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CHAPTER 1. INTRODUCTION

1.1 Background and Motivations

In practical geotechnical engineering analysis and design, a well-known Mohr-
Coulomb and Cam-clay models (Roscoe and Burland, 1968) have been widely used for
simplifying complex behaviours of soils.: Several advanced frameworks have been
further proposed to include some important aspects of soil behaviours, such as small-
strain stiffness or the effects of immediate pasiStiess by introducing multiple or nested
surface model (Mroz & Naitis, 1982), bounding surface model (Dafalias & Hermann,
1982), and hypoplasticity-framewerk (Kalymbas, 1977). Another important issue is the
stress-strain characteristic.of soilS.is non-linear and irreversible, in that the initial soil
stiffness or small-strain tangentstffness depends on the stress level. The interpretation
from experimental observaiions of bender element test shows that the small-strain
stiffness of soils is a nom-linear functien of the mean effective stress for isotropically
consolidated samples as repogted by Tanizawa et. al. (1994), Kohata et. al. (1997),
Pennington et. al. (1997), and Techavorasinskun et. al. (2002) and depend on the stress
ratio (Rampello et. al., 1997) for anisotropit;al'ly consolidated samples. The stiffness
also affected by other variables, such as the ‘Qéid_s ratio, anisotropic stress state, and/or
the preconsolidation pressure (Hardin, 1978; 'Ho"i'jlsby & Wroth, 1991; Viggiani, 1992;
Rampello et al., 1994; and Soga; 1995). :

Since constitutive-models relate to-physical phencmena, they must obey certain
principles or axioms that govern the physical phenomena such as conservation of mass,
conservation of energy, and laws of thermodynamics. All_models mentioned above do
not referred to the Laws of Thermodynamics and they may violate one or the other of
fundamental laws. Models /that! viaglate! thermaodynamiCs fmay-not be used with any
confidence to describe‘material behaviour (Houlsby & Puzrin; 2006).

Likitlersuang_(Likitlersuang, 2003; Likitlerstang and Houlsby, 2006) proposed
the hypeérplasticity ‘kinematic .hardening modified Cam-clay (KHMCC) model to
address small-strain stiffness based on the thermodynamics principles. The kinematic
hardening function was included in the energy and yield functions to characterise small-
strain stiffness and accommodate smooth transition of stiffness in corresponding to
loading conditions and stress histories. Hyperbolic function recommended by Puzrin
and Houlsby (2001) was employed to express the continuous kinematic hardening
function in order to fit with the observed non-linear stress-strain responses. Continuous
kinematic hardening function was piece-wised into a finite number of multiple yield
functions. Therefore, combined responses of activated yield surfaces can represent non-
linear kinematic hardening behaviours. Calibration of the model in triaxial stress-strain



space was carried out by Likitlersuang, and Houlsby (2007) on Bangkok clay. Stress-
strain responses under monotonic and cyclic loadings were simulated to show the
advantage of hyperplasticity KHMCC model.

Though the formulation of hyperplasticity KHMCC model has been already
proposed in the earlier researches, the numerical implementation and simulation are
restricted to linear stress-strain relationship with stiffness proportional to isotropic
pressure. Further, small-strain stiffness study of Bangkok Clay using bender element
test on the isotropically consolidated samples clearly show that the shear modulus is a
power function of pressure (Teachavorasinskun, et. al., 2002) rather than linear function
of pressure. Therefore, the numerical implementation for hyperplasticity KHMCC
model with non-linear elastic stiffness hasinot been explored.

This research aimsto exiendthe previous research of Likitlersuang and Houlsby
(2006) by incorporating-small-strain stiffness in form of power function of pressure in
to energy function. Corgespandingly, the numerical implementation and piece-wise
multisurface plasticity described by Likitlersuang, and Houlsby (2007) is enhanced to
address a higher degree«of nen-lingarity and loading history. An approach to determine
the necessary parameters @btained from small-strain experimental tests for regulating
small-strain stiffness characteristic of the hyperplasticity KHMCC model is presented.

This study is expected to-provide @.theoretical background and numerical
implementation for those who are interested In the advancement of critical state soil
model under the framework of hyperplasticity. The results of this research may give a
light to model the complicated behaviours of s0ils observed from advanced small-strain
laboratory testing.

1.2 Objectives

The objectives of this study are summarised in the following:

e To develop and implement numerically a continuous hyperplasticity non-linear
Kinematic Hardening Modified Cam Clay=soil model in ‘riaxial and general
stress-strain by:

— fincorporating small-strain stiffness in form of power function of pressure into
energy function (Houlsby and Puzrin, 2005).

— Integrating the incremental stress-strain relation using rate-dependent strain
driven forward-Euler integration scheme.

e To validate the developed model with some experimental data of:

— Loading Path Dependence and Non-Linear Stiffness at Small-Strain
(Stallebrass and Taylor, 1997).

— Kp-consolidated Undrained Direct Simple Shear (CKoUDSS) test of Bangkok
Clay (Konkong, 2007).



— Small-strain undrained compression test of Bangkok Clay (Yimsiri, et al.,
2009; Ratananikom, 2009).
e To implement the developed model into rate-dependent continuous
hyperplasticity finite element algorithm.

1.3 Methodology and Structure of Thesis

This research will be divided, into two parts, dealing respectively with a
analytical and numerical study of the non-linear. Kinematic Hardening Modified Cam
Clay model using continuous hyperplasticity framewerk.

The analytical study-of the researeh activities-consists of model development in
triaxial and general stressseonditien-based on the thermemechanical principles. In this
part, stiffness and/or cempliance - matrix of the maodel will be derived before
implemented into numerical algorithm.

The numerical study of the research activities consist of numerical review and
implementation of the developed model into rate-dependent strain driven forward-Euler
integration scheme by in€orporating :a non-linear dependence of initial stiffness on
pressure. Several numerical demenstrations ‘are performed to show features of the
developed model. The study also consists of identification and determination of soil
model parameters from experimental test data. Furthermore, the model parameters will
be back predicted to the experimentaf faboratory-testing from which the soil parameters
are obtained. ="

Chapter 2 presenis some recent issues in advanced soil behaviours or commonly
called as pre-failure deformation behaviour. Explanation will be emphasised on
experimental investigations. A brief review and comparison some advanced soil
constitutive models are also presented.

Chapter 13! explains @ development: and numerical implementation of the
hyperplasticity non-linear KHMCC model based on triaxial stress-strain variables and
general sstressusingstrain-driven“forward-Eulerintégrationscheme. | Further, some
important issues on the numerical ‘implementation of this medel is diseussed, including
incremental stress-strain response algorithm, numerical integration of hardening
functions, as well as effect of time increment and number of yield surfaces. Several
numerical demonstration and validations with analytical solution are presented.

Chapter 4 presents some comparisons to experimental data of clay soils. Two
experiments of Ky-consolidated Undrained Direct Simple Shear (CKoUDSS) test and
small-strain undrained compression behaviour of Bangkok Clay are selected.

Chapter 5 explains implementation of the developed model into rate-dependent
continuous hyperplasticity finite element algorithm.



Finally, some conclusions on the development of this model are discussed in
Chapter 6 including development for future research.
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CHAPTER Il. SOME RECENT ISSUES ON THE SOIL
BEHAVIOUR AND CONSTITUTIVE MODELING

21 Soil Behaviour

Soil is natural material which behaves very complex manner. When dealing with
geotechnical engineering problems, the understanding of the real soil behaviour is very
important to obtain accurate prediction, for instance, of stress-strain characteristic.

The study of soil behawiour is now overthree hundred years old, since Coulomb
in 1773 analysing the failures _meehanism of soil mass. Progressive developments of
advanced soil laboratory testsyfor instance, with capability to accurately control and
monitor stresses and strains.during rotation of prineipal stresses such as directional
shear cell (Arthur & Menzies;, 1972) and the hollow cylinder apparatus (High et al.,
1983); and the instrumented soil tests such as strain gauges, electrolevels, proximity and
local-deformation transducer making the study of soil behaviour more interesting in
quality and increasing in intensity. “

This chapter presents Some recent'n'is"'sues in advanced soil behaviours or
commonly called as pre-failure deformation behaviour. Explanation will be emphasised
on experimental investigations. £

2.1.1 Anisotropic

Soil behaviour is affected by orientation or its deposited direction, so that soil is
classified as an anisotropic material. Seah (1990) presented the influence of the
orientation of the major principle stress:(oy)-toithe directign of soil deposition against
the undrained shear strength ‘of reconsolidated Bosten Blue Clay. The data shows that
the undrained shear strength drops by:50% as the angle of o3 to the deposited direction
increases.fron 0°-90% s, showr in Figure 2.1.

Some recent laboratory tests on a silt soil performed in a large hollow cylinder
apparatus also show that soil strength is very anisotropic (Zdravkovic, 1996;
Zdravkovic & Jardine, 2000).
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2000)

Figure 2.2(a) and (b) show the change of<deviatoric stress.hormalised by the
mean effective stress-atithe end of K, consolidation and effective internal friction angle
against the direction'of the major principal stress, c.

2.1.2 Stress History

Soil has a “memory”, so that any of the stress and other changes that have
occurred during their history, and these changes is preserved in the soil structure (after
Casagrande, 1932; Holtz & Kovacs, 1981). When the soil is subjected to a stress level
greater than it ever “experienced” in the past, the soil is no longer able to sustain the
increased stress and it start to break down. In the other words, the stress-stain behaviour
of soil is depends on the current state and stress history or consolidation history, and



which is best described by the overconsolidation ratio (R,) as shown in Figure 2.3, i.e.
ratio by which the current mean effective stress in the soil was exceeded in the past

(R, =p, /p where p, isthe past maximum mean effective stress and p’ is the current
mean effective stress). The definition of R, is more general than definition OCR that
usually used in practical i.e. ratio between past maximum vertical effective stress (o)

over current vertical effective stress (o, ).

___.__-l-‘-_ T —
- N ;S_Fate boundary
/ — surface

AL /1%
p

M
| 4
I \ Mormal consalidation
T
\\
y_ _____ T-‘-“-“-‘-‘_-_"‘q,__ -\
| Swalling T
line I
|
| |
Pl Fp'm 1
L Aq | mw

Figure 2.3 Current state and consolidation history of the soil (Atkinson, 1990)

Som (1968) and Atkinson (1973;.1990) observed, one additional influence on its
stress strain behaviour that is the recent stress history of the soil described by the most
recent loading, which may take the form of an extended period of rest or a sudden
change in the direction of the stress path. Later, Houlsby (1999) also found this
phenomenon particularly in the second causal factor, and call it as immediate stress
history. They showed that the stiffness of soils in triaxial and plane strain tests was
increased following a sudden change in the direction of the stress path as illustrated in
Figure 2.4.
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1990)

Figure 2.4(a) illustrates effect of stress path rotation for conditions of axial
symmetry and loading paths; inside the state 'bbyndary. Along the different paths CO
and DO, soil brought to the same.initial state g’ and p’i at O, and then loaded along the
same path OA. & and.@ are the rotations of the stréss.paths relative to the new stress
path OA at point O. Figuife-2:4(b)-itiuistraies-ihe-siress-sirain curves for the same loading
path OA. In this figure, the different stiffness Is related to the different stress path
rotations, since the soil had identical states, equal periods of time and overconsolidation
ratio at O.

2.1.3 Small-Strain Behaviour of Soils

In'the ‘settlement.and displacement problems of soil-strueture interaction, the
contribution of (very) small-strain zones to boundary displacement can be larger than
that of zones of contained failure (see, for instance, Burland, 1989). Recent back
analysis of field measurement and laboratory studies using local strain-measuring
techniques such as strain gauges, electrolevels, proximity and local-deformation
transducer, show that the initial stress-strain behaviour of many soils is much stiffer
than indicated by conventional strain (intermediate to large strain) measurement. It also
exhibits a non-linear behaviour (Jardine, Symes and Burland, 1984).
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Figure 2.5 Measured undrained stress-strain behaviour of a reconstituted clay by
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)
Figure 2.5 shows the measured undrained. stress-strain behaviour of reconstituted clay

various with OCR values using local 'strain‘ rheasuring teehniques performed by Jardine

et al. (1984). It can be seen that the stralns over the Initial range of stresses are
extremely small.

." <

Sensitivity studies t0 invesfigéte the 'Si:gﬁificance of non-linearity at small-strain
and local failure have been performed by jardme et al. (1986), it shows that in all
practical case studied, the modelling of reahstlc small-strain non-linearity and the
consideration of local failure have important’ mphcatlons in considering soil-structure
interactions at working loads. Figure 2.6 shows the cufrent understanding of soil
stiffness in relating toJlaboratory test and structure types.
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Figure 2.6 Characteristic stiffness-strain behavior of soils with typical strain range
for laboratory tests and structures (Mair, 1993)
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2.1.4 Initial Stiffness Dependence on Pressure

The stress-strain characteristic of soils is non-linear and irreversible, in that the
initial soil stiffness or small-strain tangent stiffness depends on the stress level. It is also
affected by other variables, such as the voids ratio, anisotropic stress state, and/or the
preconsolidation pressure. Soga et al. (1995) present the variation of stiffness with
strain from torsional tests on isotropically normally consolidated kaolin varied with the
stress level as shown in Figure 2.7.
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Figure 2.7 Non-linear dependence 0f initiegl_ soil stiffness on stress level (Soga et al,
1995

Many published experim'ental data on the Small-strain stiffness of soils are
carried out from dynamic faboratory tests on natural- or reconstituted clays, or
reconstituted sands sampies, in triaxial conditions and under isotropic stress state.

Hardin (1978) proposed the following form on sands:

S g (e)(ﬂj OCR"

Pa Pa

(2:1)
where f(e).is an empirically ‘defined “decreasing function of the void ratio e; p, is the
atmospheric pressure as reference stress; and S, n and k are dimensionless
experimentally determined parameters. Since the sand soil does not experience a

significant variation of the void ratio or of the OCR, this leads to the simplified
expression for equation (2.1):

= g(ij 22)
Pa Pa

and also for the corresponding bulk stiffness:
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K_ k(ﬁj (2.3)
P.  \Pa

where g and k are dimensionless constant. Constant n in shear and bulk modulus is not
necessary the same.

For clay soils, several experimental observations and interpretations have
indicated that, for isotropic stress condition, the small-strain shear stiffness can be
expressed as in the following equation: (Houlsby & Wroth, 1991; Viggiani, 1992;
Rampello et al., 1994):

e—k* k*
G _ s*[ij [p_] (2.4)
pa pa pa

Under anisotropie™ stress ~condition, it i1s necessary to modify expression
developed entirely from isetropic conditien (e.g. Ni, 1987; Hardin and Blandford, 1989;
Jamiolkowski et al., 1994; Rampello et al., 1997; Jovicic & Coop, 1998). For example,
empirical expression for.sands from Ni+(1987) and Hardin and Blandford (1989):

G

>~ _ Sij f(e)M/i

£ OCRS v (2.5)
P, P :

in which o and o are the prinCiples stresses in the plane in which G is measured.

Furthermore, based on_experimental results obtained on a reconstituted clay
compressed under anisotropic stress condition, Rampello et/al. (1997) proposed:

G A p e

where R,, is the overconsolidation ratio with-respectto the.anisotropic stress condition,
defined in term of mean effective stress R =:p’¢ //p’.. The anisetropic stress conditions
are defined at any particular stress ratio n = g / p._The notation * is_for distinguishing
the S, n and k values:from the equation (2.1):

2.1.5 Rate Effect

Soils exhibit time dependent behaviour as well as plastic deformation, so that
soils are also called as viscous material.

The viscous properties of the material define a time dependence of the state of
stress and strain. On the other hand, plastic properties make these states depend on the
loading path. When soil is subjected to a constant load it will deform over time, and this
phenomenon is called creep. Inverse this phenomenon is called by stress relaxation, is a
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drop in stress over time after as soil subjected to a particular constant strain level.
Figure 2.8 shows these two phenomena. In Figure 2.8, it is shown that rate of creep will
increase as increasing of deviatoric stress level. The most active clays usually exhibit
the highest rate-dependent responses. Normally consolidated soil exhibits larger
magnitude of creep than overconsolidated soils.

The rate-dependent phenomena are agreeable for study as rate processes as
application of the theory of absolute reaction rates (Glasstone et al., 1941), which is
based on statistical mechanics. Detail adaptations this theory to soil mechanics can be
found in Mitchell and Soga (2005).

1
! 1

Prlmarvl - Secondary . Tertlary Creep Rupture
i 1
i |
1 I

sirain i ! (o1-03)y

1
1

AT A\ (chegs

(o9=03)3 > (0} -Oy)5 :"{u;-crg}l

Tima..
Vdds

Stress

Time

(b)

Figure 2.8 Creep and stress relaxation (Mitchell & Soga, 2005)

2.2 Review Some Advanced Soil Constitutive Models

Different advanced soil constitutive models based on different concepts have
been proposed; often a particular model proclaimed its superiority over others. In fact, it
is believed that each model can be valid within its own local realm, and that no
universal constitutive model has yet been developed that is valid for all materials under
all conditions.

It is noted that, since constitutive models relate to physical phenomena, they
must obey certain principles or axioms that govern the physical phenomena such as
conservation of mass, conservation of energy, and laws of thermodynamics. In the other
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words, principally a good soil model must be developed without violate certain
principles or axioms that govern the physical phenomena. Figure 2.9 shows place of
constitutive law and physical principles in continuum mechanics.

| External foroe'
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Continuous body
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Figure 2.9 Place of constitutive laws and_ghysical principles in continuum
mechanics (Desai, 1984)

2.2.1 Multiple Surface Model

This model proposed:by Mroz (1967)@nd Iwan (1967) consists of kinematic and
isotropic hardening. Mroz (1967) explained the model using the diagrams in Figure 2.10.
Figure 2.10(a) shews a uniaxial stress-strain response discretised in n linear segments or

pieces. A constant tangent modulus E; (i.= 1, 2,...,") or constant plastic modulus E.” (i
=1, 2,...,n) Isassociated:with each yield-surface.

Surfaces fi, f,..., f, represent specific regions of constant work hardening
moduli E;”. It is assumed that there exists, in domain of interest from the initial state fo

to the limit (ultimate or bounding state) f,, a series of yield surfaces, each defining a
specific part or region of the domain in the stress space. With deformation, the surfaces
translate in the stress space and as soon as surface f; touches the next surface fi., they
both move together until they touch fi+, and so on. The surfaces touch each other
tangentially and are not permitted to intersect each other (non-intersection condition).
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(d) (e)

Figure 2.10 Multiple surface model: (a) stress-strain curve; (b) before straining; (c)
loading A to B; (d) loading B to C; (e) loading C to D to E and nonproportional
loading (Desai, 1984)
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Mroz first considered proportional loading, for the uniaxial case specifically
along the o,-axis [Figure 2.10(a)]. For an increment of stress, the stress point moves
from O to A [Figure 2.10(a)], where it reaches the yield stress defined by fo. The initial
yield surface f, moves along the o,-axis, and at B, during plastic straining, it touches
yield surface f; associated with point B; this is depicted in Figure 2.10(c). The plastic
strain induced during the movement from A to B is defined by the tangent modulus E;.
During this movement, all other surfaces remain fixed.

When the stress point moves from B to C, the surfaces fo and f; translate together
until at C they touch f, associated with C [Figure 2.10(d)]. The plastic strain during this
movement is defined by modulus E,. Similarly, during subsequent loadings the yield
surfaces translate, taking with-them the-previous suifaces and touching the next ones
during changes or increments 1n.ihe state of stress. For the case in Figure 2.10(e), the
end or final state of the pasticular leading history up to E is represented by the surface f,.

0y A H o4
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Figure 2.11 Unleading‘behavior: (&) unloading G to H; (b) anloadingHto I, 1 to J,
and J-to K'(Desali, 1984)

Consider unloading from E along path EGHIJK [Figure 2.16(a)]. At G, (inverse)
plastic flow occurs, and then the surface fy translates downward until it touches f;
corresponding to point H [Figure 2.11(a)]. Since this movement of f; is twice that for its
movement from A to B during the loading, the stress difference between H and G is
twice that between A and B. With subsequent unloading along HI, IJ, and JK
corresponding to loadings BC, CD, and DE, respectively, the yield surfaces move and
finally touch f, on the opposite side [Figure 2.11(b)].

The total strain is the sum of the elastic strain and plastic strain components:

N
& = gige) + Z;gigp’(”) (2.7)
n=
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Each yield surface is specified in the form f® (o, ("™ )=0, where for

simplicity the yield surface depends only on the plastic strain associated with that
surface, and is not coupled to other yield surfaces. Non-associated flow rule can be
introduced by defining plastic potential different with the vyield surfaces so

0
that &P :}L(”’ag—, where A" is scalar multiplier and g™ is plastic potential

00

functions associated to f™.

At the same time, Iwan (1967) formulated his multiple surface models without
the non-intersection condition. His model built from one spring with elastic coefficient
E and a series of sliding elements with slip stresses k,, each in parallel with a spring
with corresponding elastic coefficient H,, (Figure 2:42).

:
Z
%
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Figure 2.12 Schematic layout of the Iwan model (Houlsby & Puzrin, 2006)

An elongation of the E spring gives elastic strain £, whereas an elongation of each of
the H, springs contributes the plastic strain an to the total plastic strain; the sum of
elastic and all plastic strains gives the total strain . After the stress reaches the value of
slip stress ky, the Nth sliding element slips and the Hy spring becomes active. The
corresponding behavior .ds;elastoplastic awvith-linear hardening eharacterised by tangent

N
modulus Ey, whieh can determined from the relationship Ei = é + ZHL
=1 n

n

Inyits application, | relocation. of ' each yield 'surface has' proved as a very
convenient framework for modelling the pre-failure behaviour of soils, allowing a
realistic treatment of issues such as non-linearity at small-strain and the effects of recent
stress history.

2.2.2 Bounding Surface Model

The original concept this model proposed by Dafalias (1975) and Dafalias and
Hermann (1980). As implied in the name, strictly no plastic strain is allowed inside a
yield surface. Further, the domain enclosed by the bounding surface is not elastic;
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though for some incremental stress trajectories within this surface, an elastic response
can be obtained. Following is simplified of this concept taken from Houlsby & Puzrin
(2006).

For every stress point A in Figure 2.13 an image of point B on a “bounding
surface” is determined using mapping rule. The stress point A(oj;) always lies within or

on the bounding surface. It is assumed that if the incremental stress vector at the point
A(oy) is directed inside this surface, the behaviour is elastic.

If the incremental stress vector at each point A(oy) is directed outward from the
loading surface, the behaviour is elastoplastic..The plastic strain in a conventional

plasticity model with an assoeiated flow rule and-awield locus f(a 8i§"))= 0 is given
by:

ij

elP = 10 a

Gt 2.8
" " hoo, dog (28)

where h is a hardening ma€lulus. In the bounding surface f s interpreted as the bounding
surface and g in equation (2.8) as the stress at the image point. The value of h is then
given by:

o £
h=h, +h, — 2.9
o+ ] . (2.9)

where ¢'is shown on Figure 2,13

Bounding ‘Surface

Image /Poaint

3] ) ) ) 0
_ X BoP

Figure 2.13 Bounding surfaces model of Dafalias and Hermann (1980) (Houlsby,
1981)
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The result is that when the stress point is on the bounding surface conventional plastic
behaviour is given, inside the surface a reduced plastic strain occurs if the quantity p,
IS increasing.

Bounding surface model can be successful in describing hysteresis for large
unload-reload loops, typically those which involve complete load reversal. For small

unload-reload loops, however, the prediction is not realistic. It is also incapable to
incorporate the effects of recent stress history on the stiffness of the response.

2.2.3 Hypoplasticity Model

This name referring to-the plastic model,-in. which the direction of the plastic
strain rate, unlike in the comvenuonal plastic models, depends on the stress rate. The
formal definition this model provided by Wu and Kolymbas (1990).

Hypoplastic constitutivesmodel assume that there exists a tensorial function H,
such that:

o=H(oé) v (2.10)

where & denotes the stretching (strain rate) and. o is the Jaumann stress rate, in which
defined as follows £

o = 6 + o0 —De | (2.11)

where @ is the rotatien'rate (spin). Furthermore, it 1s assumed that the function H in
(2.10) is continuously differentiable for all & except at & = 0. Some restriction on the
function H in (2.10) was introduced to make the model more concrete constitutive
equations, and then final.equation of.thissmadel is:

o=L(c,8)+N(o)4 (2.12)

where L"is linear linyé and N is nonlinear in &, ||<é||:\/trg‘2 stands for the Euclidean

norm.

One important conceptual in hypoplasticity, distinguish with elastoplasticity, is
that in elastoplasticity, yield function and material state parameters define the yield
surface, which bounds the elastic domain, but not in hypoplasticity. As we have already
seen, within the elastic domain only elastic deformation occurs, the material is more
rigid. The yield surface is a kind of material memory. In hypoplasticity there is no yield
function, no elastic domain. All past information is concentrated in the current stress.
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Indeed, there are today new versions of hypoplastic equations involving the void ratio
and a structural tensor that are more sensible to past deformation history.

The hypoplasticity framework, however, is not a simple model and have no
some physical meaning in deriving the formulation. And still need to be improved and
extended to make simpler.

2.3 Hyperplasticity Model

This model derived based on generalized thermodynamics principles. Some
people contribute to build this framework are"Ziegler (1983), Houlsby (1981); Collins
and Houlsby (1997). Further extension and generalization of this approach can be found
in Houlsby and Puzrin (2006).

In this model incremental ‘respanse is derived from two scalar potential
functions: an energy functionsand a dissipation function (or yield function). The energy
function can be used 4n any of four ‘alternative forms related by Legendre
transformations. An alternative to the dissipation function is a yield surface, related to
the dissipation function by a degenerate Legendre transformation.

For small-strain gontinuum mech_aniés in Cartesian coordinates, energy
functions are defined in Table 2.1, u is the "s:ﬁeg:ific internal energy function of strain
tensor &; and specific entropy s; defined as a potential for stress tensor o and
temperatured. The function f is the Specific Helmholtz free energy function of strain
tensor and temperature, a potential for stress and specific.entropy; h is the specific
enthalpy function of stress and specific entropy, a potential-for strain and temperature.
The function g is the specific Gibbs free energy function of stress and temperature, a
potential for strain and specific entropy.

In the hyperplasticity formulation, the second potentialfunction required is the
dissipation functien, which allows the Second Law of Thermodynamics to be satisfied
within the proposed framework. The Second Law can. be formulated:as in the following:

.2 (9,
32—{7;jk (2.13)

where (qi/0) is the entropy flux. When this inequality is rewritten in the following way:

0
$+qu—q;*zo (2.14)

the first two terms &+ 0y, =d are called the mechanical dissipation. The third term is

called the thermal dissipation and it is always non-negative. For slow processes, this
term becomes small by comparison with the first two, so it is argued that the mechanical
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Table 2.1 Energy function for small-strain continuum mechanics (Houlsby &
Puzrin, 2006)

Internal energy Helmholtz free Enthalpy Gibbs free energy
energy
u:u(gij’s) f= f(gij’e) h:h(o'ij's) g:g(aij,é’)
ou of oh g
Jij = — Gij = — gij = gij =
og; Og; ooy ooy
6= a_u S = ﬂ U er S = a—g
oS el S 00
u=g-sf-oys; | f =U=50 =i g=h-sé
=f -oy¢

dissipation must itself be son-negative, For dissipative materials, the internal energy is a
function not only strain and entropy, but 'jpf‘fkinematic internal variables ¢ as well:

u= u(g"' i s) . Strain, integnal variables ar{d_.-entropy define a thermodynamics state of

material. Further, an assumption is defined that the dissipation is also a function of the
thermodynamic state and the rate @f change of"thg material state. In fact, it is sufficient
to consider that the dissipation function dep“ends only on the rate of change of the
internal variables . -The. dissipation function can be.written in four possible ways,
depending on which form-of-the-energy-function-is-specitied:

d :de(aij or &; ,a;,SOr 6?,02”)20 (2.15)

ij 4 i »
where e superscript in thisgquation represent.,one of the four energy functions.

To impose the First Law of Thermodynamics, the generalised and dissipative
generalised stress' tensor is defined. The generalised stress tensor is defined by
differentiation.of.an energy.function with respect.to-internal, variable:

_ ou of oh ag
el — = — Py —_ 2.16
Zi o oa. oa; o (2.16)

ij ij ij ij

Whereas, the dissipative generalised stress tensor is defined by differentiation of a
dissipation function with respect to internal variable rate:

ade

- 2.17
Zii 26, (2.17)

where e superscript in this equation represent one of the four energy functions.
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The First Law of Thermodynamics state that rate of change of internal energy is
the sum of the mechanical work input and the rate of heat supply to an element of
volume:

U=W+0 (2.18)
where W = ;& and Q =—q,
U=0;&; — ey =0;¢; +&—d (2.19)
On the other hand, the internal energy i€ a function of state: u =u(e, ,;,s), and

ijrij
further that

=M g N el (2.20)
Og; i oS

Noting that the ineremenis of the variables are independent of the state and
comparing (2.19) and (2.20); then using.the definition of the generalised stress in (2.16),
we obtain an expressiondor mechanical dissipation:

d =7, A (2.21)

Furthermore, a yield functionis defined as a degenerate special case of the
Legendre transformation of the dissipation function: y° = y; ¢; —d® =0, where

y=y*(oy or 5, @500 7] =0 (2.22)
The flow rule follows from the properties of Legendre transformation:

oy*
a)(ij

a. =1

i (2.23)
where A is an arbitrary non-negative multiplier. Table 2.2 summarize the hyperplasticity
formulation based.on Gibbs (g) and Helmholtz (h) free energy.

Most: 'of “soifs! do exhibitta small “element’ of / rate-depefident 'behaviour, i.e:
measured strength’ are slightly thcreased at higher strain rates, ‘and asmall amount of
creep occurred under constant stress, even for soils where such effects are negligible,
the inclusion of a small ‘artificial’ viscosity in the model simplifies the numerical
calculations considerably. Those are reasons to introduce rate-dependent hyperplasticity
model. Table 2.3 shows comparison between these two models.

Some further development work on hyperplasticity in soil mechanics is explored
by Likitlersuang (2003) and Likitlersuang and Houlsby (2006).
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Table 2.2 Basic formulas for hyperplasticity model

Definition Gibbs free energy (9) Helmholtz (h) free
energy
Energy function g= g(gij 7aij) f = f(gij 7aij)
Dissipation function d=d? (o‘ij ay,d, )2 ol d=d’ (gij ay )2 0
Generalised stress _ a9 _ of
ij == Zij ==
aaij Gaij
Stress-strain relationship 0y of
el S Oy =——
Go]j Og;
Dissipative generalised stress T ade adf
A T%a, X ba,
Yield function Y £ yg(d?-ij’aijizij)Zo y= yf (gij’aij!){ij)zo
Flow rule e Y A\ X f
dij t gay_ dij — laL
{ J_a/?,/ij aﬂ(ij

Table 2.3 Comparison for rate-i'ndependé':'r','ltJénd rate —dependent hyperplasticity

modek(LikitlerSuang, 2003)

Definition

Rate-independeﬁtfﬁbdel

Rate-dependent model

First potential

the same definition ofenergy functions (g,f,h,u)

Second potential

Dissipation function (d) and

Farce function (z) and flow

/| yield function (y) potential (w)
Dissipative generalised ade oz°
stress L = o A = da.

]

Legendre-Fenchel
transformation

Ay = yije; —d'=0

Ws yya; —2=d -1

Flow rule e e
iy & 1Y g, e
a)(ij a)(ij

2.4 Comparison of Advanced Soil Constitutive Models

Although, in principally the bounding surface models more efficient than
multiple surfaces, but they still have three important shortcomings i.e: (1) They often
require the choice of a number of somewhat arbitrary functions; (2) often the functions
without obvious physical meaning; (3) they usually fail to describe the effects of the

immediate past history.
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Multiple surface models are the most promising approach, but they also still
have some drawbacks, i.e.: (1) they result in a large number of material parameters to be
specified; (2) they also result in considerable amount of computation; (3) many of them
are inherently complex.

Hypoplasticity model, which is only developed and discussed within few
researches and has two shortcomings: (1) The constitutive model basically is not based
on definite physical meanings, the relation between stress rate tensor and stretching
tensor is just fitted by a polynomial with some fitting parameters which have less direct
relation to the physical quantities of soils that‘geotechnical engineers familiar with, (2)
The relation between stress raie tensor and streiehing tensor is nonlinear, which make it
very difficult to solve boundary value problems because an explicit stiffness matrix
based on this model cannotbeobtained easily and it-has no any evidence of solving this
problem mathematically andnumerically. Kolymbas (2000) stated about his own model
as follows: (1) The theorysheuld ‘be improved and extended to fill its application
portfolio; (2) They should simplerand have some physical meaning, since only in this
way, they can communicate with engineeririg practitioners.

As we stated in the Chapter 1, and’ we need repeat it again, since constitutive
models relate to physical phenomena; they must be developed without violate certain
principles or axioms that™ gavern the physical phenomena such as the laws of
thermodynamics. Hyperplasti€ity framework describes the behaviour of soils both for
clay and sand, associative or non-associative flow within a rigorous, compact, and
consistent framework. YT

The other reasons-are-this-framework -modeis-could be developed without the
need for additional ad hec assumptions and procedures, and it makes considerable use
of potential function and internal variables to predict entire stress-strain response of a
material subject to a specified sequence of stress or strain increment. In addition, the
framework may=allow ‘a number of competing. models to be cast within a single
framework, and seallow them to be more readily compared.

In<the snext chapter,~development and, numericalymodek, implementation one of
the thermodynamics-based 'soil “model based ' on hypérplasticity _framework i.e.:
continuous hyperplasticity non-linear KHMCC model is presented.



CHAPTER Ill. MODEL DEVELOPMENT AND
NUMERICAL IMPLEMENTATION

3.1 Introduction

The stress-strain characteristic of soils is non-linear and irreversible, in that the
initial soil stiffness or small-strain tangent stiffness depends on the stress level. The
interpretation from experimental observations.of bender element test shows that the
small-strain stiffness of soils is a non-linear funetion of the mean effective stress for
isotropically consolidated samples as reported by Tamizawa et. al. (1994), Kohata et. al.
(1997), Pennington et. al-(199/); and Techavorasinskun et. al. (2002) and depend on
the stress ratio (Rampelle“et._al', 1997) for anisotropically consolidated samples. The
stiffness also affected by othervariables; such as the voids ratio, anisotropic stress state,
and/or the preconsolidationgpressure (Hardin, 1978; Houlsby & Wroth, 1991; Viggiani,
1992; Rampello et al., 1994; and'Saga,"1995). .

In this chapter,/a /development “and numerical implementation of the
hyperplasticity non-linear KHMCC ‘mocdel based on triaxial stress-strain variables and
general stress using strain-driven forward-Euler integration scheme is presented. A
power functions of pressure proposed by Houlsby: et. al. (2005) is adopted in non-linear
elastic energy function. A hyperbolic function '_pro_posed by Puzrin and Houlsby (2001)
is adopted in non-linear kinematic hardening functions~ For simplicity, the pre-
consolidation pressure after-the-compiletion-of-1sotropic-ecnsolidation is referred in the
initial stiffness of Kkinematic hardening function. An-analytical solution of ideal
undrained triaxial test onnormally consolidated clay (Roscoe and Burland, 1968; Potts,
1994) is used to verify numerical model implementation under single yield surface.
Several numerical demanstrations are performed far manotonic, cyclic and repetitive
loading under undrained condition “for ‘normally and lightly consolidated clays. The
developed model is highlighted through the capabilities on chatacterising effect of
immediate’ stress history: (Atkinson, 1990; /Houlsby 1999), dependence of effective
stress pathy on the immediate stress history during undrained shear (Stallebrass and
Taylor, 1997), smooth and irreversible unloading-reloading responses. All attempts of
demonstration are to emphasize the performance of hyperplasticity framework which
can contain several complicated characteristics of constitutive models under the unified
framework. Further, several validations against small-strain experimental on clay soil
are conducted. An experimental undrained triaxial test on Speswhite kaolin (Stallebrass
& Taylor, 1997) has been selected. Model validation is performed with response of
tangent stiffness against stresses. Further, the experimental result of unloading-
reloading at small-strain is also compared to model prediction.
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3.2 Non-linear Kinematic Hardening Modified Cam Clay Model

3.2.1 Sign Convention and Triaxial Variables

The standard soil mechanics sign convention of compressive stresses and strains
positive is used throughout this research, and all stresses are effective. The triaxial stress
variables are p=1%(o, +20,), q=0, -0, Where p is mean effective stress, q is stress

deviator, o, is axial stress and o, is radial stress. Corresponding to them are
volumetric and deviatoric  (shear) ' strains defined by & =¢,+2¢ and

&, =%(&, — &, )Where ¢, is axial strain and & iS.radial strain.

For more general stress states, the following notation is adopted: o is the
effective Cauchy stress tensor«; is small-strain tensor; and &; is Kronecker’s delta (d;
=1 if i = j, & = 04F 4 '] where i,je{1,23} ). The stress invariants

3
arep=io,,q=20" 0, where &, :Zg“ WOl =a, = po, IS deviatoric component of

the effective stress tensor. The corresponding strain invariants are ¢ =& and

g, =y2eY €'y » Where g\ "= a5 Lz 5. 1S deviatoric component of the strain tensor. In

similar way, generalised” stfess .invarianiS, are =1y , z.=3z'x; Where

Z Tas X' =2y —x,0; 1S deviatoric component of the effective generalised stress
tensor. The corresponding internal variable invariants are ey, =a and o, = J2a'a’;

where o', = o, - 1,5, 15 deviatoric component of the internal variable tensor.

ij — 3%

3.2.2 Triaxial'lFormulation

Under the hyperplasticity framework (see Houlsby and Puzrin (2006) for details),
the entire~constitutive,modek issfundamentally geverned+by twe, sealar, functions which
are energy function‘and“yield functiontor dissipation function.'In typical formulation,
Gibbs free energy function is suggested to associate stresses, material parameters and
material memories (internal variables) to a unique potential function where the
referenced pressure for zero volumetric strain is defined at 1 atm. It is noticed that
hyperplasticity framework employs a total energy instead of rate form of energy which
is commonly used in classical plasticity theory. Since Gibbs free energy is equivalent to
a complementary energy, then negative elastic stored energy, negative dissipation
energy and positive hardening energy are combined. According to Houlsby et al. (2005),
a non-linear version of KHMCC is created to allocate non-linear elastic moduli at small-
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strain into the Gibbs free energy which is expressed in the form E=E(p, q, @,, «,, @,,
o?q) by adding the hyperelastic expression using triaxial stress variables.
E=——r P, P ~(pa, +0a )+j'[1HA &2+ ih &zjdn
p,"k(1-n)(2-n) k(1-n) O A A (3.1)

where p, = \/pz +—k (-n)q"
39

k, g, n are dimensionless material constant caliprated from elastic stress-strain relation at

small-strain level. Atmospheric pressure 1 atm" (approximately 100 kPa) is usually

defined for p, as reference pressure. o, and og aretotal isotropic and deviatoric plastic

strains respectively. Integration-of differential hardening energy is evaluated in terms of

internal coordinate » whieh isdimited between O to 1. 7» =0 represents the initial

is defined as an equivalent stress variable for convenience.

hardening stage (the highest shardening: response) while n=1 represents the final
hardening stage (zero hardening response). "n&p and ¢, are kinematic internal variable
function of 7 which can'be integrated to obféined ap and ¢ by Equations (3.2) and (3.3).

Therefore, o, and oq cangbe egarded.as a fjefinite integral area of functional variables
a, and ¢, over the domain of = 7. It is noted that all variables with “*” (hat)

throughout this study are referred te iniernal '\'/':a,'ri“anble function of 7.

Gydn (3.2),(3.3)

o=

O"T—I"‘ ._

1
apz_[apd77, a.
0

ﬁp,ﬁq [in kPa] are-non-linear kinematic hardening functions in corresponding to

isotropic and deviatoric-hardening responses as expressed-in Equations (3.4) and (3.6).
A hyperbolic function preposed by Puzrin and Houlsby (2001) is adopted to these
internal functions. For simplicity, the intial*hardening stage of the kinematic hardening
functions is made, as power functionof initial preconsolidation pressure as represented

by H i I—AIqi in Equations (3.5) and (3.7).
) A 3 " kp n p 1=n
H, =H,(1-7r) ,where H =ﬁ (3.4),(3.5)
R R 3 R 3gp n p 1-n
H,=H,(1-7) ,where H, :ﬁ (3.6),(3.7)

where p, is an initial preconsolidation pressure at the end of consolidation stage and a

is material constant. Plot of the above hardening functions against internal coordinate 7
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is shown in Figure 3.1. It is clear that H ; > H_(77)20 andH, > H, (1) > 0. Therefore,

in this study H, and H, are not directly dependent on p and g in energy function.

i s
I

1]
o
oD

oy
s

1=

70000 ——— = — L o Lol ¥. -

Figure 3.1 Variation of hardening fuf_hct_.ions against internal coordinate 7.

According to the shyperplasticity _‘.ftarJhework, total strain components are
considered as conjugate variables of stresseéJ:Whiph are derived from the Gibbs energy
function. From Equation (3.1), it fotlows thaf:thg volumetric strain g, deviatoric strain
gq can be obtained via differentiation with stresses.as shown in Equations (3.8) and
(3.9).

oE 1 p
= — = _1
< o k(1- n)( P " pe ]mp (38)

_aE_ q

q a_ pl—n3gpn 1%« (3.9

Because ,of the totalplastie, strain gomponents so;;ane, ag~defined earlier, the
dissociation oftotal elastic and plastie strain'components can.be clarified.

However, the Gibbs energy function expressed in Equation (3.1) with strain
components derived in Equations (3.8) and (3.9) is valid for 0 <n < 1. For n = 1 these
equations will be particularly replaced by the following Equations (3.10)-(3.12).

_ pfy[p o’ M1haz:tig
E_—?(In(—j—lJ—Ggp—(pap+qaq)+!(§HPapz+§Hq%2]d’7 (3.10)
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—In[ P )—imp (3.11)

_oE_ ¢

q a_%*—aq (3.12)

According to Equations (3.8), (3.9), (3.11) and (3.12), total strain components
are derived as function of p, g and «(2,),a,(,). By flow rule, rate change of total

strain components can be obtained. The segcond derivatives of Gibbs free energy
appeared in the below equations are derived in.Box 1.

. azEj, ( aZEJ, L BB t 8%E -
& =|— D+ — G+ || -—= a dn+ || ——= a,dn  (3.13
P ( op® 00Cp -[ oo,op.) ! da,op | (3.13)

0
0°E A B\ f 0E ).
=] — O — f AN dn+|| - d
&q ( apaqu ( jq ! 'ﬁdpana" U ! a&qaq]aq n (3.14)
Rate change of total/strain'components can be simply written by the following
equations. Equation (3.15) is a compacted form of Equations (3.13) and (3.14).

Equation (3.16) expresses rate form of plastic strain components while Equation (3.17)
expresses rate form of elastic strain.components.

03E
oy’

_OE
oa.0p | (&
a p
4P 3.15
o {&q} n (315
Ja,oq
_0E L JE
; L1 /10@ Jo oala 7
Ofp :J‘ pOP aPH cfp dy (3.16)
&) 5 FE - PE | |4,
i da,q a&qaq_
_OE _OE
Gl Je| [dl_| o opag {p} (3.17)
&) &) la) | B E | ld '
opoq a9°

According to Equation (3.17), the incremental elastic stress-strain relationship
can be given as the compliance stiffness matrix.
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where K is non-linear bulk modulus, G is non-linear shear modulus, and J is non-linear
coupling modulus. If J is non-zero, the incremental stress-strain response is a stress-
induced anisotropic behaviour appeared during loading stages (Houlsby, 1985). J is zero
only in the condition of isotropic consolidation:

62E 0°E
~ * = ~ op?
= 71G=2 2!
O°E 0*Ee"l % SO’E@’E. ( O°E
op® g ﬁ(apaqj L\ op™ay’ _(8p6qj
0% & (3.19)
4 opog
§°E O’ | W°E )
ap%, o _(ahﬁq.j

s I
3

d F zlj"lﬂ
Box 1: Second derivatives of Gibbs free energy f

Gibbs free energy E for 0.<n <Tin Equatidh "-_C.;_ibbs freecenergy for n = 1 in Equation
(3.1) (after Houlsby and Puzrin, 2006) (3.10) (after Houlsby and Puzrin, 2006)
2 . 2 2 2
_aE: 11— 1_np2 —alzz:i 1+ qu
op®  k@-nmp Tl P © op” kpl  3gp
0°E 1 pk(Ln)g? o’E 1
P w3 2 T 5q2  2an
aq”  39p; P 30p. oqs  39p
_O0E_ npg _OE ., 9
dpéd’ | 3gp el 0pag) 8gp°

Gibbs free energy E for0<n<1

_PE _PE
dax,0p da,0q
_0E _, _0’E
da,0p da,0q

The relation between among stress variables is not existed in the previous
description based on energy function. This relation is described in yield function which
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contains stress variables to couple with energy function. In the non-linear KHMCC
model (see Likitlersuang, 2003; Likitlersuang and Houlsby, 2006 for details), the yield
function y in term of triaxial stress parameters is defined:

=7, + 2, IM? —E=0 (3.20)

where M is a frictional critical state parameter (Roscoe and Burland, 1968) which is the
value that stress ratio q/p’ attains at critical state, ¢ = I:Ipapn Is a yield stress which
represents the size of yield surface function, jgp and ;2q are generalised stresses in term
of volumetric and deviatoric. stresses. Materials _behave plastically when the yield
surface is active (y >0). Materials behave elastically when the stress is inside the yield
surface (y<0). The generalised stresses are defined as changing of free energy
functional with respect to.the iniernal kinematic variables. Gibb’s free energy functional
E can be defined as the.ifiternal energy with respect to » . So the integration of E
throughout the domain of z'is Gibb’s free eri‘érgy as shown in Equation (3.21).

E=[Edy (3.21)

o'—.n—a

According to Equations (3.1}-(3.3) and (3 21) Gibb’s free energy functional E

is obtained by the following equation.
2-n

~ P P Ry Lol = 1~ . , 1 -
E=- e = = Fea,’ +=H,a
prl_”k(l—n)(Z—n)Jrk(l_n) (pap+qaq)+(2 v%p 5 j (3.22)

Therefore, y,and y, are referred in Equations™ (3.23) and (3.24) as the

derivatives of E with Tespect to a, and &, respectively. It is found that 7, and z,

can be consideredsas, thesdifference between:stress variables-and-yield stresses which is
associated with kinematic_hardeningivariables. In this.study, thetderivation of Equations
(3.23) and (3.24) is simplified because the definitions of «, and «, are initially

adopted dn Equations! (3.2) and (3.3). |If &, , @, and & and e, are considered as

independent variables in Gibb’s free energy, the constraint function using Lagrangian
multiplier and Ziegler’s orthogonality condition (Ziegler, 1983) must be employed.
This detailed proof can be found in Houlsby and Puzrin (2006).

- oE A A
»“ag, P (3.23)
. OE -
Xo===—=9-Hy, (3.24)




31

According to Houlsby and Puzrin (2006), the evolution rule of kinematic
internal variable function «, and «, are followed Equations (3.25) and (3.26)
respectively as the derivatives of flow potential w with respect to generalised stress

variables. One may associate this kind of evolution rule to flow rule used in classical
plasticity. The flow potential w is defined in relevant to yield function y as shown in

Equation (3.27).

=4
g

&y =il T — (3.25),(3.26)

)]

Y
<
'y
N
LR
)
o
N
-+
R
o
N
S~
=
N
|
o
\/
N

(3.27)

2u 24

where x is viscosity coeffiCientwhich is in rate-dependent algorithm plays the role as an
|
“artificial” viscosity thatsimpesed to unity. However, we can actually define x as a
“true” viscosity coefficient such/in ‘modelling creep behaviour. The operator ( ) is
0;4 <0

Macaulay brackets which defines (e) :{ )
o /o> O

As a consequence of Equatlons (3 25) (3.27), the rate form of stress-strain
relationship obtained in Equation (3 15) can be expressed. The derivatives of flow
potential w in Equations (3.25) and+3.26) are%shpwn in Box 2.

PE B | _ OE JE | [ ow

P opoa _{p}_{ép}_j. 0dop =0 dp | | 9%, . 228
) o2 _azE' g & & o i 5°E . A2E w n (3.28)

opoq oq”" 0a,0q  Oa,0q | | 9%,

Box 2: Derivatives of flow potential with respect to generalised stress variables

~2 ~2
~2 N r2 lq N
;(p+— Cich ;(p+— C 9 ZP'W/ZF”LW_C
ow. | X N
X, 2 72 72
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3.2.3 General Stress Formulation

In order to implement in a finite element program a non-linear KHMCC model
should be formulated in general stress. Then, the Gibbs free energy is expressed in the

formE = E(O‘ o, a)

ijr i

21 LM H H
_ p; 0,0, J-{ akk 0! a Jd?] (329)
0

Pk (1—n)(2—n) 3k(1 n)

where |, \/U"G” kA-noi; js defined as equivalent stress for convenience. Other
¢ 9 29

variables are similar definition with th_e triaxial-formulation, but now in term of
tensorial form. The formulation.in-Equation (3.29).is employed for n # 1. Whereas, the
Gibbs free energy for n =1 Is:

r ! M “ Y YY)
o o oG H «a H o'
E=—""11]n " I n p “kk W ij i d

ﬁp, |-‘|q [in kPa] are non-linear kinemati¢ hardening functions in corresponding to

isotropic and deviatoric hardening responses as similar expression with Equations (3.4)
and (3.6), except po = oo/8. From Equation '_(3.'30), it follows that the strains &; can be
obtained via differentiation with stresses oj; as shown in Equation (3.31).

oE 1 O —O'G
T = - =10 e+
T o0, 3k {i-n) [3 p"p! } i 2gpi p! % (3.31)

]

However, the ‘Gibbs energy function expressed in. Equation (3.30) with strain
components derived in Equations (3.31) can only produce a constant modulus (n = 0) or
power function of pressure dependent modulus (O < n < 1). For linear pressure
dependent modulus (n, =, 1) these.equations.will .be.particularly.replaced by Equations
(3.32) and (3.33).

e e[ 2 b 3% S g g f HoBR  Hai ) (3.32)
A3, e AL E 3 :
30! o !
gij = _E = i In |: Gkk :| M . é‘” 1 10;:] ) aij (3'33)
aO-ij 3k 3pr 4go-ll ji Zg pr pe

Rate change of total strain components can be written by the following
equations.

éi} {—OZ—E}{G'HHE{—LEA}{&H}M (3.34)
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The second derivatives of Gibbs free energy are derived in Box 3. This form is
applicable for0 <n<1.

Box 3: Second derivatives of Gibbs free energy (after Houlsby and Puzrin, 2006)

1 Nojoy )69, NG (s ' 1 %95
( . JJ e 2 (O-ijé‘kl +5ijo-kl)+£[5iké‘jl _LJ

=+
E 1 (p j k  2gp ) 9  18gp: 3
00,00 Py \ P nk(l_n) "t
2
_—?L = 0,0, = identity matrix
dazloy I

The generalised stressgs” 4 ate referred in Equation (3.35) as the derivatives of
|

E with respect to a; .

_—

. OE YV INEV
Zij:7:Uij_Hpakké}j°§'anij ' (3.35)

ij i
Further, the yield function in term of generai_'iéﬂéd: stress variables is defined:

o

2 (3.36)

where ¢=H 77 and M is critical state pararhéigr_. Then the flow potential w can be
defined in relevant to yietd-function-y-as shown-in-Eguation (3.37).

_6> ' (3.37)

Finally, the rate form of stress-strain relationship can-be expressed.

| perer e

The derivative of flow potential w in Equation (3.37) is shown in Equation (3.39).

(3.39)
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3.2.4 Model Parameter Determination

The non-linear KHMCC model has five parameters, which is composed of three
dimensionless material constant parameters (g, k, and n), one parameter for critical state
(M), and the last one for kinematic hardening parameter (a). These parameters are
obtained through processes of parameter calibration from the experiment results. The
dimensionless material constant g, k, and n are related to elastic stiffness which can be
determined from experimental measurement of small-strain stiffness such as bender
element test or for preliminary analysis can be determined from empirical equation as
summarised in Table 3.1. These elastic stiffness parameters should be determined at the
initial loading stage in order t@ minimize the effeci-from hardening responses. Critical
state frictional parameter M IS determined at the stage of failure condition. It can be
approximated by relationshipwith.internal friction angle ¢ in Equation (3.40).
6sing

M/= 3sing (3.40)

Table 3.1 Small-strainsstiffness empirical equations G = AF(e)(p)" (After Soga and

Yimsiri, 2001)
Soil type A F©) n4 |\ Void Test references
¥, ratio e method
Reconstituted | 3,270 (2.973—e)2 0.5 4 05-1.5 | Resonant | Hardin and
NC kaolin e p Column | Black (1968)
Several 3,270 (2.973—e)2 05 | 05-1.7 . Resonant | Hardin and
undisturbed —— Column | Black (1968)
NC clays
Several 1,726 (2.973_6)2 0.46- | 0.4-1.1 | Resonant | Kimand
undisturbed P 0.61 Column | Novak (1981)
silts and l+e
clays
Undisturbed 90 (7.32 —e)2 0.6 1.7-3.8 Cyclic | Kokusho et
NC clays e Triaxial | al. (1982)
+
Undisturbed | 4,400 e 7* 04- | 0.6:1.8-| Resonant | Jamiolkowsky
Italians clays | 8,100 (x=1.11-1.43) 0.58 Cc;lrl:gwn et al. (1995)
Bender
Element

Once parameters which relate to elastic responses and failure conditions are determined,
the kinematic hardening parameter is calibrated. In this study, the scope of application is
restricted to isotropic consolidated materials. Therefore, the initial stiffness after the
completion of isotropic consolidation is calibrated. To match with this condition, stress-
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strain responses during isotropic loading is imposed to Equation (3.19) so that moduli
expression of G and K can be obtained while J = 0. It can be shown that the initial
stiffness G and K after completion of isotropic consolidation are given by:

G(p,.q=0)=gp"p," (3.41)

K(p.g=0)=kp"p,"" (3.42)

According to Equations (3.41) and (3.42), it is found that during isotropic
consolidation, the ratio of K/G is constant. regardless of consolidation pressure.
Therefore, Poisson’s ratio v for isotropic raierials can be conveniently obtained by
Equation (3.44).

_O°E
K(prG=0) | Log? |k
G(p,q:O)—_azE _g (343)
2 I
K kiR (% y)
G o -2 (3.44)

From the experimental observations' using bender element test, the elastic
modulus at small-strain is generally expressed as a power function of the mean effective
stresses such as in the following forms for isotﬂr’op-ically consolidated samples (Tanizawa
et. al. (1994), Kohata et. al.((1997); Pennington et. al:(1997), Techavorasinskun et. al.
(2002)):

G =Cpl (3.45)

where C and n are constapts. This equation is_identical with Equation (3.41) which is
derived from caonstitutive modely This requation can~be:snormalised into the form
suggested by Houlsby “et al. (2005) is' shown' in- Equation- (3.46), to obtain the
dimensionless material constant g and'n. Another dimensional material constant k can
be determined using-the“elastic- relationship @s presented in Equation’(3.44). Value of
poisson ratiov "is ranged in a certain fimit and can be related to' the coefficient of earth
pressure at-rest Ko as shown in Equation (3.47).

G p "

—=g| — (3.46)

- o(z)

v = (3.47)
1+ K,

According to Houlsby and Puzrin (2006), the kinematic hardening parameter a
is calibrated to fit the stress-strain curve for specific test data (such as triaxial undrained
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or drained tests) as shown in Figure 3.2 for an example This parameter characterises
first loading curve (also referred by many as backbone curve) of the stress-strain
response with hyperbolic curve . Followings are general step by step procedures to
determine parameter a:

(1) Normalise undrained or drained stress at vertical axis by undrained or drained
strength c.

(2) Multiply the strain response at horizontal axis by appropriate initial stiffness and
divided by c.

(3) Find a as inversion slope (1/secant stiffness) of a point at 50% of normalised stress.

However, procedures.(1)-(3) are-applicable.if.the laboratory stress-strain curve
can be approached with-a simple_hyperbolic stress=strain curve. In many practical
scenarios, kinematic hardening<parameter a can be directly obtained from a small
parametric study to match the stress-Strain curve of specific test as shown in Figure 3.3.

1.2
/ |
0.8 /(1 off S
vl s
L 06 /

=2
0.5

o
/

0

07 2% 14 le/ 8 10 12 44 s 18720 )22 24 26
£43GIC

Figure 3i2:Determination of parameter ausing procedures (1)-(3)
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Figure 3.3 Determination of parameter a using small parametric study

3.3  Numerical Implementation

3.3.1 Incremental Stress-Strain Response"’f‘ .

From the previous formulation, rate form of the stress-strain relationship based
on the continuous hyperplasticity is described. ‘However, the. continuous hyperplasticity
is suitable for stiff calculation with simple hardening function. Due to this limitation to
handle complicated leading conditions, the multisurface ‘hyperplasticity is generally
employed in numerical implementation. Non-linearity is expressed by multiple piece-
wise responses (see also Mroz & Norris, 1982). Therefore, multiple internal variables
play a role as discrete memories of materials-and the smooth transition between piece-
wise responses depends on the finite-numbertof internal variables. For KHMCC model,
continuous yield surface is discretised.to a finite number of yield surfaces (Likitlersuang
(2003), ‘Likitlersuang) and - Houlsby ' (2006)). Integration’ operatdr tsimply turns to
summation operator-without'losing general meaning. " Each yield "surfaces have their
own state variables which are generalised stresses and yield stress. A finite number of
yield stress can be considered as multiple material memories which are updated when
the multiple yield surfaces are active. The illustration of multiple yield surfaces in
principal stress space can be depicted in Figure 3.4.

In this study, 10 number of multiple yield functions are demonstrated. Plot of 10
number of yield surfaces in p-g plane under generalised stress space and true stress
space are envisaged in Figure 3.5 and Figure 3.6, respectively. The rate-dependent
incremental response of a single element calculation is obtained by integrating the
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incremental stress-strain relation using strain driven forward-Euler integration scheme.
This means an increment of variable based on rate form x= f(x) can be typically

written in the manner X, —x = f(X)At where At=t,  —t and i+1 represents the

current step number. Equation (3.28) combined with (3.27) are used to update stress
components in any increment of strain, and then it can be used to update the generalised
stress components by Equations (3.23) and (3.24) after internal variable is updated from
the evolution rule given by Equations (3.25) and (3.26). The algorithms of the rate-
dependent numerical implementation in:triaxial and general stress are explained in Box
3 and Box 4. The subscript m and t are & pdfgifli);e integer representing the index of the
yield surfaces and incremental of specific \/ar[a/bles, respectively. A parentheses ()
enclosed a subscript index.is.used to distinguish between tensor expression index. For
an arbitrary variable tensere; component of tensor in“aecording to the yield surface-m™ at
increment-i™ is represented by(.,/ _Where N is-a number-of yield surfaces.

G2

Figure 3.4'Non-linecar KHMEC yield surfaces in'three-dimensional stress space.
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Figure 3.5 Nonslinear KHMEC yield surfaces. in the generalised stress.

It is noted that when rate-independence is deseribed as the particular case of
rate-dependent behaviour; significant simplifications in calculations can be achieved. A
significant advantage of the rate-dependent "@élculation is that, it is not necessary to
attach with the consistency condition during 'the calculation of plastic strains. Therefore,
the higher complexity of numerical calculation such as special procedure for error
controlling is not required like that of the rate-independent (see Houlsby and Puzrin,
2006).
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Figure 3.6 Non-linear KHMCC yield surfaces in the true stress.



Box 3: Strain-driven forward-Euler integration scheme (Triaxial stress)

40

For given Gibbs free-energy E, £,, £,, At, &,4, €40y Pgiys Ugiys @iy s @

for me {1,2,..,N}

1. Initialise

N N
Epien = Epy T Ep Dy Eqiuny = Eqqiy T Eq Ay @) = D Aoy s @y = D2 %)

n=1 n=1

for me{L,2,..,N}

Zomiy = Poy = Homi@pmiy + Xagmiy =0

Coniy = Hopmiy@omiy » Yinp) =
2
Wimiy = <y(2m'i)>
Y7,
2. Determine plastic para
for me{L,2,..,N}
if Yy <0 then ¢

p(mi) —

. aW(rni) .
else a,,,,=—">-, @
X p(m,i)

3. Compute mcremental varlabl”' .u.
_0E

[Ap}_ op*
Aql | OE

oqop

4. Update state \ﬂlﬂﬁ ’J Vl EI W ‘3 w 8"] ﬂ ‘j

p(|+1) p(n) + pW(Hl) (l) +A

e G RN AIN T NMW‘WEJ’W@ d

p(m i+1) — aﬂm i + ap(m |)A‘t aq(m i+1) — aq(m i) +a (m,i)

—H

Xomisy = Pisy — Hp(m,i+l)ap(m,i+l) v Xamisy = Yy a(m,i+)Xq(m,i+1)

5. Go to next incremental step

q(m,i) 1
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Box 4: Strain-driven forward-Euler integration scheme (General stress)

For given Gibbs free-energy E, ¢, , At, ¢ , al®

i) i ii(t)
for me{1,2,..,N}
1. Initialise

ij

N

i = Sy T E ALy Ky = Zaii(n,r)
n=1

for me{L2,..,N}

_ _ _= r
Lijmt) = it Hp(m,t)akk(m,t)é‘ij 3 Hq(m,t)aij(m,t)

2 ’ [/
_ Ximn)s S m a® _
Cimpy = Hp(m,t)akk(m,t)’ Yim) =\/ 9 +E . M2 “Ciy =0, u=1

2. Determine plastic parameters
for me{1,2,..,N}

if y,o <0 then g, =0
ow
: _ Ymy
else Cijm) =
Xiim.1)

3. Compute incremental variables

-1 T i
0*E ) 1 o%E —
Aoy = &jj __Z F T Qi bt
00,00y Nl Ognlo; ’

4. Update state variables
T = Tijy + A0
for me{1,2,..,N}

Cijmisn) = %y T Ky

At
2

Zij(m,m) = Ojjts1) — H p(m,t+1)akk(m,t+1)5ij _5

H

q(m,t+2) Fij(m t+2)

5. Go to next incremental step

3.3.2 NumericalIntegration ef Hardening Function

In equation (3.1) or (3.10), Gibbs free energy is completely described with the
integration of hardening function H and kinematic hardening variables & in terms of
internal coordinate 7. For instance, a hyperbolic function f(7) expressed in Equation

(3.48) is supposed to integrate numerically. The numerical integration techniques can be
employed and verified by the closed-form solution. The definite integration of f(7)

can be algebraically obtained by F, as shown in Equation (3.49).

f(n)=H/A, =(1-7n) (3.48)




42

= [t mon=-—ta-n] -

1
= (3.49)
4 , 4

Various quadrature rules emanated from the method of differential slices are
employed in this study. As shown in Equation (3.50), three general integrators which

are equivalent to forward-quadrature F, , backward-quadrature F;, and midpoint

quadrature F, are expressed. The continuous function of f(7) is discretised to N slices

with equal width 1/N where N is number of yield surfaces. Therefore, integration of
f (7) is the area summation of each slices. 1t canbe seen that 7 is replaced by i/N in

F,, (i-1)/Nin Fand (i—05)/N in F where-i-isi-th active yield surface. To obtain

zero hardening response«from .ihe last N-th yield surface, F, should be the best
candidate because f (ﬁjzo when i = N\. However, it causes the singularity problem

due to division by zero at initialisation of internal state variables (yield surface location)
likea, = p,/H, . N

4
18 (i Qi | IS (i-05
F=—)f|l— | /B =l 3t f 3.50
TN (N) : NZ(NJ N2 ( N j (3:50)
2224
i l T T I : ? -I T T T ]
" Hardening functionf = (1 —'Y!]F-»" =
i ' — v
SR D e 1
V.= — |1s backward quadrature rulg
:l 2 lejl = JNJS ackward qua s
g _'l A i(f(' _0'5-]%}5 midpoint quadrature rule ]

LALAE B a B A Aa s s g

Figure 3.7 Numerical study result of some integration schemes.

To prevent this singularity problem, then the hyperbolic function f () expressed
in Equation (3.48) is modified in to f () = H/H, =(1-ry)’ where r is ranged between
0 and 1. Equation (3.48) can be numerically integrated without singularity problem by
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using F,and F, though zero hardening response from the last N-th yield surface cannot

be exactly attained. Furthermore, a numerical study is performed in according to
investigate the computational effect of these integration rules. Figure 3.7 shows that

F,need less number of yield surfaces N compared to F,and F;in according to obtain
the definite integration of hardening function (marked by solid line).

Figure 3.8 shows the stress-strain response using F,, Fs, and F4 for several N
number of yield surfaces. It also shows that F,need less number of yield surfaces N

compared to F,in according to integrate the specified hardening functions in this model.

250

200

g 150
=
o
100
= f2 (10 yield surfaces)
. = =13 (10 yield surfaces)
50 —1f4 (10 yield surfaces)
-=-=12 (180 yield surfaces)
------ 4 (90 yield surfaces)
— -f3 (20 yield surfaces)
0 i :
0 5 10 el Y 20 25

sq[%]

Figure 3.8 Comparison of several numericalintegration schemes.

3.3.3 Effect of Time Step and ‘Nuriber of ¥ield Surfaces

Effect ofitime step on the accuracy and numerical stability of pseudo rate-
dependent algorithm_have been.reported by. several-researchers. (Cormeau, 1975; Potts,
2003). In‘these cases; the rate-dependent algorithm was implemented an elasto-perfectly
plastic and isotropic hardening model. Due to the limitations, pseudo rate-dependent
algorithm approaches a rate-independent calculation by assuming a sufficient small
value of time step and pseudo viscosity coefficient (). However, the advantage of

rate-dependent algorithm is that these parameters have actual physical meaning and it
can be directly used for modelling real time response in soil mechanics.

On the implementation of the hyperplasticity non-linear KHMCC with multiple
kinematic hardening surfaces, this effect also apparent as shown in Figure 3.9 and 3.10,
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with constant number of yield surfaces N and different time steps dt. It can be
concluded that the numerical stability is affected by increasing time step.
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Nen smcoth stressistrain T T / |
i - g A :“
tlme step _j
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f
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Figure 3.9 ) e step an \ ‘Q ‘of yield surfaces with
' ~p=1and N =5.
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J
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T
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Figure 3.10 Effect of time step and number of yield surfaces with
dt=1x10° g=1landN=5,
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It is observed that the stress-strain response smoother when the number of yield
surfaces is increased as shown in Figures 3.11 and 3.12. Figure 3.13 shows more clearly
effect of number of yield surfaces to the stress-strain characteristic. Figure 3.14
indicates that calculation running time increases linearly against increasing number of
yield surfaces. This simple computation was running by Intel®Core™ 2 T7250 2.0 GHz.
However, as faster computers become available, the computation time will be
significantly reduced.
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3. eneral Stress-Strain Implementation
For general stress and strain, as a result of moment equilibrium demands there

are still six independent stress components: three normal stresses (ow, oy, ©zz) and

three shear stresses (zy, tyz, 7x), are called the components of the stress tensor ojj as
shown in Equation (3.51) .

Oy Oy Oyp Oy Ty Tx
0y =|0y Oyn Ou|=|7, O, T, (3.51)
O3 Oz Oz T Ty O,
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Based on Equation (3.38), it can be shown that the incremental of stress-strain
relationships of rate dependent strain-driven forward-Euler integration scheme in
general stress is:

Cun Cuz Cum Cup Cup Cus |[Aoy Agy 100000 dll(m,t)
Con Can Causs Cu Cop Copy ||A0y Agy, 010000 d22(m 1)
Cann Case Cams Case Cugs Cagyy || Aoy, _ Agy _ i ZN: 001000 d33(m,t) AL
Coun Cum Ciup Chp Chom Cuy || Az Ay Nw=|0 00100 dlZ(m,t)
C2311 C2322 C2333 C2312 C2323 CZSSl A To3 A7 23 000010 d23(m,t)
_C3111 C3122 C3133 C3112 C3123 C3131 3 A T3y A7 31 _O 0000O0 1_ d31(m,t)
(3.52)

In the Equation (3.52); the evolution rule of kinematic internal variable functions
tensor o?ij is determined using.Equation (3.39). However, for computer programming

purposes, the component of iangent comqliance matrix Cjq in Equation (3.52) can be
easier determined whenswe re-write the tangent compliance matrix in Box 1 (second
derivatives of Gibbs free energy in r'especL 10 stresses) in expanded form as shown in
Box 3. \ 4

/
Box 3: Tangent compliance matrix in expanded form for general stress implementation

" nod W npetii 9 Rk (11
NS l+ O'uo;u 1 PG';, +_1_;ﬂ%giﬁo-i{ , i=j=k=1€{123
p, L P, k  2gp; 9_,.391% 39 _}._49.,;ps j i

/ <4

" ! ! nplGi=o, Tk 1-
i(&j {E%n"""" jl_ AT )k n)ai;ak'l}, i=jzk=1¢c{123)

p L P, 2gp? )9 6gp; < 6§ 4g’pl
Ciu = - . - 3 ot
“npl(o; +o, ] nk(l=n
H%J j{__ p(6ép2 o) _ 4ézp2)0‘304'}’ i jxork =1 ef1,2,3)
o Y nk(1-n )
pi(%) {é—ﬁaéo‘é}, i jandk £ e{1,2,3}
where
p? = 0ii0jj + k(1-n)ojo; —p24 kA-n)ojg;
T g 29 29
note :

ei=j=k=le {11 2’3} = Ci111:Co Caag
ei=jzk=le {1! 2!3} = Ci12: Ciizss Conns Cooass Caanr s Can
eizjxork=le {1’ 2!3} = Cip111Cip1 Ciasr Ciino Co121 Casor Conns Conra s Coaar Cringr Congs Cagons Canas

C3122 ’ C3133 ! Cll3l’ C2231 ' C333l
hd I # J and k # I € {1’ 2’ 3} = C1212 ’ ClZZ3 ’ C1231’ C2312 ' C3112 ! C2323 ’ CZ331’ C3123 ’ C313l
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3.3.5 Two -dimensional stress-strain implementation

In two-dimensional case, there are usually four stresses tensor component
involved: three normal stresses (ow, oy, 0z) and one shear stress (zy) as shown in
Equation (3.53).

o, o, 0 Oy Ty 0
0;=|0y 0, 0|=7, o 0 (3.53)
0 0 oy 0 0 o
Then, the incremental of stress-strain selationships of rate dependent strain-

driven forward-Euler integration scheme in-Eguation (3.52) can simply defined as
shown in Equation (3.54).

Cunn Cuze Cus Cup oy A&, 1.0 0 0Of [Qumy
Cou Cam Cus CopgfAo, '] Agy, AN i 0.1 0 0| |ayumy t
Cann Casp Cagss  Coapp fAGE Agss_ N[00 10 d33(m,t)
Con Ciup Cuss Cupr | A7 Ay 000 0 1] [Qupmy
(3.54)
The component of tangent compliance matrix Cijy and the in Equation can
. (3.54)

be also easier determined using expanded form in Box 3. Also, the evolution rule of

kinematic internal variable functionstensor &, .;.is determined using Equation (3.39).

For computer-programming purposes, it can be-simpler if we define index
notation o,,0,,0,, 0, are equivalent to o,,,0,,,04,,0;,, and'¢,,¢,,&,, &, are equivalent
t0 &, 8,5, €43, 26,, . Similar definition also applied for y,, %, 7., x, Which are equivalent
tO 711\ Xons Xaar ¥p@Nd o & 5e,, ¢, are equivalent toa,,, @,,, 2., 22, . The Gibbs free

energy and yield function can be re-written as shown in Box 4. Then, the incremental
stress-strain relationships in Equation (3.54) can be re-written as in the following:

C. Gy ©x~Cqlao Ag, 17090 0 oGy

cC, C.,..C,., C Ao Ae 1[0 ™70 0| [ay,

21 22 23 24 2| _ 2 __Z .2( 1) t (3.55)
Cuy Cy Cyp Gy ||Ao, Ag, N |0 0 1 0] |aymy
C4l C42 C43 C44 AO-4 Ag4 0 O 0 1 d4(m,t)

The component of tangent compliance matrix Cj in Equation (3.55) can be
simply defined in expanded form as shown in Box 5. The effective generalised stress
tensor y; ., 1S calculated using Equations (3.56) and(3.57). And the kinematic internal

variable function tensor iy

is calculated using Equations (3.58) and (3.59).
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oE 2 P
Zimy) = “a =00y~ H o @omn 3 Hymn iy 3 1=1...3 (3.56)
i(m.t)
oE 1
=———=0,,——H a, 3.57
Koty aa“(m’t) 4w~ g amoFam ( )
2 :
Wy (Vo) 3 Fpm0 ™ gz Ko i
Aimyy = = > (1=1...3
a)(i(m,t) H 3 " "
(Zi(m,t))"‘ 2 X4y
M 2
(3.58)
. aWm y m,
gy = Do (3.59)
aZ4(m,t) H "
l4(m,t)
Box 4: Gibbs free energy ant ion for mensional implementation
Gibbs free energy for n # 1: :
3
T prk@-ny(2-n)  3k(@-n
.
H (mt) (Zai(mt) I
13 mlE ™ : ﬂ
N mZ; 2 3 i
o .Y
Gibbs free enerﬂouﬂ:q Qn EI ﬂ ‘j W EI | ﬂ ‘3
3

3
i 3_2(‘7 i’<t>2¥+ 205" 3

i=1

N = 2 3

; ’ H i(a'z )+2 M ‘
1 i H p(m,t) [Zai(m,t)] a(m.t) “ i(m,t) 2
N +

where
3 2 3
[z Si ) k(@1 “)Z(G&tf ) +20,,°
pr =~ + =

9 29
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Yield function:

3 2 3
[.21: Zi(m,t)j 3 ( 2 (Zi,(zm,[) )+ 2;(;(va‘)) .
] 2 “Hymy (;ai(m,t)j

= +
Yimo 9 2 M?

Box 5: Tangent compliance matrix in expanded form for two-dimensional
implementation

3
n n( (0'{2)+20';2) , B
i[ p,j 1, s Lpg , 1 rk(l n)(i(a{2)+20{,2] Ji=je{123)

plp) || K 2gp? 9 3gpi By, 49°p’

3
n n Z(O'i'2>+20';2] g
EA AP ( 1 (g ol k(1-n) (& oy o o)
G pr[pe] < 29p. 97 ,60pl B9, 40°p’ ké(“i)“‘% iz je{l2s)

0 n ! Lot %
i_pL / p(O’. Zal)f'nk(lz Zn)o_i!o.f_ Ji=4xor j=4
p, 4P 6op;-—= " 4g°pl "

n { le_
i{&] l_f_(;zTn)gf = j=4
pl’ pe g r4g pe

where :

2 _Ci%y | k(L-n)ojo; _prh K1 =n)oiq; F/R

¢ 9 29 29 ok
note : =

Oi:j€{1,2’3}:>C11,C22,C33 =i _.-',_._7__;' "
oij 6{1,2,3} = C,.Ci78,.C,..C,..C,,

e i=4xor J 24:>C41,C42;0431C14!C24’C34

ei=j=4=C,

3.3.6 Geometric Idealisation

Due to the special geometricecharacteristic«in the real geatechnical problems,
certain idealisations-should be“made. There are two'kinds of geometric idealisation
usually applied in geotechnical problems 1.e.: plane strain and axi-Symmetry.

For plane strain problems the thickness dimension normal to a certain plane (say
the xy plane) is large compared with the typical dimensions in xy plane and the body is
subjected to loads in the xy plane only. It may be assumed that the displacements in the
z direction are negligible and the displacements u and v are independent of the z
coordinate, it means that:

g,=0y,=07,=0 (3.60)

Then the constitutive relationship in Equation (3.54) reduces to:
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C1111 C1122 C1112 Ao'n Agn 1 100 dll(m,t)

C2211 szzz C2212 Ao 2 (= Agzz __Z 010 d22(m,t) (3 6 1)
m=1 . .

Coun Cu Cup ||AT, Ay, 0 01 Qiomi)

where Ao, = Ao,

Some problems in geotechnical engineering are categorised as axi-symmetry. In
this problem it is usually to perform analysis using cylindrical coordinates r (radial
direction), z (vertical direction) and @ (circumferential direction). Due to the symmetry
condition, there is no displacement in the @direction and the displacement in the r and z
directions are independent of @, it means that:

-

7,=0and y,, =0 (3.62)
therefore the strains reduce.io (Timoshenko and Goodier, 1951):

Cuun Cun Cuy Can || AC, 190 0 0] [&my

C2211 szzz C2233 C2212 Aar g 0100 dr(m,t) t

C3311 C3322 C3333 C3312 AO—@ 0010 dﬁ(m,t)

C1211 C1222 C1233 C1212 A z-rz 0 0 0 1 drz (m,t)

) {4 (3.63)
Figure 3.15 shows some examplesof these prob_i_epns in geotechnical engineering.
a,
Circular footing Pile Triaxial sample

(@) (b)

Figure 3.15 Examples of (a) plane strain and (b) axy-symmetry problems (Potts
and Zdravkovic, 1999).

3.4  Verification of Numerical Model Implementation with Analytical Solution

To verify the performance of the numerical model implementation, the
analytical solution of simple idealised undrained triaxial test on normally consolidated
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clay has been considered. This solution has been obtained by theoretically integrating
the MCC constitutive equation over the imposed stress or strain path (Roscoe and
Burland, 1968; Potts, 1994). These solutions are given in the following equation:

/A
cnf3]

where po is mean effective stress on the isotropic virgin consolidation line and

(3.64)

A :1—% The above equation provides the stress path in g — p space, since po remain

constant in an undrained test. The material properties assumed in this validation are
given in Table 3.2. 7/

Table 3.2 Material proeperties for simple idealised undrained triaxial test

Slope of virgin consolidation line in a+In p’ space A 0.066
Slope of swelling line v=In p’.space K 0.0077
Slope of critical'state line in g = p'space M 1.2
Py 200 kPa
Material constant g 100
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Figure 3.16 Stress path response of idealised undrained triaxial test on
normally consolidated clay.

In this validation, full pressure-dependent is considered for non-linear KHMCC
model under single yield surface using n = 1, and other parameters are k = 232, a = 1.1.
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Result for this validation is shown in Figure 3.16. It is shown that the numerical
prediction of non-linear KHMCC model is in good agreement with analytical solution.

35 Numerical Demonstration

This part shows several numerical demonstrations of the non-linear KHMCC
model. AIll attempts of demonstration are to emphasize the performance of
hyperplasticity framework which can contain several complicated characteristics of
constitutive models under the unified frameweork: All the following demonstrations use
the parameter g = 242, k = 1200, n = 0.6, M= 0:71yand a = 3.5 for non-linear KHMCC
then M = 0.71, k¥ = 0.2 and 4=0.6 for MEC model

3.5.1 Smooth Transitionfrom Elastic tdL Plastic Behaviour

Figures 3.17 and 348 show/the Stress path and stress-strain curve of undrained
triaxial test of lightly-overconsolidated cla}". The sample Is consolidated with isotropic
consolidation pressure p = 500 kPa then ufhloaded to p = 300 kPa (OCR = 1.67) and
after that the sample is sheared under undrai-hed:condition. It is clearly shown that non-
linear KHMCC model can'simulate .Smooth‘.rtvt‘-ar.lsition from elastic to plastic behaviour
comparing with the MCC prediction. The characteristic S-shaped curve for the variation
of stiffness with log of strain clearly present iﬁigure 3.19.
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Figure 3.17 Undrained stress path of overconsolidated clay.
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3.5.2 Effect of Immediate Past Stress History

Atkinson (1990) and Houlsby (1999) observed an additional influence on the
stress-strain behaviour that is the immediate or recent stress history of soil described by
the most recent loading, which may take the form of an extended period of rest or a
sudden change in the direction of the stress path. Figure 3.20 shows a given series of
stress points (A, B and C). Two cases of consolidated stress path are given i.e. ACB and
ACAB. To demonstrate the effect of immediate past stress, we shall consider two
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undrained tests from point B, which have OCR of 1.5. Wherein, point B has been
approached by two sets of drained loading from the direction of point A and C. Also
shown in Figure 3.20, all stress histories located within the MCC surface.

Figure 3.21 shows the demonstration results of undrained stress-strain curves
when sample is sheared from point B. For MCC model, because all stress points lie
within this surface, the model gives the same purely elastic response for both two cases.

Figure 3.20 Series of stress point with different stress paths for over

[ ——————consolidated clay.
200.n
180
1 E ‘-_w-“.
160 e
7
140 I T— F
W
120 H-f : l
w 1 / Response'is softer due to the 1
o 100 7 swelling ™at ias oecured
S 80 !/  during unigading to A

y =-=-ACB (NKHMCC)
R e e S
— ACAB (NKHMCC)
40 —ACAB (MCC)
20 —ACB (MCC)
0 ; |
0 1 p 3 4

Deviatoric strain, s, [%]

Figure 3.21 Stress-strain response after different recent stress histories.
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It is clearly shown one of the drawbacks of the MCC model. On the other hand,
the two responses from the non-linear KHMCC model are quite different. Response of
ACAB is softer rather than ACB, because of the swelling effect that occurred during
unloading to point A. The effect of recent stress history on the stiffness is more clearly
shown in Figure 3.22, which shows plot of normalised secant stiffness G/G, against the
deviatoric strain.

—ACB (MCC)

~ —ACAB (MCC)

... ===ACB (NKHMCC)

_ — ACAB (NKHMCC) _

Normalised secant stiffness, G/G,

0.0001 00010~ ¢,  40.0100 0.1000
' Peviatoric strain, &4 (log scale)

Figure 3.22 Effect of immedi'atelétress history on the stiffness.

Figure 3.23 shoWws two undrained stress paths response from non-linear KHMCC
and MCC model. It isT0bvious that the non-linear KHMCC model can predict the
dependence of effective stress path on the immediate stress history during undrained
shear as observed by Stallebrass and Taylor (1997) comparing with the MCC model.

3.5.3 Unloading-Reloading Cycles

Figures® 3.24"and "3.25 show cyclic load response ‘of non-linear KHMCC and
MCC model, respectively. The non-linear KHMCC model demonstration shows a
hysteresis loop and smooth transition of stiffness during unloading-reloading compared
to MCC model. The non-linear KHMCC model can explains the fact that the openness
of the hysteresis loop increases with strain amplitude.
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Figure 3.24 Closed hysteresis loop response of non-linear KHMCC model.
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Figure 3.27 Unloading-reloading undrained stress-strain response of MCC model.

3.6 Summary

Formulation of the mnon-linear KHMCC model in triaxial and general stress
variables as well as an approach to.determine.the necessary parameters obtained from
experimental tests for regulating Small-strain stiffness characteristic in form of power
function of pressure has been presented. The stiffness factor for the kinematic hardening
has been made as power. function of initial preconsolidation pressure. Further, some
important issues on the numerical-impiementation of this-model have been discussed,
including incremental -stress-strain response algorithm, numerical integration of
hardening functions, effect of time increment and number of yield surfaces. The rate-
dependent multisurface hyperplasticity algerithm using strain driven forward-Euler
integration scheme 1s employed in this study to'reduce complexity of treatment from
numerical error. It is also Shown that the numerical stability of rate-dependent algorithm
is clearly affected by the increment ‘of time step.cit is observed that the stress-strain
responsessmoother when the number of yield surfaces is-increased. Numerical study
also indicate that running time of multiple kinematic hardening model increases linearly
against increasing number of yield surfaces. However, availability of high-speed
computer can significantly reduce time computation. Validation of the numerical model
implementation against analytical solution of simple idealised undrained triaxial test
show that the model has been successfully implemented. Finally, numerical
demonstrations show that the non-linear KHMCC model can demonstrate some
important aspects in soil mechanics such as small-strain stiffness, effects of immediate
past stress history behaviour, a hysteresis loop and smooth transition of stiffness during
unloading-reloading cycles. Nevertheless, the anisotropy can be loosely explained by
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the immediate stress past. The softening behaviour should be explored in the future in
order to realize the promising features of the model on soil destructure. In the next
chapter the developed model will be compare with experimental data of clay soils.
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CHAPTER IV. SOME COMPARISONS WITH
EXPERIMENTAL DATA OF CLAY SOILS

4.1 Introduction

The development of non-linear KHMCC model under triaxial and general stress
condition has been presented in Chapter 3. Though several demonstrations to show
features of the developed model have been presented, comparisons this model to
experimental data has not been earried out.

This chapter presents..comparisons of .the developed model with some
experimental on clay solls..~The*comparisons are performed using single-element
calculation.

4.2 Loading Path Dependence and Non-Linear Stiffness at Small-Strain

4.2.1 Introduction

Detailed experimental investigations. on the stress-strain response of
overconsolidated soil have also shewn characteristics dependence on both non-linearity
and most recent loading paths (Jardine et al.; 1984; Atkinson et al., 1990; Stallebrass
and Taylor, 1997; and Houlsby, 1999). The effect of curpent loading history has also
been observed by a different experimental approach (Jardine, 1985; Jardine, 1992; and
Smith et al., 1992). They found that there are zones exist at small-strain and its can
change in both of shape-and size as the soll i1s subjected to-different loading histories.

The importance of these two.behaviours,in predicting load-deformation on soil-
structure interaction problems have been observed with many cases in the field (Jardine
et al., 1986; Jardine et al., 1991; Gunn, 1993, and Addenbrooke, 1997).

This section presents & comparison of: experimental results,of current state and
loading history dependence in overconsolidated clay with non-linear KHMCC model
prediction. An experimental undrained triaxial test on Speswhite kaolin (Stallebrass &
Taylor, 1997) has been selected. This experimental have been conducted to show a non-
linearity and current state and loading history dependence on relative directions of the
current and previous loading paths in overconsolidated clay. Model validation is
performed with response of tangent shear stiffness against stresses. Further, the
experimental result of unloading-reloading at small-strain is also compared to model
prediction. In addition, study about effect of number of yield surfaces against stress-
strain response is carried out.
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4.2.2 Model Comparison

Atkinson (1990), Jardine (1985, 1992), Smith et al. (1992), Stallebrass and
Taylor (1997) and Houlsby (1999) observed an additional influence on the stress-strain
behaviour that is the loading paths dependence or immediate stress history of soil
described by the most recent loading, which may take the form of an extended period of
rest or a sudden change in the direction of the stress path. They found that there are
zones exist at small-strain and its can change in both of shape and size as the soil is
subjected to different loading histories.

Stallebrass (1990) and Stallebrass and” Taylor (1997) have been conducted
experimental undrained triaxial test on Speswhite-kaolin and simulated the results using
Three-Surface Kinematic Hardening (3-SKH) model (Atkinson and Stallebrass, 1991).
They plotted the results with_tangent shear stiffress G against deviatoric stress g as
shown in Figure 4.1. Table2 shows 3-SKH soil model parameter in this simulation.

70 ;
. Pata ffom an undramed trla)ual test on Speswmte kaolln
s (Stallebrass & Taylor 1997)

60 - gr g g Wreaw OB As RN s
_ \ 4 =300 kPa. Pp =120 KPa
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Figure 4.1 Prediction of tangent stiffness Gi-deviatoric stress g of 3-SKH model
compared with experimentaliresultsi(after Stallebrassand. Taylor, 1997).

Table 4.1 Summary of 3-SKH model parameters of Speswhite Kaolin (after
Stallebrass and Taylor, 1997)

0.89 |0.073 1.994 0.005 1964p%*R,%? | 0.25 0.08 2.5

In this study, we simulated the experimental with a given series of stress points
(A, B, C, D, and E) as shown in Figure 4.2. Four cases of consolidated stress path are
given i.e. ACB, ACAB, ACBDB, and ACBEB represent a sudden change in the
direction of the stress path before undrained shearing stage at point B, which have OCR
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of 2.4 (po = 300 kPa and pn, = 720 kPa). Also shown in Figure 4.2, all stress histories
located within a bounding yield surface.

A

v

o

> 4 - i =

Figure 4.2 Series of stress point with different stress paths for over consolidated
clay, .

In this simulation, the small-strain stiffness parameters g, k and n are obtained
using stiffness relationships in Table 4.1 normalised to Equation (3.46) with 1 atm (100
kPa) as a reference ‘pressure. Equation (4.1) shows.the small-strains stiffness
relationship used in this simulation. Then the constant k ican be determined using
Equation (3.44) with poaisson ratio v of 0.3. The kinematic hardening parameter a is
determined from small parametric study of actual stress-strain curve as shown in Figure
4.3.Table 4.2 summarises non=linear KHMCC madel in this simulation.

G 0.65
5 467 [ﬁj (4.1)
D, D,

Figures'4.4 and 4.5 show the fields of yield surfaces-at initial condition and after
the four different stress paths.

Table 4.2 Summary of non-linear KHMCC model parameters of Speswhite kaolin

K 1012

g 467 dimensionless material constant

n 0.65

M 0.89 Slope of critical state line in g-p plane
a 15 Kinematic hardening parameter
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Figure 4.3 Parametrie stucy of kinematic hardening parameter a.
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Figure 4.4 Position of yield surfaces at initial condition.

Figure 4.6 shows the comparison result which show plot of normalised tangent
shear stiffness G; against the deviatoric stress. This plot shows clearly that the small-
strain stiffness is affected by loading path history. Prediction of the model is also in a
good agreement with the experimental result. However, some irregularities appear in the
curve are a result from numerical discretisation. Figure 4.7 shows four undrained stress
paths response from non-linear KHMCC. It is obvious that the non-linear KHMCC
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model can predict the loading paths dependence during undrained shear. Finally, model
is verified to simulate unloading-reloading behaviour at small-strain compared with the
experimental test data as shown in Figure 4.8. The model prediction shows that it can
model a non-recoverable strain during unloading reloading response. It also shows that
stiffness reduction for larger stress change is in good agreement with experimental
result. The simulations using 100 numbers of yield surfaces, except the unloading-
reloading response is carried out using 50 numbers of yield surfaces. This simple
computation is performed by Intel Pentium M 1.6 GHz.
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Figure 4.5 Position of yield surfaces after four different stress histories.

4.2.3 Effect of number of yield surfaces

This numerical study aims to see the effect of number of yield surfaces in the
response of different stress paths and try to find the optimum number of yield surfaces
according to obtain accurate result. The numerical study is performed using 1, 2, 10 and
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100 yield surfaces, and the effect is shown in stress-strain and stress path responses in

Figures 4.9 and 4.10.
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Figure 4.7 Prediction of stress paths of non-linear KHMCC model after different

loading histories.
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Figure 4.9 Effect of number of yield surfaces on the stress-strain response.
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Figure 4.10 Effect of num er of yleld _sfqrifgces on the stress paths response.
LTk S

It is clearly shoWn in the Flgures 4.9 and 4.10 tha& .the stress-strain and stress
path responses are md‘ﬂ'd_enced by number of yield surfaqe_s;I It can concluded that 20
number of yield surfaces are adequate to obtain accurate result.

A’ —

4.3  Response of .Kesconsalidated: Undrained Direct Simple Shear (CKoUDSS)
Test of Bangkok Clay
4.3.1 Introduction

The purpose of a simple shear test is to determine shear strength parameters
and the stress-strain behaviour of soils under loading conditions that closely simulate
plane strain and allow for the principal axes of stresses to rotate. The stress states in
soils for many geotechnical problems are akin to simple shear. Ladd (1991) presented a
well-known simple illustration of stress condition of soil during staged construction of
embankment on clay as shown in Figure 4.11. The soil mass beneath embankment is
assumed in the triaxial compression (TC) condition; on the other hand, the soil mass
around the toe slope of the embankment is assumed in the triaxial extension (TE)
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condition. However, the soil mass between these two conditions can accurately
simulated using the direct simple shear (DSS) test.

,—-""’,ﬂ— - F =
Figure 4.11 Stress condifi ing staged construction of embankment on clay
ikitlersuang et al., 2008).

/
This section preséntsia comparison of experimental results of Ko-consolidated
Undrained Direct Simple Shear (CK WD ) Test of Bangkok Clay (Konkong, 2007)

with non-linear KHMCC maodel prediction. Model prediction of stress-strain and stress-
paths response is compared to pegiiﬂnentali;%a of monotonic simple shear response of

normally consolidated Bangk (;}_éy .{,::,::_,f / '
' Bl }:,‘f-_';n'u - 7
. b £
4.3.2 Review of Experimental \Works — j
l f

The soil Iabofétéllfy tests were carried out usingl-':Geonor H12 DSS apparatus
(NGlI-type) at Chulalongkorn University. The specimens-were prepared in cylindrical
shape whose vertical side is eaclosed by a wirereinforced rubber membrane. During the
consolidation state, the samples were one-dimensional (Ko)|consolidated by applying
the normal (vertical) effective stress (o). ) (see Figure 4.12). These tests were
conducted,at-a-strain-rate-0f-5%-per-hour. Accompuier interfaced,data acquisition system
has been'set up to'obtain' a contindous-record ofctest data. A ‘full time-histories of
horizontal shear stress (7), change (decrease or increase) in vertical stresses that equal to

induced excess pore water pressure, Au) and horizontal shear strain (») have been
monitored.



68

G, =0 ¥
Au=0  Ax _ AU=0, -0,
T = ¢AZ ~0
s
v T,, =0
Consolidation state Shearing state

Figure 4.12 Stresses imposed on sampletinder direct simple shear test (after
Likitlersuang et«al»2008).

Table 4.3 Index preperiies of soil samples (After Konkong, 2007)

lndexProperties Values
Moisture‘content(%) vy 59 — 62
Liquid Limit, LKL (%) g 78 — 83
Plastic Limit,/PL (%) l 4 41 - 44
Plasticity ladex, PI (%) . 37 -39
Specific Gravity, Gs o 4 2.64
Unit Weight, y (t/m°) - 1.633

A Kp-consolidated undrained direct s'i‘fnple shear tests (CKoUDSS) with
constant-volume was conducted on the samples. In constant-volume DSS test, volume
of the sample is essentially constrained against changes during shear. It has been shown
on a normally consolidated clay that change in applied .vertical stress required to
maintain the volume constant is equal to developed pore pressure in an undrained DSS
test as Degroot (1992). Initially, the samples were consolidated to various effective axial
consolidation stress (o ¢) leVel, between 200-t0-500-kPa+ The preconsolidation pressure
or maximum past: stress.(o’vn) 0f the clay was predicted abaut 130 kPa. Therefore,
consolidation of samples to &’\c above 130 kPa essentially assured.that all the samples
tests were) normally-consolidated: The'stress-strainjand stress=path response of these
tests are presented‘in'Figures 4.13 and 4.14, respectively.
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Figure 4.14 Stress-paths curves of CKoUDSS tests of Bangkok Clay (After
Konkong, 2007)

4.3.3 Model Comparison

In this validation, both linear (n = 1) and non-linear KHMCC (n # 1) model are
used to predict the stress-strain response CKoUDSS tests of Bangkok Clay. Table 4.4
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and Table 4.5 summarise linear and non-linear KHMCC model parameters. For linear
KHMCC model, dimensionless material constants are directly obtained from
observation of stress-strain response of CKoUDSS of Bangkok Clay, whereas for non-
linear KHMCC model are obtained based on relationship between initial stiffness and
pressure of Bangkok Clay proposed by Techavorasinskun et. al. (2002) as shown in
Equation (4.2) after normalised into Equation (3.46).

0.6
S o [ﬁJ (4.2)
P, p.

The constant k is obtained from Equation (3:44) with v =0.41(typical value of
Ko of Bangkok clay is around 0.68 (Shibuya et. al.; 2001)). The slope of critical line (M)
is observed from the undrained-stress paths in Figure 4.9, and relationships in Equation
(3.40). Finally, kinematic hardening parameter a is determined from procedures which
are explained in the previous'Section.as shewn in Figure 4.15.

12

Figure 4.15 Determination of parameter a

Figure 4.16 to Figure 4.19 show comparisons between model prediction and
experimental results of CKoUDSS of Bangkok Clay.

Table 4.4 Summary of linear KHMCC parameters of Bangkok Clay

Parameters | Values Physical meaning

k 300 | small-strain dimensionless material
g 61 | constant
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n 1.0
M 0.82 | Slope of critical state line in g-p plane
a 3.6 | Kinematic hardening parameter

Table 4.5 Summary of non-linear KHMCC parameters of Bangkok Clay

Parameters | Values Physical meaning
K 1200
small-strain dimensionless material
g 242
constant
n 06 3
M 0:82 | .Slape of critical state line in g-p plane
a 8.8 Kinema}tic hardening parameter
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Figure 4,16 Linear KHMCC madel prediction of stress-strain,curves of CKo,UDSS
tests of Bangkok Clay



72

140

CKOUDSS experiment;al data aftef Konkong (?007)
120 - ¢ 200 kPa 0O 300 kPa a 400 kPa © 500 kPa —Model prediction -

100 +

80

60 -

Shear stress, 7 [kPa]

40 |

20 +

600

ss-paths of CKoUDSS tests of

120
o}

100
F - . ¥ A
g 80 - 1808 : e
e ' = ; ooo
]
g 60 {1, T S F
- a T—
17y | ©Q0 oogﬂ
a (u] ’ 000? 00000
[ e H
£ 40 - o i
Z o) o

EIRLELI NI INELINT

q" DSSe i tal data afte g (2007
¢ 200 kPa O 300 kEB A 400 kPa Oﬂ) kPa —Model pre&gion

AR NIUUATINGINE-

Shear strain, y [%]

Figure 4.18 Non-linear KHMCC model prediction of stress-strain curves of
CKoUDSS tests of Bangkok Clay



73

140

CKOUDSS experiment;al data aftef Konkong (?007)
120 |- ¢ 200 kPa 0O 300 kPa a 400 kPa © 500 kPa —Model prediction -

100 +

80

60 -

Shear stress, 7 [kPa]

20 A

0 100 200 300 400 500 600
Effective V||artical stress, o', [kPa]

Figure 4.19 Non-linear KHMCC model prediction of stress-paths of CKoUDSS
tests of Bangkok Clay

The model predictions show that the model provides a good prediction on the
stress-strain and stress path curve. Howeverjjnqn-linear KHMCC model gives lower
strength and stiffer response compared with linear model. These models can also offer
the effect of confining pressure on stiffness. |

4.4  Small-Strain Undrained Compression Behaviour of Bangkok Clay

4.4.1 Introduction

Small-strain undrained compression of Bangkok Clay: is investigated in the
laboratory using advanced triaxial apparatus which is incorporated local axial and radial
strain measurement andsbender- element ;system (Yimsiriset al.,~2009; Ratananikom,
2009). Isotropically ‘eanselidated undrained triaxial compression tests are carried out on
both vertically- and horizontally-cut undisturbed specimens to investigate anisotropic
behaviour of Bangkok Clay. This section presents comparison between prediction of
non-linear KHMCC model against some observed small-strain characteristics behaviour
of Bangkok Clay, i.e.: small-strain shear modulus and modulus during undrained
compression shearing.
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4.4.2 Review of Experimental Works

Undisturbed samples were taken from Lad-Prao at depth Of 10-13 m BGL. The
index and physical properties is summarised in Table 4.6.

Table 4.6 Index properties of soil samples (after Yimsiri et al., 2009)

Index Properties Values
Water content (%) 45 - 60
Liquid Limit, LL (%) 77
Plastic Limit, PL (%) 31
Total Unit Weight,  (kN/m”) 16.1-17.3

There are four tests.were.econducted as shown in Table 4.7. The specimens were
initially isotropically consglidated to 1 or 2 times of their in-situ isotropic stress. To
ensure the test was cendugtedsin fully .drainage condition, the constant-rate-stress
consolidation was emplayed: at cohstant;,rate of 0.05 kPa/min. Then, the strain-
controlled condition was applied during undrained compression loading stage with
external axial strain rate of approximately 0:15%/hr. This condition was slow enough to
prevent a high pore pressure oceurred througjh’ac')ljt the specimen.

o
Further, during isotropic consolidation, the small-strain shear modulus G, and
Gy are measured from the vertically-cut and horizontally-cut specimen, respectively.

"B

Table 4.7-Friaxial test program (after Yimsiri et al., 2009)

Test No. Depth (m) €0 P’o Direction
CluC-1v ' 10.9 1.69 80 = Vertical
Cluc-2v 13.1 1.27 100 Vertical
CIUGC-5V 13.1 1731 200 Vertical
CIUC-5H 12.3 12.3 180 Horizontal

The empirical ‘equation in the ferm suggested by Hardin & Black (1968) is proposed to
fit the relationships between Gnax and p’ as shown in Equations (4.3) and (4.4).

G

2in_ _ 6942 0102 4.3
F ) p (4.3)
Sm__p593p02 (4.4)
F(e)

Y
where F(e) :M
1+e
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These results indicate small degree of small-strain shear modulus anisotropy.

4.4.3 Model Comparison

Table 4.8 summarises non-linear KHMCC model. The constant k is obtained
from Equation (3.44) with v =0.41(typical value of K, of Bangkok clay is around 0.68

(Shibuya et. al.,

2001)). The slope of critical line (M) is observed from the undrained
stress response. Finally, kinematic. hardening parameter a is determined from
procedures which are explained in the previous section. We use data from Test No.
CIUC-1V and CIUC-2V in this comparison.

-

Table 4.8 Summary oinon-linear KHMCC model parameters

it

Test No. Gmax o/ (1o k n | M | a| Direction
(KRa].| -~ o
0.102 ' -
CIUC-1V %:154(%] 40~ 154 | 804 (0102 | 1.6 | 6 | Vertical
Gr rl 0.102 . %_N :
CIUC-2V p—vh:ze{%j 50 | 264 4 1883/ 0.102 | 1.8 | 6 | Vertical
TN

Figure 4.20 and Flgure 421 show c;omparlson of stress-strain and stiffness

degradation curves between model predlctlon and experlmental results.
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Figure 4.20 Comparison of stress-strain curves between model prediction and
experimental results
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Figure 4.21 Comparison of stiffness degradation curves between model prediction
andexperimental results

The model prediction shows that the model provides a good prediction on the
undrained strength and small-strain‘shear m’oﬂulus. The model can also offer the effect
of confining pressure on initial ‘stiffness and gﬂiVe a smooth change of stiffness from
elastic to plastic behaviour. /

4.5 Summary

A comparison bétween non-linear KHMCC model prediction and experimental
results have been presented. Model comparison with Small-strain experimental on
overconsolidated_clay sotl “{Stallebrass and-Taylor, 1997) clearly shows that the
developed model with small.number of parameters can accurately simulate the key
features of small-strain characteristic. Unloading-reloading response of model
prediction, shows.a non-recoverable.strain,and loading path.dependence which are good
agreement with the experimental ohservation.

Model comparison with CKoUDSS tests of Bangkok Clay (Konkong, 2007) also
show that the developed model provides a good prediction on the stress-strain and stress
path curve. The model can also offer the effect of confining pressure on stiffness.

Further comparison with small-strain undrained compression test of Bangkok
Clay (Yimsiri et al., 2009; Ratananikom, 2009) clearly shows that model prediction
provides a good prediction on the undrained strength and small-strain shear modulus.
The model can also offer the effect of confining pressure on initial stiffness and give a
smooth change of stiffness from elastic to plastic behaviour.
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For further application into actual geotechnical engineering boundary value
problems, the developed model should be implemented to finite element code. In next
chapter a rate-dependent continuous hyperplasticity finite element algorithm is
employed.

LTI
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CHAPTER V. RATE-DEPENDENT CONTINUOUS
HYPERPLASTICITY FINITE ELEMENT ALGORITHM

5.1 Introduction

There are two groups of material behaviour usually involved in the finite
element calculation, i.e.: a rate-independent. material that is the response is the
irrespective of the strain rate or shows some small.dependence on the strain rate; and a
rate-dependent material that is the state of stress.and strain exhibit a time dependence.
The first material group can-consist of materials-sueh as linear elastic material, non-
linear elastic and elasto-plastic material; and second group can consist of linear viscous
material, non-linear viscous andeelasio-viscoplastic material.

We will not go im"detatl in/these subjects, but in this chapter we will describe
rate-independence as thes partigular case of rate-dependent behaviour to obtain
significant simplifications in numerical calculation. A rate-independent finite element
calculation can be carriedfout'using a rate-dependent algorithm with an artificial very
small viscosity (Owen and/Hinton, 1980; Smith and Griffiths, 1998; and Potts and
Zdravkovic, 1999).  Ji

5.2  Basic Finite Element
The finite elemént method usually involves the following steps:
(1) Discretisation of the problem into finite number of elements.

The most popular €lement is isoparametric element which is both the element
displacement and-geometry are expressed using similariinterpolation functions
in terms of natural coordinate.

(2) Selection-ef padal, displacement asjprimary variables.

Stresses and strains are secondary quantities which are calculated from the nodal
displacement.

(3) Derivation of element equations.

To establish the element stiffness matrix, numerical integration such as Gauss
Quadrature integration is used, so that stresses and strains are determined at
integration points.

(4) Assembly of element equations into global equations.
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Because usually global equations have large matrix size, some strategies have
been proposed to develop efficient storage algorithm such as skyline method.

(5) Formulation of boundary conditions.
(6) Solving of global equations.

To solve the global equations, Gauss elimination is usually adopted in the
calculation.

Figure 5.1 shows the general steps for finite element calculation. The basic
finite element theory is based on the assumpiion of linear material behaviour. As
described in Chapter 2 soils do not behave in-Sueh a manner, soils behave in such a
highly non-linear way. It .means that strength and.stiffness depending on stress and
strain levels. So that, several'soluiion schemes are available to deal with the non-linear
constitutive models. Nexiwsection describes briefly some solution strategies usually
applied in the finite element imethod. Explanation will be emphasised on the rate-
dependent solution scheme or some references call by visco-plastic solution.
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= [D]{Ag}i for linear elasticity
=[D*]{ae}' for elasto-plasticity

Figure5.1-General finite.element caleulation steps

Non-Linear Finite Element

Principally, the non-linearity of the material can be simply approximated by
small increment of piece-wise linear approximation. Some solution schemes are
basically proposed to deal with the larger increment of loading (displacement),
according to reduce computing time, of course, with an acceptable accuracy.

If the soil is non-linear elastic and/or elasto-plastic, the constitutive matrix [D] in
Figure 5.1 is no longer constant, but changes with stress and/or strain during
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incremental of loading (displacement). Figure 5.2 illustrates several solution schemes
for non-linear finite element method.

Load Load

i True solution
1 Tangent stiffness solution A \
_________ d _
3
AR 3 -f _____ Kg
K2 c (]
ARy _b'G 1 ! True solution
K¢ | I :
AR 1 1 : :
¥/ ! ; .
I ! \ AT Displacement
M,,l(; 'Ad,,zg. Mii Displecement D
@ 4 ®)

Figure 5.2 Several solutionschemes for non-linear finite element (a) tangent
stiffness method, (b) Modified Newton'Raphson (Potts and Zdravkovic, 1999)

Due to the non-linearity of onstitutive’ behaviour, the governing finite element
equation is reduced to the following incremental form:

[Ke]i {Ade}i:{ARG}i a

where [KG]i is the “incremental global stiffness matrix, {AdG}i is the vector of

.

(5.1)

incremental nodal displacement, {ARG}i is the vector of incremental nodal forces and i

is the increment.number. Regarding.to obtain a solution, of-a boundary value problem
(BVP), the Equation|(5.1). must be solved forceach increment. Then, the final solution is
obtained by summing the results of each increment. The incremental global stiffness

matrix [KG]i is not censtant; but.varies over.an increment of loading (displacement). As

stated befare, this variation can be simply accounted by using very large number of
small increments. Hence, the solution of Equation (5.1) is not straightforward and
different solution strategies exist, to ensure the solution satisfying the four basic
requirements of BVP: equilibrium, compatibility, constitutive behaviour and boundary
conditions.

In tangent stiffness method or variable stiffness method (Figure 5.2a), the
incremental global stiffness matrix [KG]i is assumed to be constant over each increment

and is calculated using the current stress state at the beginning of each increment. It is
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clearly shows that in order to obtain accurate solution to highly non-linear problems,
many small solution increments are required. The solution obtained using this method
can drift from the true solution and may not fulfil the basic solution requirements.

The Modified Newton Raphson (MNR) method uses an iterative technique to
solve Equation (5.1). The first iteration is essentially similar with the tangent stiffness
method. However, the predicted incremental displacements are used to calculate the
residual load v as illustrated in Figure 5.1b. Further, Equation (5.1) is solved again with
this residual load, { ¥}, forming the incremental RHS vector:

(e ({ad}' )" = 52)

The superscript j refers tostheiteration number and {y}° = {ARG}i. This process is

repeated until the residual1oad«s small. The incremental-displacements are equal to the
sum of the iterative displagéments: '

54  Rate-dependent method

Trae solution

Initial
AR elastic
solution

Displacement

Figure 5.3 Rate-dependent solution scheme for non-linear finite element (Potts and
Zdravkovic, 1999)

This method was originally developed for rate-dependent materials (linear
elasto-viscoplastic materials). However, in its further application this method is also
used to calculate the response of rate-independent materials (non-linear elastic and
elasto-plastic materials), see for detail Owen and Hinton (1980); Zienkiewicz and
Cormeau (1974).
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The process of this method illustrates in Figure 5.3. At the beginning of
increment, the incremental global stiffness matrix [KG]i is assembled using elastic

constitutive matrix [D], so that the visco-plastic strain increment vector at t = tg
is{AgV‘f’}Lto =0. It means that at the first increment of load and at t = 0 the Equation

(5.1) is solved using linear elastic relationships and can be re-written using Equation
(5.3), according to obtain a first estimate of the nodal displacement.

[Ke ]1 {Adg }l ={AR; }l (5.3)

The calculated displacements are correet iisthe resulting stress state lies within
the yield surface, it means.that the behaviour is.elastic. If the resulting stress states
outside the yield surface;-the stress state can only be sustained for as short time and
visco-plastic straining occurs and increases with time, until the visco-plastic strain rate
is insignificant. At this paint, the accumulated visco-plastic strain and associated stress
change are equal to the inciemental plastic strain and stress change respectively. The
flowchart of this method Top elasto-plastie: finite element is presented in Figure 5.4.
From this we can develop/flowchart for continuous hyperplasticity finite element as
shown in Figure 5.5. :

55  Summary =

Rate-independence as the particular case of rate-dependent behaviour can be
carried out using an artificial-very-smat-viscosity-(Owen-and Hinton, 1980; Smith and
Griffiths, 1998; and Poiis and Zdravkovic, 1999). There are other several solution
schemes available to deal with the non-linear constitutive models such as Tangent
Stiffness and Modified Newton Raphson Method. Some of them are basically proposed
to deal with the larger’ inCrement of' loading '(displacement), according to reduce
computing time, of course, with an-acceptable’accuracy and to satisfy the four basic
requirements of BVP: equilibrium, cempatibility, genstitutive behaviour and boundary
conditions. However, the advantage of the rate-dependent algorithm 'is that we can
actually define x as a “true” viscosity coefficient for analysing or modelling actual
creep behaviour.
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CHAPTER VI. CONCLUSIONS AND DEVELOPMENT
FOR FUTURE RESEARCH

6.1 Conclusions

As stated in the Chapter 1 Introduction, this study is expected to provide a
theoretical background and numerical implementation for those who are interested in
the advancement of critical state soil medelsand may give a light to model the
complicated behaviours of soils ebserved from aavanced small-strain laboratory testing
under the framework of hyperplasticity. Followings-are concluding remarks from this
study.

6.1.1 Recent Issues on the Soil Behaviour

It is believed that soil is one of natural material which behaves very complex.
The study of soil behaviotr increases.since progressive developments of advanced soil
laboratory tests such as directional shear cell (Arthur & Menzies, 1972), hollow
cylinder apparatus (High et al., 1988) and bender element system (e.g. Viggiani &
Atkinson, 1995); and the instrumented soil teétS' such as strain gauges, electrolevels,
proximity (Hird & Yung, 1989) and local-deformation transducer.

Many experimental findings are addressed to pre-failure deformation behaviour
which is in the past just.assumed as a linear elastic relationships. In fact, in soils the true
linear elastic region is often negligibly small and plastic yielding starts almost
immediately with straining. Some findings from experimental investigations can be
summarised as follows:

(1) The stress-strain“characteristic*ef soils“is 'non=linear ‘and “irreversible, in that the
initial soil stiffness or small-strain‘tangent stiffness depends ongthe stress level. It is
also'.affected by-other varrables, such‘as the voids ratio, anisotropic stress state,
and/or, the preconsolidation pressure (Hardin, 1978; "Houlsby ‘& Wroth, 1991,
Viggiani, 1992; Rampello et al., 1994) and others.

(2) Soil behaviour is affected by orientation or its deposited direction, so that soil is
classified as an anisotropic material (Seah, 1990; Zdravkovic, 1996; Zdravkovic &
Jardine, 2000) and others.

(3) Soil has a “memory”, so that the stress-stain behaviour of soil is depends on the
current state and stress history or consolidation history (after Casagrande, 1932;
Holtz & Kovacs, 1981); and recent stress history (Som, 1968; Atkinson, 1973,
1990).
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(4) Initial stress-strain behaviour of many soils is much stiffer than indicated by
conventional strain (intermediate to large strain) measurement. It also exhibits a
non-linear behaviour (Jardine, Symes and Burland, 1984).

(5) Soils exhibit time dependent behaviour as well as plastic deformation, so that soils
are also called as viscous material (Mitchell and Soga, 2005).

6.1.2 Recent Advanced Soil Constitutive Models

Many advanced soil constitutive models based on different concepts have been
proposed. In fact, it is believed that each model-ean be valid within its own local realm,
and that no universal constitutive model has yet been developed that is valid for all
materials under all conditions, Fhere are three major categorises of recent advanced soil
models which are addressed«to wweak point of critical state models, i.e.: bounding
surface model, multiple surfaces moclel and hypoplasticity.

Although, in prin€ipally, the bounding surface models more efficient than
multiple surfaces, but they still have three important shortcomings i.e: (1) They often
require the choice of a number of somewhat arbitrary functions; (2) often the functions
without obvious physical meaning; (3) they usually fail to describe the effects of the
immediate past history. A

Multiple surface models “are the most p‘#omising approach, but they also still
have some drawbacks, i.e.: (1) they result in a'large number of material parameters to be
specified; (2) they alseresult in considerable amount of computation; (3) many of them
are inherently complex.

Hypoplasticity model, which is only developed: and discussed within few
researches and has two shertcomings: (1) The constitutive model basically is not based
on definite physical‘meéanings; (2) The relation between stress fate tensor and stretching
tensor is nonlinear, ‘which make ‘itvery ‘difficult to" solve ‘boundary value problems
because an explicit stiffness matrix based on this medel cannot be ebtained easily and it
has no any: evidence ef solving this'problem mathematically-and nuserically.

Another issue is that since constitutive models relate to physical phenomena,
they must be developed without violate certain principles or axioms that govern the
physical phenomena such as the laws of thermodynamics. Hyperplasticity framework
which is developed by multiple surfaces describes the behaviour of soils both for clay
and sand, associative or non associative flow within a rigorous, compact, and consistent
framework using thermodynamics principles.

The other reasons are this framework models could be developed without the
need for additional ad hoc assumptions and procedures, and it makes considerable use
of potential function and multiple internal variables to predict entire stress-strain
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response of a material subject to a specified sequence of stress or strain increment.
Furthermore, some drawbacks of multiple surfaces can be eliminated by introducing an
infinite number of internal variables. This idea leads to the concept of an internal
function rather than internal variables.

6.1.3 Model Development and Numerical Implementation

The main reason to develop a eantinuous hyperplasticity non-linear KHMCC
model is fact that the stress-strain characteristic of soils is non-linear and irreversible, in
that the initial soil stiffness or small-strain tangentstiffness depends on the stress level.
Formulation of elastic part.of non-linear KHMCC’s.Gibbs free energy in form of power
function of pressure is-addressed. to incorporate this behaviour. An approach to
determine the necessary_ parameters obtained from experimental tests for regulating
small-strain stiffness charaeteristic in form of power function of pressure has been
presented. For simplicity, the'stiffness factorfor the kinematic hardening has been made
as power function of initial preconsolidation:pressure.

The rate-dependent multisurface hyperplasticity algorithm using strain driven
forward-Euler integration scheme .is:employed in this study to reduce complexity of
treatment from numerical ‘€rror. It is also shown that the numerical stability of rate-
dependent algorithm is clearly affected by the increment of time step. It is observed that
the stress-strain response smoothér when the humber of yield surfaces is increased.
Numerical study also indicate that running time of multiple.kinematic hardening model
increases linearly against.increasing-number of yield surfaces. However, availability of
high-speed computer ¢an significantly reduce time computation.

Validation of the-numerical model implementation-against analytical solution of
simple idealised undrained triaxial test concludes that the model has been successfully
implemented. Finally,” numerical demonstrations show that the non-linear KHMCC
model can demonstrate some important aspects in soil mechanics such as small-strain
stiffness, effects_of immediate_past stress history=behaviour, a ‘hysteresis loop and
smooth transition of.stiffness during unloading-reloading cycles. Bependence of small-
strain stiffness on pressure is clearly shown. This model can explains the fact that the
openness of the hysteresis loop increases with strain amplitude. Model response on
unloading-reloading behaviour also shows non-recoverable strain amplitude.

6.1.4 Some Comparisons to Experimental Data of Clay Soils

Model comparisons with experimental data are performed using single-element
calculation. There are three experimental data has been used to validate the model
performance, i.e.: small-strain experimental on overconsolidated clay soil (Stallebrass
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and Taylor, 1997), CK,UDSS tests of Bangkok Clay (Konkong, 2007), and small-strain
undrained compression test of Bangkok Clay (Yimsiri et al., 2009; Ratananikom, 2009).

An experimental undrained triaxial test on Speswhite kaolin (Stallebrass &
Taylor, 1997) has been selected to show performance of the developed model in
characterising a loading path dependence and non-linearity at small-strain in
overconsolidated clay. Model comparison clearly shows that the developed model with
small number of parameters can accurately simulate the key features of small-strain
characteristic. A plot of tangent shear stiffness against stresses response from the
developed model clearly shows a dependencesofismall-strain with stress level which is
good agreement with the experimental cbservaticn: The model response give a better
prediction than 3-SKH model might berbecause the developed model using higher
number of yield surfaces..iHowever,.the strong point-from the developed model is we
can generate more number of wield surfaces, theoretically infinite number of yield
surfaces, in easy way by.ntroducing an internal funetion. Furthermore, unloading-
reloading response of model.prediction shows a non-recoverable strain and loading path
dependence which are a good.agreement with the experimental observation.

Model comparisonawith monotenie loading of CKoUDSS tests of Bangkok Clay
(Konkong, 2007) also show thatthe developed model provides a good prediction on the
stress-strain and stress paifi curve. The madel can also offer the effect of confining
pressure on stiffness.

Further comparison with smafl-strain undrained compression test of Bangkok
Clay (Yimsiri et al., 2009; Ratananikom, 20095 clearly shows that model prediction
provides a good predicifon on the undrained strength and-small-strain shear modulus.
The model can also offer the effect of confining pressure-on initial stiffness and give a
smooth change of stiffness from elastic to plastic behaviou.

6.1.5 Rate-dependent Continuous Hyperplasticity Finite Element Algorithm

There are-other several-solution; schemes available; tordeatwith the non-linear
constitutive models ‘suchras Tangent'Stiffness mehod, Modified Newton Raphson and
rate-dependent or visco-plastic method. Some of them are basically proposed to deal
with the larger increment of loading (displacement), according to reduce computing
time, of course, with an acceptable accuracy and to satisfy the four basic requirements
of BVP: equilibrium, compatibility, constitutive behaviour and boundary conditions.

Rate-independence as the particular case of rate-dependent behaviour can be
carried out using an artificial very small viscosity (Owen and Hinton, 1980; Smith and
Griffiths, 1998; and Potts and Zdravkovic, 1999). This method was originally developed
for rate-dependent materials (linear elasto-viscoplastic materials).
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However in this study, the rate-dependent finite element algorithm is employed
according to consider an actual rate-dependent problem in soil mechanics such in creep
behaviour. We can actually define « as a “true” viscosity coefficient for this kind of
analysis.

6.2  Development for Future Research

Although, the developed model can describe almost all important pre-failure
deformation behaviours in both normally andsoverconsolidated clay such as recent
stress history behaviour, non-linearity at small-sirain, initial stiffness dependence on
pressure, as well as rate effect or rate-tependent-behaviour (because this model is
developed using rate-dependent calculation, it means that we can actually define x as a
“true” viscosity coefficient). But still'has several important shortcomings and requires
further work in the future aré asfollows:

(1) Strength prediction of developed -moadel for soils on dry side of CSL is over
prediction; this is“becalise the modé_i is developed based on the CSSM. The
softening behaviour should: be expldted in the future in order to realize the
promising features of the model on soil destructure.

(2) To investigate applicability of other intéﬁi_'_ati.on schemes according to reduce steps
of calculation and to improve accuracy w’lgeﬁ'*employing large increment of loading
(displacement). Thirapong. et ‘al. (2009_)"_;has been initially investigated the
applicability of consistent integration scheme to Kinematic hardening multisurface
hyperplasticity in one-dimensional problem using Iwan model. They concluded that

this scheme can raise high accuracy despite of large increments as shown in Figure

6.1. . '

Cases 5 multiple yield functions 100 multiple yield functions

Stress-driven
forvad-Euler

Strain-driven
forwad-Euler
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Figure 6.1 Comparisons of analysed results.obtained from stress-driven/strain-
driven forward-Euler sehemes and backward=Euler scheme with variation on
numbers of multipleyield-functions and sizes of stress/strain increments
(Thiraponlg et al., 2009)

)

Further research development._for;opplying this. algorithm in continuous
hyperplasticity framewaerk should be eﬁpouraged.

(3) Although the hysteresis loop and. unloaaipgfreloading response is predicted well by
the developed model,further work sh'oH_Ld be carried out to see performance of
developed model in larger problem of cyelic }pading

(4) Implementation of the developed modél rnto finite element code should be
conducted in the future to evaluate performance of the developed model in real
geotechnical bounn : oroblen ne-de 060 rate -dependent continuous
hyperplasticity finite-element algorlthm can be used in thls future work.
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IF YOU FIND A BUG, PLEASE LET US KNOW:

1
use material_|
use PORTLIB

implicit none
double precision,
double precision ::
double precision,

pro

external

:: macaulay,delta

p.q.,px0,s_vm,pmax,chidev_temp.sdevytemp,ev,es,epsdev_temp
allocatable ::
eps(:),sdev(:),epsdev(:),

chi(:,:),chidev(:,:),chi_ii(:)salphadev(:,

.J.1v,Jv,kv,plot.inc

integer :: nstage,nstep_calc
integer :: istage,istep,i
integer, allocatable ::

double precision,
double precision,
integer(2) ihr, imin,
real(4) runtime, TA(2)
character*80 f_inp,f_out
character*4 command
character*4 title(20)

allocatable
allocatable ::

nstepCaweont(:)
oo LG iU ), 9 mak(ee)

2).alpha_ii(:)

AAC: &) 0AA(:, D ,BB(:,:5:),C0C,:),D(:,:,:),H()
iseey 1100&h \
i
7 r Headlng '

erte(* *) "2-D HYPERPLASTICATY NON-LINEAR KINEMATIC HARDENING MODIFIED CAM CLAY MODEL"

write(*,*) "Coded by Dedi

i Apriadi 2007/2009 - Bangkok/Tokyo

write(*,*) ** J

call idQ Fi

write(*,*) ** :
write(*,*)"Enter your main input File: % e

read (*,*) f_inp “ f
write(*,*)"Enter your main output file: - ?J?q

read (*,*) f_out .

open (unit=3,file=F_inp,status="old") ;" . “de it

open (unit=9,file=f _out,form="formatted",action=""readwrite)

open (unit=2,file="stress.out"”,form="formatted",action="readwrite')
open (unit=4,file="strain.out”,form="formatted" ,action="readwrite’)
open (unit=5,file="state.out" form—"formatted actloﬁ-"readwrlte")

write(2,*)"2-D HYPERPLASTICATY NON-LINEAR KINEMATIC HARDENING MODIFIED CAM CLAY MODEL*"

write(2,*)"Coded by Dedi Aprladl 2007/2009 - Bangkok/Tokyo*

write(2,*)""

write(4,*)"2-D HYPERPLAST|G|TY NON-LINEAR KINEMATIC HARDENING MODIFlED CAM CLAY MODEL*

write(4,*)"Coded by Dedi Aprtadi 2007/2009 - Bangkok/Tokyo*
write(4,*)""

write (9,%)

write (9,*) " Step/Stage SIG_XxX SIG lyy SIG_zz S1G_xy EPS_xx
Eps_yy Eps_zz Eps_Xxy*
write (9,%)
write(5,*)"
write(5,*)"Nth Yield step stage Hp Hq alphap alphaq c
Chi_p chi_qg-
write(5,*)"
read(3, "(20A4) ") title
read(3,*)command
do while (command.ne."STOP*)

do_command: select case (command) ! branch to command

case ("CONT™)

call GETTIM (ihr, imin, isec,i100th)

write(*,FMT="(A,12,A,12,A,12)")" Started at ",ihr,":",imin,"

print*,*"

write(2,FMT="(A,12,A,12,A,12)")" Started at °,ihr,":",imin,"

,isec

,isec



write(2,*)""

write(4,FMT="(A,12,A,12,A,12)")" Started at

write(4,*)""

read (3,*)nv,nstage,plot_inc,n
read (3,*)flag

print*, n,"
print*, nstage,"”
print*,""

STAGES*

print*, “allocating memories
allocate(tt(nstage,nv))
allocate(dt(nstage))
allocate(nstep(nstage))
allocate(cont(nstage))
allocate(s_max(nv))

allocate(eps(nv))

allocate(sdev(nv))
allocate(epsdev(n
allocate(alphad
allocate(alpha_ii

allocate(chi_i
allocate(chid
allocate(hp -

allocate(AA(n
allocate(iAA

allocate(CC(nv,
allocate(D(nv,
allocate(H(nv.
allocate(RH(nVv))
allocate(LH(nv,n
allocate(dsigma(nv)) *
read(3,*)command

case ("MATE")

print*, "reading material prope
if (flag==1
E‘
e
else if ( 2) then
read 3 *) K,r,ap,bp
read G, aq bg,M

e i Iag——4) then
2007 SQ'

read (3,*) kx,r, a;‘b

AP ITINDY

casa ("INIT®)

104

*,ihr,":-",imin,":",isec

m

NUMBER OF YIELD SURFACES*

VLA 3 Y 1
ﬂ Fn};a 1-n);G=gp"0”™n pa™(1-n) DA

rﬁﬂai n stiffness

print*, “"reading initial condition

read(3,*) s_vm,sig(1l),sig(2),sig(3),sig(4)

do iv=1l,nv
strain
eps(iv)=0.0d0
eps(4)=2*eps_xy
end do
read(3,*)command

case ("LOAD")

Tinitial total volumetric and deviatoric

Teps(1)=eps_xx, eps(2)=eps_yy, eps(3)=eps_zz,

print*, “reading loading condition
read (3,*) mu
do istage=1,nstage

read (3,*) istage, cont(istage)

read (3,*) (tt(istage,iv),

iv=1,nv)
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read (3,*) dt(istage),nstep(istage)
end do
read(3,*)command

case ("CALCT)

Suched 2006

r*eta(j))**bp/(z.OdO*(aprizhgo))

print*, "CALCULATING........ -
deta=1.0d0/real (n)

s_max(1)=s_vm

s_max(2)=s_vm

s_max(3)=s_vm
pmax=(s_max(1)+s_max(2)+s_max(3))/3.0d0

p=(sig(1)+sig(2)+sig(3))/3.0d0

g=sig(1)-sig(3)
'OdO-J

ev=eps(1)+eps(2)+eps(3)
es:2.0d0/3.0d0*(eps(l)—eps(3))
px0=pmax/2.0d0
pr=p

IInitialisation
do iv=1,nv
do i=1

end A
end do / .
dgdp_eta_p=
dgdp_eta_qg=0.0 ’
do j=1,n

0*(ap-1.0d0))
2.0d0*(ag-1.0d0))
end do

do iv=1,n
do j=

*(1.0dO-
hardening

P
lDedl Aprlad|72007.

FUUANENINYINT

if (flag==1) then
(1)=3.0d0*gx*p#¢l . 0do-eta(i))**bgZ(2.0d0*(ag-1.0d0))

Ll ’Wﬁ ANTIE SRR ol bbb

haCi)= 3 OdO*gx* *(1.0d0-eta(i))**bg/(2.0d0*(aq-1.0d0))

!w/ K=kp*"0; G=g p

else if (flag==4) then
hq(1)=3.0d0*gx*pr**(1-nx)*pmax**nx*(1.0d0-

eta(i))**bg/(2.0d0*(aq-1.0d0))

end if
alpha_ii(i)=alpha(l,i)+alpha(2,i)+alpha(3,1)
alphadev(iv, 1)=alpha(iv,i)-(alpha_ii(i)/3.0d0)*delta(iv)
sdev(iv)=sig(iv)-p*delta(iv)
epsdev(iv)=eps(iv)-(ev/3.0d0)*delta(iv)
c(i)=hp(i)*alpha_ii(i)*eta(i)
if(iv<=3) then

chi(iv,i)=sig(iv)-hp(i)*alpha_ii(i)-

2.0d0*hq(i)*alphadev(iv,i)/3.0d0

else

chi(iv, i)=sig(iv)-hq(i)/3.0d0*alphadev(iv,i)
end if
chi_ii(i)=(chi(1,i)+chi(2,i)+chi(3,i))/3.0d0



chidev_temp=0.0d0

chidev(iv,i)=chi(iv,i)-chi_ii(i)*delta(iv)

if(iv<=3) then

chidev_temp=chidev_temp+chidev(iv,i)**2

chidev_temp=chidev_temp+2.0d0*chidev(iv,i)**2

else
end if
y(1)=sqrt(chi_ii(i)**2+1.50d0*chidev_temp/M**2)-c(i)
end do
end do
istep=0
istage=1

TInput documentation
write(2, " (1x,20A4) ") title

write(2,*)""

write(2," (" NUMBER OF YIELD SURFACES,15)") n
write(2," (" NUMBER OF STAGES",I5)") nstage
write(2,*)""

write(2,*)"MATERIAL PROPERTIES™®

write(2," (" Dimensionfess material constants: g=",D10.5,"

gx, kx,nx

write(2," (" Critieal state parameter: M=",D10.5)") M

write(2," (" Kinematie hardening parameter: a=",D10.5)") ap

write(2,*)""

\

write(4, " (1x,20A4) " )txitle 1

write(4,*)""

write(4, " (#"NUMBER OF"YIELD SURFACES™,15)7) n

write(4," (" NUMBER @F STAGES',15)") nstage

write(4,*)""

write(4,*) "MATERIAL PROPERTFIES® :‘

ol L &

write(4, (" Dimensionless materia} constants: g=!,D10.5,"
gx, kx,nx i

write(4, " ("“Critical state parameter: M="",D10.5)") M

write(4, (" Kinegmatic hardening parameter: a="",D10.5)") ap

write(4,*)"" i

; 2Jh

1output documentagion =

write (2,%) P o “aad i

write (2,*) " Step Stage —— :
q- R

write (2,%) E

write (4,%) ot

write (4,*)"" Step Stage EPS_xx EPS_yy EPS_ZZ
Es*®

write (4,*%)« ~

write (unit=9;FMT=" (155155D12:5;D12.5,012: 5;D12.5,D12.5,D012.5,D012.5,D12.

istep, istage,sig(1)4si1g(2),sig9(3),sig(4).eps(1),eps(2).,eps(3),eps(4)

write (UATt=2,FMT="(15,15,D12.5,D12%5,D12.5,D12.5,D012.5,012.5)")

istep, istage,sig(1),s19(2),s19(3),s19(4),p.q

write (unit=4,FMT="(15,15,D012.5,D12.5,D12.5,D12.5,D12.5,D12.5)")

istep, istage,eps(1),eps(2),eps(3),eps(4),evies

do istage=1,nstage
1T ‘(istage==1) thén
nstep_calc=nstep(istage)/plot_inc
else if (istage>1) then
nstep_calc=nstep(istage)/plot_inc

end if
print*, * stage”, istage
do istep=1,nstep_calc Istrain increment =

(nstep*dt)/(nstep(istage)/cut)
do i=1,plot_inc
Twith nstep = total axial/deviatoric strain rate
do iv=1,nv
Instep*dt = total axial/deviatoric strain
do j=1,n

eta(j)=real(@)/real(n)
if (flag==1) then

106

n=",D10.5)")
n=",D10.5)")
p
Ev
5%

hq(J)=3.0d0*gx*p*(1.0d0-

eta(j))**bqg/(2.0d0*(ag-1.0d0)) 1Suched 2006

else if (flag==3) then

hq(J)=3.0d0*gx*p*(1.0d0-

eta(j))**bqg/(2.0d0*(ag-1.0d0))
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end if
alpha_ii(J)=alpha(l,j)+alpha(2,j)+alpha(3,]})
(alpha_ii(j)/3.0d0)*delta(iv)

alphadev(iv,j)=alpha(iv,j)-

sdev(iv)=sig(iv)-p*delta(iv)
epsdev(iv)=eps(iv)-(ev/3.0d0)*delta(iv)
c()=hp@)*alpha_ii()*eta(j)
if(iv<=3) then
chi(iv,j)=sig(iv)-
hp)*alpha_ii(j)-2-0d0*hg(j)*alphadev(iv,j)/3.0d0
else
chi(iv,j)=sig(iv)-
hq(j§)/3.0d0*alphadev(iv,j)
end if

chi_ii(3)=(chi(d,j)+chi(2,J)+chi(3.§)

chidev_temp=0.0d0

chidev(iv,j)=chi(iv,j)-

hi_ii()*delta(iv) ivess) th
iv<= en

chidev_temp=chidev_temp+c Lo
chidev_temp=chidev_t

y(@)=sqrt(chi_ii(G)**2+

[CC] in respect to eta

W M
RH(iV)=SUM(AA(iV, 1 J

:‘1 *tt(istage, (|v)*deﬂdt(istage) Ifor stress control
~ else it (cont(istage)==2) then
IRH(iv)=(tt(istage,iv)-

H(iv)*deta)*dt(istage) !for sfancontrol

e WHIRELT SN

ARIANN ‘smgﬁi:mm NE

sdev_temp=0.0d0

epsdev_temp=0.0d0

do iv=1,nv
sig(iv)=sig(iv)+tt(istage, iv)*dt(istage)
eps(iv)=eps(iv)+RH(iv)
if (iv==4) then

sdev_temp=sdev_temp+2.0d0*sdev(iv)**2

epsdev_temp=epsdev_temp+2.0d0*epsdev(iv)**2
else
sdev_temp=sdev_temp+sdev(iv)**2

epsdev_temp=epsdev_temp+epsdev(iv)**2
end if
end do

p=(sig(1)+sig(2)+sig(3))/3.0d0
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if (sdev(1)<0.0d0) then !just for triaxial

condition
g=-(3.0d0/2.0d0*sdev_temp)**0.5
else
g=(3.0d0/2.0d0*sdev_temp)**0.5
end if
it (epsdev(1)<0.0d0) then !just for triaxial
condition
es=-(2.0d0/3.0d0*epsdev_temp)**0.5
else
es=(2.0d0/3.0d0*epsdev_temp)**0.5
end if

ev=eps(1)+eps(2)+eps(3)
else if (cont(istage)==2) then Ifor strain control

11 lufactor
_temp=0.0d0
_temp=0.0d0
_ﬂ

ig(iv)=sig(iv)+dsigma(iv)
iv)=eps(iv)+tt(istage, iv)*dt(istage)

—-* ‘ I'v==4) then
‘--..-.I..ih

sdev_temp=sdev_temp+2
epsdev_temp=epsdev_tem
sdev_temp=sdev_temp+sdev(iv)**2

epsdev_temp=epsdev,

i9(3))/3.0d0
then !just for triaxial

condition
0/2.0d0*sdev_temp)**0.5
0d0/2.0d0*sdev_temp)**0.5
)<0.0d0) then !just for triaxial
condition

es=-(2.0d0/3.0d0*epsdev_temp)**0.5

es=(2.0d0/3.0d0*epsdev_temp)**0.5

alpha(iv,j)=alpha(iv,j)+CC(iv,j)*dt(istage)

ALY IRENTHYNS

(unit=9,FMT='(I5,I5,MZ.S,D12.5,012.5,012.5, 12.5,D12.5,D12.5,D12.5)")
istep, istage,sig(1),sig(2),sig(3),sig(4),eps(1),eps(2),eps(B),eps(4) rs

wri nit=2, = | 1 D12. 4 1 D12.5,D12.5)")
SO ) AR R 21 BRI 1610828
write (unit M 15,15,D12 D12_5,D12. 12.5,D012.5,D12.5)")
2)

istep,istagqqeps(l),eps ,eps(3),eps(4),ev,es

do i=1,n
Twrite

(unit=2,FMT="(15,110,15,D15.5,D015.5,D015.5,015.5,015.5,D015.5,D015.5,D015.5,D15.5,D15.5) ")
i,istep,istage,hp(i),hq(i),temp_alpha(l,1),temp_alpha(2,i),c(i),chi(l,1),chi(2,i),CC(1,i),CC(1,1),
y(i)

end do

end do
end do

deallocate(tt)
deallocate(dt)
deallocate(nstep)
deallocate(cont)
deallocate(s_max)

deallocate(eps)



deallocate(sdev)
deallocate(epsdev)
deallocate(alphadev)
deallocate(alpha_ii)
deallocate(chi_ii)
deallocate(chidev)
deallocate(hp)
deallocate(hq)
deallocate(c)
deallocate(eta)
deallocate(y)
deallocate(sig)

deal locate(alpha)
deal locate(chi)

deallocate(AA)
deallocate(iAA)
deallocate(BB)
deallocate(CC)
deallocate(D)
deallocate(H)

read(3,*)command

case default

print*, com

print*, “Command n

stop

end select do_comm

end do

call GETTIM (ihr,
write(*,*) **

write(*,FMT="(A, 12,
runtime = DTIME(TA)
write(*,FMT="(A,F10.2,A)")" Runnin

imin, 1

Al,12,A1,12)

write (2,*) *
write(2,*) "*
write(2,FMT="(A, 12,

write(2,FMT="(A,F10.2,A)").. Runn

write (4,*) "===========

write(4,*) "*

write(4,FMT="(A,12,
write(4,FMT="(A,F10.2,A)")

close (3)
close (2)
close (4)
close (5)
close(9)

stop

A1,12,A1,12)")" Fin =", isec

AL,12,

ﬂuﬁﬁwaﬂ%MHWﬂﬁ

end program NonlinearKHMCC2D

ﬁﬁ?@ﬁmm UAANYINY

macau lay=(x+AB

)/2.0d0

end function macaulay

double precision function delta(i) IKronecker®s delta
implicit none
integer, intent(in) :: i
if((i==1).or.(i==2).or.(i==3)) then
delta=1.0d0
else
delta=0.0d0
end if

end function delta
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