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function of the mean effective stress and irreversible, in that the small-strain 
tangent stiffness depends on the stress level. Since constitutive models relate to 
physical phenomena, they must obey certain principles or axioms that govern the 
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p  volumetric strain 

q  deviatoric (shear) strain 

a  axial strain 

r  radial strain 

  internal friction angle 

 (1) stress ratio 

 (2) internal coordinate 

  slope of swelling line in consolidation plot 

  slope of compression line in consolidation plot 

(n) an n-th scalar (non-negatif) multiplier 

  viscosity coefficient 

  poisson ratio 

 exponent of hardening modulus 



 

 

xv

1 major principle stress  

'
vm  past maximum vertical effective stress 

'
0v  current vertical effective stress 




 Jaumann stress rate 

a  axial stress 

r  radial stress 

ij  stress tensor 

  rotation rate 

  Macaulay brackets 

a kinematic hardening parameter 

c undrained shear strength 

ĉ  yield stress 

cijkl compliance matrix 

d dissipation function or dissipation functional 

dijkl stiffness matrix 

E (1) elastic modulus 

 (2) Gibbs free energy 

e void ratio 

f (1) yield surface 

 (2) specific Helmholtz free energy 

G elastic shear modulus 

g (1) dimensionless material constant, shear modulus constant 

 (2) specific Gibbs free energy 

H plastic modulus, kinematic hardening 

Ĥ  kinematic hardening function 

h (1) hardening modulus 

 (2) enthalpy 

 

J coupling modulus 

K0 coefficient of earth pressure at rest   



 

 

xvi

K elastic bulk modulus 

k dimensionless material constant, bulk modulus constant 

M slope of critical state line in p’, q plot 

N the number of variables, number of yield surfaces 

n dimensionless material constant 

OCR overconsolidation ratio ' '
0/vm vOCR    

'
mp  past maximum mean effective stress 

'p  current mean effective stress 

p pressure, mean (effective) compressive stress 

pa atmospheric pressure 

pr reference pressure 

pc preconsolidation pressure in term of mean stress 

ep  equivalent stress variable 

Q  heat supply 

q stress deviator 

Ro overconsolidation ratio '' / ppR mo   

R overconsolidation ratio with respect to the anisotropic stress condition 

s specific entropy 

T, S ratio of the extent of the effect of recent stress history  

W  rate of work input 

w flow potential 

y yield function 

ey  yield function corresponding to the energy function e  
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CHAPTER I.   INTRODUCTION 

CHAPTER 1. INTRODUCTION 

1.1 Background and Motivations 

In practical geotechnical engineering analysis and design, a well-known Mohr-
Coulomb and Cam-clay models (Roscoe and Burland, 1968) have been widely used for 
simplifying complex behaviours of soils. Several advanced frameworks have been 
further proposed to include some important aspects of soil behaviours, such as small-
strain stiffness or the effects of immediate past stress by introducing multiple or nested 
surface model (Mroz & Norris, 1982), bounding surface model (Dafalias & Hermann, 
1982), and hypoplasticity framework (Kolymbas, 1977). Another important issue is the 
stress-strain characteristic of soils is non-linear and irreversible, in that the initial soil 
stiffness or small-strain tangent stiffness depends on the stress level. The interpretation 
from experimental observations of bender element test shows that the small-strain 
stiffness of soils is a non-linear function of the mean effective stress for isotropically 
consolidated samples as reported by Tanizawa et. al. (1994), Kohata et. al. (1997), 
Pennington et. al. (1997), and Techavorasinskun et. al. (2002) and depend on the stress 
ratio (Rampello et. al., 1997) for anisotropically consolidated samples. The stiffness 
also affected by other variables, such as the voids ratio, anisotropic stress state, and/or 
the preconsolidation pressure (Hardin, 1978; Houlsby & Wroth, 1991; Viggiani, 1992; 
Rampello et al., 1994; and Soga, 1995).  

Since constitutive models relate to physical phenomena, they must obey certain 
principles or axioms that govern the physical phenomena such as conservation of mass, 
conservation of energy, and laws of thermodynamics. All models mentioned above do 
not referred to the Laws of Thermodynamics and they may violate one or the other of 
fundamental laws. Models that violate thermodynamics may not be used with any 
confidence to describe material behaviour (Houlsby & Puzrin, 2006).  

Likitlersuang (Likitlersuang, 2003; Likitlersuang and Houlsby, 2006) proposed 
the hyperplasticity kinematic hardening modified Cam-clay (KHMCC) model to 
address small-strain stiffness based on the thermodynamics principles. The kinematic 
hardening function was included in the energy and yield functions to characterise small-
strain stiffness and accommodate smooth transition of stiffness in corresponding to 
loading conditions and stress histories. Hyperbolic function recommended by Puzrin 
and Houlsby (2001) was employed to express the continuous kinematic hardening 
function in order to fit with the observed non-linear stress-strain responses.  Continuous 
kinematic hardening function was piece-wised into a finite number of multiple yield 
functions. Therefore, combined responses of activated yield surfaces can represent non-
linear kinematic hardening behaviours. Calibration of the model in triaxial stress-strain 



2 
 

 
 

space was carried out by Likitlersuang, and Houlsby (2007) on Bangkok clay. Stress-
strain responses under monotonic and cyclic loadings were simulated to show the 
advantage of hyperplasticity KHMCC model. 

Though the formulation of hyperplasticity KHMCC model has been already 
proposed in the earlier researches, the numerical implementation and simulation are 
restricted to linear stress-strain relationship with stiffness proportional to isotropic 
pressure. Further, small-strain stiffness study of Bangkok Clay using bender element 
test on the isotropically consolidated samples clearly show that the shear modulus is a 
power function of pressure (Teachavorasinskun, et. al., 2002) rather than linear function 
of pressure.  Therefore, the numerical implementation for hyperplasticity KHMCC 
model with non-linear elastic stiffness has not been explored. 

This research aims to extend the previous research of Likitlersuang and Houlsby 
(2006) by incorporating small-strain stiffness in form of power function of pressure in 
to energy function. Correspondingly, the numerical implementation and piece-wise 
multisurface plasticity described by Likitlersuang, and Houlsby (2007) is enhanced to 
address a higher degree of non-linearity and loading history. An approach to determine 
the necessary parameters obtained from small-strain experimental tests for regulating 
small-strain stiffness characteristic of the hyperplasticity KHMCC model is presented. 

This study is expected to provide a theoretical background and numerical 
implementation for those who are interested in the advancement of critical state soil 
model under the framework of hyperplasticity. The results of this research may give a 
light to model the complicated behaviours of soils observed from advanced small-strain 
laboratory testing.   
 

1.2 Objectives 

The objectives of this study are summarised in the following: 

 To develop and implement numerically a continuous hyperplasticity non-linear 
Kinematic Hardening Modified Cam Clay soil model in triaxial and general 
stress-strain by: 

 Incorporating small-strain stiffness in form of power function of pressure into 
energy function (Houlsby and Puzrin, 2005). 

 Integrating the incremental stress-strain relation using rate-dependent strain 
driven forward-Euler integration scheme. 

 To validate the developed model with some experimental data of: 

 Loading Path Dependence and Non-Linear Stiffness at Small-Strain 
(Stallebrass and Taylor, 1997). 

 K0-consolidated Undrained Direct Simple Shear (CK0UDSS) test of Bangkok 
Clay (Konkong, 2007). 
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 Small-strain undrained compression test of Bangkok Clay (Yimsiri, et al., 
2009; Ratananikom, 2009). 

 To implement the developed model into rate-dependent continuous 
hyperplasticity finite element algorithm. 
 

1.3 Methodology and Structure of Thesis 

This research will be divided into two parts, dealing respectively with a 
analytical and numerical study of the non-linear Kinematic Hardening Modified Cam 
Clay model using continuous hyperplasticity framework. 

The analytical study of the research activities consists of model development in 
triaxial and general stress condition based on the thermomechanical principles. In this 
part, stiffness and/or compliance matrix of the model will be derived before 
implemented into numerical algorithm. 

The numerical study of the research activities consist of numerical review and 
implementation of the developed model into rate-dependent strain driven forward-Euler 
integration scheme by incorporating a non-linear dependence of initial stiffness on 
pressure. Several numerical demonstrations are performed to show features of the 
developed model. The study also consists of identification and determination of soil 
model parameters from experimental test data. Furthermore, the model parameters will 
be back predicted to the experimental laboratory testing from which the soil parameters 
are obtained. 

Chapter 2 presents some recent issues in advanced soil behaviours or commonly 
called as pre-failure deformation behaviour. Explanation will be emphasised on 
experimental investigations. A brief review and comparison some advanced soil 
constitutive models are also presented. 

Chapter 3 explains a development and numerical implementation of the 
hyperplasticity non-linear KHMCC model based on triaxial stress-strain variables and 
general stress using strain-driven forward-Euler integration scheme. Further, some 
important issues on the numerical implementation of this model is discussed, including 
incremental stress-strain response algorithm, numerical integration of hardening 
functions, as well as effect of time increment and number of yield surfaces. Several 
numerical demonstration and validations with analytical solution are presented. 

Chapter 4 presents some comparisons to experimental data of clay soils. Two 
experiments of K0-consolidated Undrained Direct Simple Shear (CK0UDSS) test and 
small-strain undrained compression behaviour of Bangkok Clay are selected. 

Chapter 5 explains implementation of the developed model into rate-dependent 
continuous hyperplasticity finite element algorithm. 
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Finally, some conclusions on the development of this model are discussed in 
Chapter 6 including development for future research. 
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CHAPTER II.   SOME RECENT ISSUES ON THE SOIL 
BEHAVIOUR AND CONSTITUTIVE MODELING 

CHAPTER 2. SOME RECENT ISSUES ON THE SOIL BEHAVIOUR AND CONSTITUTIVE MODELING 

2.1 Soil Behaviour 

Soil is natural material which behaves very complex manner. When dealing with 
geotechnical engineering problems, the understanding of the real soil behaviour is very 
important to obtain accurate prediction, for instance, of stress-strain characteristic. 

The study of soil behaviour is now over three hundred years old, since Coulomb 
in 1773 analysing the failures mechanism of soil mass. Progressive developments of 
advanced soil laboratory tests, for instance, with capability to accurately control and 
monitor stresses and strains during rotation of principal stresses such as directional 
shear cell (Arthur & Menzies, 1972) and the hollow cylinder apparatus (High et al., 
1983); and the instrumented soil tests such as strain gauges, electrolevels, proximity and 
local-deformation transducer making the study of soil behaviour more interesting in 
quality and increasing in intensity. 

This chapter presents some recent issues in advanced soil behaviours or 
commonly called as pre-failure deformation behaviour. Explanation will be emphasised 
on experimental investigations. 

 

2.1.1 Anisotropic 

Soil behaviour is affected by orientation or its deposited direction, so that soil is 
classified as an anisotropic material. Seah (1990) presented the influence of the 

orientation of the major principle stress (1) to the direction of soil deposition against 

the undrained shear strength of reconsolidated Boston Blue Clay. The data shows that 

the undrained shear strength drops by 50% as the angle of 1 to the deposited direction 

increases from 00-900 as shown in Figure 2.1. 
 Some recent laboratory tests on a silt soil performed in a large hollow cylinder 
apparatus also show that soil strength is very anisotropic (Zdravkovic, 1996; 
Zdravkovic & Jardine, 2000). 
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Figure 2.1 An anisotropic behavior of soils (Seah, 1990) 

 
 

 
       (a)            (b) 

Figure 2.2 Initial strength anisotropic of four K0 consolidated materials (Kolymbas, 
2000) 

 
Figure 2.2(a) and (b) show the change of deviatoric stress normalised by the 

mean effective stress at the end of K0 consolidation and effective internal friction angle 
against the direction of the major principal stress, . 

 

2.1.2 Stress History 

Soil has a “memory”, so that any of the stress and other changes that have 
occurred during their history, and these changes is preserved in the soil structure (after 
Casagrande, 1932; Holtz & Kovacs, 1981). When the soil is subjected to a stress level 
greater than it ever “experienced” in the past, the soil is no longer able to sustain the 
increased stress and it start to break down. In the other words, the stress-stain behaviour 
of soil is depends on the current state and stress history or consolidation history, and 
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which is best described by the overconsolidation ratio (Ro) as shown in Figure 2.3, i.e. 
ratio by which the current mean effective stress in the soil was exceeded in the past 

( '' / ppR mo   where '
mp  is the past maximum mean effective stress and 'p  is the current 

mean effective stress). The definition of Ro is more general than definition OCR that 

usually used in practical i.e. ratio between past maximum vertical effective stress ( '
vm ) 

over current vertical effective stress ( '
0v ). 

 

 

Figure 2.3 Current state and consolidation history of the soil (Atkinson, 1990) 

 

 Som (1968) and Atkinson (1973, 1990) observed, one additional influence on its 
stress strain behaviour that is the recent stress history of the soil described by the most 
recent loading, which may take the form of an extended period of rest or a sudden 
change in the direction of the stress path. Later, Houlsby (1999) also found this 
phenomenon particularly in the second causal factor, and call it as immediate stress 
history. They showed that the stiffness of soils in triaxial and plane strain tests was 
increased following a sudden change in the direction of the stress path as illustrated in 
Figure 2.4. 
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Figure 2.4 Effect of recent stress history on current stiffness of the soil (Atkinson, 
1990) 

 

Figure 2.4(a) illustrates effect of stress path rotation for conditions of axial 
symmetry and loading paths, inside the state boundary. Along the different paths CO 
and DO, soil brought to the same initial state q’i and p’i at O, and then loaded along the 

same path OA. c and d are the rotations of the stress paths relative to the new stress 

path OA at point O. Figure 2.4(b) illustrates the stress-strain curves for the same loading 
path OA. In this figure, the different stiffness is related to the different stress path 
rotations, since the soil had identical states, equal periods of time and overconsolidation 
ratio at O. 

 

2.1.3 Small-Strain Behaviour of Soils 

In the settlement and displacement problems of soil-structure interaction, the 
contribution of (very) small-strain zones to boundary displacement can be larger than 
that of zones of contained failure (see, for instance, Burland, 1989). Recent back 
analysis of field measurement and laboratory studies using local strain-measuring 
techniques such as strain gauges, electrolevels, proximity and local-deformation 
transducer, show that the initial stress-strain behaviour of many soils is much stiffer 
than indicated by conventional strain (intermediate to large strain) measurement. It also 
exhibits a non-linear behaviour (Jardine, Symes and Burland, 1984). 
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Figure 2.5 Measured undrained stress-strain behaviour of a reconstituted clay by 
using local strain measuring techniques (Jardine, Symes and Burland, 1984) 

 

Figure 2.5 shows the measured undrained stress-strain behaviour of reconstituted clay 
various with OCR values using local strain measuring techniques performed by Jardine 
et al. (1984). It can be seen that the strains over the initial range of stresses are 
extremely small. 

Sensitivity studies to investigate the significance of non-linearity at small-strain 
and local failure have been performed by Jardine et al. (1986), it shows that in all 
practical case studied, the modelling of realistic small-strain non-linearity and the 
consideration of local failure have important implications in considering soil-structure 
interactions at working loads. Figure 2.6 shows the current understanding of soil 
stiffness in relating to laboratory test and structure types. 

 

 

Figure 2.6 Characteristic stiffness-strain behavior of soils with typical strain range 
for laboratory tests and structures (Mair, 1993) 
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2.1.4 Initial Stiffness Dependence on Pressure 

The stress-strain characteristic of soils is non-linear and irreversible, in that the 
initial soil stiffness or small-strain tangent stiffness depends on the stress level. It is also 
affected by other variables, such as the voids ratio, anisotropic stress state, and/or the 
preconsolidation pressure. Soga et al. (1995) present the variation of stiffness with 
strain from torsional tests on isotropically normally consolidated kaolin varied with the 
stress level as shown in Figure 2.7. 

 

 

Figure 2.7 Non-linear dependence of initial soil stiffness on stress level (Soga et al, 
1995) 

 

Many published experimental data on the small-strain stiffness of soils are 
carried out from dynamic laboratory tests on natural or reconstituted clays, or 
reconstituted sands samples, in triaxial conditions and under isotropic stress state. 

Hardin (1978) proposed the following form on sands: 

  k

n

aa

OCR
p

p
eSf

p

G








           

 (2.1) 

where f(e) is an empirically defined decreasing function of the void ratio e; pa is the 
atmospheric pressure as reference stress; and S, n and k are dimensionless 
experimentally determined parameters. Since the sand soil does not experience a 
significant variation of the void ratio or of the OCR, this leads to the simplified 
expression for equation (2.1): 
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


          (2.2) 

and also for the corresponding bulk stiffness: 
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K
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


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


         (2.3) 

where g and k are dimensionless constant. Constant n in shear and bulk modulus is not 
necessary the same. 

 For clay soils, several experimental observations and interpretations have 
indicated that, for isotropic stress condition, the small-strain shear stiffness can be 
expressed as in the following equation (Houlsby & Wroth, 1991; Viggiani, 1992; 
Rampello et al., 1994): 

 
***
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






       (2.4) 

 Under anisotropic stress condition, it is necessary to modify expression 
developed entirely from isotropic condition (e.g. Ni, 1987; Hardin and Blandford, 1989; 
Jamiolkowski et al., 1994; Rampello et al., 1997; Jovicic & Coop, 1998). For example, 
empirical expression for sands from Ni (1987) and Hardin and Blandford (1989): 

    
k

n
a

n
ji

ij
a

OCR
p

efS
p

G
2/

       (2.5) 

in which i and j are the principles stresses in the plane in which G is measured. 

 Furthermore, based on experimental results obtained on a reconstituted clay 
compressed under anisotropic stress condition, Rampello et al. (1997) proposed: 

 *

*

* k

n

aa

R
p

p
S

p

G
 








         (2.6) 

where R is the overconsolidation ratio with respect to the anisotropic stress condition, 

defined in term of mean effective stress R = p’c / p’. The anisotropic stress conditions 

are defined at any particular stress ratio  = q / p. The notation * is for distinguishing 

the S, n and k values from the equation (2.1). 

 

2.1.5 Rate Effect 

Soils exhibit time dependent behaviour as well as plastic deformation, so that 
soils are also called as viscous material. 

The viscous properties of the material define a time dependence of the state of 
stress and strain. On the other hand, plastic properties make these states depend on the 
loading path. When soil is subjected to a constant load it will deform over time, and this 
phenomenon is called creep. Inverse this phenomenon is called by stress relaxation, is a 
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drop in stress over time after as soil subjected to a particular constant strain level. 
Figure 2.8 shows these two phenomena. In Figure 2.8, it is shown that rate of creep will 
increase as increasing of deviatoric stress level. The most active clays usually exhibit 
the highest rate-dependent responses. Normally consolidated soil exhibits larger 
magnitude of creep than overconsolidated soils.  

The rate-dependent phenomena are agreeable for study as rate processes as 
application of the theory of absolute reaction rates (Glasstone et al., 1941), which is 
based on statistical mechanics. Detail adaptations this theory to soil mechanics can be 
found in Mitchell and Soga (2005). 

 

 
Figure 2.8 Creep and stress relaxation (Mitchell & Soga, 2005) 

 

2.2 Review Some Advanced Soil Constitutive Models  

Different advanced soil constitutive models based on different concepts have 
been proposed; often a particular model proclaimed its superiority over others. In fact, it 
is believed that each model can be valid within its own local realm, and that no 
universal constitutive model has yet been developed that is valid for all materials under 
all conditions. 

It is noted that, since constitutive models relate to physical phenomena, they 
must obey certain principles or axioms that govern the physical phenomena such as 
conservation of mass, conservation of energy, and laws of thermodynamics. In the other 
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words, principally a good soil model must be developed without violate certain 
principles or axioms that govern the physical phenomena. Figure 2.9 shows place of 
constitutive law and physical principles in continuum mechanics. 

 

 

Figure 2.9 Place of constitutive laws and physical principles in continuum 
mechanics (Desai, 1984) 

 

2.2.1 Multiple Surface Model 

This model proposed by Mroz (1967) and Iwan (1967) consists of kinematic and 
isotropic hardening. Mroz (1967) explained the model using the diagrams in Figure 2.10. 
Figure 2.10(a) shows a uniaxial stress-strain response discretised in n linear segments or 

pieces. A constant tangent modulus Ei (i = 1, 2,…, n) or constant plastic modulus p
iE  (i 

= 1, 2,…, n) is associated with each yield surface. 

Surfaces f1, f2,…, fn represent specific regions of constant work hardening 

moduli p
iE . It is assumed that there exists, in domain of interest from the initial state f0 

to the limit (ultimate or bounding state) fn, a series of yield surfaces, each defining a 
specific part or region of the domain in the stress space. With deformation, the surfaces 
translate in the stress space and as soon as surface fi touches the next surface fi+1 they 
both move together until they touch fi+2 and so on. The surfaces touch each other 
tangentially and are not permitted to intersect each other (non-intersection condition). 
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Figure 2.10 Multiple surface model: (a) stress-strain curve; (b) before straining; (c) 
loading A to B; (d) loading B to C; (e) loading C to D to E and nonproportional 

loading (Desai, 1984) 
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Mroz first considered proportional loading, for the uniaxial case specifically 

along the z-axis [Figure 2.10(a)]. For an increment of stress, the stress point moves 

from O to A [Figure 2.10(a)], where it reaches the yield stress defined by f0. The initial 

yield surface fo moves along the z-axis, and at B, during plastic straining, it touches 

yield surface f1 associated with point B; this is depicted in Figure 2.10(c). The plastic 
strain induced during the movement from A to B is defined by the tangent modulus E1. 
During this movement, all other surfaces remain fixed. 

When the stress point moves from B to C, the surfaces f0 and f1 translate together 
until at C they touch f2 associated with C [Figure 2.10(d)]. The plastic strain during this 
movement is defined by modulus E2. Similarly, during subsequent loadings the yield 
surfaces translate, taking with them the previous surfaces and touching the next ones 
during changes or increments in the state of stress. For the case in Figure 2.10(e), the 
end or final state of the particular loading history up to E is represented by the surface f4. 

 

 

Figure 2.11 Unloading behavior: (a) unloading G to H; (b) unloading H to I, I to J, 
and J to K (Desai, 1984) 

 

Consider unloading from E along path EGHIJK [Figure 2.10(a)]. At G, (inverse) 
plastic flow occurs, and then the surface f0 translates downward until it touches f1 
corresponding to point H [Figure 2.11(a)]. Since this movement of f0 is twice that for its 
movement from A to B during the loading, the stress difference between H and G is 
twice that between A and B. With subsequent unloading along HI, IJ, and JK 
corresponding to loadings BC, CD, and DE, respectively, the yield surfaces move and 
finally touch f4 on the opposite side [Figure 2.11(b)]. 

The total strain is the sum of the elastic strain and plastic strain components: 


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Each yield surface is specified in the form   0, ))(()( np
ijij

nf  , where for 

simplicity the yield surface depends only on the plastic strain associated with that 
surface, and is not coupled to other yield surfaces. Non-associated flow rule can be 
introduced by defining plastic potential different with the yield surfaces so 

that
ij

n
nnp

ij

g








)(

)())(( , where (n) is scalar multiplier and g(n) is plastic potential 

functions associated to f(n). 

At the same time, Iwan (1967) formulated his multiple surface models without 
the non-intersection condition. His model built from one spring with elastic coefficient 
E and a series of sliding elements with slip stresses kn, each in parallel with a spring 
with corresponding elastic coefficient Hn (Figure 2.12). 

 

 

Figure 2.12 Schematic layout of the Iwan model (Houlsby & Puzrin, 2006) 

 

An elongation of the E spring gives elastic strain (e), whereas an elongation of each of 

the Hn springs contributes the plastic strain an to the total plastic strain; the sum of 

elastic and all plastic strains gives the total strain . After the stress reaches the value of 

slip stress kN, the Nth sliding element slips and the HN spring becomes active. The 
corresponding behavior is elastoplastic with linear hardening characterised by tangent 

modulus EN, which can determined from the relationship  



N

n nn HEE 1

111
 

In its application, relocation of each yield surface has proved as a very 
convenient framework for modelling the pre-failure behaviour of soils, allowing a 
realistic treatment of issues such as non-linearity at small-strain and the effects of recent 
stress history. 

 

2.2.2 Bounding Surface Model 

The original concept this model proposed by Dafalias (1975) and Dafalias and 
Hermann (1980). As implied in the name, strictly no plastic strain is allowed inside a 
yield surface. Further, the domain enclosed by the bounding surface is not elastic; 
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though for some incremental stress trajectories within this surface, an elastic response 
can be obtained. Following is simplified of this concept taken from Houlsby & Puzrin 
(2006). 

For every stress point A in Figure 2.13 an image of point B on a “bounding 

surface” is determined using mapping rule. The stress point A(ij) always lies within or 

on the bounding surface. It is assumed that if the incremental stress vector at the point 

A(ij) is directed inside this surface, the behaviour is elastic. 

If the incremental stress vector at each point A(ij) is directed outward from the 

loading surface, the behaviour is elastoplastic. The plastic strain in a conventional 

plasticity model with an associated flow rule and a yield locus   0, )( p
ijijf   is given 

by: 
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where h is a hardening modulus. In the bounding surface f is interpreted as the bounding 

surface and ij in equation (2.8) as the stress at the image point. The value of h is then 

given by: 

  




'10
cp

hhh         (2.9) 

where  is shown on Figure 2.13. 

 

 

Figure 2.13 Bounding surfaces model of Dafalias and Hermann (1980) (Houlsby, 
1981) 
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The result is that when the stress point is on the bounding surface conventional plastic 

behaviour is given, inside the surface a reduced plastic strain occurs if the quantity '
ep  

is increasing. 

 Bounding surface model can be successful in describing hysteresis for large 
unload-reload loops, typically those which involve complete load reversal. For small 
unload-reload loops, however, the prediction is not realistic. It is also incapable to 
incorporate the effects of recent stress history on the stiffness of the response. 

 

2.2.3 Hypoplasticity Model 

This name referring to the plastic model, in which the direction of the plastic 
strain rate, unlike in the conventional plastic models, depends on the stress rate. The 
formal definition this model provided by Wu and Kolymbas (1990). 

Hypoplastic constitutive model assume that there exists a tensorial function H, 
such that: 

  


,H          (2.10) 

where   denotes the stretching (strain rate) and 


  is the Jaumann stress rate, in which 

defined as follows 

  


         (2.11) 

where   is the rotation rate (spin). Furthermore, it is assumed that the function H in 

(2.10) is continuously differentiable for all   except at   = 0. Some restriction on the 

function H in (2.10) was introduced to make the model more concrete constitutive 
equations, and then final equation of this model is: 

      


NL  ,        (2.12) 

where L is linear in   and N is nonlinear in  , 2  tr  stands for the Euclidean 

norm. 

One important conceptual in hypoplasticity, distinguish with elastoplasticity, is 
that in elastoplasticity, yield function and material state parameters define the yield 
surface, which bounds the elastic domain, but not in hypoplasticity. As we have already 
seen, within the elastic domain only elastic deformation occurs, the material is more 
rigid. The yield surface is a kind of material memory. In hypoplasticity there is no yield 
function, no elastic domain. All past information is concentrated in the current stress. 
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Indeed, there are today new versions of hypoplastic equations involving the void ratio 
and a structural tensor that are more sensible to past deformation history. 

The hypoplasticity framework, however, is not a simple model and have no 
some physical meaning in deriving the formulation. And still need to be improved and 
extended to make simpler. 

 

2.3 Hyperplasticity Model  

This model derived based on generalized thermodynamics principles. Some 
people contribute to build this framework are Ziegler (1983), Houlsby (1981); Collins 
and Houlsby (1997). Further extension and generalization of this approach can be found 
in Houlsby and Puzrin (2006). 

In this model incremental response is derived from two scalar potential 
functions: an energy function and a dissipation function (or yield function). The energy 
function can be used in any of four alternative forms related by Legendre 
transformations. An alternative to the dissipation function is a yield surface, related to 
the dissipation function by a degenerate Legendre transformation. 

For small-strain continuum mechanics in Cartesian coordinates, energy 
functions are defined in Table 2.1, u is the specific internal energy function of strain 

tensor ij and specific entropy s, defined as a potential for stress tensor ij and 

temperature. The function f is the specific Helmholtz free energy function of strain 

tensor and temperature, a potential for stress and specific entropy; h is the specific 
enthalpy function of stress and specific entropy, a potential for strain and temperature. 
The function g is the specific Gibbs free energy function of stress and temperature, a 
potential for strain and specific entropy. 

In the hyperplasticity formulation, the second potential function required is the 
dissipation function, which allows the Second Law of Thermodynamics to be satisfied 
within the proposed framework. The Second Law can be formulated as in the following: 

k

kq
s

,










          (2.13) 

where (qk/) is the entropy flux. When this inequality is rewritten in the following way: 

0,
, 




 kk
kk

q
qs         (2.14) 

the first two terms 
dqs kk  ,

 are called the mechanical dissipation. The third term is 
called the thermal dissipation and it is always non-negative. For slow processes, this 
term becomes small by comparison with the first two, so it is argued that the mechanical 
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Table 2.1 Energy function for small-strain continuum mechanics (Houlsby & 
Puzrin, 2006) 

Internal energy Helmholtz free 
energy 

Enthalpy Gibbs free energy 

 suu ij ,    ,ijff    shh ij ,    ,ijgg   

s

u

u

ij
ij
















 
















f
s

f

ij
ij

 

s

h

h

ij
ij
















 
















g
s

g

ij
ij

 

ijijsgu    suf   
ijijuh   

ijijf

shg







 

 

dissipation must itself be non-negative. For dissipative materials, the internal energy is a 

function not only strain and entropy, but of kinematic internal variables ij as well: 

 suu ijij ,,
. Strain, internal variables and entropy define a thermodynamics state of 

material. Further, an assumption is defined that the dissipation is also a function of the 
thermodynamic state and the rate of change of the material state. In fact, it is sufficient 
to consider that the dissipation function depends only on the rate of change of the 

internal variables ij. The dissipation function can be written in four possible ways, 

depending on which form of the energy function is specified: 

   0,or  ,,or   ijijijij
e sdd         (2.15) 

where e superscript in this equation represent one of the four energy functions. 

To impose the First Law of Thermodynamics, the generalised and dissipative 
generalised stress tensor is defined. The generalised stress tensor is defined by 
differentiation of an energy function with respect to internal variable: 

ijijijij
ij

ghfu



















      (2.16) 

Whereas, the dissipative generalised stress tensor is defined by differentiation of a 
dissipation function with respect to internal variable rate: 

 
ij

e

ij

d







          (2.17) 

where e superscript in this equation represent one of the four energy functions. 
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The First Law of Thermodynamics state that rate of change of internal energy is 
the sum of the mechanical work input and the rate of heat supply to an element of 
volume: 

QWu            (2.18) 

where ijijW     and kkqQ ,  

dsqu ijijkkijij    ,       (2.19) 

On the other hand, the internal energy is a function of state:  suu ijij ,, , and 

further that 

s
s

uuu
u ij

ij
ij

ij













 





       (2.20) 

Noting that the increments of the variables are independent of the state and 
comparing (2.19) and (2.20), then using the definition of the generalised stress in (2.16), 
we obtain an expression for mechanical dissipation: 

ijijd            (2.21) 

Furthermore, a yield function is defined as a degenerate special case of the 

Legendre transformation of the dissipation function: 0 e
ijij

e dy   , where 

  0,or  ,,or   ijijijij
e syy        (2.22) 

The flow rule follows from the properties of Legendre transformation: 

 
ij

e

ij

y






          (2.23) 

where  is an arbitrary non-negative multiplier. Table 2.2 summarize the hyperplasticity 

formulation based on Gibbs (g) and Helmholtz (h) free energy. 

Most of soils do exhibit a small element of rate-dependent behaviour, i.e: 
measured strength are slightly increased at higher strain rates, and a small amount of 
creep occurred under constant stress, even for soils where such effects are negligible, 
the inclusion of a small ‘artificial’ viscosity in the model simplifies the numerical 
calculations considerably. Those are reasons to introduce rate-dependent hyperplasticity 
model. Table 2.3 shows comparison between these two models. 

Some further development work on hyperplasticity in soil mechanics is explored 
by Likitlersuang (2003) and Likitlersuang and Houlsby (2006). 
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Table 2.2 Basic formulas for hyperplasticity model 

Definition Gibbs free energy (g) Helmholtz (h) free 
energy 

Energy function  ijijgg  ,   ijijff  ,  

Dissipation function   0,,  ijijij
gdd     0,,  ijijij

fdd    

Generalised stress 

ij
ij

g







  
ij

ij

f







  

Stress-strain relationship 

ij
ij

g







  
ij

ij

f







  

Dissipative generalised stress 

ij

g

ij

d







  
ij

f

ij

d







  

Yield function   0,,  ijijij
gyy    0,,  ijijij

fyy   

Flow rule 

ij

g

ij

y






  
ij

f

ij

y






  

 

Table 2.3 Comparison for rate-independent and rate –dependent hyperplasticity 
model (Likitlersuang, 2003) 

Definition Rate-independent model Rate-dependent model 

First potential the same definition of energy functions (g,f,h,u) 

Second potential Dissipation function (d) and 
yield function (y) 

Force function (z) and flow 
potential (w) 

Dissipative generalised 
stress 

ij

e

ij

d







  
ij

e

ij

z







  

Legendre-Fenchel 
transformation 

0 dy ijij   zdzw ijij     

Flow rule 

ij

e

ij

y






  
ij

e

ij

w






  

 

2.4 Comparison of Advanced Soil Constitutive Models  

Although, in principally the bounding surface models more efficient than 
multiple surfaces, but they still have three important shortcomings i.e: (1) They often 
require the choice of a number of somewhat arbitrary functions; (2) often the functions 
without obvious physical meaning; (3) they usually fail to describe the effects of the 
immediate past history. 
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Multiple surface models are the most promising approach, but they also still 
have some drawbacks, i.e.: (1) they result in a large number of material parameters to be 
specified; (2)  they also result in considerable amount of computation; (3) many of them 
are inherently complex. 

Hypoplasticity model, which is only developed and discussed within few 
researches and has two shortcomings: (1) The constitutive model basically is not based 
on definite physical meanings, the relation between stress rate tensor and stretching 
tensor is just fitted by a polynomial with some fitting parameters which have less direct 
relation to the physical quantities of soils that geotechnical engineers familiar with, (2) 
The relation between stress rate tensor and stretching tensor is nonlinear, which make it 
very difficult to solve boundary value problems because an explicit stiffness matrix 
based on this model cannot be obtained easily and it has no any evidence of solving this 
problem mathematically and numerically. Kolymbas (2000) stated about his own model 
as follows: (1) The theory should be improved and extended to fill its application 
portfolio; (2) They should simpler and have some physical meaning, since only in this 
way, they can communicate with engineering practitioners. 

As we stated in the Chapter 1, and we need repeat it again, since constitutive 
models relate to physical phenomena, they must be developed without violate certain 
principles or axioms that govern the physical phenomena such as the laws of 
thermodynamics. Hyperplasticity framework describes the behaviour of soils both for 
clay and sand, associative or non associative flow within a rigorous, compact, and 
consistent framework. 

The other reasons are this framework models could be developed without the 
need for additional ad hoc assumptions and procedures, and it makes considerable use 
of potential function and internal variables to predict entire stress-strain response of a 
material subject to a specified sequence of stress or strain increment. In addition, the 
framework may allow a number of competing models to be cast within a single 
framework, and so allow them to be more readily compared. 

In the next chapter, development and numerical model implementation one of 
the thermodynamics-based soil model based on hyperplasticity framework i.e.: 
continuous hyperplasticity non-linear KHMCC model is presented. 
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CHAPTER III.   MODEL DEVELOPMENT AND 
NUMERICAL IMPLEMENTATION 

CHAPTER 3. MODEL DEVELOPMENT AND NUMERICAL IMPLEMENTATION 

3.1 Introduction 

The stress-strain characteristic of soils is non-linear and irreversible, in that the 
initial soil stiffness or small-strain tangent stiffness depends on the stress level. The 
interpretation from experimental observations of bender element test shows that the 
small-strain stiffness of soils is a non-linear function of the mean effective stress for 
isotropically consolidated samples as reported by Tanizawa et. al. (1994), Kohata et. al. 
(1997), Pennington et. al. (1997), and Techavorasinskun et. al. (2002) and depend on 
the stress ratio (Rampello et. al., 1997) for anisotropically consolidated samples. The 
stiffness also affected by other variables, such as the voids ratio, anisotropic stress state, 
and/or the preconsolidation pressure (Hardin, 1978; Houlsby & Wroth, 1991; Viggiani, 
1992; Rampello et al., 1994; and Soga, 1995).  

In this chapter, a development and numerical implementation of the 
hyperplasticity non-linear KHMCC model based on triaxial stress-strain variables and 
general stress using strain-driven forward-Euler integration scheme is presented. A 
power functions of pressure proposed by Houlsby et. al. (2005) is adopted in non-linear 
elastic energy function. A hyperbolic function proposed by Puzrin and Houlsby (2001) 
is adopted in non-linear kinematic hardening function. For simplicity, the pre-
consolidation pressure after the completion of isotropic consolidation is referred in the 
initial stiffness of kinematic hardening function. An analytical solution of ideal 
undrained triaxial test on normally consolidated clay (Roscoe and Burland, 1968; Potts, 
1994) is used to verify numerical model implementation under single yield surface. 
Several numerical demonstrations are performed for monotonic, cyclic and repetitive 
loading under undrained condition for normally and lightly consolidated clays. The 
developed model is highlighted through the capabilities on characterising effect of 
immediate stress history (Atkinson, 1990; Houlsby 1999), dependence of effective 
stress path on the immediate stress history during undrained shear (Stallebrass and 
Taylor, 1997), smooth and irreversible unloading-reloading responses. All attempts of 
demonstration are to emphasize the performance of hyperplasticity framework which 
can contain several complicated characteristics of constitutive models under the unified 
framework. Further, several validations against small-strain experimental on clay soil 
are conducted. An experimental undrained triaxial test on Speswhite kaolin (Stallebrass 
& Taylor, 1997) has been selected. Model validation is performed with response of 
tangent stiffness against stresses. Further, the experimental result of unloading-
reloading at small-strain is also compared to model prediction. 
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3.2 Non-linear Kinematic Hardening Modified Cam Clay Model 

3.2.1 Sign Convention and Triaxial Variables 

The standard soil mechanics sign convention of compressive stresses and strains 
positive is used throughout this research, and all stresses are effective. The triaxial stress 

variables are  1
3 2 ,  a r a rp q        where p  is mean effective stress, q  is stress 

deviator, a  is  axial stress and r  is  radial stress. Corresponding to them are 

volumetric and deviatoric (shear) strains defined by 2p a r     and 

 2
3q a r    where a  is axial strain and r  is radial strain. 

For more general stress states, the following notation is adopted: ij is the 

effective Cauchy stress tensor; ij is small-strain tensor; and ij is Kronecker’s delta (ij 

= 1 if i = j, ij = 0 if i ≠ j where  , 1, 2,3i j ). The stress invariants 

are 1
3 iip  , 3

2 ' 'ij ijq   , where 
3

1
ii ii

i

 


 ; 'ij ij ijp     is deviatoric component of 

the effective stress tensor. The corresponding strain invariants are 
p ii   and 

2
3 ' 'q ij ij   , where 1

3'ij ij ii ij      is deviatoric component of the strain tensor. In 

similar way, generalised stress invariants are 1
3p ii  , 3

2 ' 'q ij ij    where 

3

1
ii kk

k

 


 ; 'ij ij p ij      is deviatoric component of the effective generalised stress 

tensor. The corresponding internal variable invariants are 
p ii   and 2

3 ' 'q ij ij   , 

where 1
3'ij ij ii ij      is deviatoric component of the internal variable tensor. 

 

3.2.2 Triaxial Formulation 

Under the hyperplasticity framework (see Houlsby and Puzrin (2006) for details), 
the entire constitutive model is fundamentally governed by two scalar functions which 
are energy function and yield function or dissipation function. In typical formulation, 
Gibbs free energy function is suggested to associate stresses, material parameters and 
material memories (internal variables) to a unique potential function where the 
referenced pressure for zero volumetric strain is defined at 1 atm.  It is noticed that 
hyperplasticity framework employs a total energy instead of rate form of energy which 
is commonly used in classical plasticity theory. Since Gibbs free energy is equivalent to 
a complementary energy, then negative elastic stored energy, negative dissipation 
energy and positive hardening energy are combined. According to Houlsby et al. (2005), 
a non-linear version of KHMCC is created to allocate non-linear elastic moduli at small-
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strain into the Gibbs free energy which is expressed in the form E = E(p, q, p , q , p̂ , 

q̂ ) by adding the hyperelastic expression using triaxial stress variables. 

       
12

2 2
1

0

1 1ˆ ˆˆ ˆ
1 2 1 2 2

n
e

p q p p q qn
r

p p
E p q H H d

p k n n k n
    




              

(3.1) 

where 
  2

2 1

3e

k n q
p p

g


   is defined as an equivalent stress variable for convenience.  

k, g, n are dimensionless material constant calibrated from elastic stress-strain relation at 
small-strain level. Atmospheric pressure 1 atm (approximately 100 kPa) is usually 

defined for pr as reference pressure. p and q are total  isotropic and deviatoric plastic 

strains respectively. Integration of differential hardening energy is evaluated in terms of 

internal coordinate  which is limited between 0 to 1.  0   represents the initial 

hardening stage (the highest hardening response) while 1   represents the final 

hardening stage (zero hardening response). p̂
 
and q̂

 
are kinematic internal variable 

function of  which can be integrated to obtained p and q by Equations (3.2) and (3.3). 

Therefore, p and q can be regarded as a definite integral area of functional variables 

p̂  and ˆ
q  

over the domain of   . It is noted that all variables with “^” (hat) 

throughout this study are referred to internal variable function of .       

1

0

ˆ
p pd   

1

0

ˆ,   q qd     (3.2),(3.3)

 qp HH ˆ,ˆ
 
[in kPa] are non-linear kinematic hardening functions in corresponding to 

isotropic and deviatoric hardening responses as expressed in Equations (3.4) and (3.6).  
A hyperbolic function proposed by Puzrin and Houlsby (2001) is adopted to these 
internal functions. For simplicity, the initial hardening stage of the kinematic hardening 
functions is made as power function of initial preconsolidation pressure as represented 

by ˆ ˆ,pi qiH H in Equations (3.5) and (3.7). 

 3ˆ ˆ 1p piH H  
 

1
0ˆ, where  

2 1

n n
r
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kp p
H

a






 (3.4),(3.5)

 3ˆ ˆ 1q qiH H  
 

1
03ˆ, where  

2 1

n n
r

qi

gp p
H

a






 (3.6),(3.7)

where 0p  is an initial preconsolidation pressure at the end of consolidation stage and a 

is material constant. Plot of the above hardening functions against internal coordinate  
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is shown in Figure 3.1. It is clear that  ˆ ˆ 0pi pH H    and  ˆ ˆ 0qi qH H   . Therefore, 

in this study ˆ
pH  and ˆ

qH  are not directly dependent on p and q in energy function.  

 

Figure 3.1 Variation of hardening functions against internal coordinate . 

 

According to the hyperplasticity framework, total strain components are 
considered as conjugate variables of stresses which are derived from the Gibbs energy 

function.  From Equation (3.1), it follows that the volumetric strain p, deviatoric strain 

q  can be obtained via differentiation with stresses as shown in Equations (3.8) and 

(3.9).  

  1

1
1

1p pn n
r e

E p

p k n p p
 

 
        

 (3.8) 

1 3q qn n
r e

E q

q p gp
 


   


 (3.9) 

Because of the total plastic strain components p and q defined earlier, the 

dissociation of total elastic and plastic strain components can be clarified.  

However, the Gibbs energy function expressed in Equation (3.1) with strain 
components derived in Equations (3.8) and (3.9) is valid for 0 ≤ n < 1. For n = 1 these 
equations will be particularly replaced by the following Equations (3.10)-(3.12).  
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(3.10) 
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(3.11) 

3q q

E q

q gp
 

   


(3.12) 

According to Equations (3.8), (3.9), (3.11) and (3.12), total strain components 

are derived as function of p, q and  ˆ ˆ( ), ( )p p q q    . By flow rule, rate change of total 

strain components can be obtained. The second derivatives of Gibbs free energy 
appeared in the below equations are derived in Box 1.  
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Rate change of total strain components can be simply written by the following 
equations. Equation (3.15) is a compacted form of Equations (3.13) and (3.14). 
Equation (3.16) expresses rate form of plastic strain components while Equation (3.17) 
expresses rate form of elastic strain components. 
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According to Equation (3.17), the incremental elastic stress-strain relationship 
can be given as the compliance stiffness matrix.  
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where K is non-linear bulk modulus, G is non-linear shear modulus, and J is non-linear 
coupling modulus. If J is non-zero, the incremental stress-strain response is a stress-
induced anisotropic behaviour appeared during loading stages (Houlsby, 1985). J is zero 
only in the condition of isotropic consolidation.  
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Box 1: Second derivatives of Gibbs free energy 

Gibbs free energy E for 0 ≤ n < 1 in Equation 
(3.1) (after Houlsby and Puzrin, 2006) 
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Gibbs free energy for n = 1 in Equation 
(3.10) (after Houlsby and Puzrin, 2006) 
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Gibbs free energy E  for 0 ≤ n ≤ 1 
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The relation between among stress variables is not existed in the previous 
description based on energy function. This relation is described in yield function which 
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contains stress variables to couple with energy function. In the non-linear KHMCC 
model (see Likitlersuang, 2003; Likitlersuang and Houlsby, 2006 for details), the yield 

function ŷ  in term of triaxial stress parameters is defined: 

0ˆ/ˆˆˆ 222  cMy qp   (3.20) 

where M is a frictional critical state parameter (Roscoe and Burland, 1968) which is the 

value that stress ratio pq   attains at critical state, ˆˆ p pc H  
 
is a yield stress which 

represents the size of yield surface function,  ˆ
p  and ˆ

q  are generalised stresses in term 

of volumetric and deviatoric stresses. Materials behave plastically when the yield 

surface is active ( ˆ 0y  ). Materials behave elastically when the stress is inside the yield 

surface ( ˆ 0y  ). The generalised stresses are defined as changing of free energy 

functional with respect to the internal kinematic variables. Gibb’s free energy functional 

Ê  can be defined as the internal energy with respect to   . So the integration of  Ê  

throughout the domain of   is Gibb’s free energy as shown in Equation (3.21).  
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According to Equations (3.1)-(3.3) and (3.21), Gibb’s free energy functional Ê  
is obtained by the following equation. 
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(3.22) 

Therefore, ˆ
p  and ˆ

q  are referred in Equations (3.23) and (3.24) as the 

derivatives of  Ê  with respect to ˆ p  and ˆq  respectively. It is found that ˆ p  and ˆq  

can be considered as the difference between stress variables and yield stresses which is 
associated with kinematic hardening variables. In this study, the derivation of Equations 

(3.23)  and (3.24) is simplified because the definitions of  p  and q  are initially 

adopted in Equations (3.2) and (3.3). If p , q  and ˆ
p  and ˆ

q  are considered as 

independent variables in Gibb’s free energy, the constraint function using Lagrangian 
multiplier and Ziegler’s orthogonality condition (Ziegler,  1983) must be employed. 
This detailed proof can be found in Houlsby and Puzrin (2006). 
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According to Houlsby and Puzrin (2006), the evolution rule of kinematic 

internal variable function ˆ p  and ˆq  are followed Equations (3.25) and (3.26) 

respectively as the derivatives of flow potential w with respect to generalised stress 
variables. One may associate this kind of evolution rule to flow rule used in classical 

plasticity. The flow potential w is defined in relevant to yield function ŷ  as shown in 

Equation (3.27).  
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where  is viscosity coefficient which is in rate-dependent algorithm plays the role as an 

“artificial” viscosity that imposed to unity. However, we can actually define  as a 

“true” viscosity coefficient such in modelling creep behaviour. The operator   is 

Macaulay brackets which defines 
0; 0

; 0

 
      

As a consequence of Equations (3.25)-(3.27), the rate form of stress-strain 
relationship obtained in Equation (3.15) can be expressed. The derivatives of flow 
potential w in Equations (3.25) and (3.26) are shown in Box 2. 
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Box 2: Derivatives of flow potential with respect to generalised stress variables 
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3.2.3 General Stress Formulation 

In order to implement in a finite element program a non-linear KHMCC model 
should be formulated in general stress. Then, the Gibbs free energy is expressed in the 

form  ˆ, ,ij ij ijE E    : 

212

1
0

ˆ ˆˆ ˆ ˆ

(1 )(2 ) 3 (1 ) 2 3

n
p kk q ij ije kk

ij ijn
r

H Hp
E d

p k n n k n

     




  
           

  (3.29) 

where (1 )

9 2
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e
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g

    
   is defined as equivalent stress for convenience. Other 

variables are similar definition with the triaxial formulation, but now in term of 
tensorial form. The formulation in Equation (3.29) is employed for n ≠ 1. Whereas, the 
Gibbs free energy for n = 1 is: 
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ˆ ˆ,p qH H  [in kPa] are non-linear kinematic hardening functions in corresponding to 

isotropic and deviatoric hardening responses as similar expression with Equations (3.4) 

and (3.6), except p0 = 0kk/3. From Equation (3.30), it follows that the strains ij can be 

obtained via differentiation with stresses ij as shown in Equation (3.31).  
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(3.31) 

However, the Gibbs energy function expressed in Equation (3.30) with strain 
components derived in Equations (3.31) can only produce a constant modulus (n = 0) or 
power function of pressure dependent modulus (0 < n < 1). For linear pressure 
dependent modulus (n = 1) these equations will be particularly replaced by Equations 
(3.32) and (3.33). 
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Rate change of total strain components can be written by the following 
equations. 
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The second derivatives of Gibbs free energy are derived in Box 3. This form is 
applicable for 0 ≤ n ≤ 1. 
 
 Box 3: Second derivatives of Gibbs free energy (after Houlsby and Puzrin, 2006) 
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The generalised stresses ˆ
ij are referred in Equation (3.35) as the derivatives of 

Ê  with respect to ˆij . 
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 (3.35) 

Further, the yield function in term of generalised stress variables is defined: 
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where ˆˆ p kkc H   and M is critical state parameter. Then the flow potential w can be 

defined in relevant to yield function ŷ  as shown in Equation (3.37). 
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Finally, the rate form of stress-strain relationship can be expressed. 
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  (3.38) 

The derivative of flow potential w in Equation (3.37) is shown in Equation (3.39). 
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3.2.4 Model Parameter Determination 

The non-linear KHMCC model has five parameters, which is composed of three 
dimensionless material constant parameters (g, k, and n), one parameter for critical state 
(M), and the last one for kinematic hardening parameter (a). These parameters are 
obtained through processes of parameter calibration from the experiment results. The 
dimensionless material constant g, k, and n are related to elastic stiffness which can be 
determined from experimental measurement of small-strain stiffness such as bender 
element test or for preliminary analysis can be determined from empirical equation as 
summarised in Table 3.1. These elastic stiffness parameters should be determined at the 
initial loading stage in order to minimize the effect from hardening responses. Critical 
state frictional parameter M is determined at the stage of failure condition. It can be 

approximated by relationship with internal friction angle   in Equation (3.40).   

6sin

3 sin
M







 (3.40) 

 

Table 3.1 Small-strain stiffness empirical equations G = AF(e)(p)n  (After Soga and 
Yimsiri, 2001) 

Soil type A F(e) n Void 
ratio e 

Test 
method 

references 

Reconstituted 
NC kaolin 

3,270  2
2.973

1

e

e




 
0.5 0.5-1.5 Resonant 

Column 
Hardin and 
Black (1968) 

Several 
undisturbed 
NC clays 

3,270  2
2.973

1

e

e




 
0.5 0.5-1.7 Resonant 

Column 
Hardin and 
Black (1968) 

Several 
undisturbed 
silts and 
clays 

1,726  2
2.973

1

e

e




 
0.46-
0.61 

0.4-1.1 Resonant 
Column 

Kim and 
Novak (1981) 

Undisturbed 
NC clays 

90  2
7.32

1

e

e




 
0.6 1.7-3.8 Cyclic 

Triaxial 
Kokusho et 
al. (1982) 

Undisturbed 
Italians clays 

4,400-
8,100 

( 1.11 1.43)

xe

x



 

0.4-
0.58 

0.6-1.8 Resonant 
Column 

and 
Bender 
Element 

Jamiolkowsky 
et al. (1995) 

 

Once parameters which relate to elastic responses and failure conditions are determined, 
the kinematic hardening parameter is calibrated. In this study, the scope of application is 
restricted to isotropic consolidated materials. Therefore, the initial stiffness after the 
completion of isotropic consolidation is calibrated. To match with this condition, stress-
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strain responses during isotropic loading is imposed to Equation (3.19) so that moduli 
expression of G and K can be obtained while J = 0. It can be shown that the initial 
stiffness G and K after completion of isotropic consolidation are given by: 

  1, 0 n n
rG p q gp p    (3.41) 

  1, 0 n n
rK p q kp p   (3.42) 

According to Equations (3.41) and (3.42), it is found that during isotropic 
consolidation, the ratio of K/G is constant regardless of consolidation pressure. 

Therefore, Poisson’s ratio  for isotropic materials can be conveniently obtained by 

Equation (3.44). 

 
 

2

2

2

2
0

, 0

, 0

q

E
K p q kq

EG p q g
p 




  
 


 (3.43) 

 
 

2 1

3 1 2

K k

G g





 


 (3.44) 

From the experimental observations using bender element test, the elastic 
modulus at small-strain is generally expressed as a power function of the mean effective 
stresses such as in the following forms for isotropically consolidated samples (Tanizawa 
et. al. (1994), Kohata et. al. (1997), Pennington et. al. (1997), Techavorasinskun et. al. 
(2002)): 

nG Cp  (3.45) 

where C and n are constants. This equation is identical with Equation (3.41) which is 
derived from constitutive model. This equation can be normalised into the form 
suggested by Houlsby et al. (2005) is shown in Equation (3.46), to obtain the 
dimensionless material constant g and n.  Another dimensional material constant k can 
be determined using the elastic relationship as presented in Equation (3.44). Value of 

poisson ratio  is ranged in a certain limit and can be related to the coefficient of earth 

pressure at-rest K0 as shown in Equation (3.47). 

n

r r

G p
g

p p

 
  

 
 (3.46) 

0

01

K

K
 


 (3.47) 

According to Houlsby and Puzrin (2006), the kinematic hardening parameter a 
is calibrated to fit the stress-strain curve for specific test data (such as triaxial undrained 



36 
 

 
 

or drained tests) as shown in Figure 3.2 for an example  This parameter characterises 
first loading curve (also referred by many as backbone curve) of the stress-strain 
response with hyperbolic curve . Followings are general step by step procedures to 
determine parameter a: 

(1) Normalise undrained or drained stress at vertical axis by undrained or drained 
strength c.  

(2) Multiply the strain response at horizontal axis by appropriate initial stiffness and 
divided by c.  

(3) Find a as inversion slope (1/secant stiffness) of a point at 50% of normalised stress. 

However, procedures (1)-(3) are applicable if the laboratory stress-strain curve 
can be approached with a simple hyperbolic stress-strain curve. In many practical 
scenarios, kinematic hardening parameter a can be directly obtained from a small 
parametric study to match the stress-strain curve of specific test as shown in Figure 3.3.   

 

 

Figure 3.2 Determination of parameter a using procedures (1)-(3) 
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Figure 3.3 Determination of parameter a using small parametric study 

 

3.3 Numerical Implementation 

3.3.1 Incremental Stress-Strain Response 

From the previous formulation, rate form of the stress-strain relationship based 
on the continuous hyperplasticity is described. However, the continuous hyperplasticity 
is suitable for stiff calculation with simple hardening function. Due to this limitation to 
handle complicated loading conditions, the multisurface hyperplasticity is generally 
employed in numerical implementation. Non-linearity is expressed by multiple piece-
wise responses (see also Mroz & Norris, 1982). Therefore, multiple internal variables 
play a role as discrete memories of materials and the smooth transition between piece-
wise responses depends on the finite number of internal variables. For KHMCC model, 
continuous yield surface is discretised to a finite number of yield surfaces (Likitlersuang 
(2003), Likitlersuang and Houlsby (2006)). Integration operator simply turns to 
summation operator without losing general meaning.  Each yield surfaces have their 
own state variables which are generalised stresses and yield stress. A finite number of 
yield stress can be considered as multiple material memories which are updated when 
the multiple yield surfaces are active. The illustration of multiple yield surfaces in 
principal stress space can be depicted in Figure 3.4. 

In this study, 10 number of multiple yield functions are demonstrated. Plot of 10 
number of yield surfaces in p-q plane under generalised stress space and true stress 
space are envisaged in Figure 3.5 and Figure 3.6, respectively. The rate-dependent 
incremental response of a single element calculation is obtained by integrating the 
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incremental stress-strain relation using strain driven forward-Euler integration scheme. 

This means an increment of variable based on rate form  ( )x f x  can be typically 

written in the manner 1 ( )i i ix x f x t     where 1i it t t    and 1i   represents the 

current step number. Equation (3.28) combined with (3.27) are used to update stress 
components in any increment of strain, and then it can be used to update the generalised 
stress components by Equations (3.23) and (3.24) after internal variable is updated from 
the evolution rule given by Equations (3.25) and (3.26). The algorithms of the rate-
dependent numerical implementation in triaxial and general stress are explained in Box 
3 and Box 4. The subscript m and t are a positive integer representing the index of the 
yield surfaces and incremental of specific variables, respectively. A parentheses ( ) 
enclosed a subscript index is used to distinguish between tensor expression index. For 
an arbitrary variable tensor , component of tensor in according to the yield surface-mth at 

increment-ith is represented by ij(m,t),  where N is a number of yield surfaces. 

 

Figure 3.4 Non-linear KHMCC yield surfaces in three-dimensional stress space. 
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Figure 3.5 Non-linear KHMCC yield surfaces in the generalised stress. 

 

It is noted that when rate-independence is described as the particular case of 
rate-dependent behaviour, significant simplifications in calculations can be achieved. A 
significant advantage of the rate-dependent calculation is that, it is not necessary to 
attach with the consistency condition during the calculation of plastic strains. Therefore, 
the higher complexity of numerical calculation such as special procedure for error 
controlling is not required like that of the rate-independent (see Houlsby and Puzrin, 
2006). 

 

Figure 3.6 Non-linear KHMCC yield surfaces in the true stress. 
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Box 3: Strain-driven forward-Euler integration scheme (Triaxial stress) 

For given Gibbs free-energy E, p , q , t , )(ip , )(iq , )(ip , )(iq , ( , )p m i , ( , )q m i ,  

for  Nm ,..,2,1  

1. Initialise 

( 1) ( )  p i p i p t      , tqiqiq   )()1(   , ( ) ( , )
1

N

p i p n i
n

 


  , ( ) ( , )
1

N

q i q n i
n

 


   

for  Nm ,..,2,1  

( , ) ( ) ( , ) ( , )p m i i p m i p m ip H   , ( , ) ( ) ( , ) ( , )q m i i q m i q m iq H    

( , ) ( . ) ( , )m i p m i p m ic H  , 2 2 2
( , ) ( , ) ( , ) ( , )/m i p m i q m i m iy M c    , 1  

2

( , )

( , ) 2
m i

m i

y
w


  

2. Determine plastic parameters  

for  Nm ,..,2,1  

if ( , ) 0m iy   then ( , ) 0p m i   and ( , ) 0q m i   

else ( , )
( , )

( , )

m i
p m i

p m i

w








  , ( , )
( , )

( , )

m i
q m i

q m i

w








  

3. Compute incremental variables 

1 2 22 2

2
( , )

2 2 2 2
1 ( , )

2

1
  

N
p qp p m i

mq q m i

p q

E EE E
p pp q pp

t
q NE E E E

q p q qq

  
 

 





                                                                          


 

 
 

4. Update state variables 

ppp ii   )()1( , qqq ii   )()1(  

for  Nm ,..,2,1  

( , 1) ( , ) ( , )p m i p m i p m i t      , ( , 1) ( , ) ( , )q m i q m i q m i t       

( , 1) ( 1) ( , 1) ( , 1)p m i i p m i p m ip H      , ( , 1) ( 1) ( , 1) ( , 1)q m i i q m i q m iq H       

5. Go to next incremental step 
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Box 4: Strain-driven forward-Euler integration scheme (General stress) 

For given Gibbs free-energy E, ij , t , ( )ij t , ( )ij t , ( )
( )
m

ij t   

for  Nm ,..,2,1  
1. Initialise 

( 1) ( )  ij t ij t ij t      , ( ) ( , )
1

N

ij t ij n t
n

 


   

for  Nm ,..,2,1  

( , ) ( ) ( , ) ( , ) ( , ) ( , )

2

3ij m t ij t p m t kk m t ij q m t ij m tH H        

( , ) ( , ) ( , )m t p m t kk m tc H  , 
2

( , ) ( , ) ( , )
( , ) ( , )2

3
0

9 2
kk m t ij m t ij m t

m t m ty c
M

   
    , 1  

2

( , )

( , ) 2
m t

m t

y
w


  

2. Determine plastic parameters  
for  Nm ,..,2,1  
if ( , ) 0m ty   then ( , ) 0ij m t   

else ( , )
( , )

( , )

m t
ij m t

ij m t

w








   

3. Compute incremental variables 
1

2 2

( , )
1 ( , )

1
  

N

kl ij ij m t
mij kl kl m t ij

E E
t

N
  

   





                            
   

4. Update state variables 

( 1) ( )  ij t ij t ij       

for  Nm ,..,2,1  

( , 1) ( , ) ( , )ij m t ij m t ij m t t       

( , 1) ( 1) ( , 1) ( , 1) ( , 1) ( , 1)

2

3ij m t ij t p m t kk m t ij q m t ij m tH H             

5. Go to next incremental step 

 

3.3.2 Numerical Integration of Hardening Function 

In equation (3.1) or (3.10), Gibbs free energy is completely described with the 

integration of hardening function Ĥ  and kinematic hardening variables  ̂
 
in terms of 

internal coordinate . For instance, a hyperbolic function ( )f   expressed in Equation 

(3.48) is supposed to integrate numerically. The numerical integration techniques can be 

employed and verified by the closed-form solution. The definite integration of  ( )f   

can be algebraically obtained by 1F  as shown in Equation (3.49).  

 3ˆ ˆ( ) 1if H H     (3.48) 
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   
11

4

1
0

1 1
1

4 4o

F f d        (3.49) 

Various quadrature rules emanated from the method of differential slices are 
employed in this study. As shown in Equation (3.50), three general integrators which 

are equivalent to forward-quadrature 2F  , backward-quadrature 3F  and midpoint 

quadrature 4F  are expressed. The continuous function of ( )f   is discretised to N slices 

with equal width 1/N where N is number of yield surfaces. Therefore, integration of 

( )f   is the area summation of each slices. It can be seen that    is replaced by i N  in 

2F ,  1i N in 3F and  0.5i N  in 4F  where i is i-th active yield surface. To obtain 

zero hardening response from the last N-th yield surface, 2F  should be the best 

candidate because 0
i

f
N

   
 

 when i N . However,   it causes the singularity problem 

due to division by zero at initialisation of internal state variables (yield surface location) 

like pp Hp ˆˆ 0 . 

2 3 4
1 1 1

1 1 1 1 0.5
 ,  , 

N N N

i i i

i i i
F f F f F f

N N N N N N  

             
     

    (3.50) 

 

Figure 3.7 Numerical study result of some integration schemes. 

 

To prevent this singularity problem, then the hyperbolic function ( )f  expressed 

in Equation (3.48) is modified in to  3ˆ ˆ( ) 1if H H r     where r is ranged between 

0 and 1. Equation (3.48) can be numerically integrated without singularity problem by 
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using 3F and 4F  though zero hardening response from the last N-th yield surface cannot 

be exactly attained. Furthermore, a numerical study is performed in according to 
investigate the computational effect of these integration rules. Figure 3.7 shows that 

4F need less number of yield surfaces N compared to 2F and 3F in according to obtain 

the definite integration of hardening function (marked by solid line). 

Figure 3.8 shows the stress-strain response using F2, F3, and F4 for several N 

number of yield surfaces. It also shows that 4F need less number of yield surfaces N 

compared to 2F in according to integrate the specified hardening functions in this model. 

 

Figure 3.8 Comparison of several numerical integration schemes. 

 

3.3.3 Effect of Time Step and Number of Yield Surfaces 

Effect of time step on the accuracy and numerical stability of pseudo rate-
dependent algorithm have been reported by several researchers (Cormeau, 1975; Potts, 
2003). In these cases, the rate-dependent algorithm was implemented on elasto-perfectly 
plastic and isotropic hardening model. Due to the limitations, pseudo rate-dependent 
algorithm approaches a rate-independent calculation by assuming a sufficient small 

value of time step and pseudo viscosity coefficient (  ). However, the advantage of 

rate-dependent algorithm is that these parameters have actual physical meaning and it 
can be directly used for modelling real time response in soil mechanics. 

On the implementation of the hyperplasticity non-linear KHMCC with multiple 
kinematic hardening surfaces, this effect also apparent as shown in Figure 3.9 and 3.10, 
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with constant number of yield surfaces N and different time steps dt. It can be 
concluded that the numerical stability is affected by increasing time step.  

 

Figure 3.9 Effect of time step and number of yield surfaces with 

dt = 1 x 10-5,    = 1 and N = 5. 

 

 
Figure 3.10 Effect of time step and number of yield surfaces with 

dt = 1 x 10-6,    = 1 and N = 5. 
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Figure 3.11 Effect of time step and number of yield surfaces with  

dt = 1 x 10-5,    = 1 and N = 50. 

 
Figure 3.12 Effect of time step and number of yield surfaces with  

dt = 1 x 10-6,    = 1 and N = 50. 

 

It is observed that the stress-strain response smoother when the number of yield 
surfaces is increased as shown in Figures 3.11 and 3.12. Figure 3.13 shows more clearly 
effect of number of yield surfaces to the stress-strain characteristic. Figure 3.14 
indicates that calculation running time increases linearly against increasing number of 
yield surfaces. This simple computation was running by Intel®Core™ 2 T7250 2.0 GHz. 
However, as faster computers become available, the computation time will be 
significantly reduced. 
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Figure 3.13 Demonstration with different number of yield surfaces. 

 
Figure 3.14 Plot of running time against N. 

 

3.3.4 General Stress-Strain Implementation 

   For general stress and strain, as a result of moment equilibrium demands there 

are still six independent  stress components: three normal stresses (xx, yy, zz) and 

three shear stresses (xy, yz, zx), are called the components of the stress tensor ij as 

shown in Equation (3.51) . 

11 12 13

21 22 23

31 32 33

 
x xy xz

ij yx y yz

zx zy z

     
      

     

  
      
     

      (3.51) 
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Based on Equation (3.38), it can be shown that the incremental of stress-strain 
relationships of rate dependent strain-driven forward-Euler integration scheme in 
general stress is: 

1111 1122 1133 1112 1123 1131

2211 2222 2233 2212 2223 2231

3311 3322 3333 3312 3323 3331

1211 1222 1233 1212 1223 1231

2311 2322 2333 2312 2323 2331

3111 3122 3133 3112 3123 3131

 

C C C C C C
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          (3.52) 
In the Equation (3.52), the evolution rule of kinematic internal variable functions 

tensor ˆ
ij  is determined using Equation (3.39). However, for computer programming 

purposes, the component of tangent compliance matrix Cijkl in Equation (3.52) can be 
easier determined when we re-write the tangent compliance matrix in Box 1 (second 
derivatives of Gibbs free energy in respect to stresses) in expanded form as shown in 
Box 3.  

Box 3: Tangent compliance matrix in expanded form for general stress implementation 
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3.3.5 Two -dimensional stress-strain implementation 

In two-dimensional case, there are usually four stresses tensor component 

involved: three normal stresses (xx, yy, zz) and one shear stress (xy) as shown in 

Equation (3.53). 

11 12

21 22

33

0 0

 0 0

0 0 0 0

x xy

ij yx y

z

   
    

 

   
       
      

       (3.53) 

Then, the incremental of stress-strain relationships of rate dependent strain-
driven forward-Euler integration scheme in Equation (3.52) can simply defined as 
shown in Equation (3.54). 
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 (3.54)

The component of tangent compliance matrix Cijkl and the in Equation 
(3.54)

 can 

be also easier determined using expanded form in Box 3.  Also, the evolution rule of 

kinematic internal variable functions tensor ( , )ij m t  is determined using Equation (3.39). 

   For computer programming purposes, it can be simpler if we define index 

notation 1 2 3 4, , ,     are equivalent to 11 22 33 12, , ,     and 1 2 3 4, , ,     are equivalent 

to 11 22 33 12, , , 2    . Similar definition also applied for 1 2 3 4, , ,     which are equivalent 

to 11 22 33 12, , ,    and 1 2 3 4, , ,     are equivalent to 11 22 33 12, , , 2    .  The Gibbs free 

energy and yield function can be re-written as shown in Box 4. Then, the incremental 
stress-strain relationships in Equation (3.54) can be re-written as in the following: 
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  (3.55)

The component of tangent compliance matrix Cij in Equation (3.55) can be 
simply defined in expanded form as shown in Box 5. The effective generalised stress 

tensor ( , )ij m t  is calculated using Equations (3.56) and(3.57). And the kinematic internal 

variable function tensor ( , )ij m t  is calculated using Equations (3.58) and (3.59). 
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Box 4: Gibbs free energy and yield function for two-dimensional implementation 

Gibbs free energy for n ≠ 1: 

 

 

3

2 ( ) 3
4( , )1

( ) ( ) 4( )1
1

2
323 4( , )2

( , ) ( , )
( , ) ( , ) 1

1

1

2
3 (1 ) 2(1 )(2 )

2
21

2 3

n i t
m te i

i t i t tn
ir

m t
q m t i m t

p m t i m tN i
i

m

p
E

k np k n n

HH

N

 
  















 
      

   
                   
 
 
 
 







 
Gibbs free energy for n ≠ 1: 

 
 

 

3 3 3
2 2

( ) ( ) ( ) 4( ) 3
4( )1 1 1

( ) ( ) 4( )3
1

( )
1

2
323 4( , )2

( , ) ( , )
( , ) ( , ) 1

1

3 2
ln 1 2

3 3 2
4

2
21

2

i t i t i t t
ti i i

i t i t t
ir

i t
i

m t
q m t i m t

p m t i m t i
i

E
k p

g

HH

N

    
  






  








                        
  

             

  






 

1

23 3
2 2

( ) ( ) 4( )
12 1

3

where

(1 ) 2

9 2

N

m

i t i t t
i i

e

k n
p

g

  



 

 
  

   
 
 
 
 

 
   

  



 
 



50 
 

 
 

Yield function: 
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Box 5: Tangent compliance matrix in expanded form for two-dimensional 
implementation 
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3.3.6 Geometric Idealisation 

Due to the special geometric characteristic in the real geotechnical problems, 
certain idealisations should be made. There are two kinds of geometric idealisation 
usually applied in geotechnical problems i.e.: plane strain and axi-symmetry. 

For plane strain problems the thickness dimension normal to a certain plane (say 
the xy plane) is large compared with the typical dimensions in xy plane and the body is 
subjected to loads in the xy plane only. It may be assumed that the displacements in the 
z direction are negligible and the displacements u and v are independent of the z 
coordinate, it means that: 

0; 0; 0z yz zx             (3.60) 

Then the constitutive relationship in Equation (3.54) reduces to: 
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Some problems in geotechnical engineering are categorised as axi-symmetry. In 
this problem it is usually to perform analysis using cylindrical coordinates r (radial 

direction), z (vertical direction) and  (circumferential direction). Due to the symmetry 

condition, there is no displacement in the  direction and the displacement in the r and z 

directions are independent of , it means that: 

0 and 0r z            (3.62) 

therefore the strains reduce to (Timoshenko and Goodier, 1951): 
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Figure 3.15 shows some examples of these problems in geotechnical engineering. 

(a) 

 

 

(b)

Figure 3.15 Examples of (a) plane strain and (b) axy-symmetry problems (Potts 
and Zdravkovic, 1999). 

 

3.4 Verification of Numerical Model Implementation with Analytical Solution 

To verify the performance of the numerical model implementation, the 
analytical solution of simple idealised undrained triaxial test on normally consolidated 
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clay has been considered. This solution has been obtained by theoretically integrating 
the MCC constitutive equation over the imposed stress or strain path (Roscoe and 
Burland, 1968; Potts, 1994). These solutions are given in the following equation: 

 1
/1

0 











p

p
pMq  (3.64) 

where p0 is mean effective stress on the isotropic virgin consolidation line and 

1



   . The above equation provides the stress path in q – p space, since p0 remain 

constant in an undrained test. The material properties assumed in this validation are 
given in Table 3.2.  

 

Table 3.2 Material properties for simple idealised undrained triaxial test 

Slope of virgin consolidation line in -ln p’ space  0.066 
Slope of swelling line -ln p’ space  0.0077 

Slope of critical state line in q – p space M 1.2 
p0  200 kPa 

Material constant g 100 

 

 
Figure 3.16 Stress path response of idealised undrained triaxial test on 

normally consolidated clay. 

 

In this validation, full pressure-dependent is considered for non-linear KHMCC 
model under single yield surface using n = 1, and other parameters are k = 232, a = 1.1. 
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Result for this validation is shown in Figure 3.16. It is shown that the numerical 
prediction of non-linear KHMCC model is in good agreement with analytical solution. 

 

3.5 Numerical Demonstration 

This part shows several numerical demonstrations of the non-linear KHMCC 
model. All attempts of demonstration are to emphasize the performance of 
hyperplasticity framework which can contain several complicated characteristics of 
constitutive models under the unified framework. All the following demonstrations use 
the parameter g = 242, k = 1200, n = 0.6, M = 0.71, and a = 3.5 for non-linear KHMCC 

then M = 0.71,  = 0.2 and  = 0.6 for MCC model. 

 

3.5.1 Smooth Transition from Elastic to Plastic Behaviour 

Figures 3.17 and 3.18 show the stress path and stress-strain curve of undrained 
triaxial test of lightly-overconsolidated clay. The sample is consolidated with isotropic 
consolidation pressure p = 500 kPa then unloaded to p = 300 kPa (OCR = 1.67) and 
after that the sample is sheared under undrained condition. It is clearly shown that non-
linear KHMCC model can simulate smooth transition from elastic to plastic behaviour 
comparing with the MCC prediction. The characteristic S-shaped curve for the variation 
of stiffness with log of strain clearly present in Figure 3.19. 

 

 
Figure 3.17 Undrained stress path of overconsolidated clay. 
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Figure 3.18 Undrained stress-strain response of overconsolidated clay. 

 

 
 Figure 3.19 Normalised secant stiffness against log of strain of 

overcosolidated clay. 

 

3.5.2 Effect of Immediate Past Stress History 

Atkinson (1990) and Houlsby (1999) observed an additional influence on the 
stress-strain behaviour that is the immediate or recent stress history of soil described by 
the most recent loading, which may take the form of an extended period of rest or a 
sudden change in the direction of the stress path. Figure 3.20 shows a given series of 
stress points (A, B and C). Two cases of consolidated stress path are given i.e. ACB and 
ACAB. To demonstrate the effect of immediate past stress, we shall consider two 
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undrained tests from point B, which have OCR of 1.5. Wherein, point B has been 
approached by two sets of drained loading from the direction of point A and C. Also 
shown in Figure 3.20, all stress histories located within the MCC surface. 

Figure 3.21 shows the demonstration results of undrained stress-strain curves 
when sample is sheared from point B. For MCC model, because all stress points lie 
within this surface, the model gives the same purely elastic response for both two cases.  

 

 

p 

q 

A B C

 

Figure 3.20 Series of stress point with different stress paths for over 
consolidated clay. 

 

 

Figure 3.21 Stress-strain response after different recent stress histories. 
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It is clearly shown one of the drawbacks of the MCC model. On the other hand, 
the two responses from the non-linear KHMCC model are quite different. Response of 
ACAB is softer rather than ACB, because of the swelling effect that occurred during 
unloading to point A. The effect of recent stress history on the stiffness is more clearly 
shown in Figure 3.22, which shows plot of normalised secant stiffness G/G0 against the 
deviatoric strain. 

 

Figure 3.22 Effect of immediate stress history on the stiffness. 

 

Figure 3.23 shows two undrained stress paths response from non-linear KHMCC 
and MCC model. It is obvious that the non-linear KHMCC model can predict the 
dependence of effective stress path on the immediate stress history during undrained 
shear as observed by Stallebrass and Taylor (1997) comparing with the MCC model. 

 

3.5.3 Unloading-Reloading Cycles 

Figures 3.24 and 3.25 show cyclic load response of non-linear KHMCC and 
MCC model, respectively. The non-linear KHMCC model demonstration shows a 
hysteresis loop and smooth transition of stiffness during unloading-reloading compared 
to MCC model. The non-linear KHMCC model can explains the fact that the openness 
of the hysteresis loop increases with strain amplitude. 
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Figure 3.23 Stress paths response after different immediate stress histories. 

 

Figures 3.26 and 3.27 show the demonstration results from five cycles of 
unloading-reloading undrained stress-strain curve with confining pressures of 500 kPa 
using non-linear KHMCC and MCC model, respectively. It is shown that the non-linear 
KHMCC model can describe the stress-strain response of the repetitive unloading-
reloading undrained shear. 

 

Figure 3.24 Closed hysteresis loop response of non-linear KHMCC model. 
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Figure 3.25 Closed hysteresis loop response of MCC model. 

 

Figure 3.26 Unloading-reloading undrained stress-strain response of non-linear 
KHMCC model. 
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Figure 3.27 Unloading-reloading undrained stress-strain response of MCC model. 

 

3.6 Summary 

Formulation of the non-linear KHMCC model in triaxial and general stress 
variables as well as an approach to determine the necessary parameters obtained from 
experimental tests for regulating small-strain stiffness characteristic in form of power 
function of pressure has been presented. The stiffness factor for the kinematic hardening 
has been made as power function of initial preconsolidation pressure. Further, some 
important issues on the numerical implementation of this model have been discussed, 
including incremental stress-strain response algorithm, numerical integration of 
hardening functions, effect of time increment and number of yield surfaces. The rate-
dependent multisurface hyperplasticity algorithm using strain driven forward-Euler 
integration scheme is employed in this study to reduce complexity of treatment from 
numerical error. It is also shown that the numerical stability of rate-dependent algorithm 
is clearly affected by the increment of time step. It is observed that the stress-strain 
response smoother when the number of yield surfaces is increased. Numerical study 
also indicate that running time of multiple kinematic hardening model increases linearly 
against increasing number of yield surfaces. However, availability of high-speed 
computer can significantly reduce time computation. Validation of the numerical model 
implementation against analytical solution of simple idealised undrained triaxial test 
show that the model has been successfully implemented. Finally, numerical 
demonstrations show that the non-linear KHMCC model can demonstrate some 
important aspects in soil mechanics such as small-strain stiffness, effects of immediate 
past stress history behaviour, a hysteresis loop and smooth transition of stiffness during 
unloading-reloading cycles. Nevertheless, the anisotropy can be loosely explained by 
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the immediate stress past. The softening behaviour should be explored in the future in 
order to realize the promising features of the model on soil destructure. In the next 
chapter the developed model will be compare with experimental data of clay soils. 
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CHAPTER IV.   SOME COMPARISONS WITH 
EXPERIMENTAL DATA OF CLAY SOILS 

CHAPTER 4. SOME COMPARISONS WITH EXPERIMENTAL DATA OF CLAY SOILS 

4.1 Introduction 

The development of non-linear KHMCC model under triaxial and general stress 
condition has been presented in Chapter 3. Though several demonstrations to show 
features of the developed model have been presented, comparisons this model to 
experimental data has not been carried out.  

This chapter presents comparisons of the developed model with some 
experimental on clay soils. The comparisons are performed using single-element 
calculation. 

 

4.2 Loading Path Dependence and Non-Linear Stiffness at Small-Strain 

4.2.1 Introduction 

Detailed experimental investigations on the stress-strain response of 
overconsolidated soil have also shown characteristics dependence on both non-linearity 
and most recent loading paths (Jardine et al., 1984; Atkinson et al., 1990; Stallebrass 
and Taylor, 1997; and Houlsby, 1999).  The effect of current loading history has also 
been observed by a different experimental approach (Jardine, 1985; Jardine, 1992; and 
Smith et al., 1992). They found that there are zones exist at small-strain and its can 
change in both of shape and size as the soil is subjected to different loading histories. 

The importance of these two behaviours in predicting load-deformation on soil-
structure interaction problems have been observed with many cases in the field (Jardine 
et al., 1986; Jardine et al., 1991; Gunn, 1993, and Addenbrooke, 1997). 

This section presents a comparison of experimental results of current state and 
loading history dependence in overconsolidated clay with non-linear KHMCC model 
prediction. An experimental undrained triaxial test on Speswhite kaolin (Stallebrass & 
Taylor, 1997) has been selected. This experimental have been conducted to show a non-
linearity and current state and loading history dependence on relative directions of the 
current and previous loading paths in overconsolidated clay.  Model validation is 
performed with response of tangent shear stiffness against stresses. Further, the 
experimental result of unloading-reloading at small-strain is also compared to model 
prediction. In addition, study about effect of number of yield surfaces against stress-
strain response is carried out.  
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4.2.2 Model Comparison 

Atkinson (1990),  Jardine (1985, 1992), Smith et al. (1992), Stallebrass and 
Taylor (1997) and Houlsby (1999) observed an additional influence on the stress-strain 
behaviour that is the loading paths dependence or immediate stress history of soil 
described by the most recent loading, which may take the form of an extended period of 
rest or a sudden change in the direction of the stress path. They found that there are 
zones exist at small-strain and its can change in both of shape and size as the soil is 
subjected to different loading histories. 

Stallebrass (1990) and Stallebrass and Taylor (1997) have been conducted 
experimental undrained triaxial test on Speswhite kaolin and simulated the results using 
Three-Surface Kinematic Hardening (3-SKH) model (Atkinson and Stallebrass, 1991). 
They plotted the results with tangent shear stiffness Gt against deviatoric stress q as 
shown in Figure 4.1. Table 2 shows 3-SKH soil model parameter in this simulation. 

 

Figure 4.1 Prediction of tangent stiffness Gt-deviatoric stress q of 3-SKH model 
compared with experimental results (after Stallebrass and Taylor, 1997). 

 

Table 4.1 Summary of 3-SKH model parameters of Speswhite Kaolin (after 
Stallebrass and Taylor, 1997) 

M * ecs * G [kPa] T S  
0.89 0.073 1.994 0.005 1964p0.65Ro

0.2 0.25 0.08 2.5 

In this study, we simulated the experimental with a given series of stress points 
(A, B, C, D, and E) as shown in Figure 4.2. Four cases of consolidated stress path are 
given i.e. ACB, ACAB, ACBDB, and ACBEB represent a sudden change in the 
direction of the stress path before undrained shearing stage at point B, which have OCR 
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of 2.4 (p0 = 300 kPa and pm = 720 kPa). Also shown in Figure 4.2, all stress histories 
located within a bounding yield surface. 

     

A    B

D

E

C p

q

 

Figure 4.2 Series of stress point with different stress paths for over consolidated 
clay. 

 

In this simulation, the small-strain stiffness parameters g, k and n are obtained 
using stiffness relationships in Table 4.1 normalised to Equation (3.46) with 1 atm (100 
kPa) as a reference pressure. Equation (4.1) shows the small-strains stiffness 
relationship used in this simulation. Then the constant k can be determined using 

Equation (3.44) with poisson ratio  of 0.3. The kinematic hardening parameter a is 

determined from small parametric study of actual stress-strain curve as shown in Figure 
4.3.Table 4.2 summarises non-linear KHMCC model in this simulation. 

0.65

467
r r

G p

p p

 
  

 
       (4.1) 

Figures 4.4 and 4.5 show the fields of yield surfaces at initial condition and after 
the four different stress paths. 

 

Table 4.2 Summary of non-linear KHMCC model parameters of Speswhite kaolin 

k 1012 
dimensionless material constant g 467 

n 0.65 
M 0.89 Slope of critical state line in q-p plane 
a 15 Kinematic hardening parameter 
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Figure 4.3 Parametric study of kinematic hardening parameter a. 

 

 

Figure 4.4 Position of yield surfaces at initial condition. 

 

Figure 4.6 shows the comparison result which show plot of normalised tangent 
shear stiffness Gt against the deviatoric stress. This plot shows clearly that the small-
strain stiffness is affected by loading path history. Prediction of the model is also in a 
good agreement with the experimental result. However, some irregularities appear in the 
curve are a result from numerical discretisation.  Figure 4.7 shows four undrained stress 
paths response from non-linear KHMCC. It is obvious that the non-linear KHMCC 
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model can predict the loading paths dependence during undrained shear. Finally, model 
is verified to simulate unloading-reloading behaviour at small-strain compared with the 
experimental test data as shown in Figure 4.8. The model prediction shows that it can 
model a non-recoverable strain during unloading reloading response. It also shows that 
stiffness reduction for larger stress change is in good agreement with experimental 
result. The simulations using 100 numbers of yield surfaces, except the unloading-
reloading response is carried out using 50 numbers of yield surfaces. This simple 
computation is performed by Intel Pentium M 1.6 GHz. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.5 Position of yield surfaces after four different stress histories. 

 

4.2.3 Effect of number of yield surfaces 

This numerical study aims to see the effect of number of yield surfaces in the 
response of different stress paths and try to find the optimum number of yield surfaces 
according to obtain accurate result. The numerical study is performed using 1, 2, 10 and 
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100 yield surfaces, and the effect is shown in stress-strain and stress path responses in 
Figures 4.9 and 4.10. 

 

Figure 4.6 Prediction of tangent stiffness Gt-deviatoric stress q of non-linear 
KHMCC model compared with experimental results. 

 

 

Figure 4.7 Prediction of stress paths of non-linear KHMCC model after different 
loading histories. 

 

 



68 
 

 
 

 

Figure 4.8 Prediction of unloading-reloading response at small-strain of non-linear 
KHMCC model compared with experimental result. 

 

 

 

 

 

Figure 4.9 Effect of number of yield surfaces on the stress-strain response. 
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Figure 4.10 Effect of number of yield surfaces on the stress paths response.

 

It is clearly shown in the Figures 4.9 and 4.10 that the stress-strain and stress 
path responses are influenced by number of yield surfaces. It can concluded that 20 
number of yield surfaces are adequate to obtain accurate result. 

 

4.3 Response of K0-consolidated Undrained Direct Simple Shear (CK0UDSS) 
Test of Bangkok Clay 

4.3.1 Introduction 

   The purpose of a simple shear test is to determine shear strength parameters 
and the stress-strain behaviour of soils under loading conditions that closely simulate 
plane strain and allow for the principal axes of stresses to rotate. The stress states in 
soils for many geotechnical problems are akin to simple shear. Ladd (1991) presented a 
well-known simple illustration of stress condition of soil during staged construction of 
embankment on clay as shown in Figure 4.11. The soil mass beneath embankment is 
assumed in the triaxial compression (TC) condition; on the other hand, the soil mass 
around the toe slope of the embankment is assumed in the triaxial extension (TE) 
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condition. However, the soil mass between these two conditions can accurately 
simulated using the direct simple shear (DSS) test. 

DSS

TCTE

Circular slip

v

h
h

v

h

zx

h

v

h h

 

Figure 4.11 Stress conditions during staged construction of embankment on clay 
(after Likitlersuang et al., 2008). 

 

This section presents a comparison of experimental results of K0-consolidated 
Undrained Direct Simple Shear (CK0UDSS) Test of Bangkok Clay (Konkong, 2007) 
with non-linear KHMCC model prediction. Model prediction of stress-strain and stress-
paths response is compared to experimental data of monotonic simple shear response of 
normally consolidated Bangkok Clay 

 

4.3.2 Review of Experimental Works 

The soil laboratory tests were carried out using Geonor H12 DSS apparatus 
(NGI-type) at Chulalongkorn University. The specimens were prepared in cylindrical 
shape whose vertical side is enclosed by a wire reinforced rubber membrane. During the 
consolidation state, the samples were one-dimensional (K0) consolidated by applying 

the normal (vertical) effective stress ( vc ) (see Figure 4.12). These tests were 

conducted at a strain rate of 5% per hour. A computer interfaced data acquisition system 
has been set up to obtain a continuous record of test data. A full time-histories of 

horizontal shear stress (), change (decrease or increase) in vertical stresses that equal to 

induced excess pore water pressure, u) and horizontal shear strain () have been 

monitored. 
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Figure 4.12 Stresses imposed on sample under direct simple shear test (after 
Likitlersuang et  al., 2008). 

 

Table 4.3 Index properties of soil samples (After Konkong, 2007) 

Index Properties Values 
Moisture content (%) 59 – 62 
Liquid Limit , LL (%) 78 – 83 
Plastic Limit, PL (%) 41 – 44 
Plasticity Index, PI (%) 37 – 39 
Specific Gravity, Gs 2.64 
Unit Weight,  (t/m3) 1.633 

 

A K0-consolidated undrained direct simple shear tests (CK0UDSS) with 
constant-volume was conducted on the samples. In constant-volume DSS test, volume 
of the sample is essentially constrained against changes during shear. It has been shown 
on a normally consolidated clay that change in applied vertical stress required to 
maintain the volume constant is equal to developed pore pressure in an undrained DSS 
test as Degroot (1992). Initially, the samples were consolidated to various effective axial 

consolidation stress (’vc) level, between 200 to 500 kPa. The preconsolidation pressure 

or maximum past stress (’vm) of the clay was predicted about 130 kPa. Therefore, 

consolidation of samples to ’vc above 130 kPa essentially assured that all the samples 

tests were normally consolidated. The stress-strain and stress-path response of these 
tests are presented in Figures 4.13 and 4.14, respectively. 
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Figure 4.13 Stress-strain curves of CK0UDSS tests of Bangkok Clay (After 
Konkong, 2007) 

 

 

Figure 4.14 Stress-paths curves of CK0UDSS tests of Bangkok Clay (After 
Konkong, 2007) 

 

4.3.3 Model Comparison 

In this validation, both linear (n = 1) and non-linear KHMCC (n ≠ 1) model are 
used to predict the stress-strain response CK0UDSS tests of Bangkok Clay. Table 4.4 
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and Table 4.5 summarise linear and non-linear KHMCC model parameters. For linear 
KHMCC model, dimensionless material constants are directly obtained from 
observation of stress-strain response of CK0UDSS of Bangkok Clay, whereas for non-
linear KHMCC model are obtained based on relationship between initial stiffness and 
pressure of Bangkok Clay proposed by Techavorasinskun et. al. (2002) as shown in 
Equation (4.2) after normalised into Equation (3.46).  

0.6

242
r r

G p

p p

 
  

 
 (4.2) 

The constant k is obtained from Equation (3.44) with 0.41  (typical value of 

K0 of Bangkok clay is around 0.68 (Shibuya et. al., 2001)). The slope of critical line (M) 
is observed from the undrained stress paths in Figure 4.9, and relationships in Equation 
(3.40). Finally, kinematic hardening parameter a is determined from procedures which 
are explained in the previous section as shown in Figure 4.15. 
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Figure 4.15 Determination of parameter a 

 

Figure 4.16 to Figure 4.19 show comparisons between model prediction and 
experimental results of CK0UDSS of Bangkok Clay. 

 

Table 4.4 Summary of linear KHMCC parameters of Bangkok Clay 

Parameters Values Physical meaning 

k 300 small-strain dimensionless material 
constant g 61 
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n 1.0 

M 0.82 Slope of critical state line in q-p plane 

a 3.6 Kinematic hardening parameter 

 

Table 4.5 Summary of non-linear KHMCC parameters of Bangkok Clay 

Parameters Values Physical meaning 

k 1200 
small-strain dimensionless material 
constant 

g 242 

n 0.6 

M 0.82 Slope of critical state line in q-p plane 

a 8.8 Kinematic hardening parameter 

 

 

Figure 4.16 Linear KHMCC model prediction of stress-strain curves of CK0UDSS 
tests of Bangkok Clay 
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Figure 4.17 Linear KHMCC model prediction of stress-paths of CK0UDSS tests of 
Bangkok Clay 

 

 

Figure 4.18 Non-linear KHMCC model prediction of stress-strain curves of 
CK0UDSS tests of Bangkok Clay 
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Figure 4.19 Non-linear KHMCC model prediction of stress-paths of CK0UDSS 
tests of Bangkok Clay 

 

The model predictions show that the model provides a good prediction on the 
stress-strain and stress path curve. However, non-linear KHMCC model gives lower 
strength and stiffer response compared with linear model. These models can also offer 
the effect of confining pressure on stiffness. 

 

4.4 Small-Strain Undrained Compression Behaviour of Bangkok Clay 

4.4.1 Introduction 

Small-strain undrained compression of Bangkok Clay is investigated in the 
laboratory using advanced triaxial apparatus which is incorporated local axial and radial 
strain measurement and bender element system (Yimsiri et al., 2009; Ratananikom, 
2009). Isotropically consolidated undrained triaxial compression tests are carried out on 
both vertically- and horizontally-cut undisturbed specimens to investigate anisotropic 
behaviour of Bangkok Clay. This section presents comparison between prediction of 
non-linear KHMCC model against some observed small-strain characteristics behaviour 
of Bangkok Clay, i.e.: small-strain shear modulus and modulus during undrained 
compression shearing. 
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4.4.2 Review of Experimental Works 

Undisturbed samples were taken from Lad-Prao at depth 0f 10-13 m BGL. The 
index and physical properties is summarised in Table 4.6. 

 

Table 4.6 Index properties of soil samples (after Yimsiri et al., 2009) 

Index Properties Values 
Water content (%) 45 – 60 
Liquid Limit , LL (%) 77 
Plastic Limit, PL (%) 31 
Total Unit Weight,  (kN/m3) 16.1 – 17.3 

 

There are four tests were conducted as shown in Table 4.7. The specimens were 
initially isotropically consolidated to 1 or 2 times of their in-situ isotropic stress. To 
ensure the test was conducted in fully drainage condition, the constant-rate-stress 
consolidation was employed at constant rate of 0.05 kPa/min. Then, the strain-
controlled condition was applied during undrained compression loading stage with 
external axial strain rate of approximately 0.15%/hr. This condition was slow enough to 
prevent a high pore pressure occurred throughout the specimen. 

Further, during isotropic consolidation, the small-strain shear modulus Gvh and 
Ghh are measured from the vertically-cut and horizontally-cut specimen, respectively.  

   

Table 4.7 Triaxial test program (after Yimsiri et al., 2009) 

Test No. Depth (m) e0 p’0 Direction 
CIUC-1V 10.9 1.69 80 Vertical 
CIUC-2V 13.1 1.27 100 Vertical 
CIUC-5V 13.1 1.31 200 Vertical 
CIUC-5H 12.3 12.3 180 Horizontal 

 

The empirical equation in the form suggested by Hardin & Black (1968) is proposed to 
fit the relationships between Gmax and p’ as shown in Equations (4.3) and (4.4). 

0.1026942 '
( )
vhG

p
F e

        (4.3) 

0.1026593 '
( )
hhG

p
F e

        (4.4) 
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These results indicate small degree of small-strain shear modulus anisotropy. 

 

4.4.3 Model Comparison 

Table 4.8 summarises non-linear KHMCC model. The constant k is obtained 

from Equation (3.44) with 0.41  (typical value of K0 of Bangkok clay is around 0.68 

(Shibuya et. al., 2001)). The slope of critical line (M) is observed from the undrained 
stress response. Finally, kinematic hardening parameter a is determined from 
procedures which are explained in the previous section. We use data from Test No. 
CIUC-1V and CIUC-2V in this comparison.  

 

Table 4.8 Summary of non-linear KHMCC model parameters 

Test No. Gmax pr 
[kPa] 

g k n M a Direction 

CIUC-1V 
0.102

'
154vh

r r

G p

p p

 
  

 
 40 154 804 0.102 1.6 6 Vertical 

CIUC-2V 
0.102

'
264vh

r r

G p

p p

 
  

 
 50 264 1383 0.102 1.8 6 Vertical 

 

Figure 4.20 and Figure 4.21 show comparison of stress-strain and stiffness 
degradation curves between model prediction and experimental results.  

 

Figure 4.20 Comparison of stress-strain curves between model prediction and 
experimental results 



76 
 

 
 

 

Figure 4.21 Comparison of stiffness degradation curves between model prediction 
and experimental results 

 

The model prediction shows that the model provides a good prediction on the 
undrained strength and small-strain shear modulus. The model can also offer the effect 
of confining pressure on initial stiffness and give a smooth change of stiffness from 
elastic to plastic behaviour. 

4.5 Summary 

A comparison between non-linear KHMCC model prediction and experimental 
results have been presented. Model comparison with small-strain experimental on 
overconsolidated clay soil (Stallebrass and Taylor, 1997) clearly shows that the 
developed model with small number of parameters can accurately simulate the key 
features of small-strain characteristic. Unloading-reloading response of model 
prediction shows a non-recoverable strain and loading path dependence which are good 
agreement with the experimental observation.  

Model comparison with CK0UDSS tests of Bangkok Clay (Konkong, 2007) also 
show that the developed model provides a good prediction on the stress-strain and stress 
path curve. The model can also offer the effect of confining pressure on stiffness.  

Further comparison with small-strain undrained compression test of Bangkok 
Clay (Yimsiri et al., 2009; Ratananikom, 2009) clearly shows that model prediction 
provides a good prediction on the undrained strength and small-strain shear modulus. 
The model can also offer the effect of confining pressure on initial stiffness and give a 
smooth change of stiffness from elastic to plastic behaviour. 
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For further application into actual geotechnical engineering boundary value 
problems, the developed model should be implemented to finite element code. In next 
chapter a rate-dependent continuous hyperplasticity finite element algorithm is 
employed. 
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CHAPTER V.   RATE-DEPENDENT CONTINUOUS 
HYPERPLASTICITY FINITE ELEMENT ALGORITHM 

CHAPTER 5. RATE-DEPENDENT CONTINUOUS HYPERPLASTICITY FINITE ELEMENT ALGORITHM 

5.1 Introduction 

There are two groups of material behaviour usually involved in the finite 
element calculation, i.e.: a rate-independent material that is the response is the 
irrespective of the strain rate or shows some small dependence on the strain rate; and a 
rate-dependent material that is the state of stress and strain exhibit a time dependence. 
The first material group can consist of materials such as linear elastic material, non-
linear elastic and elasto-plastic material; and second group can consist of linear viscous 
material, non-linear viscous and elasto-viscoplastic material. 

We will not go in detail in these subjects, but in this chapter we will describe 
rate-independence as the particular case of rate-dependent behaviour to obtain 
significant simplifications in numerical calculation. A rate-independent finite element 
calculation can be carried out using a rate-dependent algorithm with an artificial very 
small viscosity (Owen and Hinton, 1980; Smith and Griffiths, 1998; and Potts and 
Zdravkovic, 1999).   

 

5.2 Basic Finite Element 

The finite element method usually involves the following steps: 

(1) Discretisation of the problem into finite number of elements. 

The most popular element is isoparametric element which is both the element 
displacement and geometry are expressed using similar interpolation functions 
in terms of natural coordinate.  

(2) Selection of nodal displacement as primary variables. 

Stresses and strains are secondary quantities which are calculated from the nodal 
displacement. 

(3) Derivation of element equations. 

To establish the element stiffness matrix, numerical integration such as Gauss 
Quadrature integration is used, so that stresses and strains are determined at 
integration points. 

(4) Assembly of element equations into global equations. 
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Because usually global equations have large matrix size, some strategies have 
been proposed to develop efficient storage algorithm such as skyline method. 

(5) Formulation of boundary conditions. 

(6) Solving of global equations. 

To solve the global equations, Gauss elimination is usually adopted in the 
calculation. 

Figure 5.1 shows the general steps for finite element calculation.  The basic 
finite element theory is based on the assumption of linear material behaviour. As 
described in Chapter 2 soils do not behave in such a manner, soils behave in such a 
highly non-linear way. It means that strength and stiffness depending on stress and 
strain levels. So that, several solution schemes are available to deal with the non-linear 
constitutive models. Next section describes briefly some solution strategies usually 
applied in the finite element method. Explanation will be emphasised on the rate-
dependent solution scheme or some references call by visco-plastic solution. 
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Figure 5.1 General finite element calculation steps 

 

5.3 Non-Linear Finite Element 

Principally, the non-linearity of the material can be simply approximated by 
small increment of piece-wise linear approximation. Some solution schemes are 
basically proposed to deal with the larger increment of loading (displacement), 
according to reduce computing time, of course, with an acceptable accuracy. 

If the soil is non-linear elastic and/or elasto-plastic, the constitutive matrix [D] in 
Figure 5.1 is no longer constant, but changes with stress and/or strain during 
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incremental of loading (displacement). Figure 5.2 illustrates several solution schemes 
for non-linear finite element method. 

 

(a) 

 
 

(b) 

Figure 5.2 Several solution schemes for non-linear finite element (a) tangent 
stiffness method, (b) Modified Newton Raphson (Potts and Zdravkovic, 1999)  

 

Due to the non-linearity of constitutive behaviour, the governing finite element 
equation is reduced to the following incremental form: 

     i i i

G G GK d R          (5.1) 

where  iGK  is the incremental global stiffness matrix,  i

Gd is the vector of 

incremental nodal displacement,  i

GR is the vector of incremental nodal forces and i 

is the increment number. Regarding to obtain a solution of a boundary value problem 
(BVP), the Equation (5.1) must be solved for each increment. Then, the final solution is 
obtained by summing the results of each increment. The incremental global stiffness 

matrix  iGK is not constant, but varies over an increment of loading (displacement). As 

stated before, this variation can be simply accounted by using very large number of 
small increments. Hence, the solution of Equation (5.1) is not straightforward and 
different solution strategies exist, to ensure the solution satisfying the four basic 
requirements of BVP: equilibrium, compatibility, constitutive behaviour and boundary 
conditions. 

In tangent stiffness method or variable stiffness method (Figure 5.2a), the 

incremental global stiffness matrix  iGK  is assumed to be constant over each increment 

and is calculated using the current stress state at the beginning of each increment. It is 
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clearly shows that in order to obtain accurate solution to highly non-linear problems, 
many small solution increments are required. The solution obtained using this method 
can drift from the true solution and may not fulfil the basic solution requirements. 

The Modified Newton Raphson (MNR) method uses an iterative technique to 
solve Equation (5.1). The first iteration is essentially similar with the tangent stiffness 
method. However, the predicted incremental displacements are used to calculate the 

residual load  as illustrated in Figure 5.1b. Further, Equation (5.1) is solved again with 

this residual load, {}, forming the incremental RHS vector: 

      
1ji i j

G GK d 


         (5.2) 

The superscript j refers to the iteration number and {}0 =  i

GR . This process is 

repeated until the residual load is small. The incremental displacements are equal to the 
sum of the iterative displacements. 

 

5.4 Rate-dependent method 

 

Figure 5.3 Rate-dependent solution scheme for non-linear finite element (Potts and 
Zdravkovic, 1999)  

 
 

This method was originally developed for rate-dependent materials (linear 
elasto-viscoplastic materials). However, in its further application this method is also 
used to calculate the response of rate-independent materials (non-linear elastic and 
elasto-plastic materials), see for detail Owen and Hinton (1980); Zienkiewicz and 
Cormeau (1974). 
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The process of this method illustrates in Figure 5.3. At the beginning of 

increment, the incremental global stiffness matrix  iGK is assembled using elastic 

constitutive matrix [D], so that the visco-plastic strain increment vector at t = t0 

is 
0

0
ivp

t t



  .  It means that at the first increment of load and at t = 0 the Equation 

(5.1) is solved using linear elastic relationships and can be re-written using Equation 
(5.3), according to obtain a first estimate of the nodal displacement. 

     i i i

G G Gt t t
K d R          (5.3) 

The calculated displacements are correct if the resulting stress state lies within 
the yield surface, it means that the behaviour is elastic. If the resulting stress states 
outside the yield surface, the stress state can only be sustained for as short time and 
visco-plastic straining occurs and increases with time, until the visco-plastic strain rate 
is insignificant. At this point, the accumulated visco-plastic strain and associated stress 
change are equal to the incremental plastic strain and stress change respectively. The 
flowchart of this method for elasto-plastic finite element is presented in Figure 5.4. 
From this we can develop flowchart for continuous hyperplasticity finite element as 
shown in Figure 5.5. 

 

5.5 Summary 

Rate-independence as the particular case of rate-dependent behaviour can be 
carried out using an artificial very small viscosity (Owen and Hinton, 1980; Smith and 
Griffiths, 1998; and Potts and Zdravkovic, 1999). There are other several solution 
schemes available to deal with the non-linear constitutive models such as Tangent 
Stiffness and Modified Newton Raphson Method. Some of them are basically proposed 
to deal with the larger increment of loading (displacement), according to reduce 
computing time, of course, with an acceptable accuracy and to satisfy the four basic 
requirements of BVP: equilibrium, compatibility, constitutive behaviour and boundary 
conditions. However, the advantage of the rate-dependent algorithm is that we can 

actually define  as a “true” viscosity coefficient for analysing or modelling actual 

creep behaviour. 
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Figure 5.4 Rate-dependent elasto-plastic finite element calculation steps 
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Figure 5.5 Rate-dependent continuous hyperplasticity finite element calculation 
steps 
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CHAPTER VI.   CONCLUSIONS AND DEVELOPMENT 
FOR FUTURE RESEARCH 

CHAPTER 6. CONCLUSIONS AND DEVELOPMENT FOR FUTURE RESEARCH 

6.1 Conclusions 

As stated in the Chapter 1 Introduction, this study is expected to provide a 
theoretical background and numerical implementation for those who are interested in 
the advancement of critical state soil model and may give a light to model the 
complicated behaviours of soils observed from advanced small-strain laboratory testing 
under the framework of hyperplasticity. Followings are concluding remarks from this 
study.  

 

6.1.1 Recent Issues on the Soil Behaviour 

It is believed that soil is one of natural material which behaves very complex. 
The study of soil behaviour increases since progressive developments of advanced soil 
laboratory tests such as directional shear cell (Arthur & Menzies, 1972), hollow 
cylinder apparatus (High et al., 1983) and bender element system (e.g. Viggiani & 
Atkinson, 1995); and the instrumented soil tests such as strain gauges, electrolevels, 
proximity (Hird & Yung, 1989) and local-deformation transducer.  

Many experimental findings are addressed to pre-failure deformation behaviour 
which is in the past just assumed as a linear elastic relationships. In fact, in soils the true 
linear elastic region is often negligibly small and plastic yielding starts almost 
immediately with straining. Some findings from experimental investigations can be 
summarised as follows: 

(1)  The stress-strain characteristic of soils is non-linear and irreversible, in that the 
initial soil stiffness or small-strain tangent stiffness depends on the stress level. It is 
also affected by other variables, such as the voids ratio, anisotropic stress state, 
and/or the preconsolidation pressure (Hardin, 1978; Houlsby & Wroth, 1991; 
Viggiani, 1992; Rampello et al., 1994) and others. 

(2) Soil behaviour is affected by orientation or its deposited direction, so that soil is 
classified as an anisotropic material (Seah, 1990; Zdravkovic, 1996; Zdravkovic & 
Jardine, 2000) and others. 

(3) Soil has a “memory”, so that the stress-stain behaviour of soil is depends on the 
current state and stress history or consolidation history (after Casagrande, 1932; 
Holtz & Kovacs, 1981); and recent stress history (Som, 1968; Atkinson, 1973, 
1990). 
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(4) Initial stress-strain behaviour of many soils is much stiffer than indicated by 
conventional strain (intermediate to large strain) measurement. It also exhibits a 
non-linear behaviour (Jardine, Symes and Burland, 1984). 

(5) Soils exhibit time dependent behaviour as well as plastic deformation, so that soils 
are also called as viscous material (Mitchell and Soga, 2005). 

 

6.1.2 Recent Advanced Soil Constitutive Models  

Many advanced soil constitutive models based on different concepts have been 
proposed. In fact, it is believed that each model can be valid within its own local realm, 
and that no universal constitutive model has yet been developed that is valid for all 
materials under all conditions. There are three major categorises of recent advanced soil 
models which are addressed to weak point of critical state models, i.e.: bounding 
surface model, multiple surfaces model and hypoplasticity. 

Although, in principally the bounding surface models more efficient than 
multiple surfaces, but they still have three important shortcomings i.e: (1) They often 
require the choice of a number of somewhat arbitrary functions; (2) often the functions 
without obvious physical meaning; (3) they usually fail to describe the effects of the 
immediate past history. 

Multiple surface models are the most promising approach, but they also still 
have some drawbacks, i.e.: (1) they result in a large number of material parameters to be 
specified; (2)  they also result in considerable amount of computation; (3) many of them 
are inherently complex. 

Hypoplasticity model, which is only developed and discussed within few 
researches and has two shortcomings: (1) The constitutive model basically is not based 
on definite physical meanings, (2) The relation between stress rate tensor and stretching 
tensor is nonlinear, which make it very difficult to solve boundary value problems 
because an explicit stiffness matrix based on this model cannot be obtained easily and it 
has no any evidence of solving this problem mathematically and numerically. 

Another issue is that since constitutive models relate to physical phenomena, 
they must be developed without violate certain principles or axioms that govern the 
physical phenomena such as the laws of thermodynamics. Hyperplasticity framework 
which is developed by multiple surfaces describes the behaviour of soils both for clay 
and sand, associative or non associative flow within a rigorous, compact, and consistent 
framework using thermodynamics principles. 

The other reasons are this framework models could be developed without the 
need for additional ad hoc assumptions and procedures, and it makes considerable use 
of potential function and multiple internal variables to predict entire stress-strain 
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response of a material subject to a specified sequence of stress or strain increment. 
Furthermore, some drawbacks of multiple surfaces can be eliminated by introducing an 
infinite number of internal variables. This idea leads to the concept of an internal 
function rather than internal variables. 

 

6.1.3 Model Development and Numerical Implementation 

The main reason to develop a continuous hyperplasticity non-linear KHMCC 
model is fact that the stress-strain characteristic of soils is non-linear and irreversible, in 
that the initial soil stiffness or small-strain tangent stiffness depends on the stress level. 
Formulation of elastic part of non-linear KHMCC’s Gibbs free energy in form of power 
function of pressure is addressed to incorporate this behaviour. An approach to 
determine the necessary parameters obtained from experimental tests for regulating 
small-strain stiffness characteristic in form of power function of pressure has been 
presented. For simplicity, the stiffness factor for the kinematic hardening has been made 
as power function of initial preconsolidation pressure. 

The rate-dependent multisurface hyperplasticity algorithm using strain driven 
forward-Euler integration scheme is employed in this study to reduce complexity of 
treatment from numerical error. It is also shown that the numerical stability of rate-
dependent algorithm is clearly affected by the increment of time step. It is observed that 
the stress-strain response smoother when the number of yield surfaces is increased. 
Numerical study also indicate that running time of multiple kinematic hardening model 
increases linearly against increasing number of yield surfaces. However, availability of 
high-speed computer can significantly reduce time computation. 

Validation of the numerical model implementation against analytical solution of 
simple idealised undrained triaxial test concludes that the model has been successfully 
implemented. Finally, numerical demonstrations show that the non-linear KHMCC 
model can demonstrate some important aspects in soil mechanics such as small-strain 
stiffness, effects of immediate past stress history behaviour, a hysteresis loop and 
smooth transition of stiffness during unloading-reloading cycles. Dependence of small-
strain stiffness on pressure is clearly shown. This model can explains the fact that the 
openness of the hysteresis loop increases with strain amplitude. Model response on 
unloading-reloading behaviour also shows non-recoverable strain amplitude. 

 

6.1.4 Some Comparisons to Experimental Data of Clay Soils 

Model comparisons with experimental data are performed using single-element 
calculation. There are three experimental data has been used to validate the model 
performance, i.e.: small-strain experimental on overconsolidated clay soil (Stallebrass 
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and Taylor, 1997), CK0UDSS tests of Bangkok Clay (Konkong, 2007), and small-strain 
undrained compression test of Bangkok Clay (Yimsiri et al., 2009; Ratananikom, 2009). 

An experimental undrained triaxial test on Speswhite kaolin (Stallebrass & 
Taylor, 1997) has been selected to show performance of the developed model in 
characterising a loading path dependence and non-linearity at small-strain in 
overconsolidated clay.  Model comparison clearly shows that the developed model with 
small number of parameters can accurately simulate the key features of small-strain 
characteristic. A plot of tangent shear stiffness against stresses response from the 
developed model clearly shows a dependence of small-strain with stress level which is 
good agreement with the experimental observation. The model response give a better 
prediction than 3-SKH model might be because the developed model using higher 
number of yield surfaces. However, the strong point from the developed model is we 
can generate more number of yield surfaces, theoretically infinite number of yield 
surfaces, in easy way by introducing an internal function. Furthermore, unloading-
reloading response of model prediction shows a non-recoverable strain and loading path 
dependence which are a good agreement with the experimental observation.  

Model comparison with monotonic loading of CK0UDSS tests of Bangkok Clay 
(Konkong, 2007) also show that the developed model provides a good prediction on the 
stress-strain and stress path curve. The model can also offer the effect of confining 
pressure on stiffness.  

Further comparison with small-strain undrained compression test of Bangkok 
Clay (Yimsiri et al., 2009; Ratananikom, 2009) clearly shows that model prediction 
provides a good prediction on the undrained strength and small-strain shear modulus. 
The model can also offer the effect of confining pressure on initial stiffness and give a 
smooth change of stiffness from elastic to plastic behaviour. 

 

6.1.5 Rate-dependent Continuous Hyperplasticity Finite Element Algorithm 

There are other several solution schemes available to deal with the non-linear 
constitutive models such as Tangent Stiffness mehod, Modified Newton Raphson and 
rate-dependent or visco-plastic method. Some of them are basically proposed to deal 
with the larger increment of loading (displacement), according to reduce computing 
time, of course, with an acceptable accuracy and to satisfy the four basic requirements 
of BVP: equilibrium, compatibility, constitutive behaviour and boundary conditions.  

Rate-independence as the particular case of rate-dependent behaviour can be 
carried out using an artificial very small viscosity (Owen and Hinton, 1980; Smith and 
Griffiths, 1998; and Potts and Zdravkovic, 1999). This method was originally developed 
for rate-dependent materials (linear elasto-viscoplastic materials). 
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However in this study, the rate-dependent finite element algorithm is employed 
according to consider an actual rate-dependent problem in soil mechanics such in creep 

behaviour. We can actually define  as a “true” viscosity coefficient for this kind of 

analysis. 

 

6.2 Development for Future Research 

Although, the developed model can describe almost all important pre-failure 
deformation behaviours in both normally and overconsolidated clay such as recent 
stress history behaviour, non-linearity at small-strain, initial stiffness dependence on 
pressure, as well as rate effect or rate-dependent behaviour (because this model is 

developed using rate-dependent calculation, it means that we can actually define  as a 

“true” viscosity coefficient). But it still has several important shortcomings and requires 
further work in the future are as follows: 

(1) Strength prediction of developed model for soils on dry side of CSL is over 
prediction; this is because the model is developed based on the CSSM. The 
softening behaviour should be explored in the future in order to realize the 
promising features of the model on soil destructure. 

(2) To investigate applicability of other integration schemes according to reduce steps 
of calculation and to improve accuracy when employing large increment of loading 
(displacement). Thirapong et al. (2009) has been initially investigated the 
applicability of consistent integration scheme to kinematic hardening multisurface 
hyperplasticity in one-dimensional problem using Iwan model. They concluded that 
this scheme can raise high accuracy despite of large increments as shown in Figure 
6.1. 
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Figure 6.1 Comparisons of analysed results obtained from stress-driven/strain-
driven forward-Euler schemes and backward-Euler scheme with variation on 

numbers of multiple yield functions and sizes of stress/strain increments 
(Thirapong et al., 2009) 

 

Further research development for applying this algorithm in continuous 
hyperplasticity framework should be encouraged. 

(3) Although the hysteresis loop and unloading-reloading response is predicted well by 
the developed model, further work should be carried out to see performance of 
developed model in larger problem of cyclic loading.  

(4) Implementation of the developed model into finite element code should be 
conducted in the future to evaluate performance of the developed model in real 
geotechnical boundary value problems. The developed rate-dependent continuous 
hyperplasticity finite element algorithm can be used in this future work.    
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$debug 
program NonlinearKHMCC2D 
!**************************************************************************************************** 
!* WHEN YOU USE THIS PROGRAM, PLEASE CITE THE FOLLOWING PAPER IN YOUR REFERENCE.                    
!* 1. Likitlersuang, S. and Houlsby, G.T.                                    
!*    "Development of Hyperplasticity Model for Soil Mechanics",                  
!*     Int. Journal for Numerical and Analytical Method in Geomechanics, No. 30, pp 229 - 254, 2006                    
!* 2. Apriadi, Dedi, Likitlersuang, Suched, Pipatpongsa, Thirapong, Ohta, Hideki               
!*    "On The Numerical Implementation Of Nonlinear Kinematic Hardening Modified Cam Clay Model"* 
!*     The IES Journal Part A: Civil & Structural Engineering, Vol.2, No.3, pp.187-201, August, 2009. 
!*  AND IF YOU FIND A BUG, PLEASE LET US KNOW:       
!*    Dedi Apriadi, e-mail: dedia@geotech.pauir.itb.ac.id      
!*    Suched Likitlersuang e-mail: Suched.L@eng.chula.ac.th                                         
!**************************************************************************************************** 
use material_pro 
use PORTLIB 
implicit none 
double precision, external :: macaulay,delta 
double precision :: p,q,px0,s_vm,pmax,chidev_temp,sdev_temp,ev,es,epsdev_temp 
double precision, allocatable :: 
eps(:),sdev(:),epsdev(:),chi(:,:),chidev(:,:),chi_ii(:),alphadev(:,:),alpha_ii(:) 
integer :: nstage,nstep_calc 
integer :: istage,istep,i,j,iv,jv,kv,plot_inc 
integer, allocatable :: nstep(:),cont(:) 
double precision, allocatable :: tt(:,:),dt(:),s_max(:) 
double precision, allocatable :: AA(:,:),iAA(:,:),BB(:,:,:),CC(:,:),D(:,:,:),H(:) 
integer(2) :: ihr, imin, isec, i100th 
real(4) runtime, TA(2) 
character*80 f_inp,f_out 
character*4  command 
character*4  title(20) 
!******************************************Heading 
write(*,*) '2-D HYPERPLASTICITY NON-LINEAR KINEMATIC HARDENING MODIFIED CAM CLAY MODEL' 
write(*,*) 'Coded by Dedi Apriadi 2007/2009 - Bangkok/Tokyo' 
write(*,*) '' 
call id() 
write(*,*) '' 
write(*,*)'Enter your main input file: ' 
read (*,*) f_inp 
write(*,*)'Enter your main output file: ' 
read (*,*) f_out 
open (unit=3,file=f_inp,status='old') 
open (unit=9,file=f_out,form="formatted",action="readwrite") 
open (unit=2,file="stress.out",form="formatted",action="readwrite") 
open (unit=4,file="strain.out",form="formatted",action="readwrite") 
open (unit=5,file="state.out",form="formatted",action="readwrite") 
write(2,*)'2-D HYPERPLASTICITY NON-LINEAR KINEMATIC HARDENING MODIFIED CAM CLAY MODEL' 
write(2,*)'Coded by Dedi Apriadi 2007/2009 - Bangkok/Tokyo' 
write(2,*)'' 
write(4,*)'2-D HYPERPLASTICITY NON-LINEAR KINEMATIC HARDENING MODIFIED CAM CLAY MODEL' 
write(4,*)'Coded by Dedi Apriadi 2007/2009 - Bangkok/Tokyo' 
write(4,*)'' 
 
write (9,*) 
'====================================================================================================
==============================' 
write (9,*) '  Step Stage    SIG_xx         SIG_yy         SIG_zz         SIG_xy         EPS_xx         
Eps_yy     Eps_zz    Eps_xy' 
write (9,*) 
'====================================================================================================
==============================' 
 
write(5,*)'==========================================================================================
===================================' 
write(5,*)'Nth Yield   step stage      Hp              Hq           alphap         alphaq           c             
Chi_p          Chi_q' 
write(5,*)'==========================================================================================
===================================' 
 
read(3,'(20A4)')title 
read(3,*)command 
 
do while (command.ne.'STOP') 
 
    do_command: select case (command)       ! branch to command  
 
    case ('CONT') 
    !----------------------------------------------------------- 
  call GETTIM (ihr, imin, isec,i100th) 
  write(*,FMT='(A,I2,A,I2,A,I2)')' Started at ',ihr,':',imin,':',isec 
  print*,'' 
 
  write(2,FMT='(A,I2,A,I2,A,I2)')' Started at ',ihr,':',imin,':',isec 
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  write(2,*)'' 
 
  write(4,FMT='(A,I2,A,I2,A,I2)')' Started at ',ihr,':',imin,':',isec 
  write(4,*)'' 
 
  read (3,*)nv,nstage,plot_inc,n 
  read (3,*)flag 
  print*, n,'  NUMBER OF YIELD SURFACES' 
  print*, nstage,'  STAGES' 
  print*,'' 
 
  print*, 'allocating memories........' 
  allocate(tt(nstage,nv)) 
  allocate(dt(nstage)) 
  allocate(nstep(nstage)) 
  allocate(cont(nstage)) 
  allocate(s_max(nv)) 
     
  allocate(eps(nv)) 
  allocate(sdev(nv)) 
  allocate(epsdev(nv)) 
  allocate(alphadev(nv,n)) 
  allocate(alpha_ii(n)) 
  allocate(chi_ii(n)) 
  allocate(chidev(nv,n)) 
  allocate(hp(n)) 
  allocate(hq(n)) 
  allocate(c(n)) 
  allocate(eta(n)) 
  allocate(y(n)) 
  allocate(sig(nv)) 
 
   allocate(alpha(nv,n)) 
  allocate(chi(nv,n)) 
 
  allocate(AA(nv,nv)) 
  allocate(iAA(nv,nv)) 
  allocate(BB(nv,nv,n)) 
  allocate(CC(nv,n)) 
  allocate(D(nv,nv,n)) 
  allocate(H(nv)) 
  allocate(RH(nv)) 
  allocate(LH(nv,nv)) 
  allocate(dsigma(nv)) 
        read(3,*)command 
 
 
 case ('MATE') 
    !----------------------------------------------------------- 
  print*, 'reading material properties........' 
  if (flag==1) then 
   read (3,*) K,r,ap,bp !K=K; G=gp 
   read (3,*) gx,aq,bq,M 
  else if (flag==2) then  !K=K; G=G 
   read (3,*) K,r,ap,bp 
   read (3,*) G,aq,bq,M 
  else if (flag==3) then 
   read (3,*) kx,r,ap,bp   !K=kp'0,G=gp 
   read (3,*) gx,nx,aq,bq,M 
  else if (flag==4) then    !K=kp'0^n pa^(1-n);G=gp'0^n pa^(1-n) DA 
2007 
   read (3,*) kx,r,ap,bp 
   read (3,*) gx,nx,aq,bq,M  !elastic stiffness or small-strain stiffness 
  end if 
        read(3,*)command 
     
 case ('INIT') 
    !----------------------------------------------------------- 
  print*, 'reading initial condition........' 
  read(3,*) s_vm,sig(1),sig(2),sig(3),sig(4) 
  do iv=1,nv    !initial total volumetric and deviatoric 
strain  
   eps(iv)=0.0d0  !eps(1)=eps_xx, eps(2)=eps_yy, eps(3)=eps_zz, 
eps(4)=2*eps_xy 
  end do 
  read(3,*)command 
 
 case ('LOAD') 
    !----------------------------------------------------------- 
  print*, 'reading loading condition........' 
  read (3,*) mu 
  do istage=1,nstage 
   read (3,*) istage, cont(istage)    
   read (3,*) (tt(istage,iv),iv=1,nv) 
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   read (3,*) dt(istage),nstep(istage) 
  end do 
  read(3,*)command 
 
 case ('CALC') 
    !----------------------------------------------------------- 
  print*, 'CALCULATING........' 
  deta=1.0d0/real(n) 
  s_max(1)=s_vm 
  s_max(2)=s_vm 
  s_max(3)=s_vm 
  pmax=(s_max(1)+s_max(2)+s_max(3))/3.0d0 
  p=(sig(1)+sig(2)+sig(3))/3.0d0 
  q=sig(1)-sig(3) 
  ev=eps(1)+eps(2)+eps(3) 
  es=2.0d0/3.0d0*(eps(1)-eps(3)) 
  px0=pmax/2.0d0 
  pr=p 
   
  !Initialisation 
  do iv=1,nv 
   do i=1,n 
    chidev(iv,i)=0.0d0 
    alphadev(iv,i)=0.0d0 
   end do 
  end do 
   
  dgdp_eta_p=0.0d0 
  dgdp_eta_q=0.0d0 
  do j=1,n 
   dgdp_eta_p=dgdp_eta_p+(1-r*eta(j))**bp/(2.0d0*(ap-1.0d0)) 
   dgdp_eta_p=dgdp_eta_q+(1-r*eta(j))**bq/(2.0d0*(aq-1.0d0)) 
  end do 
 
  do iv=1,nv  !initial alpha for all flags except 5  
   do j=1,n 
    eta(j)=real(j)/real(n) 
    if (flag==1) then 
     hp(j)=K*(1.0d0-r*eta(j))**bp/(2.0d0*(ap-1.0d0)) ! Dr. 
Suched 2006 
    else if (flag==2) then 
     hp(j)=K*(1.0d0-r*eta(j))**bp/(2.0d0*(ap-1.0d0)) 
    else if(flag==3) then 
     hp(j)=kx*pmax*(1.0d0-r*eta(j))**bp/(2.0d0*(ap-1.0d0))
  
    else if (flag==4) then        
     hp(j)=kx*pr**(1-nx)*pmax**nx*(1.0d0-
r*eta(j))**bp/(2.0d0*(ap-1.0d0))  !Dedi Apriadi 2007 for non linear hardening 
    end if 
    if (iv<=3) then 
     alpha(iv,j)=px0/(3.0d0*hp(j)) 
    else 
     alpha(iv,j)=0.0d0 
    end if      
   end do 
  end do 
   
     do iv=1,nv 
   do i=1,n 
    eta(i)=real(i)/real(n) 
    if (flag==1) then 
     hq(i)=3.0d0*gx*p*(1.0d0-eta(i))**bq/(2.0d0*(aq-1.0d0))
 !Suched 2006 
    else if (flag==2) then 
     hq(i)=3.0d0*G*(1.0d0-eta(i))**bq/(2.0d0*(aq-1.0d0))  
    else if(flag==3) then 
     hq(i)=3.0d0*gx*p*(1.0d0-eta(i))**bq/(2.0d0*(aq-1.0d0))
   !w/ K=kp'0; G=g p 
    else if (flag==4) then   
     hq(i)=3.0d0*gx*pr**(1-nx)*pmax**nx*(1.0d0-
eta(i))**bq/(2.0d0*(aq-1.0d0)) 
    end if 
    alpha_ii(i)=alpha(1,i)+alpha(2,i)+alpha(3,i) 
    alphadev(iv,i)=alpha(iv,i)-(alpha_ii(i)/3.0d0)*delta(iv) 
    sdev(iv)=sig(iv)-p*delta(iv) 
    epsdev(iv)=eps(iv)-(ev/3.0d0)*delta(iv) 
    c(i)=hp(i)*alpha_ii(i)*eta(i) 
    if(iv<=3) then 
     chi(iv,i)=sig(iv)-hp(i)*alpha_ii(i)-
2.0d0*hq(i)*alphadev(iv,i)/3.0d0  
    else 
     chi(iv,i)=sig(iv)-hq(i)/3.0d0*alphadev(iv,i) 
    end if 
    chi_ii(i)=(chi(1,i)+chi(2,i)+chi(3,i))/3.0d0 
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    chidev_temp=0.0d0 
    chidev(iv,i)=chi(iv,i)-chi_ii(i)*delta(iv) 
    if(iv<=3) then 
     chidev_temp=chidev_temp+chidev(iv,i)**2 
    else 
     chidev_temp=chidev_temp+2.0d0*chidev(iv,i)**2 
    end if   
    y(i)=sqrt(chi_ii(i)**2+1.50d0*chidev_temp/M**2)-c(i) 
   end do 
  end do 
 
  istep=0 
  istage=1 
   
  !Input documentation  
  write(2,'(1x,20A4)')title 
  write(2,*)'' 
  write(2,'(" NUMBER OF YIELD SURFACES",I5)') n 
  write(2,'(" NUMBER OF STAGES",I5)') nstage 
  write(2,*)'' 
  write(2,*)'MATERIAL PROPERTIES' 
   
  write(2,'(" Dimensionless material constants: g=",D10.5,"  k=",D10.5,"  n=",D10.5)') 
gx,kx,nx 
  write(2,'(" Critical state parameter: M=",D10.5)') M 
  write(2,'(" Kinematic hardening parameter: a=",D10.5)') ap  
  write(2,*)'' 
 
  write(4,'(1x,20A4)')title 
  write(4,*)'' 
  write(4,'(" NUMBER OF YIELD SURFACES",I5)') n 
  write(4,'(" NUMBER OF STAGES",I5)') nstage 
  write(4,*)'' 
  write(4,*)'MATERIAL PROPERTIES' 
   
  write(4,'(" Dimensionless material constants: g=",D10.5,"  k=",D10.5,"  n=",D10.5)') 
gx,kx,nx 
  write(4,'(" Critical state parameter: M=",D10.5)') M 
  write(4,'(" Kinematic hardening parameter: a=",D10.5)') ap  
  write(4,*)'' 
     
  !Output documentation  
  write (2,*) 
'===============================================================================' 
  write (2,*) ' Step Stage    Sxx         Syy         Szz         Sxy          p           
q'    
  write (2,*) 
'===============================================================================' 
 
  write (4,*) 
'===============================================================================' 
  write (4,*) ' Step Stage  EPS_xx      EPS_yy      EPS_zz      EPS_xy        Ev          
Es' 
  write (4,*) 
'===============================================================================' 
 
  write (unit=9,FMT='(I5,I5,D12.5,D12.5,D12.5,D12.5,D12.5,D12.5,D12.5,D12.5)') 
istep,istage,sig(1),sig(2),sig(3),sig(4),eps(1),eps(2),eps(3),eps(4) 
  write (unit=2,FMT='(I5,I5,D12.5,D12.5,D12.5,D12.5,D12.5,D12.5)') 
istep,istage,sig(1),sig(2),sig(3),sig(4),p,q 
  write (unit=4,FMT='(I5,I5,D12.5,D12.5,D12.5,D12.5,D12.5,D12.5)') 
istep,istage,eps(1),eps(2),eps(3),eps(4),ev,es 
     
  do istage=1,nstage 
   if (istage==1) then 
    nstep_calc=nstep(istage)/plot_inc 
   else if (istage>1) then 
    nstep_calc=nstep(istage)/plot_inc 
   end if 
   print*, '         stage',istage   
   do istep=1,nstep_calc   !strain increment = 
(nstep*dt)/(nstep(istage)/cut) 
    do i=1,plot_inc      
   !with nstep = total axial/deviatoric strain rate 
     do iv=1,nv     
   !nstep*dt = total axial/deviatoric strain 
      do j=1,n 
       eta(j)=real(j)/real(n) 
       if (flag==1) then 
        hq(j)=3.0d0*gx*p*(1.0d0-
eta(j))**bq/(2.0d0*(aq-1.0d0)) !Suched 2006 
       else if (flag==3) then 
        hq(j)=3.0d0*gx*p*(1.0d0-
eta(j))**bq/(2.0d0*(aq-1.0d0)) 
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       end if 
      
 alpha_ii(j)=alpha(1,j)+alpha(2,j)+alpha(3,j) 
       alphadev(iv,j)=alpha(iv,j)-
(alpha_ii(j)/3.0d0)*delta(iv) 
       sdev(iv)=sig(iv)-p*delta(iv) 
       epsdev(iv)=eps(iv)-(ev/3.0d0)*delta(iv) 
       c(j)=hp(j)*alpha_ii(j)*eta(j) 
       if(iv<=3) then 
        chi(iv,j)=sig(iv)-
hp(j)*alpha_ii(j)-2.0d0*hq(j)*alphadev(iv,j)/3.0d0  
       else 
        chi(iv,j)=sig(iv)-
hq(j)/3.0d0*alphadev(iv,j) 
       end if 
      
 chi_ii(j)=(chi(1,j)+chi(2,j)+chi(3,j))/3.0d0 
       chidev_temp=0.0d0 
       chidev(iv,j)=chi(iv,j)-
chi_ii(j)*delta(iv) 
       if(iv<=3) then 
       
 chidev_temp=chidev_temp+chidev(iv,j)**2 
       else 
         
 chidev_temp=chidev_temp+2.0d0*chidev(iv,j)**2 
       end if   
       
 y(j)=sqrt(chi_ii(j)**2+1.50d0*chidev_temp/M**2)-c(j) 
      end do 
     end do 
 
     call make_dgda(alphadev,alpha_ii,chi) 
     call make_d2gds2(p,sdev,AA) 
     call make_d2gdsda(BB) 
     call make_dwdchi(chidev,chi_ii,CC) 
      
     do iv=1,nv 
      do j=1,n 
       do jv=1,nv 
        D(jv,iv,j)=BB(jv,iv,j)*CC(iv,j) 
       end do 
      end do 
     end do 
 
     do iv=1,nv 
      H(iv)=SUM(D(iv,1:nv,1:n)) !integration of [BB] x 
[CC] in respect to eta 
     end do 
     do iv=1,nv 
      if (cont(istage)==1) then 
      
 RH(iv)=SUM(AA(iv,1:nv)*tt(istage,iv))*dt(istage)+H(iv)*deta*dt(istage)  !for stress control 
      else if (cont(istage)==2) then 
       !RH(iv)=(tt(istage,iv)-
H(iv)*deta)*dt(istage)  !for strain control 
       RH(iv)=(tt(istage,iv)-
H(iv)*deta)*dt(istage)  !for strain control 
      endif 
     end do 
     do iv=1,nv 
      do kv=1,nv 
       LH(iv,kv)=AA(iv,kv) 
      end do 
     end do 
     if (cont(istage)==1) then   !for stress control 
      sdev_temp=0.0d0 
      epsdev_temp=0.0d0 
      do iv=1,nv 
       sig(iv)=sig(iv)+tt(istage,iv)*dt(istage) 
       eps(iv)=eps(iv)+RH(iv) 
       if (iv==4) then 
       
 sdev_temp=sdev_temp+2.0d0*sdev(iv)**2 
       
 epsdev_temp=epsdev_temp+2.0d0*epsdev(iv)**2 
       else 
        sdev_temp=sdev_temp+sdev(iv)**2 
       
 epsdev_temp=epsdev_temp+epsdev(iv)**2 
       end if 
      end do 
      p=(sig(1)+sig(2)+sig(3))/3.0d0 
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      if (sdev(1)<0.0d0) then  !just for triaxial 
condition 
       q=-(3.0d0/2.0d0*sdev_temp)**0.5 
      else 
       q=(3.0d0/2.0d0*sdev_temp)**0.5 
      end if 
       
      if (epsdev(1)<0.0d0) then  !just for triaxial 
condition 
       es=-(2.0d0/3.0d0*epsdev_temp)**0.5 
      else 
       es=(2.0d0/3.0d0*epsdev_temp)**0.5 
      end if     
       
      ev=eps(1)+eps(2)+eps(3) 
     else if (cont(istage)==2) then  !for strain control 
      call lufactor  
      sdev_temp=0.0d0 
      epsdev_temp=0.0d0 
      do iv=1,nv 
       sig(iv)=sig(iv)+dsigma(iv) 
       eps(iv)=eps(iv)+tt(istage,iv)*dt(istage) 
       if (iv==4) then 
       
 sdev_temp=sdev_temp+2.0d0*sdev(iv)**2 
       
 epsdev_temp=epsdev_temp+2.0d0*epsdev(iv)**2 
       else 
        sdev_temp=sdev_temp+sdev(iv)**2 
       
 epsdev_temp=epsdev_temp+epsdev(iv)**2 
       end if 
      end do 
      p=(sig(1)+sig(2)+sig(3))/3.0d0 
      if (sdev(1)<0.0d0) then  !just for triaxial 
condition 
       q=-(3.0d0/2.0d0*sdev_temp)**0.5 
      else 
       q=(3.0d0/2.0d0*sdev_temp)**0.5 
      end if 
 
      if (epsdev(1)<0.0d0) then  !just for triaxial 
condition 
       es=-(2.0d0/3.0d0*epsdev_temp)**0.5 
      else 
       es=(2.0d0/3.0d0*epsdev_temp)**0.5 
      end if     
       
      ev=eps(1)+eps(2)+eps(3) 
     endif 
     
     do iv=1,nv 
      do j=1,n 
      
 alpha(iv,j)=alpha(iv,j)+CC(iv,j)*dt(istage) 
      end do 
     end do 
    end do 
     
    write 
(unit=9,FMT='(I5,I5,D12.5,D12.5,D12.5,D12.5,D12.5,D12.5,D12.5,D12.5)') 
istep,istage,sig(1),sig(2),sig(3),sig(4),eps(1),eps(2),eps(3),eps(4) 
    write (unit=2,FMT='(I5,I5,D12.5,D12.5,D12.5,D12.5,D12.5,D12.5)') 
istep,istage,sig(1),sig(2),sig(3),sig(4),p,q 
    write (unit=4,FMT='(I5,I5,D12.5,D12.5,D12.5,D12.5,D12.5,D12.5)') 
istep,istage,eps(1),eps(2),eps(3),eps(4),ev,es 
 
 
    do i=1,n 
     !write 
(unit=2,FMT='(I5,I10,I5,D15.5,D15.5,D15.5,D15.5,D15.5,D15.5,D15.5,D15.5,D15.5,D15.5)') 
i,istep,istage,hp(i),hq(i),temp_alpha(1,i),temp_alpha(2,i),c(i),chi(1,i),chi(2,i),CC(1,i),CC(1,i), 
y(i) 
    end do 
   end do 
  end do 
  
  deallocate(tt) 
  deallocate(dt) 
  deallocate(nstep) 
  deallocate(cont) 
  deallocate(s_max) 
 
  deallocate(eps) 
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  deallocate(sdev) 
  deallocate(epsdev) 
  deallocate(alphadev) 
  deallocate(alpha_ii) 
  deallocate(chi_ii) 
  deallocate(chidev) 
  deallocate(hp) 
  deallocate(hq) 
  deallocate(c) 
  deallocate(eta) 
  deallocate(y) 
  deallocate(sig) 
 
  deallocate(alpha) 
  deallocate(chi) 
 
  deallocate(AA) 
  deallocate(iAA) 
  deallocate(BB) 
  deallocate(CC) 
  deallocate(D) 
  deallocate(H) 
  deallocate(RH) 
  deallocate(LH) 
  deallocate(dsigma) 
        read(3,*)command 
 
 case default 
    !----------------------------------------------------------- 
  print*, command 
        print*, 'Command not recognized; please read manual' 
        stop 
 
 end select do_command 
 
end do 
 
call GETTIM (ihr, imin, isec,i100th) 
write(*,*) '' 
write(*,FMT='(A,I2,A1,I2,A1,I2)')' Finished at ',ihr,':',imin,':',isec 
runtime = DTIME(TA) 
write(*,FMT='(A,F10.2,A)')' Running time ',runtime,' seconds' 
 
write (2,*) '===============================================================================' 
write(2,*) '' 
write(2,FMT='(A,I2,A1,I2,A1,I2)')' Finished at ',ihr,':',imin,':',isec 
write(2,FMT='(A,F10.2,A)')' Running time ',runtime,' seconds' 
 
write (4,*) '===============================================================================' 
write(4,*) '' 
write(4,FMT='(A,I2,A1,I2,A1,I2)')' Finished at ',ihr,':',imin,':',isec 
write(4,FMT='(A,F10.2,A)')' Running time ',runtime,' seconds' 
 
close (3) 
close (2) 
close (4) 
close (5) 
close(9) 
 
stop 
end program NonlinearKHMCC2D 
 
double precision function macaulay(x) 
 implicit none 
 double precision, intent(in) :: x 
 macaulay=(x+ABS(x))/2.0d0 
end function macaulay 
 
double precision function delta(i)    !Kronecker's delta 
implicit none 
integer, intent(in) :: i 
if((i==1).or.(i==2).or.(i==3)) then 
 delta=1.0d0 
else 
 delta=0.0d0 
end if 
end function delta 
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