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CHAPTER 1
INTRODUCTION

In real-life situations, we normally make a decision under uncertain informa-
tion. There are many interpretations of uncertainty, such as random set, possibility
distribution, probability interval, p-box and cloud [7, 10, 16, 17]. However, we con-
centrate on the relationship between a probability interval and a random set. A
probability interval is an interval presenting lower and upper bounds of a probabil-
ity of each element in a considerable set while a random set is a set of probabilities
which are bounded below and above by belief and plausibility functions. From
these definitions, a probability interval is easier to understand than a random set
because a random set information requires the knowledge about belief and plausi-
bility functions. Even though random sets are difficult to present and a user may
not clearly understand, using a random set to represent data is more appropriate
than using a probability interval in a situation where a user does not want the oth-
ers to understand his/her probability interval information clearly. The following
example shows a situation that using a random set is more suitable than using a

probability interval for a user.

Example 1.1. Suppose we are a banker of a horse-racing who has a probability
interval information about famous horse, A, B,C and D, as follows.

1,

1
p({A will be the winner}) € L—l, 5], p({ B will be the winner}) € [ ! ],

416

1 1
p({C will be the winner}) € { 3}, p({ D will be the winner}) € l L ]

88 816
If we show this information for an on-looker to bid on a winner, he/she may
guess that A will be the winner. If A is the winner, we must pay a jackpot to this

on-looker. From this information, we may see that A has the most probability to

be the winner. However, it is not the good idea for us to show this information for



the on-looker. In fact, this probability interval information can be conveyed to the

unique random set which has the same information; i.e.,

1
e the belief that A will be the winner is 1 which equal to the belief that B will

be the winner,

1
o the belief that C' will be the winner is 3 which equal to the belief that D will
be the winner,

o the belief that one of a horse in the set {A, B, C'} will be the winner for sure
11
18 16’ and

o the belief that one of a horse in the set {A,C, D} will be the winner for sure

15 —

16
We can see that people could understand the probability interval presentation of
this information more than the random set’s one. On the other hand, an on-looker
would understand the random set representation of this information only when
he/she has the knowledge on this subject.

The details on how to transform this probability interval to the random set
are explained on page 49. Therefore, if we present this random set information
instead of the probability interval information, it may be harder for the on-looker
to interpret which horse will have more chance to win. Thus, the random set

information will gain more benefit for us.

Hence the first objective of our study is to find the conditions of a set Pp; of
probabilities generated from a probability interval when it has the same informa-
tion as a set Pgrg of probabilities generated from a random set. We discover the
conditions of a probability interval that makes Pp; = Prg which we will discuss
later in Chapter III. There was no research on this topic, as we had worked on
the literature review. In the study of Lemmer, Kyburg and Deneoeux, they found
an algorithm for constructing a random set which is an approximation of a given
probability interval. Destercke, Dubois and Chojnacki [5] explained that Lemmer

and Kyburg [8] worked on an inner approximated transformation of a set Pp; into a



set Prs, which means Prg C Ppy. Later, Deneoeux [4] studied the transformation
of a set Pp; into a set Prg using an outer approximation (Pp; C Pgs). Therefore,
we are interested in finding the conditions that a given probability interval and a
random set obtain the same information (Pp; = Pgs).

In addition, solving uncertain linear programming problems with probability
interval and random set parameters is another objective of our work. We have
studied the technique for solving linear optimizations under uncertainty problems
from Thipwiwatpojana [15], which is used to find a pessimistic and an optimistic
solutions for solving this type of problems. In this study, we use pessimistic and op-
timistic approaches for solving uncertain linear programming problems with prob-
ability interval and random set parameters. However, before solving the problem,
all probability interval parameters must be verified whether they satisfy the con-
ditions in Chapter III. Then, we can transform the problem to be the problem
with only random set parameters, if the conditions are satisfied. We use decision
making approaches for random sets presented by Hung T. Nguyen [11] to solve the
problem. The solution approaches from [11] are not only a pessimistic or an opti-
mistic solution but also all of the convex combinations between a pessimistic and
an optimistic solutions. The details of these approaches can be found in Chapter
IV.

In the next chapter, the necessary background knowledge used in this thesis,
which are probability intervals, random sets and a recourse model are provided in
Chapter II. After that, we discuss the conditions of a given probability interval
which can be represented as a random set in Chapter III. Later, a method for
solving linear programming problems with probability interval and random set pa-
rameters is shown in Chapter IV. Finally, we provide the conclusion of this thesis

in Chapter V.



CHAPTER 11
PRELIMINARIES

We provide the mathematical definitions of a probability interval and a ran-
dom set in this chapter. The review of a recourse model is in the last part of
this chapter. We begin with the definition of a probability interval in Section 2.1
and follow by the definition of a random set in Section 2.2. Other technical terms
and notation are also given where needed. Finally, we finish this chapter with the

review of a recourse model in Section 2.3.

2.1 Probability interval

In this thesis, we use the notation set X = {z1,z9,...,2,} to be the set of

realizations of an uncertainty information, unless stated otherwise.

Definition 2.1. probability interval ( see [2])

Given X = {x1,%9,...,x,} as the set of realizations of an uncertainty infor-
mation and a family of intervals L = {[l;;w;], i =1,2,...,n |0 <[; <wu; <1}, we
define the set Pr, of probability distributions on X as

Pr=A{p|l <p{{z:}) <, ZP({%}) =1,Vi=1,2,...,n},

where p({x;}) is a probability density of {x;}.
The set L is called a set of probability intervals, or a probability interval, in

short. While, the set Py, is the set of all possible probabilities associated with L.

Definition 2.2. proper probability interval
A probability interval L = {[l;,w;],i =1,2,...,n|0 <1; <wu; <1} such that

i=1 i=1



1$ called a proper probability interval.

The probability interval satisfying the condition (2.1) will guarantee that Py, is
nonempty. The empty set is not usable, so we consider only a proper probability
interval in this thesis. Moreover, it is well known that for all probability functions,
p, in a nonempty set Py,

inf p(A) < p(A) < sup p(A), VA € P(X),

PEPL PEPL

where P(X) is the power set of set X. We define

[(A) = inf p(A) and u(A) = sup p(A), VA € P(X).

PEPL PEPL

The next definition is the condition of a proper probability interval which guar-
antees that for each i, the lower bound, /;, and/or the upper bound, u;, can be

reached by some probabilities in the set Py.

Definition 2.3. reachability
A proper probability interval L = {[l;,w;],i =1,...,n} is called reachable if

le+ui§1and ZUj+li21, V4. (2.2)

i i
It was proved by L.M. De Campos et al. [2] that if a proper probability interval
satisfies the condition (2.2), then [({z;}) = l; and u({z;}) = w;, for all i. In
addition, we can compute the lower bound and upper bound of a nonempty set
set A of X by using the values [; and u; from a reachable probability interval as

follows.

(A) =max(Y L, 1- > w), (2.3)

T, €EA x,EAC
u(A) =min(Y w1 — Y L), VA€ P(X), (2.4)
wiEA CEiEAC

where A€ is the complement set of the set A.

We use [(A) and u(A) to represent the bounds of probabilities of a set A; i.e.,



{p|1(A) <p(A) <u(A),YA € P(X)}. However, this set is the same as the set P.

We use the notation Pp; instead of P, when our probability interval is reachable.
Prr={p|U(A) < p(4) <u(Ad),VA € P(X)}.

We discuss a random set in the next section. We begin with the definitions of
a o-algebra, a measurable space, a measurable mapping, and a probability space
that can be found in many standard probability measure text books [1, 12, 13].
After that, we use them to provide the definition of a random set. However, in this
thesis we consider only a finite random set. A random set can be represented by
belief and plausibility measures. The definitions of belief and plausibility measures,

which are closely related to a random set, are presented afterwards.

2.2 Random set

Definition 2.4. o-algebra and measurable space (see [1])

Let Q) be a nonempty set. A o-algebra on (), denoted by oq, is a family of
subsets of Q) that satisfies the following properties:

e J¢c oq,

e Beog= B°€oq, and

e B; € 0, for any countable (or finite) subset B; of oq = U;B; € oq.

A pair (Q,0q) is called a measurable space.

Definition 2.5. measure, measure space, probability space and probability measure
(see [1])

Let (Q,0q) be a measurable space. By a measure on this space, we mean a
function p : oq — [0, 00| with the properties:

e (@) =0, and N N

o if B, € 0q,Vi=1,2,..., are disjoint, then u(U Bi> = ZM(Bi)'
We refer to the triple (2,00, 1) as a measure spc;z; If u(éjlz 1, we refer to it

as a probability space and write it as (2, 0q, Prq), where Prq is a probability

measure.



Definition 2.6. measurable mapping (see [1])

Let (Q2,0q) and (U,op) be measurable spaces. A function f:Q — U is said to
be a (0q,oy)-measurable mapping if f~1(A) = {w € Q: f(w) € A} € oq, for
each A € oyr.

Definition 2.7. random set (see [11])
Let (2, 0q, Prq) be a probability space and (F,or) be a measurable space, where
F Coy,U# @, and (U, o) is a measurable space. A random set 1 is a (oq,oF)-

measurable mapping

r-Q—F
w = T'(w).

When X is finite, we can use a basic probability assignment function ‘m’

over P(X) to represent a random set
m(E) =p({w,L(w) = E}), VE € P(X),

such that Z m(FE) =1 and m(@) = 0. A set £ € P(X), where m(E) > 0 is
EeP(X)
called a focal element of m, and denote F' as the set of focal elements. Then,

we use the order pair (F,m) to define a random set. We should recognize that
probability distribution functions, Pr’s, and basic probability assignment func-
tions, m’s, are different, i.e.,

e When A C B, Pr(A) < Pr(B), but it is not necessary that m(A) < m(B).

e Pr(X) =1, while it is not necessary that m(X) = 1.

e Pr(A)+ Pr(A°) =1, but there is no relationship between m(A) and m(A°).

Definition 2.8. belief and plausibility measures (see [1])
Let X be a finite set of realizations of an uncertain information. A belief

measure, denoted by Bel, is a function

Bel : P(X) — [0,1]



such that Bel(@) = 0, Bel(X) = 1, and it contains a super-additive property for

all possible families of subsets of X, that is,

Bel(A1U...UA,) > > Bel(Aj) =Y Bel(A;NAp)+.. .+(=1)"" Bel(AiN...NA,)
J J<k

where Ay, Ao, ..., A, C X. The basic property of belief measures is a weaker version

of the additive property of probability measures. Thus, for any A, A° C X,
Bel(A) + Bel(A°) < 1.
A plausibility measure, denoted by Pl, is defined by
PI(A) =1— Bel(A°),VA € P(X).
Similarly, Bel(A) =1 — PI(A°),VA € P(X).

However, belief and plausibility measures can be defined by a basic probability
assignment function m. Shafer [14] showed that the basic probability assignment
function m can be used to formulate belief and plausibility measures as follows,

Bel(A) = Z m(E), and
E|ECA

PI(A)=1-Bel(A)= > m(E), VA€ P(X).

E|EnA#o
Therefore, the following set is the set of all possible probabilities that are in-

duced by a random set, and we use the notation, Prg to represent it.
Prs = {p | VA € P(X), Bel(A) < p(4) < PI(A)}.

The meaning of belief and plausibility depend on the context where they were
used. We provide the meaning of these functions in a general context as follows.

Bel(A) means that a user’s belief that one of the elements in A will happen for
sure with proportion Bel(A).

PI(A) means that a user’s belief that one of the elements in A° may not happen
for sure with proportion PI(A).

In the next section, we explain the details of a recourse model which is used

for solving linear programming problems with uncertainty.



2.3 Recourse model

Stochastic programming is known for solving uncertain problems which some
of the objective or constraints have uncertain data with a probability interpre-
tation. A recourse model is one of approaches in stochastic programming which
we make our decisions now then minimize the expected costs (or utilities) of the
consequences of these decisions. A two-stage recourse problem has a general form

as

min,  cx + Eh(r,w)]
St Axr > b
x>0
where ~ h(z,w) = min g,y
g.t/ A 2 ry, — Tox
y > 0.

In this problem, x is a vector of decisions that we must take and y is a vector
of decisions that represent new actions or consequences of x.
However, in this thesis we study about solving linear programming problem

with uncertainty as the following form

i \
min,, cx
s.t. A\x > ?)\
(2.5)
Bx >d
x> 0.

Vs

where A and b can be random sets or probability intervals. We cannot use the
two-stage recourse model to solve it because we do not know the exact probability
density mass value of each realization. We present how to solve the problem (2.5)
in Chapter IV.

In the next chapter, we provide how to obtain the conditions of a given reachable
probability interval that can be represented as a random set, Pp; = Pgg, and the

proof of all conditions.



CHAPTER I11
WHEN A REACHABLE PROBABILITY INTERVAL IS
A RANDOM SET

Our objective of this thesis is to find the conditions of a given reachable prob-
ability interval L that would obtain Pp; = Prg. Therefore, we must consider the

conditions of a given reachable probability interval when it receives the following

equations:
Bel(A) = max(z Ll — Z u;), and
T, €A x; EAC
PI(A) = min(z w1 — Z Li).
;€A r; EAC
However, we can consider only when Bel(A) = [(A) which we will obtain

Ppr = Prs as the following details. Beginning with computing [(A¢), we can

calculate the value of [(A°) by using Equation (2.3), as follows

I(A%) = max( Z li, 1= Z ;).

T, EAC T, €A

If [(A°) = Z l;, then we gain u(A) =1— Z u; from Equation (2.4). Other-
z, EAC T, €A
wise, if [(A¢) =1 — Z u;, then we also have u(A) = Z l;. Therefore, we gain

T;EA z;EAC
[(A°) 4+ u(A) =1 or u(A) =1 —I(A°) that can be computed in the similar way as

PI(A), PI(A) =1 — Bel(A°). Consequently, we need to verify only the conditions
when [(A) has the same value as Bel(A).
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3.1 A specific assignment function to obtain [(A) = Bel(A)

If we want [(A) = Bel(A); YA C X, the basic assignment function ‘m’ requires
to have a specific pattern. We categorize this specific pattern by considering all
sizes of the nonempty subset A of X when setting I(A) = Bel(A).

First, consider when |A| = 1, that is, A = {;} for each i = 1,...,n. The

equation Bel(A) = Z m(FE) can be written as Bel({z;}) = m({x;}). Moreover,
B,ECA
we get [({z;}) = [; and u({z;}) = u; from the reachable property. Therefore, we

must set Bel({z;}) = m({x;}) = {({z;}), for each i.
Second, consider when |A| = 2, that is, A = {;,2,}. From Bel({z;,z;}) =
m({as}) + m({a;}) + m({w,a5h) and Ui ,0) = Bel({i,a,)), we get

m({zi, 7;}) = ({zs2;}) = m{i}) —m({z;}) = (({zs 251) =l =

Then, when |A| = 3, that is, A = {x;,z;,2;}. From Bel({z;, z;,x1}) =
m({xi})+m({z; ) +m{eeh) +m{zs e} +m{zi, o)) +m{z), 2 })+m({zi, 25, 2k })
and [({z;, zj, z1}) = Bel({z;, v;, x}), we get

m({ws, w5, 21 }) = 1({zi, 25, 20 }) — Z m({x;,x;})— Z m({z;})

ige{igk} ie{igk}
=l({z, z;, o)) =7 > m{{zad - D b
Tgedingk} ie{i,gk}

Therefore, we can compute m(A) when 1 < |A| <n — 1 by the mathematical

induction, as follows

m({zi, xj,. . x}) = 1{zi 2y, ) = > m({wg, a2, }) —
— —— N—— N —
|4 |4 |Al-1
- Z m({ay @ fi ) = Z L.
/7:\136{7:)j )))) S} ZG{i,j ,,,,, S}

Finally, consider when A = X, since there is the property of random set that

Z m(E) =1, we obtain

EeP(X)

—1—2[ —Zm{xl,x]} —Zm{wl,x],.. Ts}).
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Therefore, if we want to gain I(A) = Bel(A) for all nonempty set A € P(X),
we must compute the basic assignment function m as the following pattern:

m({z;}) = L
m({z;, z;}) {zi, 25}) =l — 1
m({z;, x;,xx}) I({zi, g, 26 — Y m({z;,23}) — Sk

T7€{ig,k} 7e{i,j,k}

m({zn g, asd) = @i, wd) = S m{@iag, . w}) — o (3-1)
n—1 n—2
- Xk
©€{i,g,...,s}
m(X) = 1= —=>m{zyz;})—...— > m{zi,xj,...,xs}).
n—1

We provide the conditions to earn m(A) > 0,VA C X in the next section.

3.2 Conditions of a reachable probability interval to be a

random set

From the previous section, the nonnegativity of the basic assignment function
m in the system (3.1) have been not yet verified. However, it is obvious that m(A)
always has the nonnegative value for all A € P(X) because of the reachable prop-
erty when the size of X is one or two as follows.

When X = {1}, we get m({a,}) = 1 from the reachable probability intervals
that p({z1}) € [1,1].

When X = {x, 22}, let L = {[l1,u1], [l2, us]} be a reachable probability inter-
val. By the definition of the reachable probability interval, we obtain lo +u; <1
and u;+1ly > 1, therefore ly+u; = 1. From [y < uy, we then get lo+1; < lb+u; =1,
soly+1 < 1. Let m({z1}) = 4 and m({z2}) = lo. So m(X) = m({z1,22}) =
1—l—1,>0.

When | X| > 3, using the system (3.1) for a given probability interval, it may
turn out that m(A) < 0. Thus, we need to find the conditions of a probability
interval to make sure that m(A) > 0. We separate the conditions that we found
into two groups. The first group is the conditions that the reachable probability

interval is enough for constructing the random set. The second group is the ex-
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tending conditions of the first group. These conditions are stated in the Theorems

3.2, 3.4 and 3.5. We need Lemma 3.1 in order to prove these theorems.

Lemma 3.1. Let X = {z1,29,...,2,} with n > 3 and let L = {[l;,u;],i =
1,2,...,n|0<I[; <wu; <1} be a reachable probability interval. If m({x;}) = l; and
if there exists an index 1 such that Z li+u; =1 thenm(A) = 0,VA € P(X~{z;})
JFi

with |A] > 2.
Proof. WLOG, we use the index ¢ = 1. Therefore, Iy + 13+ ... 4+ 1, +u; = 1. We
will prove by the mathematical induction on |A|.

The basic step. When |A| = 2. Let set A = {z;,,x;,}, where j; < jo. By the

assumption, we get

b+l =1l — Iy — g AN B = Ny — L1 — b — w1
>1—up—us — .. = Ujyo1 — Uj 1 — o= Ujg—1 — Ujpy1 — Up — Ug.
Hence, [({z},,z;,}) = l;, +1;, by Equation (2.3). Moreover, we get m({z;,,xj,}) =
0 since we want Bel({z;,,z;,}) = l({z;,,2;,}) and we know that Bel({z;,,z;,}) =
m({z;}) +m{w,}) + m({z),, 25,}).
The inductive step. Let m(A) = 0,VA € P(X~{x1}), where |A| = k, k < n—2.
Consider ly + 13+ ...+ 1, =1 —uy, we get [({xg,23,...,2,}) =l + 13+ ...+,

From
m({zi, xj,. . 2.}) = ({@, oy, md) = > mfwi 25— = >k
1 ] L)) ie{irj,..s}

and m(A) = 0 for all A € P(X ~ {z1}), where |A| = k,k < n — 2, we have
m({xe, x3, ..., x0}) = ({z2, x3,. .., 20 }) — Z li=0.

i€{2,3,...n}
By the mathematical induction, we can conclude that if there exists an index

i such that le +u; = 1, then m(A) =0, VA € P(X ~ {z;}) with [A] > 2. O
J#i

The next theorem shows that if we have a reachable probability interval which

has at most two indices, say i1, 72, such that Z l; +u;; <1 and Z L4+, < 1,

J#i J#i2
then we can construct the unique random set that has the same information as

this probability interval.
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Theorem 3.2. Let X = {x1,29,...,2,}, n > 3, and let L = {[l;,u;] |0 < [; <

w; < 1,i=1,2,...,n} be a reachable probability interval. If there are at most two
indices, say 11,1, such that le +u;, <1 and le + u;,, < 1, then we can
J#i1 JFi2

construct the unique random set that has the same information as the probability
interval L, i.e., Prs = Ppr, which means Bel(A) = [(A) and PI(A) = u(A), VA €
P(X).

Proof. We organize our proof into the following three cases.

Case 1: There are two indices, say i1, i, such that
le—l—uil < 1 and le+ui2 < 1.
J#i J#i2

WLOG, let ?:1 =1 and ig = 2.

1. When n = 3, since le +uy; <1 and le+u2 <1, we get le+u3 =1
J#1 J7#2 J#3
by the property of reachable probability intervals.
Let m({z;}) = ;. By Lemma 3.1, we get m({z1,22}) = 0. Next, we will
show that m({z1,z3}), m({xe,z3}) and m(X) have nonnegative values, to

complete this part. Since [y + I3 < 1 — us and I + I3 < 1 — uy, we then get
[({z1,23}) =1 —ug and I({z2, 23}) = 1 — uy, using Equation (2.3). Hence,

m({l’l,l'g}) = l({xl,x;;}) — ll — l3 =1 Uo — ll = l3 =1- (Ug + ll + lg) Z 0

<1
m({IQ,l’g}) = l({l‘g,l‘g}) — lQ — 13 = 1 — Uy — lg T lg Z O
m(X)=1= m({z:}) =Y m({z:2,})

:1—l1—l2—l3—<1—UQ—l1—13—|—1—U1—l2—13)

ZUQ+U1+Z3—1 ZO

~——
>1
2. When n > 4, we have ¢ = 1,2 such that Z l; +u; < 1. Therefore,
JF#i
l2+13+...+ln<1—u1
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So, l({xg, x3,...,2,}) =1 —uy and {({z1,23,...,2,}) = 1 — us by Equation
(2.3). For i # 1,2, we get le +u; = 1. Set m({z;}) = l;, we obtain
J#i
m(A) =0, VA € P(X ~ {z;})i # 1,2, by Lemma 3.1. Therefore, we have
m(A) =0, VA e P(X)~{{z3,...,zn}, {z1, 23, ..., xn}, {22, 23, ..., 20}, X}

Hence, we must find the value of

m({xs,...,xn}), m({x1, z3,. .., 2, }), m({xe, x3,...,2,}) and m(X).
Due to the system of Equations (3.1), we obtain that

Ia4+la+ ... +iln+m{{xs,...,en}) =1({x3,...,2n})
h4ls+l+...+lh+m{xs,...,zn}) + m{z1,23,...,2n}) =1 —ug
b+l3+la+...+lh+m{zs,...,zn}) + m{{xe,z3,...,2n}) =1 — w1

D oli+m{@ss . wn}) 4 m{zr, ez, @) + m({zz, ws . 2e}) +m(X) = 1

Thus, we can write this system of equations in the form of matrix notation

by using m({xs, ..., z,}), m{{z1,xs,...,2,}), m({za, x3,...,2,}) and m(X)
as unknown variables.

1 0 0 O m({x3,...,xn}) I({zs,...,zn}) —la—la—...— Iy
1 1 0 0 m({z1,23,...,on}) | | 1—ues—li—lz—la—...— 1y
1 0 1 0 m({z2,x3,...,xn}) R N DY Sy Y U —
11 1 1 m(X) 1ol —lo—l3—...— 1y
m({zs, ..., zn}) [ 1 o 0 I({zs, .. yan}) —ls —la — ... — In
m({z1,x3,...,2Zn}) el 1 0 0 1—ug—1l1—lg—1lg—...—In
m({z2,x3,...,2n}) = 0 1 0 1—ui —lo—Ilg—lg—...—ln
m(X) | 1 -1 11 Tl —lo—l3— ... —1n
[ 1{as, . an}) —ls — Ly — . — Iy
_ —l({z3,...,zn})+1—u2 — 11
| slfzs, e+l —ur —lo
_l({xg,...,zn})71+u1+zm

Since I(A) = max(z ;)1 — Z u;), we have

T, €A x;, EAC

m({zxs,...,xn}) =1({xs,...,2n}) =l —l4— ... — 1, > 0 and
m(X):l({x37~'7xn})_1+ul+u2 >1—uy —us—1+u +uy =0.
We must show m({z1,zs,...,2,}) > 0 and m({xq, x3,...,2,}) > 0 to com-

plete the proof of this case.
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Consider when [({z3,...,2,}) =3+ 14+ ...+ 1, SO

m({x1, 23, ..., xn}) = —1({xs, ..., 2,}) + 1 —uy — ls
= —(b+ls+l+.. . 4l +u)—1>0.

<1

When [({z3,...,2,}) = 1 — uy — ug, then

m({x1, 23, ..., 20}) = =l({xs3,...,2,}) + 1 —u; — Iy

=—l4u tu+l—-—u —lpa=u—1l>0.

Hence —I({zs,...,xn}) +1—uy — {1 > 0, and m({z1,23,...,2,}) > 0. We

can obtain m({z2, x3,...,2,}) > 0 in a similar fashion.

Case 2: There is only one index, say 2, such that Z l; +w;;, < 1. WLOG, let
J#0

i7 = 1. Then we have ly + I3+ ...+ 1, <1 —wuy. So, [({xe,x3,...,2,}) =1 — uy.

For ¢ # 1, we get le +u; = 1. Let m({z;}) = l;, we obtain m(A) = 0, VA €

JFi
P(X ~A{z;}) Vi # 1, by Lemma 3.1. Therefore, we have

m(A) =0, VA € P(X) N {{zo,23,...,2,}, X}

So, we must show m ({2, z3,...,2,}) > 0 and m(X) > 0 to complete the proof.

The second last equation of the system (3.1) provides

m({zi, 2, .. 2.}) = {@ 2, 2. ) =Y m{znzg,... o) —...— > L
1 —92 ie{i,j,..s}

which means
m({xe, w3, }) =1({xay23, .z )= >
i€{2,3,...,n}
:1—U1—l2—l3—...—ln

=l—-(u+lb+l+...4+1,)>0

~~
<1

From the last equation of (3.1), we also have

m(X)=1= Li—=> m({anz})— ... =Y m{z,zj,... 2.})
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Therefore,

m(X) =1 —Zli—m({x2,$3,...,xn})

zl—Zl,—(l—ul—lg—lg——ln):ul—lle
Case 3: There is no index ¢ such that le +u; < 1. So, we get
J#

J#i
Let m({z;}) = l;, we obtain m(A) =0, VA € P(X \ {z;}) Vi, by Lemma 3.1.
Therefore, we have m(A) =0, VA € P(X)~ X, and m(X)=1- >0, > 0.
By all of these cases, we can conclude that when there are at most two indices,

say i1, ig, such that Z l;4+wu;; < 1land Z l;4+u;, < 1, we can construct the unique

J#i JF#i2
random set that has the same information such that Prg = Ppy, i.e.,Bel(A) = I(A)
and Pl(A) = u(A), VA € P(X). O

Theorem 3.2 cannot guarantee that if the reachable probability interval with

more than two indices ¢ satisfies Z l; +u; < 1, then we can construct the random
J#i
set. If there are three indices, say 1,29 and ¢3, such that

le+uil<1,le+ui2<1and2lj—l—ui3<1 (33)
J#u J#i2 J#i3

and the rest holds with equalities Z l; +u; =1, © # 11,12, 13, then the following
J#
example explains that the reachability is not enough to guarantee that there is the

random set which has the same information as the given probability interval.

Example 3.3. Let the set of realizations X = {1, xe, 23} with a reachable proba-

1 3 5 7 2 5
bility interval {[l1, u1] [12, 121, [l2, us) {12, 12}, (I3, us] [12, 12}}
It is easily seen that le +u; < 1, Vi = 1,2,3. Set m({z;}) = l;. Since
i
Li+1; <1—wuy, we then get I({x;,x;}) =1 —wy, by Equation (2.3). Thus,

——

<1
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Finally, consider the value of m(X)

m(X)=1-Y m({a:}) =Y m({wi,z;})

:1—l1—lg—lg—(1—U1—l2-l3+1-U2—l1—l3+1—U3—l1—l2)

3 3
8 15 —1
:ll+l2+l3+ul+UQ+U3—2:ZZZ‘+ZUZ‘—2:E+ﬁ—2:E<0.
i=1 =1
3 3

We can see from Example 3.3 that we do not know that Z l; + Zul > 2

i=1 i=1
3 3

or Zli + Zuz < 2, in general. Thus, we could not conclude that m(X) is
i=1 i=1
nonnegative. Therefore, the reachability and conditions in Theorem 3.2 are not

enough to guarantee that we can construct a random set.

However, we explain the sufficient conditions of a reachable probability interval
to be a random set when it satisfies Equation (3.3) in Appendix B. In the next
section, we extend the condition (3.3) to be more general and provide the proof
of the probability interval satisfying an extended condition (3.4) and the sufficient

conditions (I) or (II) can be represented as a random set.

3.3 Extended conditions of a reachable probability interval

to be a random set

The condition (3.3) can be extended by letting ¢ be the number of index ¢
that satisfy the condition Z l; +u; < 1, so the extended condition is
J#i

Yltu, <1, Vk=1,... tand3<t<n. (3.4)
J#ik
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We define the following index sets for understandability

I=A{1,...,n},
It:{il,...,it},
J:I\]t,

XJ:{.Ti, \V/’LEJ},
Y ={KUX,|KCI),
Y = {KUX, | KCLand|K|=t~1}={X~{z: } | k=1,... 1}

Moreover, we extend the sufficient conditions of a reachable probability interval
receiving from Appendix B corresponding the condition (3.4) as follows
(D) (IL1) I(A) =Y 1, VAeY =Y, and

T, €EA

(L.2) (X ~ Az, }) =1—w,, Vip € I;, and

(IDAL1) 1(A) =1— ) u;, VAEY, and
r; EAC
(I1.2) only one of the following
(I.2.1) t<n—2,0r
(I122) t=n—1land Y uj+1l, =1, iz € J.
J#k

If a given reachable probability interval satisfies either condition (I) or (II), this
probability interval can be represented as a random set. In addition, Theorems
3.4 and 3.5 prove the statement that there is a unique random set which has the

same information as the given reachable probability interval.

Theorem 3.4. Let X = {z1,29,...,2,},n > 3, and let L = {[l;,u;] |0 < I; <
w; < 1,0 =1,2,...,n} be a reachable probability interval. Suppose the conditions
(5.4) and (I) hold. Then we can construct a unique random set that has the

same information as the probability interval L, i.e., Prs = Ppr, which means

Bel(A) = [(A) and PI(A) = u(A), VA € P(X).



20

Proof. See Appendix for the case when ¢ = 3.
Let 3 <t < n, such that le—l—uik <1, Vk=1,...,t
Ik

WLOG, let iy = 1,is =2,...,i; =t. Forj € J = {t+1,...,n}, we get Zli+Uj =
i#]

1.

Set m({z;}) = l;, Vi = 1,...,n, we obtain m(A) = 0,YA € P(X ~ {z,}),j € J,

by Lemma 3.1. Therefore, we have m(A) = 0,VA € P(X) \ Y. Hence, we must

find the value of m(Y’). Due to the system of Equations (3.1), we obtain

m{zi+1,-.,2n}) = H{ze41,- o @n}) —lby1— ... —In
m{zi, ze41, .. 2n}) = {zixeq1,.,20}) — m{@et1,. ., 20 })
SN — ... — T
m{zi, xj, ce41,. . 2n}) = {z, x5, x40, 2n0)) — m{{@isr, .. zn})
=m({zi, zei1,. . an}) —m{zj, w1, a0 })
—li*lj-—lt+1 — .=y
m{xi, x5, Tk, Teq1, .0 }) = {5, 06, T4, .. T })
—m({xip1, e en}) = Y. m{En T, .., T0})
ie{i,j,k}
= Z m({z;, J;E,xt+1,..,,xn})
i,5€{1,5,k}
o4 0L

(3.5)

m(X ~A{zi}) = UX < Azi}) =m{@e1, . en}) = D m{#), @41, ., 2n})
j

= > m{@j, wp a1, xa}) — = =L
7,k
B A (e e o iy
t
m(X) = 1—m{@et1,...,2n}) — > m{@i, 2611, .., 2n})
1=1

- Zm({% Tj, T4l .-, Tn})
i,

it n
— =Yy mX N {z) =D L
i=1 =1

where i,j,k =1,...,t and 1 # j # k.

We obtain from the condition (I.1) that [({zy11,...,2,}) = i1+ ... +1,. There-

fore, by considering the value of m({z¢1,...,2,}), we have
m{zi1, - xn}) = 1{@g, o0 }) =l — oo — 1
:ltﬂ—i—...—i—ln—ltﬂ—...—anO

Consequently, we receive m(A) =0, VAeY —Y".
Therefore, we must show m(X ~ {z;}) > 0, Vi = 1,...,¢, and m(X) > 0 to

complete the proof.
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Consider the value of m(X ~ {z;}).

=1—w—l—...—li_y —liz1 — ... — l,, ( by the condition (1.2) )
=1—(21]+u1)>0
J7#
<1

We know that Z lj+u; <1, Vi=1,...,t, by the condition (3.4). So we obtain
J#i
m(X ~{x;}) >0, Vi=1,... ¢t

Next, let consider m(X).

t n
m(X)zl—Zm(X\{xi})—Zli

i=1 =1

t n

i=1 =1

t n

i=1 i=1

—1—t+Zul—|—tZl —Zz —le
:1—t+2ui +(t=1) Zz —Zz

1€l i€l 1€l
= 1—t—|—(2u2—2uj)—|—(t—1)ZZZ—ZZZ—|—ZZJ
i€l jeg il i€l jeJ
=(t=2> L+> w—> u+Y» Li—t+1>0
i€l icl jeJ jeJ
We obtain (t —2) > o li+ D e Ui = D e Wi T2 el — 1, by the condition

(L3).
O

When [(A) =1— Z u;, VA € Y ( the condition (II.1) ), the following theorem
x;, EAC
shows that we can construct the random set.

Theorem 3.5. Let X = {xy,29,...,2,},n > 5. Let L = {[l;,w] |0 < [; <
w; < 1,0 =1,2,...,n} be a reachable probability interval. Suppose the conditions
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(3.4) and (II) hold. Then we can construct a unique random set that has the
same information as the probability interval L, i.e., Prs = Ppr, which means

Bel(A) =1(A) and PI(A) = u(A), VA € P(X).

Proof. We present the proof into 2 cases.
Case 1: Suppose the conditions (II.2.1) and (3.4) hold. Let ¢ < n — 2 such that
d lLitu, <1,VE=1.. .t
JFik
WLOG, let i1 = 1,15 =2,...,i;, =t. For j € J, we get Zli+Uj =1
i#]
Set m({z;}) = 1;, Vi = 1,...,n. We obtain m(A) = 0,VA € P(X ~{z;}),j € J,
by Lemma 3.1. Therefore, we have m(A) = 0,VA € P(X) \Y. The values of

m(A); A € Y must be nonnegative to achieve our purpose. We can find the values

of m(A); A € Y by using the system of Equations (3.5).

First, consider m({z11,...,2,}).
m({xt_H, Ce ,.Tn}) = l({wt-i-h Yo ,’En}) o lt—l—l Tk — ln
:1—U1—UQ—...—Ut—lt+1—...—lnZO

Since ({41, ..., 2n}) = 1 —uy —ug—...—wuy from the condition (II.1), we obtain

1—wup—us— ... —uy > ly1 + ... + 1,, by Equation (2.3).

Second, consider m({x;, Tii1, ..., Tn}).

m({xi, i1, - xn}) =@, Topty ooy xnf —m{ze, o a0 )) — L=l — o — 1
=1l—-—wu — .. — U —Upg — .. — U — L+ U+ us+ ... + 1y
+lha+.oo ol ==l — ... =y
=u; —1; >0

Hence, m({z;, z441,...,2n}) >0, Vi=1,... ¢

Next, we will prove by the mathematical induction on the size of A that m(A) =
0, VA € Y with |A| > n — ¢+ 2 to complete the proof of this case.
Basic step. When |A| =n —t+2, let a set A = {x;, 2, x441,...,2,}, where
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i,j=1,...,t and i < j. Using the system of Equations (3.5), we obtain

m({xi, ©j, Tig1, . xn}) = ({@i x5, g1, 20 }) — L=l =l — o=
—m{zer1, -2 t) —m{zi, v, . 20 }) —m{xg, g, 20}
=1l—up — . = U — U] — e — U] — U] — . — Uy
—lLi—=li =l — . =l —1T+4ur+us+...+u+

-l—...—l—ln—ui—l—li—uj—i—lj:O.

Inductive step. Let m(A) =0, VA€ Y withn —t+2<|A| <n-—-1
Using the system of Equations (3.5), we obtain

m(X)=1- Zli —m({@i1, . xn)) — Zm({xi,xtﬂ, ce T })

:1—[1—...—ln—1+U1+U2—|—...+ut—|—lt+1+...+ln—U,l—l—ll

——Ut+lt:O

By the mathematical induction, we can conclude that m(A) =0, VA € Y with
Al >n—t+2.
Case 2: Suppose the conditions (I11.2.2) and (3.4) hold. Let t = n — 1 such that
le +u;, <1,VkE=1,...,t and Zuj +1;; = 1,i; € J. Since there are n — 1
J#ik JF4j
indices of ¢ such that Z l; +u; <1, we obtain that there exists only one index i;
that Z lj +ui; =1, lj; the reachable probability interval.
WLOJéZ,] let i; = n. Set m({x;}) =1, Vi = 1,...,n, we obtain m(A) = 0,VA €
P(X ~{z,}), by Lemma 3.1.
Therefore, we must find the value of m(A); A € Y where Y = {KU{z,} | K C L;}.
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Due to the system of Equations (3.1), we obtain

m({zi, wn}) = ({zi; wn}) —li — Iy
m({xivxjvwn}) = l({xiaxﬁxn}) - Z €z, ] Z lA (3~6)

j€{ijn} i€{ijn}
m({xi, xj, ..., xn}) = 1({wi,zy,. .. 20)) — E m {xz,xj,.. T})— ... — g L
—— — ,_/
n—1 ZG{ZJ ~~~~~ TL}

—1—2[ —Zm {z;;2,}) — —Zm{wz,x],..  Tp})-

wherei,j =1,...,tand i # j.

First, consider the values of m({x;,z,}).

Since [(A) =1 — Zuz, ({zs, z0}) —1—Zuj—l > 0.
x;€EAC j#in
Next, we will prove by the mathematical induction on the size of A that m(A) =
0, VA € Y with |A| > 3 to complete the proof of this case.
Basic step. When |A| = 3, let set A = {x;,xj,z,}, where ¢,7 =1,...,n—1
and ¢ < j. By Equation (3.6), we get

m({mi,xj,xn})zlf Z uk4(1~ Z up —l; —lp +1— Z uk,lj,ln), Z Ik

keI~{i,j,n} keI~{in} keI~{j,n} ke{i,j,n}
=1- Z up — 14 Z uk+l¢+lnfl+ Z uk+lj+ln7 Z lk
keI~{ijn} keI~{in} keI~{j,n} kef{ij,n}
= u; + Z Uk + ln—1
keI~Lin}

Z(E ui+ln)—1=0
—_——
1

We get Zul + 1, = 1, by the condition (II.2.2).
Inductive step. Let m(A) =0, VA€ Y with3 < |A| <n -1
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Consider m(X),

X) =130 S mird)

n n-1
zl—zli_Z(l_ Z ui=li=l)
i—1 i=1 ieI~{in}

n—1

:1—ili—Z(l—iumtumtun—li—ln)
=1

i=1 i=1

n n n—1 n—1
:I—Zli—n+1+(n—1)2ui~2ui—(n—l)un+Zli+(n—1)ln
' ' i=1

i=1

=2—n+(n—2) Zuz (n—2)u, + (n=2)1,

=2—-n+(n-—2 Zul Up + 1y)

=2—-n+(n-—2 Zuz—i-l y=2—-n+n-—2=0.
i#n

—_——
1

By the mathematical induction, we can conclude that m(A) = 0, VA € Y with
Al > 3.
By these two cases, we can conclude that if there are exact ¢ indices, say
., i, such that le +u, <1, VkE =1,...,tas wellast < n—1 and
JF U
I(A) =1- Z u;, VA € Y, we can construct the unique random set such that

r;, EAC

Prs = Ppy, ie., Bel(A) = 1(A) and PI(A) = u(A), VA€ P(X). When t =n — 1,

the probability interval must satisfy the condition Zuj +1l; = 1,14 € J to
J7#4j

guarantee that we can construct the random set. O]

We provide an algorithm for checking the conditions of a given probability

interval and constructing the random set which has the same information.
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3.4 Probability interval to random set algorithm

Algorithm 3.6. Algorithm for transforming a given probability interval to a ran-
dom set
X ={x1,29,...,x,};n >=3;
p({zi}) € [li; wil;
m(A) :=0;VA € P(X)
sumlL = 0; sumU := 0; sumUJ := 0; sumLJ := 0;
sumUT = 0;t := 0; max := 0;
fori=1,...,n
sumlL := sumL + [;;
sumU := sumU + u;;
m({z}) == li;
1i=1+41;
end
[Step 1 Check for proper probability interval.]
if (sumL > 1) or (sumU < 1)
return “Your data are not a proper probability interval.” (Stop)
else
fori=1,....n
[Step 2 Check for reachable probability interval.]
a; == sumL — [; + u;
if (a; > 1) or (sumU —u; +1; < 1)
return “Your data are not a reachable probability interval.” (Stop)
end
[Step 3 Check the conditions of probability interval.]
if a; <1
t:=t+1;
keep index 7 in Iy;
sumUT := sumUT + u;;

else



keep index i in Xj;
sumUJ = sumUJ + uy;;
sumLJ = sumLJ + [;;
end
1i=1+1;
end
[Step 4 Construct the random set.]
ift =2
max = suml — 1y, — 1, ;
if mar <1—wy, —uy,
max = 1—uy —ur,;
end
m(X ~ Az, 71, }) = max —sumL + 1, +1p,;
m(X ~Awy,, }) = —max + 1 —ur, —1,;
m(X \Axyp,, }) = —maz + 1 —up, — 1, ;
m(X) :=mar — 1+ ur, +ur,;
elseif t =1
m(X ~ Az, }) =1 -y, —sumL+1y, ;
m(X) =y, =1,
elseif t =0
m(X) :=1— sumlL;

else
if I(A) = > L, VAeY Y
@ €A
bi=(=2)D L+ Y w— w+ Y L—t+1;
iel il jes jes
if b>0
fore=1,...,7
m(X ~Axg, }) =1-ay,;
end
m(X) := b;

27
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return “Your data do not satisfy the condition (1.3).” (Stop)

end
elseif [(A) =1— Z u;, VAeY
x;,EAC
fet<n—2

m(Xy) :=1—sumUT — sumLJ,
fori=1,...,J
m(X; Ul }) = ur, — 1, ;
end
elseif t =n —1
if sumU —up+ 1l =1, ke X,
fori=1,...j
m({zg, 1, }) = 1= sumlU + uy, +up — Iy, — ly;
end
else
return “Your data do not satisfy the condition (11.2.2).” (Stop)
end
else
return “Your data do not satisfy the condition (II).” (Stop)
end
else
return “Your data do not satisfy the condition (I) and (II).” (Stop)

end

end

return m(A); VA € P(X)

end



CHAPTER IV
LINEAR PROGRAMMING PROBLEM WITH
PROBABILITY INTERVAL AND RANDOM SET
PARAMETERS

This chapter, we offer a method for solving a linear programming problem
with probability interval and random set parameters which is in the form

.
min,, ary+ cxe+ ...+,

s:t. apxy + s+ ...+ aypx, > by,

U T1 + Ul + . .. + Uy = ba,

(4.1)
ka1 + GhaTa + -+ & Apnn > by,
222l
x>0, )
where @;; and E, 1=1,2,...,kand j = 1,2,...,n, can be random sets or probabil-

ity intervals. Moreover, we present a code from SAGE which is a free open-source
mathematics software for each method of solving a linear programming problem
with probability interval and random set parameters. We will use Problem A to
explain the method for solving a linear programming with probability interval and

random set parameters.



Problem A:

min 2x; + 4x + 2.523

s.t. auixy + Aoy + 45 > 31
o101 + Goay + Aagary > by
T, + 2x3 > 16
621 + 8xy + 423 > 128
z3 < 80

L1,T2,T3 Z Oa

where

3, p({3}) € [1/6,1/2]
ann =9 4, p({4}) €[1/3,2/3]
5, p({5}) € [1/6,1/2]

a1 = {1,2,3) where m({1,2}) = 1/8, m({2,3}) = 1/4,

m({1,3}) = 1/4, m(X) = 3/8

64 . p({64}) € [1/4,1/2]
5] 68, p({63)) € [1/4,7/16]
72, p({72}) €[1/8,3/8]
76, p({76}) € [1/8,5/16]

\

o = {1,2,3} where m({1}) = 2/5, m({2}) = 1/10, m({3}) = 1/5,

m({1,2}) = 1/5, m({2,3}) = 1/10

(

3, p({3}) €[1/16,7/16]
Lo e en/say)

5 , p({5}) €[3/16,9/16]

L 6, p({6}) € [1/4,5/8]

30
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Qo3 = {1,2,3} where m({1}) = 1/4, m({1,3}) = 5/16,
m({2,3}) = 3/16, m(X) =1/4

70 , p({70}) € [1/8,7/16]
by =4 80 , p({80}) € [3/16,1/2]
90 , p({90}) € [5/16,9/16].

In general, the pessimistic and optimistic expected recourse approaches are used
for solving a linear programming problem with uncertainty. First of all, we must
consider the probability interval parameters. If they satisfy the conditions stated
in the previous chapter, we can transform this problem to the problem which has
only random set parameters and use the idea of decision making of random set to
solve it. Otherwise, we must solve this problem with two types of parameters after
we find appropriate distributions for each approach for solving the problem.

We used the program in Appendix A for checking the conditions of probability
interval parameters and found that all of them could be constructed the random

set as shown in Table 4.1.

Table 4.1. The corresponding random. set from probability interval parameters in

Problem A

probability interval an b1 @ by
set of realizations X ={3,4,5} X ={64,68,72,76} X =1{3,4,5,6} X ={70,80,90}
mass function m({3}) =1/6 m({64}) =1/4 m({3}) =1/16 m({70}) =2/16

( (

m({4)=2/6 |  m{68) =1/4 | m({4})=2/16 | m({80}) =3/16

m({5H=1/6 | m{m2)=1/8 | m({5}) =3/16 | m({90}) = 5/16
(

m(X) =1/3 m({76}) = 1/8 m({6}) = 4/16 | m({80,90}) = 1/16
m({64,72,76}) = 1/16 | m(X)=3/8 | m({70,90}) = 1/16
m({64,68,72}) = 1/16 m({70,80}) = 1/8

m(X)=1/8 m(X) =1/8

Therefore, Problem A can be solved as a linear programming problem that has
only random set parameters. However, we will explain how to solve the problem
with two types of parameters before solving the problem with only random set

parameters.
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4.1 Solving linear programming problems with probability

interval and random set parameters

The pessimistic and optimistic expected recourse approaches commonly used
for solving a linear programming problem with probability interval and random
set parameters. It is necessary to find the lowest and largest density functions
of probability intervals and random sets before applying these approaches to our
problem. The lowest density function will provide the smallest expected value
among all probabilities in the set Mpy (or Mps) of all probability density func-
tions satisfying the probability interval (or random set) information. Similarly, the
largest density function will provide the largest expected value among all proba-
bilities in Mp; (or Mgg). More details on solving linear programming problems

with generalized uncertainty can be found in Thipwiwatpojana [15].

4.1.1 The lowest and largest density functions generated

by a random set

Given a random set for a set of realizations X = {zy,x9,...,2,}, and an
evaluation function 6 on X, where 0(z,) < 0(zy) < ... < 0(x,), the lowest and
the largest expected values of 6 can be evaluated by using the following density

functions f and £, respectively, where

f(z1) = Bel({x1,xs,...,2,}) — Bel({xa,x3,...,2,})

f(x;) = Bel({ms,Tit1, - 1a}) — Bel({xiz1, Tiva, - -, Tn}) (4.4)

i(xn) = Bel({z.}), J
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and

f(x1) = Bel({z1})

flx)) = Bel({w1,19,...,2;}) — Bel({z1,z9,...,71}) (4.5)

flzn) = Bel({xy,22,...,2,}) — Bel({wy, @3, 2n1}).

Nguyen [11] proved that f in (4.4) obtains the lowest density function of 6. More-
over, it was showed that f in (4.5) obtains the largest density function of § by
Thipwiwatpojana [15]. Before we construct an algorithm for finding the lowest
and largest density functions generated by a random set, we provide the algorithm

for computing the belief measure as follows.
Algorithm 4.2. Algorithm for finding the belief value from a given mass function

#m is the set of domains of mass functions
#f is the set of values of mass functions
def Bel(k):
b=0
for j in range(len(m)):
if m[j].issubset(k):
b=b+f [§]

return b

We use Algorithm 4.2 for computing the lowest and largest density functions

generated by a random set as follows.
Algorithm 4.3. Algorithm for finding f generated by a random set

#n is the set of the domain of mass function used to compute

the lowest density function

A=[] #keep the values of belief function of set n

B=[] #keep the values of the lowest density function of a random set

for i in range(len(n)):
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A.append(Bel(n[i]))
for i in range(len(n)-1):

B.append (A[i]-A[i+1])
B.append(A[len(n)-1])

print ’The lowest density function=’,B
Algorithm 4.4. Algorithm for finding f generated by a random set

#p is the set of the domain of mass function used to compute
the largest density function
C=[] #keep the values of belief function of set p
D=[0] #keep the values of the largest density function of a random set
for i in range(len(p)):
C.append (Bel(p[il))
D[0]=C[0]
for i in range(0,len(p)-1):
D.append(C[i+1]-C[i])

print ’The largest density function=’,D

In this program, it is necessary to give the information of the random set in
a special form. For example, if we have the random set information of the set
X ={0,1,2,3,4} as m({0}) = 1/25, m({1}) = 2/25, m({2}) = 4/25, m({3}) =
6/25, m({4}) = 1/25, m({0,1}) = 3/25, m({1,2}) = 2/25, m({0,1,2}) = 1/25,
m({1,2,3}) = 3/25, m({0,2,3,4}) = 1/25 and m(X) = 1/25, then we must type
the information as the following in order to be able to use this program.
m=[{0},{1},{2},{3},{4}+,{0,1},{1,2},{0,1,2},{1,2,3},{0,2,3,4},{0,1,2,3,4}]
f=[1/25,2/25,4/25,6/25,1/25,3/25,2/25,1/25,3/25,1/25,1/25]
n=[{0,1,2,3,4},{1,2,3,4},{2,3,4},{3,4},{4}]
p=[{0},{0,1},{0,1,2},{0,1,2,3},{0,1,2,3,4}]

the result by using Algorithms 4.3 and 4.4 are

The lowest density function = [7/25, 7/25, 4/25, 6/25, 1/25]
The largest density function = [1/25, 1/5, 7/25, 9/25, 3/25].
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The result for finding the lowest and largest density functions generated by random

sets in Problem A is

all -> The lowest density function = [1/2, 1/3, 1/6],
The largest density function = [1/6, 1/3, 1/2]
al2 -> The lowest density function = [3/4, 1/4, 0],
The largest density function = [0, 1/8, 7/8]
bl -> The lowest density function = [1/2, 1/4, 1/8, 1/8],
The largest density function = [1/4, 1/4, 3/16, 5/16]
a21 -> The lowest density function = [3/5, 1/5, 1/5B],
The largest density function = [2/5, 3/10, 3/10]
a22 -> The lowest density function = [7/16, 1/8, 3/16, 1/4],
The largest density function = [1/16, 1/8, 3/16, 5/8]
a23 -> The lowest density function = [13/16, 3/16, 0],
The largest density function = [1/4, 0, 3/4]
b2 -> The lowest density function = [7/16, 1/4, 5/16],
The largest density function = [1/8, 5/16, 9/16].

Next, we will show how to obtain the lowest and largest density functions generated

by a probability interval.

4.1.2 The lowest and largest density functions generated

by a probability interval

Consider X = {x1,z,...,x,} which has the set Py of probability distribu-
tions on X as Pp, = {p |l < p({ai}) < w,Y o yp({zi}) = L,Vi = 1,2,...,n}
where 1 < 25 < ... < x,. It was shown in [15] that there is an optimal solution

of the problem (4.6)

min /max 21p({21}) + 22p({2}) + ... + 2ep({za}) (4.6)

by using a greedy algorithm.

The lowest density function, f, is an optimal solution for the problem

min rip({z1}) + zop({w2}) + . + zup({2n}),
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and the largest density function, f, is an optimal solution for the problem

max z1p({z1}) + 22p(122}) + . + 2ap({2n}).

The following is the greedy algorithm for finding the lowest and largest density

functions generated by a probability interval.
Algorithm 4.5. Algorithm for finding [ generated by a probability interval

# 1 is a set of lower bound
# u is a set of upper bound
L=[0,0] #initial list for keeping the value of the lowest density function
L[0]=u[0]
sum=1-L[0]
for i in range(2,len(l)):
L.append(1[i])
sum=sum-1[1i]
L[1]=sum

print ’The lowest density function =’,L
Algorithm 4.6. Algorithm for finding f generated by a probability interval

U=[] #initial list for keeping the value of the largest density function
sum=1-u[len(u)-1]
for i in range(len(u)-2):
U.append (1[i])
sum=sum-1 [i]
U.append (sum)
U.append(u[len(u)-1])

print ’The largest density function =’,U

For example, if we have the probability interval information of the set X =
{3:17 X2, T3, 1'4} as L - {[lla ul] - [1/4a 1/2]7 [l2a UQ] = [1/47 7/]‘6]’ [l37 U3] = []‘/87 3/8]7
Iy, usg] = [1/8,5/16]}, we must type the information as the following in order to

be able to use this program.
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1=[1/4,1/4,1/8,1/8]
u=[1/2,7/16,3/8,5/16]

the result by using Algorithms 4.5 and 4.6 are

The lowest density function = [1/2, 1/4, 1/8, 1/8]
The largest density function = [1/4, 1/4, 3/16, 5/16].

The result for finding the lowest and largest density functions generated by prob-

ability intervals in Problem A is

all -> The lowest density function = [1/2, 1/3, 1/6],
The largest density function = [1/6, 1/3, 1/2]
bl -> The lowest density function = [1/2, 1/4, 1/8, 1/8],
The largest density function = [1/4, 1/4, 3/16, 5/16]
a22 -> The lowest density function = [7/16, 1/8, 3/16, 1/4],
The largest density function = [1/16, 1/8, 3/16, 5/8]
b2 -> The lowest density function = [7/16, 1/4, 5/16],
The largest density function = [1/8, 5/16, 9/16].

After we can find the lowest and largest density functions generated by a probabil-
ity interval and a random set, we can find the pessimistic and optimistic expected

recourse values as follows.

4.1.3 Pessimistic and optimistic expected recourse models

Consider Problem (4.1), we assume there are a;; realizations for each @;;; i.e.,

ajj,az;, . .. a;’ with probability density mass values g;;(aj;), gi;(a3;), - - -, gis(ag,”),
respectively and there are (; realizations for each 5,»; i.e.bl,b?, ... ,bf ‘, with proba-

bility density mass values h;(b}), hi(b2), . .., h;(b"), respectively, where Z Gij (afj)
k

Bi n

1 and Z hi(bf) = 1. Let K; = H%’jﬁz‘ be the number of scenarios with respect
k j=1

to the i’ constraint of Problem (4.1). We can transform Problem (4.1) to the
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expected recourse model as follows

min,, 1y + ey + ...+ e,
L, L
3121:1 1w1+SQZL1 Fwh s o fhwk,
s.t. >0 —alymy — abxg — .. — a1, T,
K1 b1 all al2 aln
wpt 20 —af e —afy s — .= agy o,
(4.7)
1 1 1 1 1
p 2> by — T — ATy — .. — Ay, T,
Ky, Bk akl ak2 akn
Wy, 2 b= agy T — aRe Ty — .= Ay Ty,
Bx > d,
z,w > 0, )
where w; = max{0,b; — a;; 01 — @92 — ... — a;, T, } is a recourse variable, s; is the

positive penalty price for each i constraint of (4.1), f& is the joint probability
for wF that fL = hi(bh)ga(—ald)gin(—al3) . .. gin(—a'") with the assumption that
all variables are independent and L is the scenario (I,1y,ls,...,1,) .

Let M; be the set of all joint probabilities satlsfymg the information on the
i" constraint of (4.1), therefore M; = {f;| ZfL = 1,fF = hFghgh .. gh}.

Moreover, we define = as the the feasible set of the constraints in (4.7) and M :=

{f=(fi, fo, -y fm) | fi € My, =120 005k}

The optimistic expected recourse value is the objective value of the problem

(4.8).

N fepr MIN (g ) e C1T1 + CoTo + ... + CcpTpt

(4.8)
SlZLl 1w1+822“ Jwy + +3kZL1 Fwy .

On the other hands, the pessimistic expected recourse value is the objective

value of the problem (4.9).

max fep MiN (g p)e= 1T+ o+ ...+ X, +

(4.9)
K
SIZL 1 1w1 +SQZL 1 2Lw2L+...+skZLilkaw£.
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It was also shown in Thipwiwatpojana [15] that finding the solutions of the
problems (4.8) and (4.9) are equivalent to finding the solutions of the problems
(4.10) and (4.11), respectively.

min c;x, + coxa + ... + cpy, + Slel + 52i2w2 +...+ Skikwk‘ (4.10)

(zw)e=

min_ ¢, + oo + ... + by + S1f w1 F Sofots + ...+ Spf W (4.11)

(z,w)e=

The following algorithm is the program of finding the optimistic and pessimistic
expected values of Problem A.

Begin with computing the joint probability of each constraint. Since the joint
probability of each constraint depends on the number of uncertain parameters in
the constraint, there is no unique algorithm for computing the joint probability.
However, we can compute the maximum and minimum joint probabilities of each
constraint at the same time. We use the largest density function, f, from Algo-
rithms 4.4 and 4.6 and the lowest density function, f, from Algorithms 4.3 and 4.5
for computing the maximum and minimum joint probability.

Consequently, we use the maximum and minimum joint probability for find-
ing the pessimistic and optimistic recourse values, respectively. We use Problem
A to explain how to use the algorithm for finding the pessimistic and optimistic
expected recourse values.

Consider Problem A, there are two constraints containing uncertain parame-
ters, constraints (4.2) and (4.3). However, the number of uncertain parameters in
these constraints are not equal. Then, we can not use the same algorithm to find
the joint probability. There are three uncertain parameters in constraint (4.2), so
an algorithm finding the joint probability has three loops. Thus, there are four
loops in the algorithm finding the joint probability of constraint (4.3) with the

same reason, as follows.

Algorithm 4.7. Algorithm for finding the maximum and minimum joint proba-

bilities of constraint (4.2) in Problem A

minf1=[] #keep the minimum joint probability of each scenario
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maxfl=[] #keep the maximum joint probability of each scenario
A11=[] #keep index of parameter all of each scenario
A12=[] #keep index of parameter al2 of each scenario
B1=[] #keep index of parameter bl of each scenario
for i in range(len(mpall)):
for j in range(len(mpal2)):
for k¥ in range(len(mpbl)):

A11.append (i)

A12.append(j)

B1.append (k)

minfl.append (Mpall [i]*Mpal2[j]*mpbl[k])

maxfl.append(mpall [i]*mpal2[j]*Mpbl[k])
print ’The minimum joint probability =’,minfl

print ’The maximum joint probability =’,maxfl

Algorithm 4.8. Algorithm for finding the maximum and minimum joint proba-

bilities of constraint (4.3) in Problem A

minf2=[] #keep the minimum joint probability of each scenario
maxf2=[] #keep the maximum joint probability of each scenario
A21=[] #keep index of parameter a2l of each scenario
A22=[] #keep index of parameter a22 of each scenario
A23=[] #keep index of parameter a23 of each scenario
B2=[] #keep index of parameter b2 of each scenario
for i in range(len(mpa21)):
for j in range(len(mpa22)):
for k in range(len(mpa23)):
for 1 in range(len(mpb2)):

A21 .append (i)

A22.append(j)

A23.append (k)

B2.append (1)
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minf2.append(Mpa21 [i]*Mpa22[j]*Mpa23[k]*mpb2[1])
maxf2.append (mpa21 [i]*mpa22 [j]*mpa23[k]*Mpb2[1])
print ’The minimum joint probability =’,minf2

print ’The maximum joint probability =’ ,maxf2

Before we use Algorithms 4.7 and 4.8, we must type the information of the
lowest and largest density functions from Algorithms 4.3, 4.4, 4.5 and 4.6 as follows.

In the algorithm, we use variables Mp and mp to represent f and [, respectively.

#The largest density function
#constrain (4.2) in Problem A
Mpall=[1/6, 1/3, 1/2] #The largest density function of parameter all
Mpal12=[0, 1/8, 7/8]

Mpbl= [1/4, 1/4, 3/16, 5/16]
#constrain (4.3) in Problem A
Mpa21=[2/5, 3/10, 3/10]
Mpa22=[1/16, 1/8, 3/16, 5/8]
Mpa23=[1/4, 0, 3/4]
Mpb2=[1/8, 5/16, 9/16]

#The lowest density function
#constrain (4.2) in Problem A
mpall=[1/2, 1/3, 1/6]
mpal2=[3/4, 1/4, 0]

mpbl= [1/2, 1/4, 1/8, 1/8]
#constrain (4.3) in Problem A
mpa21=[3/5, 1/5, 1/5]
mpa22=[7/16, 1/8, 3/16, 1/4]
mpa23=[13/16, 3/16, 0]

mpb2= [7/16, 1/4, 5/16]

The next algorithm is an algorithm for solving Problem A. If we want to find the

optimistic expected recourse value, we set the value of f1 and 2 in the algorithm



42

as fl=minfl and f2=minf2. Otherwise, if we want to find the pessimistic expected

recourse value, we set fl=maxfl and f2=maxf2.
Algorithm 4.9. Algorithm for solving Problem A

# Declare the value of each parameter and variable
al1=[3,4,5] # value of all
al2=[1,2,3] # value of al2
b1=[64,68,72,76] # value of bl
a21=[1,2,3] # value of a2l
a22=[3,4,5,6] # value of a22
a23=[1,2,3] # value of a23
b2=[70,80,90] # value of b2
s1=1 # value of penalty price for constraint (4.2)
s2=1 # value of penalty price for constraint (4.3)
# Construct the object for LP problem
p = MixedIntegerLinearProgram(maximization=False)
# Declare variable
X = p.new_variable(dim=1)
wl = p.new_variable(dim=1) # recourse variable for constraint (4.2)
w2 = p.new_variable(dim=1) # recourse variable for constraint (4.3)
# Add objective function
a=2%x [0]+4*x [1]+2.5%x[2]
b=0
c=0
for i in range(len(f1)):
b=b+(f1[i]*wi[i])
for i in range(len(£f2)):
c=c+(f2[i]*w2[i])
p.set_objective(a+sl*b+s2*c)
# Add constraints

p.add_constraint (x[0]+2*x[2]>=16)
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p.add_constraint (6*x [0]+8*x [1]+4xx[2]>=128)
p.add_constraint (x[2]<=80)
for i in range(len(f1)):
p.add_constraint(wl[i]>= b1 [B1[i]]-al11[A11[i]]*x[0]-
al2[A12[i]]*x[1]-4x*x[2])
for i in range(len(£f2)):
p.add_constraint (w2[i]>= b2[B2[i]]-a21[A21[i]]*x[0]-
a22[A22[i]]1*x[1]-a23[A23[i]]*x[2])
p.show()

The result of this algorithm is shown in Table 4.11 in the last part of this
chapter.

4.2 Solving problem with only random set parameters

We use the decision making of random set for solving this type of the problem.
There are three approaches for solving the decision making based on distribution

functions of random sets, which are
(a) expectation with respect to a distribution function
(b) expectation of a function of a random set
(¢) maximum entropy distribution.

The detail of this can be found in Hung T. Nguyen [11]. However, there are two
of these approaches that relate with our objective, i.e., the approaches (a) and
(b). The result of using the approach (a) is the same as finding the lowest density
function generated by a random set. Therefore, we obtain the optimistic expected
recourse value when we use the distribution function from this approach. The

distribution function of a random set used the approach (b) is in the form of

(@) = pf(@) + (1 — p)f (), (4.12)
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where p € [0,1]. The value of this distribution function depends on the parameter
p. If we use p = 1, then we obtain the largest density function. If p = 0, then we
obtain the lowest density function. However, we can use any value of p € [0, 1].
This leads to the results not only pessimistic or optimistic ones but also all of the
results that a supply may want to know. Therefore, solving a problem with only

random set parameters is to solve the following problem

min C1T1 + CoTo + ... + CpTy + Slfikwl -+ ng;UJQ + ...+ skf,jwk (413)

(z,w)e=
We must find the values of f* before using the Algorithm 4.9 for solving a problem
with only random set parameters. However, we must define the value of p before
finding f*. For example, if we set p = 0.5, then we can evaluate f* using the

following program.
Algorithm 4.10. Algorithm for finding f*

p=0.5
f1=[]
f2=[]
for i in range(len(minf1l)):
f1.append ((p*maxf1[i])+((1-p)*minf1[i]))
for i in range(len(minf2)):

£2.append ((p*maxf2[i])+((1-p)*minf2[i]))

Table 4.11. The result of Problem A wusing different values p

p 0 (optimistic) 0.25 0.5 0.75 1 (pessimistic)
objective value 70.93052 79.08351 | 85.07783 | 89.62387 93.625

T 6.85714 10.0 17.42857 | 20.85714 20.83333

Ty 8.7619 8.0 0.28571 | 4.71429 5.5

T3 4.57143 4.0 0.0 0.0 0.0




CHAPTER V
CONCLUSION

In this thesis, we study the relationship of probability intervals and random
sets. We discovered the conditions of a given probability interval which can be
represented as a unique random set with the same information, i.e., a reachable

probability interval containing at most two indices, say i, 72, such that Z li+u;, <
J#u

1 and Z l;+u;, < 1 as westate in Theorem 3.2. However, a reachable property is

J#i2
not enough for ¢ indices of 7 satisfying the condition Z Li+u; <1when2 <t <n.
J#

We extend the conditions of a reachable probability interval, and we find that the

reachable probability interval must satisty either one of the following conditions

for guarantee that there is a random set which has the same information.

() (L1) I(A) = > I, VA€ Y =Y, and

.Z’l'EA

(L.2) (X ~{zy,}) =1—u,,, Vip € I;, and
<I3) (t — 2) Zie[ l, RS Zie] U; — ZjEJ Uy I ZjEJ lj Z t—1.
(IDAL1) 1(A) =1- ) u;, VA€Y, and
z; EAC
(I1.2) only one of the following
(I1.2.1) t<nm—2, or
(I122) t=n—1land Y w;j+1, =1, i €J.
J#ik
We construct the algorithm for checking and constructing a random set from a
given probability interval.
In addition, we solved the uncertain linear programming problems with prob-

ability interval and random set parameters. In general, we use the optimistic and
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pessimistic approaches for solving these type of problems. If all of the probability
interval parameters satisfy our conditions, we can transform the problem to the
problem which has only random set parameters. So, we can use an idea from de-
cision making theory with random sets for solving this problem. We explain all of

these solving in Chapter IV.
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APPENDIX

Appendix A: Algorithm for constructing a random set from a given

probability interval

# I is a set of all indices
# 1 is a set of lower bound
# u is a set of upper bound
sumL=sum(1l) #sum all of lower bounds
sumU=sum(u) #sum all of upper bounds
sumUT=0 #sum of upper bounds that index i satisfy ’<’
sumUJ=0 #sum of upper bounds that index i satisfy ’=’
sumLJ=0 #sum of lower bounds that index i satisfy ’=’
t=0 #number of index i satisfy ’<’
r=0 #number of 1(A)=sum 1(A)
s=0 #number of 1(A)=1-sum u(A~c)
J=[] # index i that satisfy ’=’
max=0
e=0 #check that P.I. is reachable probability interval
a=[]
It=[] # index i that satisfy ’<’
# Step 1 : Check for proper probability interval
if suml>1 or sumU<1: #check proper probability interval
print "Your data are not proper probability interval."
e=1
else:
for i in range(len(I)):
# Step 2 : Check for reachable probability interval
a.append(sumL-1[i]+u[i]) #first property of reachability
if alil>1 or sumU-u[i]+1[i]<1:
print "Your data are not reachable probability interval."

e=1
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break
# Step 3 : Check the conditions of probability interval
elif ali]<1:
t=t+1
It.append(i) #keep index i that satisfy ’<’ in list It
sumUT=sumUT+u [1i]
else:
J.append (i) #keep index i that satisfy ’=’ in list J
sumUJ=sumUJ+u[i]
sumLJ=sumLJ+1 [1i]
print ’t=’,t
# Step 4 : Construct the random set.
if t==2 and e==0: #return mass functions that only two indices
satisfy ’<’
max=sumL-1[It[0]]1-1[It[1]]
if max<i-ul[It[0]]-ulIt[1]]:
max=1-u[It[0]]-ul[It[1]]
print *m(X\{x_’,It[0],’,x_’,It[1],’}) =’,max-sumlL+1[It[0]]+1[It[1]]

print ‘m(X\{x_’,It[0],’}) =’,-max+1-u[It[0]]-1[Tt[1]]

print *m(X\{x_’>,It[1],’}) =’,-max+1-ul[It[1]]1-1[It[0]]

print ’m(X) =’,max-1+ul[It[0]]+ul[It[1]]
elif t==1 and e==0 : #return mass functions that only one indix
satisfy ’<’

print *m(X\{x_’,It[0],’}) =’,1-u[It[0]]-sumL+1[It[0]]

print 'm(X) =’ ,u[It[0]]-1[It[0]]

elif t==0 and e==0: #return mass functions that all indices satisfy ’=’
print ’m(X) =’ ,1-sumL
elif t>2 and e==0:
p=list(I.subsets()) #list of power set of I
IT=Set (It) #set of all index i that satisfy ’<’
XJ=Set(J) #set of all index i that satisfy ’=’
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Y=[] #set of set that J is subset
L=[] #list of value of [sum of 1(i),x(i) in A] of set Y
U=[] #list of value of [1- sum of u(i),x(i) in A"c] of set Y
for j in range(len(p)):
if XJ.issubset(p[jl) and len(p[jl)>=2:
Y.append(p[jl)
for i in range(len(Y)):
L.append(0) #initial value of sum of 1(i),x(i) in A
U.append (1-sumU) #initial value of 1- sum of u(i),x(i) in A~"c
for i in range(len(Y)):
for j in range(len(Y[i])):
L[i]=L[i]J+1[Y[i] [j]] #compute sum of 1(i),x(i) in A
U[i]=U[i]+u(Y[i] [j]] #compute 1- sum of u(i),x(i) in A"c
for i in range(len(Y)):
#check that it satisfies the condition (I) or (II)
if L[i]>=U[i]:
r=r+l1
if Ulil>=L[i]:
s=s+1
if r==(len(¥)-t-1) or t==len(I):
#all of 1(A) satisfy sum 1(A);[condition (I.1)]
b=(t-2) *sumlL+sumU-sumUJ+sumLJ-t+1
if b>=0:
for i in range(t):
print 'm(X\{x_’>,It[i],’}) =’ ,1-a[It[i]]
print ’'m(X) =’ ,b
else:
print "You data do not satisfy the condition (I.3)"
elif s==len(Y): #all of 1(A) satisfy 1-sum u(A~c);
[condition (II.1)]
if t<= (len(I)-2):
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print ’m(’,XJ,’})=",1-sumUT-sumLJ
for i in range(t):
print ’'m(’,XJ,’+x_’,It[i],’ )= ,ulIt[i]]-1[It[i]]
elif t== (len(I)-1): #satisfy condition (II.2.2)
if sumU-u[J[0]]+1[J[0]]==1:
for i in range(t):
print ’m(x_’,J[0],’,x_’,It[i],’})=",
1-sumU+u [Tt [i]]+ulJ[0]]-1[Tt[i]]-1[J[0]]
else:
print "Your data do not satisfy the condition
(I1.2.2)."
else:
print "Your data do not satisfy the condition (II)."
else:
print "Your data do not satisfy the condition (I) and (II)."
else:

print "Your probability interval can’t convey to random set."

In this program, it is necessary to give the information of the probability interval
that we want to convert to a random set with the same information. For example, if
we have the probability interval information as L = {[ly,u;] = [1/4,1/2], [l2, us] =
(1/4,7/16], [l3, us) = [1/8,3/8], [l4, us] = [1/8,5/16]}, then we must type the infor-

mation as the following for using this program

I=Set([0,1,2,3])
1=[1/4,1/4,1/8,1/8]
u=[1/2,7/16,3/8,5/16] .

The result by using this algorithm is

t= 2
m( X\ {x_1,x_33} =0
m( X\ {x_ 13} =1/16
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m( X \ {x_ 33} =1/16
m( X ) = 1/8.

Appendix B: Sufficient conditions of a reachable probability interval
Consider X = {x1,29,...,2,},n >3, and let L = {[l;,u;] |0 <; <wu; <1,i=

1,2,...,n} be reachable probability interval. Suppose the condition (3.3) holds.

We consider all possible cases to verify the sufficient conditions of this probability

interval, which P;p = Prs.

Proof. WLOG, let iy = 1,iy = 2,i3 = 3 and set m({z;}) =1;, Vi=1,...,n.
In case n = 3, consider X = {@y, 25, 23}. Since l; 4+ [; < 1 — uy, we then get

[({zs,x;}) = 1 — uy, from Equation (2.3). So,

——

<1

Now, let’s consider m(X).

m(X) =1-Y m({z:}) = > m{xs,2;})

:].—ll—lg—lg—(l—ul—lg—13+1—U2—l1—13+1—U3—l1—l2)

3 3
:ll+lg+l3+u1+u2+u3—2:Zli+Zui—2. (51)

i=1 i=1
As we want m(X) > 0, the probability interval must have the condition that

Sli+ > u > 2.

In case n = 4, we get le + uy = 1 by the property of reachable probability

i

intervals.

By Lemma 3.1, we get m({x1, z2}) = m({z1,x3}) = m({za, x3}) = m({z1, 22, 23}) =

0.

Hence, we must consider the remaining basic probability assignment functions

which are

m({z1, xa}), m({z2, wa}), m({x3, 24}), m({x1, 22, 24}), m({z1, 23, 24}), m({22, 23, 24})

and m(X). If all of them are nonnegative, we can conclude that it is possible to

construct a random set which has the same information as this probability interval.
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We obtain [;+1;+1;, < 1—w;, VI € 1,2, 3, by the condition (3.3), so [({z;, xj, x1}) =
1 — u; from Equation (2.3).
Due to the condition Bel(A) = I(A), then we obtain the system of equations as

follows:

L+l +m({z,z4)) = 1({21,24})
lo + 1y + m({xa, 24}) = I({w2, 24 })
s+ Uy +m({xs, x4}) = ({3, 24})
Lh+l+ 1l +m({x,za}) + m({za, 2a)) +m({xy, 22, 24}) =1 — ug
L+ls+ 1+ m({z,24})

lo + 15+ 1y + m({za, za}) + m({xs, z4}) + m({za, x5, 24}) =1 —wy

Zli + Zm({xi, z;}) + Zm({xi, zj,Tr}) +m(X) =

) =
+m({xs, xa}) + m({z1, 23, 24}) =1 — uy

)=

1.

Thus, we can write this system of equations in the form of matrix notation by using

unknown variables m({z1,z4}), m({zo, z4}), m({xs, z4}), m({x1, z2, x4}), m({z1, x3,24}),

m({z2, 3, 24}) and m(X).

1 000000 0 1l m({z1, z4}) ) i I{z1,24}) =1 — 1y |
01 000O0O m({xs, x4}) [({z2,24}) — 1o — 1y
0010000 m({xs,z4}) [({z3,24}) — I3 — 1y
1101 000 m({z1,x2,24}) | = L—us—l1 —la—14
101 0100 m({x1,x3,4}) 1—uy—1U =131y
0110010 m({za, x3,4}) l—wuy —ly—1l3—14
111111 1]|]|mx) 1=l —ly—ly— 1




3

3

3

3

3

3

So,

A~~~ I/~ I/~ /N N

{21, 24})
{w2,24})
{ws,x4})
{z1,29,24})
{z1,23,24})

{2, 23, 24})

l{z1,24}) =11 — la

| ({2, 2a)) + U{az, wa}) + H({zs, 24)) +us +ug +un —1a = 2|

93

1 0 0 0 0 0 0]/[i{ened)—ti—1s]
0 1 0 0 0 0 0] ({aszad)—1Iso—1ls
00 1 0 0 0 0] i({agzad)—1Is—1Ls
1 -1 0 1 0 0 0| |1-wus—li—-lb—1L
10 -1 0 1 0 0||1l-wu—-l-ls—1L
0 -1 -1 0 0 1 0| 1-wu—lo—I5—1
11 1 =1 =1 =1 1| [ 1-h—l—ly—1y |

)

I({xa,xa}) — o — 14

I({xs, z4})

1+l — ((({z1,za}) + L({z2, 2a}) + u3)

1+l — (I({z1, xa}) + L({xs, za}) +u2)
)

1+ l4 — (l({{L‘Q, ZE4}) + l({l’g, IL’4}) -+ u1

l3 — 4

m({1, 7a}) = ({1, 2a}) =l — s (5.2)
m{xz, Tap) =1{Tz,Ta}) =l =l (5.3)
m({zs,24}) = ({3, 24}) = 3 — I (5.4)
m({x1, 2, 24}) = 1+l — ({1, 2a}) + 1({22, 24}) + us) (5.5)
m({z1, 23, 24}) = 1+l — (({z1, 24}) + 1({zs, 24}) + u2) (5.6)
m({z2, 23, 24}) = 1+l — (({z2, 24}) + 1({z3, 24}) + 1) (5.7)

m<X) = l({$1,$4}) + l({QZQ,I4}) + l({(lﬁg,ﬂu}) + us + ug +up — l4 -2 (58)
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Since I(A) = max(z li,1— Z u;), Equations (5.2), (5.3) and (5.4) are nonneg-
:EiGA IiGAC
ative.

Consider Equation (5.5), we do not know the exact values of I({z1,24}) and
[({za,x4}). Thus, we can consider Equation (5.5) in 4 cases.

Case Al: Suppose [({z1,24}) =11 + Iy and [({xe, x4}) = lo + L.

m({z1, w2, x4}) = 1+ Iy — (I({z1, 24}) + 1({@2, 24}) + us)
:1+l4—l1—l4—l2—l4—U3:1—(U3+l1+l2+lé)ZO

<1

We have ug + Iy + Iy + I4 < 1, by the condition (3.3) that le +us < 1.
i#3
Case A2: Suppose [({z1,24}) =11 + 1y and {({z2, 24}) = 1 — uy — ug.

m({w1, v, v4}) = L+ Ly — (I({zy, 2a}) + ({22, 24}) + us)
:1+l4—l1—l4—1+U1+U3—U3:ul—l1 ZO

Case A3: Suppose [({z1,24}) =1 —us — ug and ({2, 24}) =l + 4.

m({x1, x2,24}) = 1+ 1y — ([({x1, 24}) + 1({x2, 24}) + u3)

I1—|—l4—1+U2+’U/3—l2—l4—U3IU2—lQZO.
Case A4: Suppose [({z1,z4}) =1 —=us —us and {({z2, 24}) =1 — uy — us.

m({x1, w2, x4}) = 1+l = ((({z1, 24}) + 1({22, 24}) + u3)

:1+l4_1+U/2+u3_1+u1+U3—U3:U1+U2+U3+l%—1ZO.
>1

We have uy +us+uz+14 > 1 from the property of a reachable probability interval.
All of these 4 cases, we conclude that m({z1,x9,24}) > 0. We can consider
Equations (5.6) and (5.7) in the similar way. Moreover, we obtain m({x1, z3, x4}) >
0 and m({xa, x5, 24}) > 0.
To complete the case n = 4, we must consider Equation (5.8) when we ob-
tain m(X) > 0. Since we do not know the values of I({z1,24}), {({x2,24}) and

[({x3,24}), we consider Equation (5.8) in 8 cases.
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Case B1: Suppose (({z1,24}) =l + Iy, (({x2, 24}) =l + 1y and [({x3,24}) =
I3+ 1y.

m(X) = l({x1,24}) + 1({x2, 24}) + 1({73,24}) +uz +ug +ug — Iy — 2

=L+ lL+l+l+l3+lL+tus+u+u —Ily—2

] >1
As we want m(X) > 0, the probability interval must have the condition that
Yoli+> U —us 1y > 2.
Case B2: Suppose [({#1,24}) = 1—ug—us, l({xe, 24}) = lo+1y and [({x3, z4})
I3 + Uy

m(X) = 1({z1, xa}) + 1{z2, 24 }) + ({23, 24}) +ug +us +up — Iy — 2
=1l—-u—us+lb+l+ls+li+u+u+u —1Ily—2
:y1+l2+l3+l%—1 <0 (510)

<1

We have uy + Iy + I3 + 14 < 1, by the condition (3.3) that Z l; +u; < 1. Since
#1
m(X) < 0, we cannot construct the random set which has the same information
as this probability interval in this case.
Case B3: Suppose [({z1,24}) = l1 414, I({z2, 24}) = 1=u;—ug and [({x3, x4 })

s + 4.

m(X) = l({z1, 24}) + ({22, 24}) + 1({3,24}) + Uz +ug +up — Iy — 2
:l1+l4+1—u1—u3+13+l4+u3+u2+u1—l4—2
ZUQ+Z1+Z3+Z4J—1<O (511)

<1

Similar to Case B2, we cannot construct the random set which has the same
information as this probability interval in this case.

Case B4: Suppose (({z1,24}) =l + Uy, (({x2, 24}) =l + 1y and [({z3,24}) =
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1—U1 — Ua.
m(X) = l({z1, 24}) + 1({z2, 7a}) + 1({23, 0a}) + us +ug +ug — sy — 2
:ll+l4+lg+l4+1—u1—u2+u3+u2+u1—l4—2
:y3—|‘l1+l2—|—l4—1 <0 (5.12)

~-
<1

We cannot construct the random set which has the same information as this prob-
ability interval in this case with the same reason as Case B2 and Case B3.
Case B5: Suppose [({z1,24}) = l1+1y, l({z2, 24}) = 1—us—ug and [({x3, 24 }) =
1-— Uy — U2.
m(X) = l({z1, z4}) + I({@a, 2a}) + {({2s, 2a}) Fus +up +ug — s — 2
:l1+l4+1—u1—u3—i—1—u1—u2+U3+u2+u1—l4—2:l1—u1 SO
If [y = uy, then we can construct the random set. Otherwise, we cannot.
Case B6: Suppose [({z1,24}) = 1—us—us, [({za, x4}) = lo+ly and [({x3, x4}) =
1— Uy — U2.
m(X) = l({ml, $4}> + l({ﬂ')g, l’4}) + l({.Tg, 1[4}) + Uz + U + U — l4 —2
:1—UQ—U3+12+Z4+1—U1—UQ+U3—|—UQ+U1—14—2:l2—U2 SO
If [y = us, then we can construct the random set. Otherwise, we cannot.
Case B7: Suppose ({1, 24}) = 1 — up — uz, l({x2,24}) = 1 — uy — u3 and
l({ﬂ?g, .234}) == l3 + 14.
m(X) = l({z1, z4}) + 1({z2, 24}) + {({xs, 24}) T us +uo +ug — s — 2
:1—UQ—U3+1—U1—U3—|—l3+l4+U3—|—UQ+U1—l4—2:l3—U3SO
If I3 = ug, then we can construct the random set. Otherwise, we cannot.
Case B8: Suppose [({z1,24}) = 1 — us — ug, {({z2,24}) = 1 — uy — uz and
[({x3,24}) =1 —uy — us.
m(X) = l({z1, za}) + I({z2, 2a}) + {({xs, 2a}) Tus +uo +ug — s — 2
:1—U2—U3+1—U1—'LL3+1—U1—U2+U3—|—UQ+U1—Z4—2

>1
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If uy + us + uz + Iy = 1, then we can construct the random set. Otherwise, we

cannot.
When n > 5, we have ¢ = 1, 2, 3 such that le + u; < 1. Therefore,
J#i
l2+l3+l4++ln< 1-’&1,
ll—|—lg+l4+...+ln<1—UQ, and
l1—|—lg—|—l4++ln< 1 — us.
So, l({we, x3, T4y ..., xn}) =1 —wuy, l({z1, 23,24, .., 2,}) = 1 — uy and

[({z1, w9, x4, ...,2,}) = 1 — us, by Equation (2.3).
For ¢ # 1,2,3, we get le +u; = 1. We obtain m(A) = 0, VA € P(X ~ {z;}),

J#i
by Lemma 3.1. Thus, we have m(A) =0, VA € P(X)\Y
where Y = {{xy, ...,z }, {x1, 24, b {xe, 24y xn b {Xs, 1, - 2 )
{.',5171'2, Ty, >$n}7 {x17'r37 {7 PR 7'ITL}7 {.[L'Q,.Tg, Ty, .. 7:En}7X}-

So, we must consider the values of m(A), VA € Y when they have positive values.
Due to the condition Bel(A) = [(A), we obtain the system of equations as follows:

a4 ...+l +m{za,...,zn}) =1({za,...,zn}),

htla+...+ln+m{za,...,zn}) + m{{z1,24, ...,z }) = 1({z1,24,. .., 20}),
lo+la+...+ln+m{za,...,2n}) + m{z2,24,...,2n}) = 1({z2,24,...,20}),
I34+la+...+ b +m{za,...,zn}) + m{{zz,24,...,2n}) = ({z3,24,...,20}),

h4lb+lb+.. .+l +m({xs,...,zn}) + Z m({xi,z4,....xn}) + m{z1,z2,24,...,2n}) =1 —us,
i€{1,2}

h+ls+la+...+lh +m({za,...;zn}) + Z m{xi,za,. . 0 }) + m{z1, 23,24, ..., 20 }) =1 — ug,
1€{1,3}

lo+l3+l+...+ln+m({zs,...,zn}) + Z m({x;, z4,...,xn}) + m{z2, z3,24,...,2n}) =1 —uq,
i€{2,3}

3
Slitmza, . m ) + > m{zsza,m )+ D, m{@s T, @20} +m(X) =1

i=1 1,5€{1,2,3}
Thus, we can write this system of equations in the form of matrix notation by us-
ing m({zy,...,x.}), m({xy, x4, ..., 2 }), m({xe, xq, ..., }), m({xs, 24, ..., 20 }),

m({x1, xe, Ty ... 20 }), m({xy, 23, 24, . 20 }), m({xe, 23, 24, ..., 2, }) and m({ X })

as the unknown variables.

AU =b



10000000
11000000
10100000

e A_ |1 O0O 10000
11101000
11010100
10110010

111111 11
[ ({zg,. ) —l— =1,

b:
1—U3—l1—l2—l4—...—ln
1—U2—l1—l3—l4—...—ln
1—u1—l2—l3—l4—...—ln

| I—bh—b—l—... <1,

S 3 3 3 3 3 3

3

e T N N e N e N N T TN

{z1, 24, ...
{xa, T4, ..
{x3, 24, ..
{1, 2, 24,
{71, 23, 74,

{$2,$3,$4,

{24, 20}

 n})
»n})
+n})

)
)
)

and

o8



Consequently,

1 O o0 0 0 O
—1 1 0 0 0 0
—1 0 1 0 0 0
—1 0 0 1 0 0
U =
1 -1 -1 0 1 0
1 -1 0 —1 0 1
1 0 —1 -1 0 0

-1 1 1 o= ka1

[ {$4, .. ZL‘n}) l4 . i ln

(
( (
[({xe, xay .. xn}) = 1({xg, oy
[({xs, x4, xn}) = 1({2y, -,

)
L —us+1({zg, ..., 20}) —
1-— uy + l({l’4, s 7:[;71})
A

where A = —I({z4, ..., 2. })H {21, 24, . ..
uz + ug + up — 2.

So,

o O O o o o
= O O O O o o o

[({x1, 24y xn}) —1 {x4,...,

S Tn}) = l({xe, x4, - - -,
,l’n}) —l({$3,x4,...,
ST t) = l({xs, x4, . . .,

1 —ug+1({xq,...,zn} —l({ZL‘l,I4,

T ) H({xe, gy . 2 })H({ X3, 24,y - -

m{zg, ..., xn}) =1{xg, ...,

m({x1, Tay ..oy an}) = 1{xy, T4y . ..
m({xe, xa, ..., xn}) = 1({xe, 24, . ..
m({xs, xg, ..., 2,}) = 1({xs3, 4, ...

s Zn}) — { Tayee

s t) — ({zg, ...,

T }) — ({2, .-,

cxnt) — l({xy, 2g,y .

m({x1, 22, Ty ..., xn}) =1 —ug + 1({zyg,...

—l({xg, x4, ...,
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m({z1, 23,24, .., 00 }) =1 —us +1({za, ...,z }) — I({x1, 24, .., 20 })
—l({x3, x4, ...,T0n}), (5.19)

m({xe, x5, T, ..., xn}) =1 —ug +1({xa, ... 20 }) = ({2, 24, ..., 20 })
—I({z3, 24, ..., 20 }), (5.20)

m(X) = —l({zg, ..., xn}) {1, 24, .. 20 }) H ({22, 24, .., 20 })
+1({x3,Ta,y ..., Tp}) + ug + ug +up — 2. (5.21)
Since [(A) = max(z li,1— Z u;), Equation (5.14) is nonnegative. Therefore,

;€A x;€EAC

m{za, ..., xn}) =1{xa,..cixn}) =l — ... =1, > 0.
Next, consider Equation (5.15), we separate our consideration into 2 cases.

Case C1: Suppose [({x1,24,...,x}) = L1 + 14+ ... + I, that is I + Iy +
coot+ 1y > 1 — ug — ug, then we also get ({z4,...,2,}) = s+ ...+ 1,. (From
L+ ..+l >1—uy—uzg—5 >1—uy—uz —uy. )
m({x1, g, }) =b+l+.. .+l =l —...— 1, — 1 =0.

Case C2: Suppose [({z1,74,...,2,}) = 1 — us — ug, that is 1 — ugy — uz >
h4l+ ...+,

Case C2.1: Suppose [({xy, ..., 2n}) =l + ... + 1,

m({$1,$4,...,$n}):1—UQ—U3—Z4—...—ln—l1

=1—(uatus+la+...+l,+10) >0

<1, from (5.22)

Case C2.2: Suppose [({xy,...,2,}) =1 —uy — uy — us.
m({x1, g, xp}) =1—ug—ug— 1 +uy +ug +us—1li =u; —1l; >0.
Both of these cases, we conclude that m({z1, z4,...,2,}) > 0. We can consider
Equations (5.16) and (5.17) in the similar way. Moreover, we obtain

m({xg, xg,...,2,}) > 0 and m({xs, x4, ..., 2,}) > 0.
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Next, consider Equation (5.18). We can consider this equation into 4 cases.
Case D1: Suppose l({z1, x4, ..., 2,}) = Lh+ly+. . A, and [({xe, 24, ..., xp}) =
lo+1y+ ...+ 1,. Then we get {({zg,...,x,}) =ls+ ...+ 1,

m({x1, 22,24, .. xn}) =1l—us+la+... 4+l —lh—ly—...—lp—lo—ly—...— I,

=1—(us+lh+lo+la+...+1,) >0.

<1

We have uz +1; + 1o+ 14+ ...+ 1, < 1, by the condition (3.3) that Z [ +us < 1.
Case D2: Suppose [({z1,24,.. ., 2n}) =l + s+ ...+ 1, thenjx;;z get

I{xgy ...y xn}) =l + ...+l and {({z2, 24, ..., 20 }) = 1 — ug — us.

m({x1, X2, Tay ..., xn}) = L—ug+ly+. . Al —lL—ly—. . .—l,—14+u;+ug = u;—Il; > 0.
Case D3: Suppose l({z1,24,...,2,}) =1 —uy —ug and [({xe, x4, ..., 2,}) =

lo+ 14+ ...+ 1, then we get [({xy, ..., 2n}) =L+ ... +1n.

m({x1, T2, Tay ..., Tn}) = 1—us+l+. . Al—1+ustug—lo—ly—. . .—1l, = ug—Ily > 0.
Case D4: Suppose [({z1,x4,...,2,}) =1 —uy —ug and [({xe, x4, ..., 2,}) =

1 —u; — us.

Case D4.1: Suppose [({zy4, ..., xn}) =l + ...+ 1y, that isly + ... + 1, >

1—U1—U,2—U3.
la+ .o+ 1+ up+us+ uz > 1. (5.23)
Then,

m({x1, T2, Tay .oy }) =1 —ug+la+ ...+, — 1 +us+us — 1 +u; + us

TV
>1, from (5.23)

Case D4.2: Suppose [({z4,...,2,}) =1 —uy — ug — us.
m({x1, 22, Ty ... xpn}) =1—ug+1—uy —us —ug— 1 4+us+us — 1+u; +uz =0.
All of these cases, we conclude that m({zy,xe,24,...,2,}) > 0. We can
consider Equations (5.19) and (5.20) in the similar way. Moreover, we obtain

m({x1, 23,24, ..., 2,}) > 0 and m({xs, x3,24,...,2,}) > 0.
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Finally, by considering Equation (5.21), we do not know the values of I({zy4, ..., z,}),
I({x1, 24, ... xn}), l({we, g, ... 2 }) and ({23, 24, ..., 20 }).
Let Z = {{x1,24,..., 20}, {x2, 24, ..., 20}, {w3, 24, ..., 2, }}. If there exists S € Z
such that I(S) = > coli, then (({zy, ..., 2n}) =l + ... + .

Therefore, we can consider Equation (5.21) in to 4 cases.

Case E1: Let for all S € Z,1(S) = >, gl
m(X):—l4—...—ln+l1+l4—|—...+ln+lg+l4+...+ln+l3+l4+...—f-ln
+U3+U2—|—U1—2
= Lit(lat .t ot us + up+ug) =2, (5.24)
\i , >1, fro; (5.23)
<1

Since we want m(X) > 0, the probability interval must have the condition > I; +
Soug—(ug+ .o Fup) Fla+ Al > 2

Case E2: There exists only one of S € Z, I(S) = >, cgli. WLOG, let
I{x1, 24y cyxn}) =l + U+ 0+ Ly
m(X):—l4—...—ln+l1—|—l4—|—...+ln—|—1—ul—U3—|—1—U1—’LL2+U3—|—U2+U1—2

:ll—ulgo.

If Iy = uy, then we can construct the random set. Otherwise, we cannot.

Case E3: There exists only one of S € Z, I(S) =1 — Z u;. WLOG, let

r; ES°
I({x1, 24, ... xp}) =1 =g — us.
m(X):—l4—...—ln—l-1—’LL2—U3+l2+l4—|—...—|—ln—|—l3+l4—|—...—|—ln
+ us + ug +up — 2
=(£2+...+ln+ulj)—1<0. (5.25)

~~
<1

We have u; + o + ...+ 1, < 1, by the condition (3.3) that le +up < 1.
i#1
Since m(X) < 0, we cannot construct the random set which has the same infor-

mation as this probability interval in this case.

Case Ed: Let forall S € Z,1(S) =1— ) u,

r, €8¢
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Case E4.1: Suppose [({z4,...,z,}) =ls+ ...+ 1,.

mX)=—lg—...—lp+1—up—ug+1—u; —us+1—u —ug+ug+uy+u —2

:1—<l4+...+ln+U3+UQ+U1)<0. (5.26)
>1, from (5.23)

Case E4.2: Suppose [({z4,...,2,}) =1 —u; —us — ug.

mX)=—-1+u+us+us+1—ug—uz+1—u; —uz+1—u —ug+ug+us+u —2

— 0. (5.27)

This case, we can construct the random set when all the values of ({4, ..., 2,}),

I{x1, 24y .. xn}), l({xe, g, ...y, }) and [({zs, 24, ..., 2,}) equal to 1 — Z Uj.
T, EA°

As the result, the probability interval must have one of the following conditions
for guarantee that there is the random set which has the same information.
(i) (1) 1(A) =) L, VA€Y =Y, and

T, EA

(i.2) X ~{zi,}) =1 —w,,, Viy € I;, and

(i.3) Zie] li + Zie] Wi — Zje] uj + Zjej lj > 2.
( see Equations (5.1), (5.9) and (5.24) )
(ii) (iL.1) {(A)=1-"> u;, YVA€Y, and
T, EAC

(ii.2) only one of the following

(ii.2.1) 3 <n—2 ( see Equation (5.27) ) or

(ii.2.2) 3=n—1 and Zuj + 1, =1, iy € J. ( see Equation (5.13) )

J#ik
In the other cases when there exist A, B € Y — Y’ that [(A) = Z l; and [(B) =

1 - E u;, we cannot construct the random set as we can see from Equations
x;EBC

(5.10), (5.11), (5.12), (5.25) and (5.26). O
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