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CHAPTER I

INTRODUCTION

The principal investigation of this thesis deals with the problem of characterizing

trigonometric and hyperbolic functions through the use of functional equations. Apart

from the introduction, there are two main parts. The first part treats the problem of

characterizing the trigonometric and hyperbolic sine-cosine functions and the second

part treats a similar characterization for the trigonometric and hyperbolic tangent-

cotangent functions.

Functional equations are equations in which the unknown (or unknowns) are func-

tions. The origin of functional equations came about the same time as the modern

definition of function. The best known, and most thoroughly studied, functional equa-

tions are those connected to the famous Cauchy functional equation, whose additive

form, referred to as the additive Cauchy functional equation, is

A(x+ y) = A(x) + A(y), (1.1)

and whose solution is collectively referred to as an additive function. Through suitable

change of variables, the additive Cauchy functional equation can be transformed to

an exponential Cauchy functional equation of the form

E(x+ y) = E(x)E(y), (1.2)
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whose nontrivial solution is referred to as an exponential function.

After the Cauchy functional equation, the next best known functional equations

are those related to identities satisfied by the trigonometric sine and cosine functions

and commonly called functional equations of d’Alembert type. During 1747 to 1750,

J. d’Alembert published three papers. These three papers could be considered as first

principal works on functional equations. The early significant growth of the discipline

of functional equations was stimulated by the problem of the parallelogram law of

forces, see e.g. Aczél (1966). In 1769, d’Alembert reduced this problem to finding

solutions of the functional equation

f(x+ y) + f(x− y) = 2f(x)f(y), (1.3)

which is known as the d’Alembert functional equation. In 1821, Cauchy, [1], proved

that the continuous nontrivial solution f : R→ R of (1.3) is either

f(x) = cosh(αx) or f(x) = cos(βx),

where α and β are arbitrary real constants. There have been numerous related works

since then. Let us mention some which are of interest to us. In 1924, Kaczmarz, [1],

extended this result by showing that the same conclusion still holds if the continuity

condition is replaced by measurability; his argument covers the case in which f takes

complex values. Flett, [6], in 1963 proved that if f : C→ C satisfies the d’Alembert

functional equation (1.3) for all x, y ∈ C and f is continuous at a point, then f has

one of the following forms

f ≡ 0, f ≡ 1, f(x+ iy) = cosh(αx+ βy) (z = x+ iy ∈ C),
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where α, β are complex constants, not both zero. Over the domain of an arbitrary

group, (G, ∗), the d’Alembert functional equation (1.3) takes the form

f(x ∗ y) + f(x ∗ y−1) = 2f(x)f(y). (1.4)

This equation with f : G → C was first studied by Pl. Kannappan, [7] in 1968.

Kannappan proved, with a good deal of work and ingenuity, that any non-zero solution

of (1.4) which also satisfies the condition

f(x ∗ y ∗ z) = f(x ∗ z ∗ y) (x, y, z ∈ G),

has the form

f(x) =
E(x) + E∗(x)

2
, (1.5)

where E is an exponential function on G into C∗ := C r {0} and E∗(x) = 1/E(x).

Since the cosine function satisfies (1.3), the d’Alembert functional equation (1.3)

is sometimes known as the cosine equation. Since the two trigonometric functions

f(x) = cos x and g(x) = sinx satisfy

f(x− y) = f(x)f(y) + g(x)g(y), (1.6)

this functional equation is sometimes called the trigonometric functional equation.

The two trigonometric functions f(x) = cosx, g(x) = sinx also satisfy the following
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three functional equations:

f(x+ y) = f(x)f(y)− g(x)g(y) (1.7)

g(x+ y) = g(x)f(y) + f(x)g(y) (1.8)

g(x− y) = g(x)f(y)− f(x)g(y). (1.9)

The functional equation (1.6) was treated by Gerretsen (1939) and Vaughan (1955).

The functional equation (1.7) was considered by Vietoris (1944) and also by van der

Corput (1941). In the direction of finding inter-relations among the four functional

equations (1.6)-(1.9), V.L. Klee, [11], in 1953 posed the following problem.

Suppose that f, g : R→ R satisfy the functional equation (1.6) with f(t) = 1 and

g(t) = 0 for some t 6= 0. Prove that f and g satisfy the functional equations (1.7),

(1.8) and (1.9).

A solution to this problem by T.S. Chihara appeared in [3], but it unfortunately

had a gap. In 2003, Kannappan, [8], gave the following general solution of (1.6) for

functions with more general domain and without any additional conditions.

Theorem 1.0.1. Let (G,+) be a two-divisible abelian group (i.e., a group for which

to each x ∈ G, there exists a unique y ∈ G such that x = 2y). If the functions

f, g : G→ C satisfy the functional equation

f(x− y) = f(x)f(y) + g(x)g(y), (1.6)

then they also satisfy the equations (1.7), (1.8) and (1.9).

Moreover, the solution functions are given by

g(x) =
1

2
(E(x) + E∗(x)) , f(x) = b0 (E(x)− E∗(x)) ,
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where b20 = −1

4
, E : G→ C∗ is an exponential function and E∗(x) =

1

E(x)
.

Theorem 1.0.1 leads to ([1], [7]):

Corollary 1.0.2. If f, g : R → C are nonconstant solutions of (1.6) and g is con-

tinuous, then f is also continuous and the two solution functions are of the form

f(x) = cos(k0x), g(x) = b0 sin(k0x),

where b20 = −1

4
, k0 ∈ C.

Regarding the functional equation (1.8), the following result is known and its proof

can be found in Aczél, [2] pages 210-211.

Theorem 1.0.3. Let (G,+) be a group and f, g : G→ C. If f and g satisfy

g(x+ y) = g(x)f(y) + f(x)g(y), (1.8)

then 
g(x) ≡ 0,

f arbitrary,

or 
g(x) = E1(x)−E2(x)

2β
,

f(x) = E1(x)+E2(x)
2

,

or 
g(x) = E(x)A(x),

f(x) = E(x),

where E,E1, E2 are exponential functions, A is an additive function and β is a nonzero

complex constant.
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Regarding the equation (1.9), the following result, whose proof can be found in

Aczél, [2] pages 213-217, is known.

Theorem 1.0.4. Let (G,+) be a two-divisible abelian group and f, g : G → C. If f

and g satisfy

g(x− y) = g(x)f(y)− f(x)g(y), (1.9)

then 
g(x) ≡ 0,

f arbitrary,

or 
g(x) = γ

2
(E(x)− E∗(x)),

f(x) = 1
2
(E(x) + E∗(x)) + β

2
(E(x)− E∗(x)),

or 
g(x) = A(x),

f(x) = 1 + γA(x),

where E,E∗ are exponential functions, A is an additive function and γ, β ∈ C.

As we are unable to locate an explicit determination of the general solution of

(1.7), we give an independent proof in Chapter 2. In Chapter 2, we investigate some

functional equations which characterize the trigonometric sine-cosine functions. We

consider only functions whose domain is a group and whose codomain is C and without

any regularity condition. We start by solving (1.7) which together with Theorems

1.0.1–1.0.4 give a complete characterization of the trigonometric sine-cosine functions.

We then turn to hyperbolic sine-cosine functions. Since the hyperbolic cosine and

hyperbolic sine function F(x) = cosh x, G(x) = sinh x satisfy the functional equations

F(x− y) = F(x)F(y)− G(x)G(y), (1.10)
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using a modification of Kannappan’s technique in the trigonometric case, we prove a

hyperbolic counterpart of Theorem 1.0.1, which renders a desired characterization of

the hyperboloic sine-cosine function.

In Chapter 3, we take up the problem of charactering the trigonometric and hy-

perbolic tangent-cotangent functions. We attack this problem through two different

approaches; one is analytical and the other is discrete in nature.

The analytical approach is based on a technique of Dobbs, [5], which makes use

of the functional equation

T (u+ v) =
T (u) + T (v)

1− T (u)T (v)
,

satisfied by the trigonometric tangent function. Dobbs showed that by imposing

certain analytical condition, the only solution to this equation is the trigonometric

tangent function. We complement Dobbs’ result by characterizing the trigonometric

cotangent and the hyperbolic tangent-cotangent functions using the functional equa-

tions satisfied by them with some differntiabilty condition. All functions considered

in this approach are to have the real field R or its subset as both their domain and

range.

The discrete approach involves the concept of recursive equations, which is a

functional equation with discrete arguments. In 2005, Rhouma, [14], gave a closed

form solution to the recursive difference equation

yn+2 =
ynyn+1 − 1

yn + yn+1

, (1.11)

which was originated from an open problem in the book [12], see also [13], as follows:

Theorem 1.0.5. Let y0 and y1 be arbitrary real numbers such that those yn satisfying
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(1.11) exists for all n ∈ N ∪ {0}. Let Fn be the Fibonacci sequence defined by

F0 = F1 = 1, Fn+2 = Fn+1 + Fn (n ≥ 0).

The solution to equation (1.11) exists for all n ∈ N ∪ {0} if and only if

Fn−2θ0 + Fn−1θ1 6≡ 0 (mod 2π) (n ≥ 2),

where θ0 = −2arccot y0 and θ1 = −2arccot y1.

When it exists, the solution to (1.11) is given by

yn = − cot

(
Fn−2θ0 + Fn−1θ1

2

)
= cot(Fn−2 arccot y0 + Fn−1 arccot y1). (1.12)

Moreover,

1. if θ0 and θ1 are both rational multiples of π, then either {yn} diverges in finitely

many steps or {yn} is periodic;

2. if θ0 is a rational multiple of π and θ1 is not (or vice versa), then {yn} is

aperiodic and does exist for all n.

It is easily checked that the cotangent function in (1.12) satisfies (1.11) showing

that the rational recursive equation (1.11) does indeed characterize the cotangent

function. Rhouma’s technique is first to transform (1.11) to an equivalent form of

yn+2 = i
(yn+1 + i)(yn + i) + (yn+1 − i)(yn − i)
(yn+1 + i)(yn + i)− (yn+1 − i)(yn − i)

(i =
√
−1), (1.13)

or

yn+2 − i
yn+2 + i

=
yn+1 − i
yn+1 + i

· yn − i
yn + i

,
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which is a difference equation of the shape

xn+2 = αxn+1xn.

A closed form solution of this last equation is derived without difficulty. The

difference equation (1.11) is interesting at least in two respects. First, it resembles the

well-known identity of the cotangent function. Second, putting yn = cot zn, with the

values of zn restricted to the open interval (0, π), the difference equation leads to the

Fibonacci sequence modulo π of the form zn+2 ≡ zn+zn+1 mod π. In the final part of

this thesis, we carry out a far reaching extension of Rhouma’s technique and results,

both in the direction of recursive equations and in the direction of the Fibonacci

sequence involved. As fruitful by-products, we establish our desired characterizations

of both the trigonometric and hyperbolic tangent-cotangent functions. The functions

or sequences considered in this approach are to have discrete domain and the real field

R or its subset as their range.



CHAPTER II

TRIGONOMETRIC AND HYPERBOLIC SINE-COSINE

FUNCTIONS

In this chapter, all functions considered are to have a group G as their domain

and the complex field C as their codomain.

2.1 Trigonometric sine-cosine functions

Since the general solutions of the four functional equations (1.6)–(1.9) are already

known, but we have not been able to find a proof for that of (1.7), we give here only

a complete proof for this equation.

Theorem 2.1.1. Let (G,+) be an abelian group and f, g : G→ C. Then the general

solutions of

f(x+ y) = f(x)f(y)− g(x)g(y) (1.7)

are

g(x) = E(x)A(x), f(x) = E(x) (1± A(x)) ,

where E is an exponential function and A is an additive function.

Proof. If g(x) ≡ 0, then the functional equation gives

f(x+ y) = f(x)f(y),



11

i.e., f is an exponential function.

Assuming now that g(x) 6≡ 0, and let α ∈ G be such that g(α) 6= 0. Using the

functional equation (1.7) twice, we get

f((x+ y) + z) = f(x+ y)f(z)− g(x+ y)g(z)

= f(x)f(y)f(z)− g(x)g(y)f(z)− g(x+ y)g(z), (2.1)

and

f(x+ (y + z)) = f(x)f(y + z)− g(x)g(y + z)

= f(x)f(y)f(z)− f(x)g(y)g(z)− g(x)g(y + z). (2.2)

Equating (2.1) and (2.2), we have

g(x)g(y)f(z) + g(x+ y)g(z) = f(x)g(y)g(z) + g(x)g(y + z),

which simplifies to

g(x) [g(y + z)− g(y)f(z)] = g(z) [g(x+ y)− f(x)g(y)] .

Putting z = α and noting g(α) 6= 0, we have

g(x+ y) = g(x)h(y) + g(y)f(x), (2.3)

where h(y) :=
g(y + α)− g(y)f(α)

g(α)
. Interchanging x and y in (2.3), we get

g(x+ y) = g(y)h(x) + g(x)f(y). (2.4)
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Equating (2.3) and (2.4), we get

g(x) [h(y)− f(y)] = g(y) [h(x)− f(x)] . (2.5)

Putting y = α in (2.5), we have

h(x) = γg(x) + f(x),

where γ :=
h(α)− f(α)

g(α)
. Adding (2.3) to (2.4), we have

2g(x+ y) = g(x) [h(y) + f(y)] + g(y) [h(x) + f(x)] . (2.6)

Define the function F : G→ C by

F(x) =
h(x) + f(x)

2
.

The equation (2.6) becomes

g(x+ y) = g(x)F(y) + g(y)F(x). (2.7)

The general solutions of (2.7) are, by Theorem 1.0.3, of the form

g(x) = E(x)A(x), F(x) = E(x),

or

g(x) =
E1(x)− E2(x)

2β
, F(x) =

E1(x) + E2(x)

2

where E,E1, E2 are exponential functions, A is an additive function and β is a nonzero
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complex constant.

Since F(x) = f(x) +
γ

2
g(x), the solutions of the equation (1.7) are given by

g(x) = E(x)A(x), f(x) = E(x)

(
1− γA(x)

2

)
. (2.8)

or

g(x) =
E1(x)− E2(x)

2β
, f(x) = E1(x)

(
1

2
− γ

4β

)
+ E2(x)

(
1

2
+

γ

4β

)
(2.9)

Substituting the equation (2.8) into the equation (1.7), we have

(
γ2

4
− 1

)
E(x)E(y)A(x)A(y) = 0. (2.10)

Replacing y = −x, noting E(−x) =
1

E(x)
and A(−x) = −A(x) in the equation

(2.10), we get

0 =

(
γ2

4
− 1

)
E(x)E(−x)A(x)A(−x)

=

(
γ2

4
− 1

)(
−A(x)2

)
.

Then (
γ2

4
− 1

)
= 0 or A(x) = 0.

If A(x) = 0, then g(x) ≡ 0 and f(x) = E(x).

If
γ2

4
− 1 = 0, then γ = ±2.

Hence, the equation (2.8) becomes

g(x) = E(x)A(x), f(x) = E(x) (1± A(x)) .
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Substituting the equation (2.9) into the equation (1.7) and using γ = ±2, we have

E1(x)E1(y)− E1(x)E2(y)− E2(x)E1(y) + E2(x)E2(y) = 0. (2.11)

Replacing y = −x and noting E(−x) =
1

E(x)
in the equation (2.11), we get

E1(x) = E2(x).

Hence, the equation (2.9) becomes g(x) ≡ 0 and f(x) = E1(x).

Remark. Let us mention in passing that generalizing this result, Chung, Kannappan

and Ng, [4], treated the functional equation

g(x+ y) = g(x)f(y) + f(x)g(y) + h(x)h(y), (2.12)

where f, g, h : G→ C and G is a group, an equation which contains (1.8). They deter-

mined its general solution consisting of a large number of possibilities too complicated

to put down here.

2.2 Hyperbolic sine-cosine functions

Since the hyperbolic sine-cosine functions G(x) = sinhx, F(x) = coshx satisfy

the functional equation

F(x− y) = F(x)F(y)− G(x)G(y), (1.10)

we ask whether results analogous to Theorem 1.0.1 and Corollary 1.0.2 hold for the

hyperbolic sine-cosine functions. We affirmatively answer this by proving:
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Theorem 2.2.1. Let (G,+) be a two-divisible abelian group and let F ,G : G → C.

Assume that F and G satisfy the functional equation (1.10).

I. If one of the functions G,F is a constant function, then so is the other, and the

two constant functions are G(x) ≡ d, F(x) ≡ c with d2 = c2 − c.

II. If both G,F are nonconstant functions, then they also satisfy

F(x+ y) = F(x)F(y) + G(x)G(y), (2.13)

G(x± y) = G(x)F(y)±F(x)G(y). (2.14)

and the solution functions are given by

F(x) =
1

2
(E(x) + E∗(x)) , G(x) = b1 (E(x)− E∗(x)) , (2.15)

where b21 =
1

4
, E is an exponential function and E∗(x) =

1

E(x)
.

Proof. By symmetry, the functional equation (1.10) implies

F(y − x) = F(y)F(x)− G(y)G(x) = F(x)F(y)− G(x)G(y) = F(x− y),

implying that F is an even function.

I. Assume first that F(x) ≡ c, a constant function. The assertion trivially holds

if G(x) ≡ 0. Assume that G(x) 6≡ 0, there is α ∈ G such that G(α) 6= 0. Substituting

into (1.10) yields

G(x) =
c2 − c
G(α)

=: d

and so d2 = c2 − c.

Next assume G(x) ≡ d, a constant function. Replacing y by −y in (1.10) and
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using the evenness of F , we obtain

F(x+ y) = F(x− y). (2.16)

Putting x =
u+ v

2
, y =

u− v
2

(u, v ∈ G) in (2.16), we get

F(u) = F(x+ y) = F(x− y) = F(v),

i.e., F is a constant function and the two constants are related as shown before.

II. Consider nonconstant solutions G and F of the equation (1.10). Using (1.10)

and the evenness of F , we obtain

F(x+ y) = F(x− (−y)) = F(x)F(−y)− G(x)G(−y) = F(x)F(y)− G(x)G(−y).

(2.17)

Similarly,

F(x+ y) = F(−x− y) = F(−x)F(y)− G(−x)G(y) = F(x)F(y)− G(−x)G(y).

(2.18)

The equations (2.17) and (2.18) together give

G(x)G(−y) = G(−x)G(y).

Since G(x) 6≡ 0, there is α ∈ G such that G(α) 6= 0. Thus,

G(x) =
G(−α)

G(α)
G(−x) = kG(−x) = k2G(x),
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where k := G(−α)/G(α). Thus, k = ± 1.

If k = 1, then G(x) = G(−x), i.e., G is an even function. This together with (1.10)

and (2.17) show that F(x − y) = F(x + y). By the same argument as that leading

to (2.2), we conclude that F is a constant function, which is a contradiction. Hence,

k = −1, and so G(x) = −G(−x), i.e., G is an odd function.

Using this and (2.17), we see that (2.13) holds.

Using (2.13) twice, we get

F((x+ y) + z) = F(x)F(y)F(z) + G(x)G(y)F(z) + G(x+ y)G(z), (2.19)

and

F (x+ (y + z)) = F(x)F(y)F(z) + F(x)G(y)G(z) + G(x)G(y + z). (2.20)

Equating (2.19) and (2.20) and simplifying, we have

G(x) (G(y)F(z)− G(y + z)) = (F(x)G(y)− G(x+ y))G(z).

Putting z = α and noting G(α) 6= 0, we have

F(x)G(y)− G(x+ y) = h(y)G(x), (2.21)

where h(y) := 1
G(α)

(G(y)F(α)− G(y + α)) . Replacing x by −x in (2.21), using the

oddness of G and the evenness of F , we get

−G(x− y) = G(−x+ y) = F(−x)G(y)− h(y)G(−x) = F(x)G(y) + h(y)G(x),
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and so

G(x− y) = −F(x)G(y)− h(y)G(x). (2.22)

Incorporating (2.21) and (2.22), we get

G(x+ y) + G(x− y) = −2h(y)G(x). (2.23)

Interchanging x and y in (2.23) and using the oddness of G, we have

G(x+ y)− G(x− y) = −2h(x)G(y). (2.24)

Adding (2.23) to (2.24), we have

G(x+ y) = −h(y)G(x)− h(x)G(y). (2.25)

Combining (2.21) and (2.25), we get

F(x)G(y) = −h(x)G(y)

and so

F(x) = −G(α)

G(α)
h(x) = −h(x).

Putting this last relation back into the equation (2.21), we get one of the two relations

in (2.14), namely,

G(x+ y) = F(x)G(y) + F(y)G(x) (2.26)



19

Replacing y by −y in (2.26), using the oddness of G and the evenness of F , we have

G(x− y) = F(x)G(−y) + F(−y)G(x) = G(x)F(y)−F(x)G(y) (2.27)

which is the other equation in (2.14).

There remains to find general shapes of the two solution functions. From (1.10)

and (2.13), we have

F(x+ y) + F(x− y) = 2F(x)F(y) (2.28)

which is the d’Alembert functional equation and by Kannappan’s result, [7] see also

the equation (1.5), we have

F(x) =
E(x) + E∗(x)

2
, (2.29)

where E is an exponential function and and E∗(x) = 1/E(x).

To find G, using (1.10), we have

E(x)E(−y) + E∗(x)E∗(−y)

2
=
E(x− y) + E∗(x− y)

2
= F(x− y)

= F(x)F(y)− G(x)G(y) =

(
E(x) + E∗(x)

2

)(
E(y) + E∗(y)

2

)
− G(x)G(y),

i.e.,

G(x)G(y) =

(
E(x) + E∗(x)

2

)(
E(y) + E∗(y)

2

)
− E(x)E(−y) + E∗(x)E∗(−y)

2

=
1

4
(E(x)− E∗(x)) (E(y)− E∗(y)) .



20

Consequently,

G(x) =
1

4

(E(α)− E∗(α))

G(α)
(E(x)− E∗(x)) = b1 (E(x)− E∗(x)) , (2.30)

with b21 =
1

4
.

Immediate from Theorem 2.2.1 is:

Corollary 2.2.2. If G,F : R → C are nonconstant solutions of (1.10) and F is

continuous, then G is also continuous, and the two solution functions are given by

F(x) = cosh(c1x), G(x) = b1 sinh(c1x),

where b21 =
1

4
, c1 ∈ C.



CHAPTER III

TRIGONOMETRIC AND HYPERBOLIC

TANGENT-COTANGENT FUNCTIONS

In this chapter, characterizations of trigonometric and hyperbolic tangent-

cotangent functions are investigated based on the well-known trigonometric and hy-

perbolic addition formulas (identities). In section 1, we apply the result of Dobbs to

characterize the cotangent function and use the approach of Dobbs to characterize the

hyperbolic tangent-cotangent functions. In section 2, we use a technique of Rhouma

to find closed form solutions of certain recursive equations in order to characterize

the trigonometric and the hyperbolic cotangent-tangent functions.

3.1 Dobbs’s method

From the additive formulas

tan(u+ v) =
tanu+ tan v

1− tanu tan v
(3.1)

cot(u+ v) =
cotu cot v − 1

cotu+ cot v
(3.2)

tanh(u+ v) =
tanhu+ tanh v

1 + tanhu tanh v
(3.3)

coth(u+ v) =
cothu coth v + 1

cotu+ cot v
, (3.4)
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have appeared several articles, see e.g. [5], [14], [13], on the functional equations

having the trigonometric tangent-cotangent function as the only possible solutions.

A particular functional equation considered by Dobbs in [5] is based on the addition

formula (3.1) for the tangent function. Dobbs began by defining the class of tangential

functions.

Definition 3.1.1. Let T : D → R when D ⊆ R. The function T is called a tangential

function if T satisfies the functional equation

T (u+ v) =
T (u) + T (v)

1− T (u)T (v)
, (3.5)

for all u, v ∈ D with 1− T (u)T (v) 6= 0 and u+ v ∈ D.

It is shown in [5] that (3.5) may possess several weird solutions such as

1. T (x) = 1 (x ∈ R);

2. T (x) = −1 (x ∈ R);

3. Let p be a fixed prime number. If x ∈ R, put

T (x) =


0 if x = m

pn for some m,n ∈ Z;

1 otherwise.

Dobbs went on to prove the following results which lead to the fact that under certain

regularity conditions, the only solution of (3.5) is the tangent function.

Theorem 3.1.2. Let T be a tangential function such that T ′(0) = 1 and each real

number x 6= π
2

+ mπ (m ∈ Z) is in the domain of T . Then T is the trigonometric

tangent function.
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We now apply this result of Dobbs to characterize the trigonometric cotangent

function.

Definition 3.1.3. Let C : D → R when D ⊆ R. The function C is called a cotan-

gential function if C satisfies the functional equation

[C(u) + C(v)]C(u+ v) = C(u)C(v)− 1, (3.6)

for all u, v ∈ D with u+ v ∈ D.

Our characterization of the trigonometric cotangent function by Dobbs’ method

is:

Theorem 3.1.4. Let C be a cotangential function whose domain is Rr{mπ : m ∈ Z}.

Assume that

(i) C is differentiable at π
2

with C ′(π
2
) = −1;

(ii) C(x) = 0 if and only if x = π
2

+mπ for all m ∈ Z.

Then C is the trigonometric cotangent function.

Proof. Define

S(x) = −C
(
x+

π

2

) (
x ∈ R r

{mπ
2

: m ∈ Z
})

.

We claim that S is a tangential function.

Let x, y ∈ R r
{mπ

2
: m ∈ Z

}
with x+ y ∈ R r

{mπ
2

: m ∈ Z
}

.
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To see this, by the functional equation (3.6), we have

(1− S(x)S(y))S(x+ y) =
[
1− C

(
x+

π

2

)
C
(
y +

π

2

)] [
−C

(
x+ y +

π

2

)]
=
[
C
(
x+

π

2

)
C
(
y +

π

2

)
− 1
]
C
(
x+ y +

π

2

)
=
[(
C
(
x+

π

2

)
+ C

(
y +

π

2

))
C
(
x+ y +

π

2
+
π

2

)]
C
(
x+ y +

π

2

)
.

Replacing u = x+ y + π
2

and v = π
2

in equation (3.6) and noting C(π
2
) = 0, we get

C
(
x+ y +

π

2
+
π

2

)
C
(
x+ y +

π

2

)
= −1.

Hence,

[1− S(x)S(y)]S(x+ y) = −C
(
x+

π

2

)
− C

(
y +

π

2

)
= S(x) + S(y).

Thus S is a tangential function. Note that S(0) = −C
(
π
2

)
= 0. Since C is differen-

tiable at π
2

and C ′(π
2
) = −1, we have −1 = C ′

(
π
2

)
= −S ′(0), i.e., S is a differentiable

at 0 with S ′(0) = 1.

By Theorem 3.1.2, we deduce that

S(x) = tan x
(
x ∈ R r {mπ

2
: m ∈ Z}

)
.

Thus,

C(x) = − tan
(
x− π

2

)
= cotx

(
x ∈ R r {mπ

2
: m ∈ Z}

)
.

For m ∈ Z, since C(π
2

+mπ) = 0 = cot(π
2

+mπ), we conclude that

C(x) = cot x (x ∈ R r {mπ : m ∈ Z}) .
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As the hyperbolic tangent-cotangent functions satisfy, respectively, the functional

equations, similar to those satisfied by the trigonometric tangent-cotangent functions,

namely,

tanh(u+ v) =
tanhu+ tanh v

1 + tanhu tanh v

and

coth(u+ v) =
cothu coth v + 1

cothu+ coth v
,

this prompts us to introduce the classes of hyperbolic tangential and hyperbolic cotan-

gential functions as follows:

Definition 3.1.5. A. Let hT : D → R where D ⊆ R. The function hT is called a

hyperbolic-tangential function if hT satisfies the functional equation

[1 + hT (u)hT (v)]hT (u+ v) = hT (u) + hT (v), (3.7)

for all u, v ∈ D with u+ v ∈ D.

B. Let hC : D → R where D ⊆ R. The function hC is called a hyperbolic-

cotangential function if hC satisfies the functional equation

[hC(u) + hC(v)]hC(u+ v) = hC(u)hC(v) + 1, (3.8)

for all u, v ∈ D with u+ v ∈ D.

As in Dobbs’s work, there are solutions to the functional equation (3.7) other than

the hyperbolic tangent functions as seen in the following examples.

Example 3.1.6. Each of the following functions is the hyperbolic-tangential from R

into R :
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1. hT (x) = 1 (x ∈ R);

2. hT (x) = −1 (x ∈ R);

3. Let x ∈ R, put

hT (x) =



−1 if x > 0;

0 if x = 0;

1 if x < 0.

Similar hyperbolic cotangential functions which are not the hyperbolic cotangent

functions can be constructed in the same manner.

In order to characterize the hyperbolic tangent-cotangent functions by Dobbs’

method, we first prove:

Proposition 3.1.7. Let hT be a hyperbolic-tangential function. Assume that hT (0) =

0.

(a) If hT is continuous at 0, then hT is continuous at each x.

(b) If hT is differentiable at 0 and h′T (0) = 1, then hT is differentiable at each x

with h′T (x) = 1− hT (x)2.

Proof. Since hT is continuous at 0, we have lim
ξ→0

hT (ξ) = hT (0) = 0. Take any x in the

domain of hT , and for any ξ in the domain of hT sufficiently small so that x+ ξ is in

the domain of hT . Thus,

[1 + hT (x)hT (ξ)] [hT (x+ ξ)− hT (x)]

= [1 + hT (x)hT (ξ)]hT (x+ ξ)− [1 + hT (x)hT (ξ)]hT (x). (3.9)
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Noting hT is the hyperbolic-tangential function, we get

[1 + hT (x)hT (ξ)]hT (x+ ξ)− [1 + hT (x)hT (ξ)]hT (x)

= [hT (x) + hT (ξ)]− hT (x)− hT (x)2hT (ξ)

= hT (ξ)
[
1− hT (x)2

]
.

Since lim
ξ→0

(1 + hT (x)hT (ξ)) = 1 and lim
ξ→0

(
hT (ξ)[1− hT (x)2]

)
= 0, we have

lim
ξ→0

(hT (x+ ξ)− hT (x)) = 0,

i.e., hT is continuous at x and this proves part (a).

To prove (b), first observe that

lim
ξ→0

hT (ξ)

ξ
= h′T (0) = 1.

Take any x in the domain of hT , and for any ξ in the domain of hT sufficiently small

so that x+ ξ is in the domain of hT . Using (3.9), we get

[1 + hT (x)hT (ξ)]

[
hT (x+ ξ)− hT (x)

ξ

]
=
hT (ξ)

ξ

[
1− hT (x)2

]
.

Since lim
ξ→0

(1 + hT (x)hT (ξ)) = 1 and lim
ξ→0

(
hT (ξ)

ξ
[1− hT (x)2]

)
= 1− hT (x)2, we get

h′T (x) = lim
ξ→0

hT (x+ ξ)− hT (x)

ξ
= 1− hT (x)2.

Our characterization of the hyperbolic tangent function by Dobbs’ method is:
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Theorem 3.1.8. Let hT : R→ R be a hyperbolic-tangential function. Assume that

(i) hT (0) = 0;

(ii) hT is differentiable at 0 with h′T (0) = 1;

(iii) |hT (x)| < 1.

Then hT is the trigonometric hyperbolic tangent function.

Proof. By Proposition 3.1.7(b), we have

h′T (x) = 1− hT (x)2.

Since |hT (x)| < 1, solving this first order differential equation yields, see e.g. p. 276

of [16],

x = arctanh hT (x) + k

for some constant k ∈ R. From hT (0) = 0, we get k = 0 and so hT (x) = tanh x.

To characterize the hyperbolic cotangent function, we also need an auxliary result.

Proposition 3.1.9. Let hC be a hyperbolic-cotangential function. Assume that hC is

an odd function.

(a) If hC is continuous at a point, then hC is continuous at each x.

(b) If hC is differentiable at a point, say x0, and h′C(x0) = 1− hC(x0)
2 (6= 0), then

hC is differentiable at each x in the domain of hC and h′C(x) = 1− hC(x)2.

Proof. To prove (a), assume that hC is continuous at x0. Then lim
ξ→x0

hC(ξ) = hC(x0).

Take any x in the domain of hC and for any ξ in the domain of hC sufficiently small
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so that x+ ξ is in the domain of hC . Thus,

[hC(x)hC(ξ) + 1 + hC(−x0)hC(x) + hC(ξ)hC(−x0)] [hC(x+ ξ − x0)− hC(x)]

= [hC(x)hC(ξ) + 1 + hC(−x0)hC(x) + hC(ξ)hC(−x0)]hC(x+ ξ − x0)

− [hC(x)hC(ξ) + 1 + hC(−x0)hC(x) + hC(ξ)hC(−x0)]hC(x). (3.10)

Now,

[hC(x)hC(ξ) + 1 + hC(−x0)hC(x) + hC(ξ)hC(−x0)]hC(x+ ξ − x0)

= hC(x)hC(ξ)hC(x+ ξ − x0) + hC(x+ ξ − x0)

+ hC(−x0)hC(x)hC(x+ ξ − x0) + hC(ξ)hC(−x0)hC(x+ ξ − x0)

= [hC(x)hC(ξ) + 1]hC(x+ ξ − x0)

+ hC(−x0)hC(x)hC(x+ ξ − x0) + hC(ξ)hC(−x0)hC(x+ ξ − x0)

= ([hC(x) + hC(ξ)]hC(x+ ξ))hC(x+ ξ − x0)

+ hC(−x0)hC(x)hC(x+ ξ − x0) + hC(ξ)hC(−x0)hC(x+ ξ − x0)

= hC(x)hC(x+ ξ)hC(x+ ξ − x0) + hC(ξ)hC(x+ ξ)hC(x+ ξ − x0)

+ hC(−x0)hC(x)hC(x+ ξ − x0) + hC(ξ)hC(−x0)hC(x+ ξ − x0)

= [hC(x+ ξ) + hC(−x0)]hC(x)hC(x+ ξ − x0)

+ [hC(x+ ξ) + hC(−x0)]hC(ξ)hC(x+ ξ − x0)
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= [hC(x+ ξ)hC(−x0) + 1]hC(x) + [hC(x+ ξ)hC(−x0) + 1]hC(ξ)

= hC(x+ ξ)hC(−x0)hC(x) + hC(x) + hC(x+ ξ)hC(−x0)hC(ξ) + hC(ξ)

= [hC(x) + hC(ξ)]hC(x+ ξ)hC(−x0) + hC(x) + hC(ξ)

= [hC(x)hC(ξ) + 1]hC(−x0) + hC(x) + hC(ξ)

= hC(x)hC(ξ)hC(−x0) + hC(−x0) + hC(x) + hC(ξ).

Consequently,

[hC(x)hC(ξ) + 1 + hC(−x0)hC(x) + hC(ξ)hC(−x0)] [hC(x+ ξ − x0)− hC(x)]

= hC(x)hC(ξ)hC(−x0) + hC(−x0) + hC(x) + hC(ξ)

− hC(x)2hC(ξ)− hC(x)− hC(x)2hC(−x0)− hC(ξ)hC(−x0)hC(x)

= hC(−x0) + hC(ξ)− hC(x)2hC(ξ)− hC(x)2hC(−x0). (3.11)

Since hC is an odd function, we have

lim
ξ→x0

(
hC(−x0) + hC(ξ)− hC(x)2hC(ξ)− hC(x)2hC(−x0)

)
= 0

and

lim
ξ→x0

(hC(x)hC(ξ) + 1 + hC(−x0)hC(x) + hC(ξ)hC(−x0)) = 1− hC(x0)
2 ( 6= 0),

yielding lim
ξ→x0

(hC(x+ ξ − x0)− hC(x)) = 0. i.e., hC is continuous at x.

To prove (b), take any x in the domain of hC and for any ξ in the domain of hC
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sufficiently small so that x+ ξ is in the domain of hC . Using (3.11) in (a), we have

[hC(x)hC(ξ) + 1 + hC(−x0)hC(x) + hC(ξ)hC(−x0)]
hC(x+ ξ − x0)− hC(x)

ξ − x0

=
hC(−x0) + hC(ξ)− hC(x)2hC(ξ)− hC(x)2hC(−x0)

ξ − x0

.

Thus,

lim
ξ→x0

[hC(x)hC(ξ) + 1 + hC(−x0)hC(x) + hC(ξ)hC(−x0)]
hC(x+ ξ − x0)− hC(x)

ξ − x0

= lim
ξ→x0

hC(−x0) + hC(ξ)− hC(x)2hC(ξ)− hC(x)2hC(−x0)

ξ − x0

=
[
1− hC(x0)

2
] {

1− hC(x)2
}
.

But

lim
ξ→x0

{hC(x)hC(ξ) + 1 + hC(−x0)hC(x) + hC(ξ)hC(−x0)} = 1− hC(x0)
2 ( 6= 0),

i.e.,

h′C(x) = lim
ξ→x0

hC(x+ ξ − x0)− hC(x)

ξ − x0

= 1− hC(x)2.

We come now to our characterization of the hyperbolic cotangent function by

Dobbs’ method.

Theorem 3.1.10. Let hC : R r {0} → R be a hyperbolic-cotangential function.

Assume that

(i) hC is an odd function;

(ii) there exists x0 such that hC is differentiable at x0 with h′C(x0) = 1− hC(x0)
2;
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(iii) |hC(x)| > 1.

Then hC(x) is the trigonometric hyperbolic cotangent function.

Proof. By Proposition 3.1.9(b), we have

h′C(x) = 1− hC(x)2.

Since |hC(x)| > 1, solving this first order differential equation yields, see e.g. p. 276

of [16],

x = arccoth hC(x) + k

for some constant k ∈ R, i.e., hC(x) = coth(x− k). Since hC is odd, we deduce that

k = 0. Therefore, hC(x) = coth x.

3.2 Rhouma’s method

We start by finding a closed form solution for any rational recursive equation

extending

yn+2 = i
(yn+1 + i)(yn + i) + (yn+1 − i)(yn − i)
(yn+1 + i)(yn + i)− (yn+1 − i)(yn − i)

(i =
√
−1), (1.13)

of the form

yn+` = i
(yn+`−1 + i)A1 . . . (yn + i)A` + (yn+`−1 − i)A1 . . . (yn − i)A`

(yn+`−1 + i)A1 . . . (yn + i)A` − (yn+`−1 − i)A1 . . . (yn − i)A`
, (3.12)

and determine its asymptotic behavior. Our first lemma follows easily from a simple

calculation whose trivial proof is omitted.
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Lemma 3.2.1. Let ` ∈ N, ` ≥ 2; b, x1, . . . , x`, z complex numbers and let A1, . . . , A`

be nonzero integers such that

b(x1 + b)A1 . . . (x` + b)A`
{

(x1 + b)A1 . . . (x` + b)A` − (x1 − b)A1 . . . (x` − b)A`
}
6= 0.

Then

z − b
z + b

=

(
x1 − b
x1 + b

)A1

· · ·
(
x` − b
x` + b

)A`

if and only if

z = b
(x1 + b)A1 · · · (x` + b)A` + (x1 − b)A1 · · · (x` − b)A`

(x1 + b)A1 · · · (x` + b)A` − (x1 − b)A1 · · · (x` − b)A`
.

The next lemma relates generalized Fibonacci numbers with elements in rational

recursive sequences.

Lemma 3.2.2. Let ` ∈ N, ` ≥ 2 and let {Fn} be the (generalized Fibonacci) sequence

satisfying a linear recurrence relation of the form

Fn+` = A1Fn+`−1 + A2Fn+`−2 + · · ·+ A`Fn, (3.13)

where A1, . . . , A` are nonzero integers such that A1 + . . .+A` 6= 0, with initial values

F0 = A`, F1 = A`−1, . . . , F`−1 = A1.

If

xn+` = α
A2

1+···+A2
`−

(A2
1+···+A2

` )

A1+···+A` xA1
n+`−1x

A2
n+`−2 · · · x

A`
n (n ≥ 0), (3.14)

then

xn = α
Fn−

(A2
1+···+A2

` )

A1+···+A` x
Fn−`

0 x
Fn−`+1

1 · · · xFn−1

`−1 (3.15)
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for all n ≥ `.

Proof. For the starting case, the condition (3.14) and the recurrence (3.13) yield

x` = α
A2

1+···+A2
`−

(A2
1+...+A2

` )

A1+···+A` xA1
`−1x

A2
`−2 · · · x

A`
0 = α

F`−
(A2

1+···+A2
` )

A1+···+A` xA1
`−1x

A2
`−2 · · · x

A`
0 ,

which agrees with (3.15) when n = `.

Next, suppose that (3.15) is true for all ` ≤ n ≤ k. From (3.14), using the induction

hypothesis and the recurrence (3.13), we get

xk+1 = α
A2

1+···+A2
`−

A2
1+···+A2

`
A1+···+A` xA1

k · · · x
A`
k−`+1

= α
A2

1+···+A2
`−

A2
1+···+A2

`
A1+···+A`

(
α
−A2

1+···+A2
`

A1+···+A`
+Fkx

Fk−`

0 x
Fk−`+1

1 · · · xFk−1

`−1

)A1

× · · ·

×
(
α
−A2

1+···+A2
`

A1+···+A`
+Fk−`+1x

Fk−`+1−`

0 x
Fk−`+1−`+1

1 · · · xFk−`+1−1

`−1

)A`

= α
−A2

1+···+A2
`

A1+···+A`
(−(A1+···+A`)+1+A1+···+A`)+A1Fk+···+A`Fk−`+1×

× xA1Fk−`+···+A`Fk−`−`+1

0 · · · xA1Fk−1+···+A`Fk−1−`+1

`−1

= α
− (A2

1+···+A2
` )

A1+···+A`
+Fk+1x

F(k+1)−`

0 · · · xF(k+1)−1

`−1 .

Our characterization of the trigonometric cotangent function by Rhouma’s method

is:

Theorem 3.2.3. Let ` ∈ N, ` ≥ 2; A1, . . . , A` be nonzero integers such that A1 +

· · · + A` 6= 0. Let {Fn} be the sequence satisfying a linear recurrence relation of the

form

Fn+` = A1Fn+`−1 + A2Fn+`−2 + . . .+ A`Fn,

with initial values F0 = A`, F1 = A`−1, . . . , F`−1 = A1. Let y0, . . . , y`−1 be real
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numbers such that those yn which satisfy

yn+` = i
(yn+`−1 + i)A1 . . . (yn + i)A` + (yn+`−1 − i)A1 . . . (yn − i)A`

(yn+`−1 + i)A1 . . . (yn + i)A` − (yn+`−1 − i)A1 . . . (yn − i)A`
, (3.12)

exist for all n ∈ N ∪ {0}.

Then the solution to the equation (3.12) exists if and only if

A1Fn−`θ0 + . . .+ A`Fn−1θ`−1 6= 0 (mod 2π) (n ∈ N ∪ {0}),

where θj =
−2

Aj+1

arccot yj for all j ∈ {0, . . . , `− 1} .

When it exists, the solution is given by

yn = i
(y0 + i)Fn−` · · · (y`−1 + i)Fn−1 + (y0 − i)Fn−` · · · (y`−1 − i)Fn−1

(y0 + i)Fn−` · · · (y`−1 + i)Fn−1 − (y0 − i)Fn−` · · · (y`−1 − i)Fn−1
, (3.16)

or

yn = cot

(
−A1Fn−`θ0 − · · · − A`Fn−1θ`−1

2

)
= cot(Fn−` arccot y0 + · · ·+ Fn−1 arccot y`−1).

Moreover,

1. if all the θj’s are rational multiples of π, then either {yn} diverges in finitely

many steps or yn is periodic;

2. if θ0, θ1, . . . , θ`−1, π are linearly independent over Q, and A1, . . . , A` are nonzero

integers, then yn exists for all n and the sequence {yn} is never periodic.

Proof. Taking z = yn+` , x1 = yn+`−1, . . . , x` = yn, b = i in Lemma 3.2.1, the rational
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recursive equation (3.12) is equivalent to

yn+` − i
yn+` + i

=

(
yn+`−1 − i
yn+`−1 + i

)A1

· · ·
(
yn − i
yn + i

)A`

. (3.17)

Putting Un =
yn − i
yn + i

, the relation (3.17) becomes

Un+` = UA1
n+`−1U

A2
n+`−2 · · ·U

A`
n ,

whose solution is, by virtue of Lemma 3.2.2,

Un = U
Fn−`

0 U
Fn−`+1

1 · · ·UFn−1

`−1 (n ≥ `),

and so

yn − i
yn + i

=

(
y0 − i
y0 + i

)Fn−`
(
y1 − i
y1 + i

)Fn−`+1

· · ·
(
y`−1 − i
y`−1 + i

)Fn−1

, (3.18)

which, by Lemma 3.2.1, becomes

yn = i
(y0 + i)Fn−` · · · (y`−1 + i)Fn−1 + (y0 − i)Fn−` · · · (y`−1 − i)Fn−1

(y0 + i)Fn−` · · · (y`−1 + i)Fn−1 − (y0 − i)Fn−` · · · (y`−1 − i)Fn−1
. (3.19)

Next, setting eiθ0A1 =
y0 − i
y0 + i

, . . . , eiθ`−1A` =
y`−1 − i
y`−1 + i

, we have

yn − i
yn + i

= ei(A1Fn−`θ0+···+A`Fn−1θ`−1),
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i.e.,

yn = i

(
1 + ei(A1Fn−`θ0+···+A`Fn−1θ`−1)

1− ei(A1Fn−`θ0+···+A`Fn−1θ`−1)

)
= cot

(
−A1Fn−`θ0 − · · · − A`Fn−1θ`−1)

2

)
= cot(Fn−` arccot y0 + · · ·+ Fn−1 arccot y`−1),

provided A1Fn−`θ0 + · · ·+ A`Fn−1θ`−1 6≡ 0 (mod 2π).

If all the θj (j = 0, 1, . . . , `− 1) are rational multiples of π, say,

θj =
mjπ

tj
with mj, tj (> 0) ∈ Z, gcd(mj, tj) = 1,

then it is easily checked that
∑̀
k=1

AkFn−`+k−1θk−1 (mod 2π) is equivalent to

Gn =
∑̀
k=1

AkFn−`+k−1mk−1

`−1∏
j=0
j 6=k

tj (mod
`−1∏
j=0

2tj, )

Since each Gn takes at most
`−1∏
j=0

(2tj) distinct values, each `-tuple (Gt, . . . , Gt+`−1)

takes at most
`−1∏
j=0

(2tj)
` distinct values. Since the sequence {(Gt, . . . , Gt+`−1)}t≥0 is

infinite, there are integers N1 6= N2 such that

(GN1 , . . . , GN1+`−1) = (GN2 , . . . , GN2+`−1).

Since

Gj+` = Gj + · · ·+Gj+`−1 (j ∈ N),

we deduce that GN1+k ≡ GN2+k for all k ∈ N, i.e., the sequence {Gn} is periodic. If
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some Gn is zero, then clearly the sequence {yn} diverges.

If θ0, θ1, . . . , θ`−1, π are linearly independent over Q, then

A1Fn−`θ0 + . . .+ A`Fn−1θ`−1 6= 2kπ (k ∈ Z),

showing that yn exists for each n and the sequence {yn} is never periodic.

As the equation (1.11) characterizes the cotangent function, it is natural to con-

sider its counterpart

yn+2 =
yn + yn+1

1− ynyn+1

, (3.20)

or equivalently,

yn+2 = i
(yn+1 + i)(yn + i)− (−yn+1 + i)(−yn + i)

(yn+1 + i)(yn + i) + (−yn+1 + i)(−yn + i)
, (3.21)

which clearly has the tangent function as a solution. Our next objective is to find a

closed form solution for any rational recursive equation extending (3.21) of the form

yn+` = i
(yn+`−1 + i)A1 · · · (yn + i)A` − (−yn+`−1 + i)A1 · · · (−yn + i)A`

(yn+`−1 + i)A1 · · · (yn + i)A` + (−yn+`−1 + i)A1 · · · (−yn + i)A`
, (3.22)

and determine its asymptotic behavior.

Corollary 3.2.4. Let ` ∈ N, ` ≥ 2; A1, . . . , A` be nonzero integers such that A1 +

· · ·+A` 6= 0. Let {Fn} be a sequence satisfying a linear recurrence relation of the form

Fn+` = A1Fn+`−1 + A2Fn+`−2 + . . .+ A`Fn,

with initial values F0 = A`, F1 = A`−1, . . . , F`−1 = A1. Let y0, . . . , y`−1 be real
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numbers such that those yn which satisfy the rational recursive equation

yn+` = i
(yn+`−1 + i)A1 · · · (yn + i)A` − (−yn+`−1 + i)A1 · · · (−yn + i)A`

(yn+`−1 + i)A1 · · · (yn + i)A` + (−yn+`−1 + i)A1 · · · (−yn + i)A`
, (3.23)

exist for all n ∈ N ∪ {0}.

Then the solution to the equation (3.23) exists if and only if

A1Fn−`θ0 + A2Fn−`+1θ1 + · · ·+ A`Fn−1θ`−1

is not an odd multiple of π, where θj =
−2

Aj+1

arctan yj (j = 0, 1, . . . , `− 1).

When the solution exists, it is given by

yn = i
(y0 + i)A1 · · · (y`−1 + i)A` − (−y0 + i)A1 · · · (−y`−1 + i)A`

(y0 + i)A1 · · · (y`−1 + i)A` + (−y0 + i)A1 · · · (−y`−1 + i)A`
, (3.24)

or

yn = − tan

(
A1Fn−`θ0 + · · ·+ A`Fn−1θ`−1

2

)
= tan (Fn−` arctan y0 + · · ·+ Fn−1 arctan y`−1) .

Moreover,

1. if all θj’s are rational multiples of π, then the sequence either {yn} diverges in

finitely many steps or is periodic;

2. if θ0, θ1, . . . , θ`−1, π are linearly independent over Q, and A1, . . . , A` are nonzero

integers, then the sequence yn exists for all n and the sequence {yn} is never

periodic.

Proof. Substituting yn by
1

yn
turns the equation (3.23) into a rational recursive equa-
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tion of the form (3.12) and so the corollary follows at once from Theorem 3.2.3.

Remarks. Although the substitution yn by
1

yn
employed in Corollary 3.2.4 allows

us to obtain a closed form solution of the equation (3.23), there remains a difficulty

should there exist integer N such that yN = 0. To overcome this short-coming, we

may either interpret the infinite value of the two expressions on both sides of the

solution as equal or repeat the technique used in the proof of Theorem 3.2.3 to solve

the equation (3.23) using auxiliary results analogous to Lemmas 3.2.1 and 3.2.2.

Finally, we consider rational recursive equations which can be used to characterize

the hyperbolic tangent-cotangent functions.

Corollary 3.2.5. Let ` ∈ N, ` ≥ 2; A1, . . . , A` be nonzero integers such that A1 +

· · ·+A` 6= 0. Let {Fn} be a sequence satisfying a linear recurrence relation of the form

Fn+` = A1Fn+`−1 + A2Fn+`−2 + . . .+ A`Fn,

with initial values F0 = A`, F1 = A`−1, . . . , F`−1 = A1. Let y0, . . . , y`−1 be real

numbers such that those yn which satisfy

yn+` =
(yn+`−1 + 1)A1 · · · (yn + 1)A` + (yn+`−1 − 1)A1 · · · (yn − 1)A`

(yn+`−1 + 1)A1 · · · (yn + 1)A` − (yn+`−1 − 1)A1 · · · (yn − 1)A`
, (3.25)

exist for all n ∈ N ∪ {0}.

Then the solution to the equation (3.25) exists and is given by

yn =
(y0 + 1)Fn−` · · · (y`−1 + 1)Fn−1 + (y0 − 1)Fn−` · · · (y`−1 − 1)Fn−1

(y0 + 1)Fn−` · · · (y`−1 + 1)Fn−1 − (y0 − 1)Fn−` · · · (y`−1 − 1)Fn−1
, (3.26)
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or

yn = coth (Fn−` arccoth y0 + . . .+ Fn−1 arccoth y`−1) .

Proof. Substituting yn by iyn in the equation (3.25) turns it into a rational recursive

equation of the form (3.12) and so Theorem 3.2.3 yields the desired result.

Corollary 3.2.6. Let ` ∈ N, ` ≥ 2; A1, . . . , A` be nonzero integers such that A1 +

· · ·+A` 6= 0. Let {Fn} be a sequence satisfying a linear recurrence relation of the form

Fn+` = A1Fn+`−1 + A2Fn+`−2 + · · ·+ A`Fn,

with initial values F0 = A`, F1 = A`−1, . . . , F`−1 = A1. Let y0, . . . , y`−1 be real

numbers such that those yn which satisfy

yn+` =
(yn+`−1 + 1)A1 · · · (yn + 1)A` − (−yn+`−1 + 1)A1 · · · (−yn + 1)A`

(yn+`−1 + 1)A1 · · · (yn + 1)A` + (−yn+`−1 + 1)A1 · · · (−yn + 1)A`
, (3.27)

exist for all n ∈ N ∪ {0}.

Then the solution to equation (3.27) exists and is given by

yn =
(y0 + 1)Fn−` . . . (y`−1 + 1)Fn−1 − (−y0 + 1)Fn−` . . . (−y`−1 + 1)Fn−1

(y0 + 1)Fn−` . . . (y`−1 + 1)Fn−1 + (−y0 + 1)Fn−` . . . (−y`−1 + 1)Fn−1
, (3.28)

or

yn = tanh (arctanh y0Fn−` + · · ·+ arctanh y`−1Fn−1) .

Proof. Replacing yn by iyn in the equation (3.27), we get a rational recursive equation

of the form (3.23) and Corollary 3.2.4 yields the required result.
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