

B. Let h% - alled a hyperbolic-

\. \Jc

cotangential fun ni

udﬁﬂﬁ%ﬁﬁﬁqns

for allﬂv €D withu+wv € D.

QAL NI DB IME)

Example 3.1.6. Each of the following functions is the hyperbolic-tangential from R

into R :
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1. hp(x) =1 (z € R);

QhT() — .’EGR

Proposition 3.1.7. Let hr r‘:d’n Sitial fanction. Assume that hr(0) =
&L" A

a) If hy is continuous at 0, then hy is continuous at eacl Q

L7

(b) If hy is T &s—dzﬁerentwble at each x

d.rl.
with 1y @1—% . | U
ﬂ“lliﬂ wma AN
dom i small'so'that x + £ is in

the domaln of hp. Thus,

QW'L@M?QJJJWYMEI’]& )

= [1 4 hep(z)hp(§)] hr(x + &) — [1 + he(x)hp(§)] he(z (3.9)

0.
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Noting hr is the hyperbolic-tangential function, we get

1+ hy(x)hr(§

i.e., hr is conti

To prove (b),

L wfﬁ fl

hT(x +&) — hr(x)

=1— hp(x)?

ammnimumaﬂmaa

Our characterization of the hyperbolic tangent function by Dobbs” method is:
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Theorem 3.1.8. Let hr : R — R be a hyperbolic-tangential function. Assume that

(i) hr(0) =

Then hr is the tri

Proof. By Proposition 3.1.

Since |hp(x)| < 1 yields, see e.g. p. 276

of [16],
for some constant k € R. n '—':' 0, et £ = 0 and so hp(x) = tanhz. O
To chara‘ iz ) @ an auxliary result.

Proposition

iti ‘ ‘];‘.j nﬁ}n Assume that ho is
I
an odd function hl

FWOET NN WETh3

c is differentiable at a point, say xo, and hi(xg) = =1- he(xo)® (#£0), then

q TSRS {89

Take any z in the domain of he and for any £ in the domain of hc sufficiently small
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so that x + £ is in the domain of Ac. Thus,

hele)he(€) + 1+ he(—zo)he(a) § Ae(©)he(—ro] lhe(x + € — a0) — he(a)
— he(@)ho(€) + 1 + he(rmhcla) /hel@he
— x)he o ', | : .

(3.10)

Now,

+hc—.’L'0 hcl"f‘é-—a’)()

ﬂﬁﬁﬁwa%%wgqns

ammnmumawmaﬂ
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= [he(z + §ho(—x0) + 1 he(x) + [he(x + §he(—z0) + 1] ha(§)

= he(z + §)he(—z0)he(z) + hc(ﬂf) + ho(x 4+ he(—x0)ha (&) + he(§)

= he(ahe(Eotean) -+

Consequently, /

= ho(=x0) + I ; i';, : & )Ph (3.11)

and

wﬁﬁwﬂnmﬁw

y1e1d1 1m (he(x + &€ — ) = 0. i.e., h¢ is continuous at x.

0 ‘W”‘l RSBy
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sufficiently small so that z + ¢ is in the domain of h¢. Using (3.11) in (a), we have

ho(z + & — xo) — he(x)
§— o

[hc(l‘)ho(f) + 1+ hc(—xo)h

Thus,

But

i.e.,

O

We come now “ ﬁcharacterlzatlon of hyperbolic cotangent function by

D°bﬂ*MEJ’WIEJVI§WEJ’]ﬂ‘§

Theor 3.1.10. Let he @ R~ ?} — R be a hyperbolzc cotangential functzon

97 "ragnimumawmaﬂ

(1) he is an function;

(i1) there exists xo such that he is differentiable at xo with hip(xo) = 1 — ho(xo)?;
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(iti) |he(z)] > 1.

Then ho(x) is the trigonometric hyperbolic cotangent function.

yields, see e.g. p. 276

of [16],
for some constant k c is odd, we deduce that
k = 0. Therefore O
3.2 Rhouma’s
We start by finding a closed ’ ' SC ‘ r any rational recursive equation

.-r“",r.-n"

extending @

Ofthﬁruﬂ ?) l I |
il yn+£ 1+ (YUn n+£ <l = i 3 12)
yn+g 1—|—z . y‘z f—ynH} 1—@ 1... e’

q WM $RIR QM’}QOW %mwﬁ

calculation whose trivial proof is omitted.
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Lemma 3.2.1. Let { € N, £ > 2; b,x1,...,x4, 2 compler numbers and let Ay, ..., Ay

be nonzero integers such that

if and only if

The next lemma rela

recursive sequences.

Lemma 3.2.2. Let ¢ €N, : .pﬁil‘" and EP he (generalized Fibonacci) sequence
satisfying a linear recurrenc re a,yw
t rll

B )
U

=1
where Aq, ..., Aﬂljre nonzero integers such that Ay + ...+ ul;é 0, with wnitial values

ﬂuﬂ’}%&ﬂﬁ‘f‘lﬂ’]ﬂ‘i
QW'] AN TR INB A

then

(3.13)

FUitAD oo F
Ty = " AT A g g T g Y (3.15)
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for alln > (.

Proof. For the starting case, the condition (3.14) and the recurrence (3.13) yield

Our characterlze?on of the trigonometric cota gent function by Rhouma’s method

- UL ANYNINYINT

Theo 3.2.3. Let{ € N, [ > 2 Ay, ..., Ay be nonzero integers such that A; +

qY A TR

Foio=AF o1+ AF o+ ...+ AF,,

with initial values Fy = Ay, Fy = Apq,..., Fyy = Ay Let yo,...,y0—1 be real
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numbers such that those vy, which satisfy

(Ynre—1 + i)Al (Yt i).Al + (Ynte-1 — i)Al (Y — 'L')Ae

e =1 - , 3.12
P = e+ D / s == O
ezist for alln € NU{0 \\ o //é
s.____‘_r L ,
Then the solution t ) (3.1@ exis@f
Nu{0}),
where 0; = ——
! Aj+1 ;
When it exists, s given by
N
Yn = 1 : ¥ i ;l"- -‘i \ b .- L i)Fn_l ) (316)
(o + )5 - Myatr EDSX (oS Yoo — i)F
or

% 7, 4 v pT R J‘— ¥
- 'ﬁ?‘i@ﬁ,rw's o

guEInsmIngInT -
QUIANASIIRI IR

Proof. Taking z = yp1v , T1 = Ynst—1,---,Te = Yp, b =1 in Lemma 3.2.1, the rational
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recursive equation (3.12) is equivalent to

Ynte — 7/

e y"”f (3.17)
Putting U,, =
whose solution is,
and so
y — Z & Fn—l
. ) e
which, by Lemma 3.2.
Yn =1 . L P (3.19)

Next, setting e lnj i eyt we he:]E

ﬂummm%’wmm
qmmnmummmaa
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ie.,

1 _|_ei(Aan_gGO-i-“-+A2Fn—19e—1)
Yn =1 " /

provided A F,,_,0q

If all the 0, (j =

13 ]J)le (Gt> ) Gt-i-e—l)

- e
£—1 |
takes at most ﬁj  distinct values. Since the sequench‘(Gt, .. ~’Gt+€—1)}t20 is

WU NN

GN1+15 1) = (G, - - - GN2+z 1)

ammngmumawmaﬂ

+ G (j€N)

we deduce that Gy, 1x = G,k for all k € N, ie., the sequence {G,,} is periodic. If
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some G, is zero, then clearly the sequence {y,} diverges.

If 69,0y, ...,0,_1,m are linearly independent over Q, then

ArF, - e%\\\*’////ﬁ 2km (k€ 7Z),
showing that , ex1$ and ‘e se

never periodic. O

As the equation (1. steri; e c .-* ion, it is natural to con-

sider its counterpart

(3.20)
or equivalently,

(3.21)
which clearly has the tangent t" mctio a : jon. Our next objective is to find a

closed form solution for an . 1ation extending (3.21) of the form
ﬁ%ﬁﬂ. »

-7 ,n.n+w (3.22)

1 ‘ ||
and determine itléllisymptotic behavior. \ I

"Rl i3 mmlj’ WETS
ammﬂma:rmfmmaﬂ

with initial values Fy = Ay, Fy = Ap_q,..., Foroqw = Ay Let yo,...,ye—1 be real
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numbers such that those vy, which satisfy the rational recursive equation

-(yn+f—1 =+ i)Al
(yn+€—1 + i)Al

Yn+eo =

Moreover,

ﬂtummﬁmw BT

are HZ@T’O

pemodzc

1
Proof. Substituting y,, by — turns the equation (3.23) into a rational recursive equa-

n
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tion of the form (3.12) and so the corollary follows at once from Theorem 3.2.3. [

Remarks. Although the substitution y, by — employed in Corollary 3.2.4 allows

us to obtain a closed form sol 10n (3.23), there remains a difficulty

should there exist integer : ercome this short-coming, we
may either interpret &v essmns on both sides of the
solution as equal W ' ; Theorem 3.2.3 to solve

the equation (3 23 iar .k': emmas 3.2.1 and 3.2.2.

Corollary 3.2.5. - A ) be monze _ egers such that Ay +

<+ Ay #0. Let tisf imear recurrence relation of the form

with initial values Fy ‘g% = Ay. Let yo,...,ys—1 be real
S e {124

numbers suc@ f

SO ﬁ mm@ mu '1 n 9




41

or

Yn = coth (F,_, arcco ..+ F,_q arccoth y,_q) .

rns it into a rational recursive

@e desired result. O

Proof. Substituting y,,

equation of the for

_ Ae
Cae 0
. 1)Fnt 1 { 1Fnl
_ (ot e+ 1) —( y0+ ) ( 1+ 1) (3.28)

Yn y0+1F”‘d1/g1+1 ”1—|- (=Y 1+1

ﬂUEJ’J‘VIEJVI‘iWEJ’]ﬂ‘i

= tanh (arctanh n—t + o+ arctanh Yo—1Fn_1)

1wt SUNTRHUNG %E}M’%ﬁaﬁ&l

of the form (3.23) and Corollary 3.2.4 yields the required result.
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