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CHAPTER 1
INTRODUCTION

In 2003, Anderson and Smith introduced the concept of weakly prime ideals of
a commutative ring in [1]. They defined a weakly prime ideal P of a commu-
tative ring R to be a proper ideal and if whenever a,b € R with 0 # ab € P, then
ac€ PorbeP.

In 2007, Atani and Farzalipour introduced the concept of weakly prime sub-
modules over a commutative ring in [4]. They defined a weakly prime submod-
ule N of an R-module M to be a proper submodule and if whenever a € R and
m € M with 0 # am € N, thenm € N ora € (N : M). In the same year, Badawi
generalized the concept of prime ideals of a commutative ring to 2-absorbing ideals
of a commutative ring in [6]. He defined a 2-absorbing ideal I of a commutative
ring R to be a proper ideal and if whenever a,b,c € R with abc € I, then ab € I
or ac € I or bc € I. Moreover, Badawi and Darani generalized the concept of
weakly prime ideals to weakly 2-absorbing ideals in [7]. They defined a weakly
2-absorbing ideal I of a commutative ring R to be a proper ideal and if when-
ever a,b,c € R with 0 #£ abc € I, then ab € I or ac € I or bc € I.

In 2011, 2-absorbing and weakly 2-absorbing submodules have been introduced
and studied by Darani and Soheilnia, see [12]. A proper submodule N of an R-
module M is said to be a 2-absorbing submodule of M if whenever a,b € R
and m € M with abm € N, then am € N or bm € N or ab € (N : M) and
a proper submodule N of an R-module M is said to be a weakly 2-absorbing
submodule of M if whenever a,b € R and m € M with 0 # abm € N, then
am € N or bm € N or ab € (N : M).

In 2012, Chaudhari introduced the concept of 2-absorbing ideals of a com-

mutative semiring in [8]. He defined a 2-absorbing ideal I of a commutative



semiring R to be a proper ideal and if whenever a,b,c € R with abc € I, then
abe loracelorbcel.

Since a ring R is also an R-module, the concept of (weakly) prime and (weakly)
2-absorbing ideals of rings are the special case of the concept of (weakly) prime
and (weakly) 2-absorbing submodules. Similarly, a semiring R is an R-semimodule.
Moreover, semimodules are generalization of modules. This leads us to extend the
idea of 2-absorbing ideals of commutative semirings and (weakly) 2-absorbing sub-
modules over a commutative ring to (weakly) 2-absorbing subsemimodules over
a commutative semiring. In this research, we define a 2-absorbing subsemi-
module N of a semimodule M over a commutative semiring R to be a proper
subsemimodule and if whenever a,b € R and m € M with abm € N, then am € N
or bm € N or ab € (N : M). And we define a proper subsemimodule N of
a semimodule M over a commutative semiring R to be a weakly 2-absorbing
subsemimodule of M if whenever a,b € R and m € M with 0 # abm € N,
then am € N or bm € N or ab € (N : M). Moreover, we define a weakly
2-absorbing ideal I of a commutative semiring R to be a proper ideal and if
whenever a,b,c € R with 0 # abe € I, then ab € I or ac € I or bc € I. Then, we
study some characterizations of 2-absorbing and weakly 2-absorbing subsemimod-
ules of semimodules over commutative semirings. In addition, we provide some
ralationships between being (weakly) 2-absorbing subsemimodules of semimodules
over commutative semirings and being (weakly) 2-absorbing ideals of commutative
semirings.

The inspiration of the next target of this research arose from the followings.
In 2010, prime subsemimodules were studied in multiplication R-semimodules by
Yesilot, Oral and Tekir in [14] and Atani and Kohan in [5]. An R-semimodule M is
called a multiplication R-semimodule if for all subsemimodule N of M there
exists an ideal I of R such that N = IM. Moreover, the product of subsemi-
modules are introduced. Let N and K be subsemimodules of a multiplication
R-semimodule M with N = IM and K = JM for some ideals I and J of R.
The product of N and K, denoted by NK, is defined by NK = (IJ)M. This



definition is, of course, independent of the choices of ideals I and J. A multiplica-
tion R-semimodule is interesting because its elements are allowed to be multiplied
in some sense. For this reason, we study 2-absorbing subsemimodules of multi-
plication R-semimodules by extending some results of prime subsemimodules of
multiplication R-semimodules.

The collection of all prime subtractive subsemimodules of an R-semimodule is
a topology studied by Atani, S.E., Atani, R.E. and Tekir, U. in 2011, see [3]. This
topology is called the Zariski topology. In this work, we are also interested in
studying that the collection of all 2-absorbing subtractive subsemimodules of an R-
semimodule does satisfy the Zariski topology. We call an R-semimodule satisfying
the Zariski topology a top semimodule.

The notion of primary ideals of a commutative semiring and primary subsemi-
modules of semimodules over a commutative semiring have been introduced and
studied by Atani and Kohan in 2010, see [5]. They defined a primary ideal I
of a commutative semiring R to be a proper ideal and if whenever a,b € R with
ab € I, then a € I or b* € I for some k € N and a primary subsemimodule N
of an R-semimodule M to be a proper subsemimodule and if whenever a € R and
m € M with am € N, then m € N or a* € (N : M) for some k € N. Later in
2011, Chaudhari and Bonde extended these to weakly primary ideals and weakly
primary subsemimodules, respectively, see [10]. They defined a weakly primary
ideal I of a commutative semiring R to be a proper ideal and if whenever a,b € R
with 0 # ab € I, then a € I or b* € I for some k € N and a weakly primary
subsemimodule N of an R-semimodule M to be a proper subsemimodule and
if whenever @ € R and m € M with 0 # am € N, then m € N or a* € (N : M)
for some £ € N. Besides, in the same year, the idea of 2-absorbing and weakly
2-absorbing submodules of modules over a commutative ring have been introduced
by Darani and Soheilnia in [12].

In this reseach, we also aim to study the notion that generalizes primary and
weakly primary subsemimodules and ideals in the same way as prime and weakly

prime subsemimodules and ideals are extended. We define an almost general-



ized 2-absorbing subsemimodule N of an R-semimodule M to be a proper
subsemimodule and if whenever a,b € R and m € M with abm € N, then am € N
or bm € N or (ab)* € (N : M) for some k € N, a weakly almost general-
ized 2-absorbing subsemimodule N of an R-semimodule M to be a proper
subsemimodule and if whenever a,b € R and m € M with 0 # abm € N, then
am € N or bm € N or (ab)* € (N : M) for some k € N, an almost generalized
2-absorbing ideal I of a commutative semiring R to be a proper ideal and if
whenever a,b,c € R with abc € I, then ab € I or ac € I or (be)* € I for some
k € N and a weakly almost generalized 2-absorbing ideal I of a commuta-
tive semiring R to be a proper ideal and if whenever a,b,c € R with 0 # abc € I,
then ab € I or ac € I or (be)* € I for some k € N. Some of our results are
analogous to the results given in [5], [10] and [12].

For this thesis, we give in Chapter II some basic definitions, examples and
some known results. In Chapter III, we study 2-absorbing and weakly 2-absorbing
subsemimodules of semimodules over a commutative semiring and those of multi-
plication R-semimodules over a commutative semiring and 2-absorbing and weakly
2-absorbing ideals of commutative semirings. Moreover, we find necessary and suf-
ficient conditions of an R-semimodule in order to make it be a top semimodule.
Finally, in Chapter IV, we investigate almost generalized 2-absorbing and weakly

almost generalized 2-absorbing subsemimodules and ideals.



CHAPTER 11
PRELIMINARIES

In this chapter, we collect definitions, some notation, terminology and some
known results which will be used for this thesis.

Let Z denote the set of all intergers, Z* the set of all positive integers, Z~ the
set of all negative integers, N the set of natural numbers (positive intergers), ZgJ

=Z*U{0}, Zy =2 U{0} and Z, = {0,1,...,n — 1} where n € N.

Definition 2.1. [13] A semiring is a nonempty set R on which the operations
of addition and multiplication are defined such that the following conditions are
satisfied:

(1) (R, +) is a commutative monoid with identity element O,

(2) (R,-) is a monoid with identity element 15 (we write ab instead of a - b for all
a,b € R),

(3) the multiplication distributes over the addition from both sides, and

(4) Ogrr =0 = r0g for all r € R.

Definition 2.2. [13] An ideal of a semiring R is a nonempty subset I of R
satisfying the following conditions:
(1)ifa,be I, then a+b € I, and

(2)ifa €l and r € R, then ra € I and ar € I.

Definition 2.3. [13] Let R be a semiring. A left R-semimodule (or a left
semimodule over R) is a commutative monoid (M, +) with additive identity 0y,
for which a function R x M — M, denoted by (r,m) — rm and called the scalar
multiplication, satisfies the following conditions for all elements r and ' of R

and all elements m and m’ of M:

(1) (rr'ym = r(r'm),



(2) r(m+m') =rm +rm/,
(3) (r+1r")ym=rm+r'm,
(4) 1gm = m, and

(5) r0pr = 0py = Ogm.

A right R-semimodule is defined analogously to a left R-semimodule. We sim-
ply, sometimes, write 0 instead of Og and 0,;. In this thesis, all semirings are
commutative with nonzero identity. A semiring (R, +,-) is commutative if - is
commutative, i.e., ab = ba for all a,b € R. Moreover, by an R-semimodule we
mean a left R-semimodule, i.e., a left semimodule over a commutative semiring R.
Example. (1) Semirings R are R-semimodules.

(2) Modules over a ring R are R-semimodules.

(3) Vector spaces over a field F' are F-semimodules.

(4) Let R =7Z¢ and M = 2Z;. Then (27Z¢,+,-) is an R-semimodule, which is
not an R-module.

From the definitions of semirings and semimodules and above example, we see
that every ring with identity is a semiring and every unital module is a semimodule.
In other words, semirings and semimodules are generalization of rings with identity

and unital modules, respectively.

Definition 2.4. [13] Let M be an R-semimodule and N a subset of M. We say
that N is a subsemimodule of M percisely when N is itself an R-semimodule

with respect to the operations for M.

Proposition 2.5. [13] Let M be an R-semimodule and {N; | i € A} a family of
subsemimodules of M. Then (\N; is a subsemimodule of M.

Definition 2.6. [13] Let M be an R-semimodule. The set ZNi consists of all
ieA
finite sums of elements of U N; where N; is a subsemimodule of M for all 7.
ieA
Proposition 2.7. [13] Let M be an R-semimodule. If N; is a subsemimodule of M

for alli, then Z N; is a subsemimodule of M which is the smallest subsemimodule
ieA
of M containing each of the N;.



Proposition 2.8. Let M be an R-semimodule, I and J ideals of R. Then (IJ)M =
I(JM).

Proof. First, assume that x € (IJ)M. Then there exist a; € I, b; € J where

i€ {1,2,...,n} and m € M such that z = (Z a;b;)m. Thus x = (Z a;b;)m =
(a1b1)m+ (agby)m + - -+ (apby,)m = ay(bym) fclzg(bgm) +e +an(bn7711:)1€ I(JM).
Therefore (IJ)M C I(JM).
Next, assume that @ € I(JM). Thus z = a(bm) for some a € I, b € J and
m € M. Then z = a(bm) = (ab)m € (I.J)M.

Therefore I(JM) C (1.J)M. O

Notation: [10] Let M be an R-semimodule, N a subsemimodule of M, A a

nonempty subset of M and m € M. Let

(N:A)={reR|rAC N} and
(N:m)=(N:{m})={r € R|rme N}.

Example. Let R =7ZJ, M = Zg, N = {0,3} and A = {1,2}.
Then (N : A) = ({0,3} : {1,2} )= 3Z{.

Proposition 2.9. [13] Let M be an R-semimodule, N and N’ subsemimodules
of M. If A is a nonempty subset of M, then (NNON':A) = (N :A)N(N':A).

Proposition 2.10. [13] Let M be an R-semimodule, N a subsemimodule of M
and m € M. Then (N : M) and (N : m) are ideals of R.

Proposition 2.11. Let M be an R-semimodule and N a subsemimodule of M.
Then N is a proper subsemimodule of M if and only if (N : M) is a proper ideal
of R.

Proof. First, assume that N is a proper subsemimodule of M. Suppose that (N :
M)=R. Thus1 € (N : M). Then M C N contradicts the fact that N is a proper
subsemimodule of M.

Therefore (N : M) is a proper ideal of R.



Next, assume that (N : M) is a proper ideal of R. Suppose that N = M. Since
RM C M, we get that R = (M : M) = (N : M) contradicts the fact that (N : M)
is a proper ideal of R.

Therefore N is a proper subsemimodule of M. O

Definition 2.12. [10] An ideal I of a semiring R is called a subtractive ideal
(or k-ideal) if a,a+b € [ and b € R, then b € I.
A subsemimodule N of an R-semimodule M is called a subtractive subsemi-

module (or k-subsemimodule) if z,z +y € N and y € M, then y € N.

Example. (1) Let R = Zj. Consider I = 2Z. Clearly, I is an ideal of R. Next,
we show that [ is subtractive. Let a,a +b € [ and b € R. Then a = 2k and
a+ b= 2K for some k, k" € Zs. Thus 2k + b = 2k’. We get that 2(k' — k) = b.
Since b € Z, we have k' — k € Z. Hence b € 274 = I.

Therefore [ is a subtractive ideal of R.

(2) Let M be an R-semimodule. Clearly, {0} is a subsemimodule of M. Next,
we show that {0} is subtractive. Let a,a +b € {0} and b € M. Then a = 0 and
a+b=0. Thusb=0+b=a+b=0. Hence b € {0}.

Therefore {0} is always a subtractive subsemimodule of any R-semimodule M.

Proposition 2.13. [10] Let M be an R-semimodule. If N is a subtractive sub-
semimodule of M and m € M, then (N : M) and (N : m) are subtractive ideals
of R.

Definition 2.14. [13] Let M be an R-semimodule. The annihilator of M,
denoted by ann(M), is defined as ann(M) = {r € R | rm =0 for all m € M} =

({0} : M).

Definition 2.15. [13] A faithful R-semimodule M is one where the scalar mul-
tiplication of each r # 0 in R on M is nontrivial (i.e. rz # 0 for some z in M).

Equivalently, an R-semimodule M is faithful if the annihilator of M is the zero
ideal.



Definition 2.16. [12] Let R be a commutative semiring. A proper ideal P of R is
said to be a prime tdeal if whenever a,b € R with ab € P, thena € Por b e P.

A proper ideal P of R is said to be a weakly prime ideal if whenever a,b € R
with 0 # ab € P, thena € Por b € P.

A proper ideal P of R is said to be a primary ideal if whenever a,b € R with
ab € P, then a € P or b* € P for some k € N.

A proper ideal P of R is said to be a weakly primary ideal if whenever

a,b € R with 0 # ab € P, then a € P or b* € P for some k € N.

Definition 2.17. [10] Let M be an R-semimodule. A proper subsemimodule N
of M is said to be a prime subsemimodule if whenever a € R and m € M with
am € N, then m € N or a € (N : M).

A proper subsemimodule N of M is said to be a weakly prime subsemi-
module if whenever a € R and m € M with 0 # am € N, then m € N or
a€e (N:M).

A proper subsemimodule N of M is said to be a primary subsemimodule
if whenever a € R and m € M with am € N, then m € N or a* € (N : M) for
some k € N.

A proper subsemimodule N of M is said to be a weakly primary subsemi-
module if whenever ¢ € R and m € M with 0 # am € N, then m € N or
a® € (N : M) for some k € N.

Definition 2.18. [8] Let R be a commutative semiring. A proper ideal I of R is
said to be a 2-absorbing ideal if whenever a,b, ¢ € R with abc € I, then ab € [

orace lorbcel.

Definition 2.19. [12] Let M be a module over a commutative ring R. A proper
submodule N of M is said to be a 2-absorbing submodule if whenever a,b € R
and m € M with abm € N, then am € N or bm € N or ab € (N : M).

A proper submodule N of M is said to be a weakly 2-absorbing submodule
if whenever a,b € R and m € M with 0 # abm € N, then am € N or bm € N or
abe (N : M).
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One can see that (weakly) prime and (weakly) 2-absorbing ideals of a com-
mutative ring are the special cases of (weakly) prime and (weakly) 2-absorbing
submodules of a module over a commutative ring. Also known that any semir-
ing R is an R-semimodule and semimodules are generalization of modules. These
guided us to extend the idea of 2-absorbing ideals of a commutative semiring and
(weakly) 2-absorbing submodules of a module over a commutative ring to weakly
2-absorbing ideals of a commutative semiring and (weakly) 2-absorbing subsemi-
modules of a semimodule over a commutative semiring, respectively. Moreover, we
extend the concept of (weakly) 2-absorbing subsemimodules to (weakly) almost

generalized 2-absorbing subsemimodules.

Definition 2.20. Let R be a commutative semiring. A proper ideal I of R is said
to be a weakly 2-absorbing ideal if whenever a,b,c € R with 0 # abc € I, then
abe loracelorbcel

A proper ideal I of R is said to be an almost generalized 2-absorbing ideal
(or AG2-absorbing ideal for short) if whenever a,b,¢c € R with abc € I, then
abe I or ac € I or (be)* € I for some k € N.

A proper ideal I of R is said to be a weakly almost generalized 2-absorbing
tdeal (or weakly AG2-absorbing ideal for short) if whenever a,b,c € R with
0 # abc € I, then ab € I or ac € I or (be)* € I for some k € N.

Further, while we have done the research, the concept of a weakly 2-absorbing
ideal of a commutative semiring is defined in the same way that our definition by

Darani in [11].

Definition 2.21. Let M be an R-semimodule. A proper subsemimodule N of M
is said to be a 2-absorbing subsemimodule if whenever a,b € R and m € M
with abm € N, then am € N or bm € N or ab € (N : M).

A proper subsemimodule N of M is said to be a weakly 2-absorbing sub-
semimodule if whenever a,b € R and m € M with 0 # abm € N, then am € N
orbm e N orabe (N : M).
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A proper subsemimodule N of M is said to be an almost generalized 2-
absorbing subsemimodule (or AG2-absorbing subsemimodule for short)
if whenever a,b € R and m € M with abm € N, then am € N or bm € N or
(ab)k € (N : M) for some k € N.

A proper subsemimodule N of M is said to be a weakly almost generalized
2-absorbing subsemimodule (or weakly AG2-absorbing subsemimodule
for short) if whenever a,b € R and m € M with 0 # abm € N, then am € N or
bm € N or (ab)® € (N : M) for some k € N.

Remark. From the definitions, we obtain the followings.

(1) {0} is weakly 2-absorbing and weakly AG2-absorbing subsemimodules.

(2) 2-absorbing subsemimodules are AG2-absorbing subsemimodules. But the
converse does not necessary hold. For example, consider the case where R = Z,
M = 7Z¢ and N = 8Z§. Let x € N, ie., x = 8k for some k € ZS. Consider
a,b € R and m € M with ab(m) = 8k € N. Then there are 5 ways to write 8k
as a product of ab(m) as follows: 2a; - 2as - (2a3); 4by - 1by - (2b3); 8¢y - 1eg - (1cs);
2d; - 1dy - (4d3) and le; - leg - (8e3) where 0 < ay, by, ¢, di, e < ks a;, by, ¢i, dy, e; € 2
and ¢ € {1,2,3}.

If 2a; - 2ay - (2a3) € N, then (2a; - 2a3)* € (N : M).

If 4b1 - 1by - (203) € N, then (4by - 1b3)* € (N : M).

If 8¢y - 1eg - (1es) € N, then 8¢y - 1ey € (N 2 M).

If 2d, - 1ds - (4ds) € N, then (2d, - 1d5)? € (N : M).

If le; - leg - (8e3) € N, then le; - 8e3 € N.

Then N is an AG2-absorbing subsemimodule of M which is not 2-absorbing be-
cause 2-2-(2) e Nbut2-2¢ Nand2-2¢ (N : M).

(3) Weakly 2-absorbing subsemimodules are weakly AG2-absorbing subsemi-
modules. But the converse does not necessary hold. For example, consider the case
where R = ZJ, M = Zss and N = {0,8,16}. Then N is a weakly AG2-absorbing
subsemimodule of M which is not weakly 2-absorbing because 2 - 2 - (2) € N but
2-2¢ Nand2-2¢ (N : M).

(4) AG2-absorbing subsemimodules are weakly AG2-absorbing subsemimod-
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ules. But the converse does not necessary hold. For example, consider the case
where R = ZJ, M = Z;, and N = {0}. Then N is a weakly AG2-absorbing sub-
semimodule of M which is not AG2-absorbing because 2-2-(3) € N but 2-3 ¢ N
and (2-2)* ¢ (N : M) for all k € N.

(5) 2-absorbing subsemimodules are weakly 2-absorbing subsemimodules. But
the converse does not necessary hold. For example, consider the case where R =
Z¢, M = Zy5 and N = {0}. Then N is a weakly 2-absorbing subsemimodule of M.
From (4), we know that N is not AG2-absorbing so that N is not 2-absorbing
by (2).

From (1), we see that {0} is always a weakly 2-absorbing subsemimodule, but

it is not a 2-absorbing subsemimodule as shown in the following proposition.

Proposition 2.22. If R = Z§ and M = Z, where n = pqr; p,q,7 € N and

1 <p,q,r <n, then the zero subsemimodule of M is not 2-absorbing.

Proof. Assume that R = Z; and M = Z, where n = pgr with p,q,r € N and
1 <p,q,r <n. Note that pg(r) = n € {0} in Z,. Since 1 < pr,qr,pq < n, it

follows that pr ¢ {0}, ¢r ¢ {0} and pq & ({0} : Z,,).
Therefore {0} is not 2-absorbing. O

We see that weakly 2-absorbing subsemimodules are generalization of 2-absorbing

subsemimodules.
Proposition 2.23. Let M be an R-semimodule and N a subsemimodule of M.

(i) If N is a prime subsemimodule, then N is a 2-absorbing subsemimodule.

(i1) If N is a weakly prime subsemimodule, then N is a weakly 2-absorbing sub-

semimodule.

Proof. (i) Assume that N is a prime subsemimodule. Let a,b € R and m € M
with abm € N, but am ¢ N and b ¢ N. We claim that ab € (N : M). Since
abm € N and N is a prime subsemimodule, m € N or ab € (N : M). If m € N,
then am € N contradicts am ¢ N. Thus ab € (N : M)

Therefore N is a 2-absorbing subsemimodule.
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(ii) The proof is similar to that of (i). O

From Proposition 2.23, we obtain that prime and weakly prime subsemimodules
are 2-absorbing and weakly 2-absorbing subsemimodules, respectively. But the
converse does not necessary hold. For example, consider the case where R = Z,
M = 7§ and N = 6Z;. Then N is a (weakly) 2-absorbing subsemimodule of M
which is not weakly prime because 0 # 2-3 € N but 2 ¢ N and 3 ¢ (N : M).
Thus N is not a prime subsemimodule. Therefore 2-absorbing and weakly 2-
absorbing subsemimodules are indeed generalizations of prime and weakly prime
subsemimodules.

Given a submodule of a module leads to a factor module. Then we are curious
whether the construction of a factor semimodule can be made. Next, we study the

construction of a factor semimodule.

Definition 2.24. [2] A subsemimodule N of an R-semimodule M is called a par-
tittoning subsemimodule if there exists a nonempty subset () of M such that
(1) RQ C @ where RQ = {rq|r € R and q € Q},

2) M=U{¢+ N|qe @} whereq+ N ={qg+n|nec N}, and

(3) if 1,92 € Q, then (g1 + N) N (g2 + N) # @ if and only if ¢; = ¢o.

In general, a partitioning subsemimodule N via a nonempty subset @) is called
a (Q-subsemimodule.
The construction of a factor semimodule [2]

Let M be an R-semimodule and N a Q-subsemimodule of M. Let M/Ng) =
{¢+N|qe @} Then M/N( is a semimodule over R under the addition & and

the scalar multiplication ® defined as follows: for any ¢i,q2,q¢ € Q and r € R,
(@ +N)D(+N)=g+N and ro@+N)=qu+N

where ¢3,q4s € () are the unique elements such that ¢; + ¢ + N C ¢3 + N and
rq+ N C g4+ N. The R-semimodule M /N is called a factor semimodule.

To see that @ and © are well-defined, by (2) of the definition of )-subsemimodules,
there are ¢3,q4 € @ such that ¢ + ¢+ N C ¢33+ N and r¢q+ N C ¢4 + N. For
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the uniqueness of g3 and ¢4, (3) of the same definition guarantees this. Suppose
that there exist ¢4, ¢} € @ such that ¢ + 2 + N C ¢4+ N and r¢+ N C ¢, + N.
Thus (g3 +N)N(gh+ N) # @ and (g4 + N) N (¢y + N) # @. Then we obtain that
3 = q3 and q4 = ¢}

Since M/N(q) is a semimodule, its zero element must exist. Let gy + N be
the zero element of M/N). For every ¢ € @, from (1) of Definition 2.24, we
obtain that 0); = Org € @. Consider (0 + N) @ (g0 + N) = 0y + N because
qo + N is the zero element. Thus 0); must be the unique element in () such that
Orp+qg+ N CO0y+N. Then gg+ N C 0y +N. So (go+N)N (0 + N) # @. We
can conclude that 05, = go. This shows that the zero element of the semimodule

M/N(Q) is OM + N.

Proposition 2.25. [10] Let N be a Q-subsemimodule of an R-semimodule M. If
r € R and m € M, then there exists a unique q € @ such that m € ¢+ N and
rmer®(¢+ N).

Proposition 2.26. [9] Let M be an R-semimodule, N a Q-subsemimodule of M
and P a subtractive subsemimodule of M with N C P. Then the followings hold:

(i) N is a QN P-subsemimodule of P.
(ii) P/Nnry = {q¢+ N | g€ QN P} is a subsemimodule of M/Ny).

Remark. The zero element of P/Ngnp) is the same as the zero element of M /N g,
which is 057 + V.

Definition 2.27. [12] A subsemimodule N of an R-semimodule M is called a
nilpotent subsemimodule if (N : M)*N = {0} for some k € N.

Definition 2.28. [13] An R-semimodule M is called cyclic if there exists an
element m € M such that M = Rm.

Let consider ideals (N : M) and (N : m) where M is a cyclic R-semimodule.
Let R = Z¢§, M = Zs = RI and N = {0}. Then (N : M) = ({0} : Z)= 67,
(N :2) = ({0} : 2)= 3Z§ and (N : 1) = ({0} : 1)= 6Z. This shows that
(N :R1)# (N :2)but (N: Rl)= (N :1). Notice that 1 is a generator of M.
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Proposition 2.29. Let M be a cyclic R-semimodule with M = Rm. Then the
ideals (N : M) and (N : m) are identical.

Proof. 1t is clear that (N : M) C (N : m). Next, let z € (N : m). Then xm € N.
Thus Rem C RN C N. So zRm C N and then zM C N, ie, xz € (N : M).
Hence (N : m) C (N : M).

Therefore (N : M) = (N :m) as desired. O

Definition 2.30. [14] Let M be an R-semimodule. We call M a multiplication
R-semimodule if for all subsemimodule N of M there exists an ideal I of R such

that N = IM and [ is called a presentation ideal of N.

Note: [14] If M is a multiplication R-semimodule and N a subsemimodule of M,
then there exists an ideal I of R such that N = IM. Thus [ C (N : M). Then
N=1IM C (N :M)M C N and therefore N = (N : M)M. This shows that one
presentation ideal of a subsemimodule N of a multiplication R-semimodule M is

(N : M).

Proposition 2.31. If M is a cyclic R-semimodule with generator m, then M is

a multiplication R-semimodule.

Proof. Assume that M = Rm for some m € M. Let N be a subsemimodule of M.
We claim that N = (N : m)Rm. First, let x € N. Then there exists r € R such
that = rm, i.e., r € (N : m). We obtain that x = rm € rRm C (N : m)Rm.
Hence z € (N : m)Rm. Next, n € (N : m)Rm. Then there exist r € (N : m)
and s € R such that n = rsm. Since r € (N : m), we get that rm € N. Then
n=rsm=srm & sN C N. Hencen € N. Thus N = (N : m)Rm = (N : m)M
as claimed.

Therefore M is a multiplication R-semimodule. O

The following proposition shows that in order to verify an R-semimodule M
is a multiplication R-semimodule it is sufficient to prove only that there exists a

presentation ideal of each subsemimodule of the form Rm where m € M.
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Proposition 2.32. [14] An R-semimodule M is a multiplication R-semimodule if

and only if there exists an ideal I of R such that Rm = IM for each m € M.

Definition 2.33. [14] Let M be a multiplication R-semimodule. Moreover, let N
and K be subsemimodules of M with N = IM and K = JM for some ideals [
and J of R. The product of N and K, denoted by NK, is defined by NK =
(IJ)M.

For my,my € M, the product of Rmy and Rms is RmiRmy = ([;M)(IoM) =
(I115) M where I and I, are presentation ideals of the subsemimodules Rm; and
Rmey, respectively. We write myms instead of Rmy Rms.

For a subsemimodule N of M, if N = I M for some ideal I of R, then N" = "M

for any n € N.

Theorem 2.34. [14] The product of two subsemimodules is independent of their

presentation ideals.

Theorem 2.34 makes sure that the product of subsemimodules N and K of a

multiplication R-semimodule is well-defined.

Definition 2.35. [13] Let J be an ideal of a commutative semiring R. Then the
radical of J, denoted by v/ J, is defined to be the intersection of all prime ideals

of R containing J.

For an ideal J of a commutative semiring R, one can show that the set

{z € R| 2™ € J for some n € N} is an ideal of R.

Proposition 2.36. [13] If .J is an ideal of a commutative semiring R, then v/.J

is, in fact, the ideal {x € R | ™ € J for some n € N}.

We can rewrite the condition for being (weakly) AG2-absorbing ideals and
(weakly) AG2-absorbing subsemimodules as follows:

An AG2-absorbing ideal of a semiring R is a proper ideal I of R if whenever
a,b,c € Rand abc € I, then ab e I or ac € I or be € /1.

A weakly AG2-absorbing ideal of a semiring R is a proper ideal [ of R if
whenever a,b,c € R and 0 # abe € I, then ab € I or ac € I or be € V1.
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An AG2-absorbing subsemimodule of an R-semimodule M is a proper subsemi-
module N of M if whenever a,b € R and m € M with abm € N, then am € N or
bm e N orabe /(N : M).

A weakly AG2-absorbing subsemimodule of an R-semimodule M is a proper
subsemimodule N of M if whenever a,b € R and m € M with 0 # abm € N, then
am € N orbm e N or ab € /(N : M).

Definition 2.37. [10] Let N be a proper subsemimodule of a nonzero R-semimodule
M. Then the M-radical of N, denoted by rad,;(N), is defined to be the inter-

section of all prime subsemimodules of M containing V.

Since a semiring R is also an R-semimodule, the radical of an ideal N of R
is the special case of the M-radical of N where N is a subsemimodule of an R-

semimodule M, i.e., rady (N) = +/N.

Proposition 2.38. [5] If M is an R-semimodule and N is a subsemimodule of M,

then /(N : M)M C rady(N).



CHAPTER I11
2-ABSORBING SUBSEMIMODULES AND
WEAKLY 2-ABSORBING SUBSEMIMODULES
OVER COMMUTATIVE SEMIRINGS

In this chapter, we extend some definitions and results of [5], [6], [10], [12] and
[14] of modules over a commutative ring to those of semimodules over a commu-
tative semiring.

It is known that any intersections of prime subsemimodules are not necessary
prime subsemimodules. The following theorem shows the result of any intersections
of each pair of prime and weakly prime subsemimodules.

For the rest of this thesis, unless otherwise stated, let R be a commutative

semiring with nonzero identity.
Theorem 3.1. Let M be an R-semimodule.

(i) The intersection of each pair of distinct prime subsemimodules of M is a

2-absorbing subsemimodule of M.

(ii) The intersection of each pair of distinct weakly prime subsemimodules of M

1s a weakly 2-absorbing subsemimodule of M.

Proof. (i) Let N and K be two distinct prime subsemimodules of M. Then
N N K is a proper subsemimodule of M. Assume that a,b € R and m € M
with abm € NN K, but am ¢ NN K and bm ¢ NN K. Then abm € N and
abm € K. We claim that ab € (N N K : M).

Case 1: am ¢ N and b ¢ N. Since abm € N and N is a prime subsemimodule,
bme Norae (N:M). Soa € (N : M) because bm ¢ N. Thus aM C N so that

am € N contradicts am ¢ N. Hence Case 1 is impossible.
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Case 2: am ¢ K and bm ¢ K. The proof is similar to that of Case 1 so that
Case 2 is impossible.
Case 3: am ¢ N and bm ¢ K. Since b(am) = abm € N which is a prime sub-
semimodule, am € N or b € (N : M). Thus b € (N : M) because am ¢ N. We
obtain that bM C N. Then abM = baM C bM C N. Thus ab € (N : M). The
fact that abm € K also leads to ab € (K : M). Thusabe (N: M)N(K : M) =
(NNK:M).
Case 4: am ¢ K and bm ¢ N. Then ab € (N N K : M) is obtained similarly to
Case 3.

Therefore the intersection of each pair of distinct prime subsemimodules of M

is a 2-absorbing subsemimodule of M.

(ii) Let P and @ be two distinct weakly prime subsemimodules of M. Then
P N Q is a proper subsemimodule of M. Assume that a,b € R and m € M with
0#abm € PNQ, but am ¢ PNQ and bm ¢ PN Q. Then 0 # abm € P and
0 # abm € Q. We claim that ab € (PN Q : M).
Case 1: am ¢ P and bm ¢ P. Since 0 # abm € P and P is a weakly prime
subsemimodule, bm € P or a € (P : M). So a € (P : M) because bm ¢ P. Thus
aM C P so that am € P contradicts am ¢ P. Hence Case 1 is impossible.
Case 2: am ¢ @ and bm ¢ ). This is not possible either.
Case 3: am ¢ P and bm ¢ (). Since 0 # abm € P which is a weakly prime
subsemimodule, am € P or b € (P : M). Thus b € (P : M) because am ¢ P.
We obtain that bM C P. Then abM = baM C bM C P. Thus ab € (P : M).
Similarly, we obtain that ab € (Q : M). Now, we have ab € (P : M) and
abe (Q:M). Soabe (P: M)N(Q:M)=(PNQ:M).
Case 4: am ¢ QQ and bm ¢ P. Again ab € (PN Q : M) similarly to Case 3.
Therefore the intersection of each pair of distinct weakly prime subsemimodules

of M is a weakly 2-absorbing subsemimodule of M. m

However, it is not necessary true that the intersection of any finite (weakly)
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prime subsemimodules of M is a (weakly) 2-absorbing subsemimodule of M. For
example, let R = Z, M= ZJ, N=27Z, K=3Z$ and P=5Z7. Then N, K and P
are prime subsemimodules of M. But NN KN P= 30Z§ which is not a 2-absorbing
subsemimodule of M because 3 -5 - (2) € 30Z§ but 3-(2) ¢ 30Z7, 5 - (2) ¢ 30Z
and 3-5 ¢ (30Z§ : Z7).

Recall that if N is a -subsemimodule of an R-semimodule M, then we can con-
struct a factor semimodule M/N(q). The next results concern relationship between

(weakly) 2-absorbing subsemimodules and (weakly) 2-absorbing @)-subsemimodules.

Theorem 3.2. Let M be an R-semimodule, N a Q-subsemimodule of M and
P a subtractive subsemimodule of M with N C P. Then P is a 2-absorbing

subsemimodule of M if and only if P/Ngnp) is a 2-absorbing subsemimodule of
M/Nq).-

Proof. First, assume that P is a 2-absorbing subsemimodule of M. Recall that
P/Ngnp) is a subsemimodule of M /N ) by Proposition 2.26. Moreover, P/Ngnp)
is proper because P is proper. Let a,b € R and ¢; + N € M/Nq), where ¢, € Q,
be such that ab® (¢1 + N) € P/N(gnp). Then there exists unique ¢, € @ N P such
that ab ® (g1 + N) = g + N where abqg; + N C g5 + N. Since ¢ + N C P, it
follows that abg; + N € P. Since N C P and P is a subtractive subsemimodule,
abq, € P. Since P is a 2-absorbing subsemimodule of M, it can be concluded that
aqi € P or bg; € P or abM C P. We claim that a ® (¢1 + N) € P/N(gnp) or
b® (¢ + N) € P/Ngnp) or ab € (P/Ngnp) : M/N(q))-

Case 1: aq; € P. Since q; € @, we have aq; € (). Then aq; € @ N P, so
aqi + N € P/Ngnp). Moreover, a® (¢1 + N) = ¢’ + N where ¢’ € Q is unique such
that agy + N C ¢+ N. Then (ag1 + N) N (¢ + N) # & so that ¢ = aq; € QN P.
Thus a ® (g1 + N) € P/Nonp).

Case 2: bg; € P. We can conclude similarly to Case 1 that b ® (¢1 + N) €
P/Ngnp).

Case 3: abM C P. Let g+ N € M/Ng) where ¢ € Q and ab® (¢+ N) = g3 + N
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where g3 € () is unique such that abg+ N C g3+ N. Then abqg+ N = g3+ N since
abq € Q. Thus g3+ N = abqg + N C P since abM C P and N C P. Hence ¢3 € P
because P is subtractive. As a result, g3 € QN P. Then ab® (¢+ N) =¢3 + N €
P/Ngnp). Thus ab® M/Nqy € P/Ngnp). Hence ab € (P/Ngnp) : M/Nq))-

Therefore P/Nonp) is a 2-absorbing subsemimodule of M/Nq).

Conversely, assume that P/N(gnp) is a 2-absorbing subsemimodule of M /N(q).
Then P is a proper subsemimodule of M. Let a,b € R and m € M be such that
abm € P. Then by Proposition 2.25, there is unique ¢; € ) such that m € ¢; + N
and abm € ab®(q1+N). Let ab® (¢1 + N) = go+ N where ¢» is the unique element
of () such that abg; + N C ¢» + N. Now, abm € P and abm € ¢, + N. So there
is n € N such that ¢o +n = abm € P. Since P is subtractive and n € N C P,
we obtain ¢ € P. Then ¢; € QN P. Thus ab® (¢ + N) = ¢ + N € P/Ngnp).
Since P/N(gnp) is a 2-absorbing subsemimodule, a ® (¢ + N) € P/Nnp) or
bO (¢ + N) € P/Nnp) or ab® M/Ngy € P/Ngnp).
Case 1: a®(¢1+N) € P/Nnpy. Then a®(q1+N) = ¢'+ N where ¢’ is the unique
element of @ N P such that ag1 + N € ¢ + N. Sincea® (g1 + N)=¢ + N C P,
we get aqy + N C P. Thus aq; € P because P is subtractive and N C P. Since
¢1 € @, we have aq; € Q). Then ag; € QN P. Since ¢’ is the unique element of QNP
such that agy + N C ¢ + N and aq; € Q N P, we obtain that ¢ = aq;. It follows
from m € ¢, + N that am € a(q; + N) Caqpg + N=¢ +N=a® (¢ + N) C P.
Thus am € P.
Case 2: b® (¢t + N) € P/Ngnp). Again, this is similar to Case 1, so we can
conclude that bm € P.
Case 3: ab® M/N) C P/Nnp). Let x € M. By Proposition 2.25, there is
unique g3 € @Q such that € g3 + N and abx € ab® (¢3 + N) = q4 + N where
g4 is the unique element of () such that abgs + N C ¢4 + N. Now, ¢4 + N =
ab® (¢3 + N) € P/Ngnp). Then abx € ¢4 + N C P. Thus abM C P.

Therefore P is a 2-absorbing subsemimodule of M. m

Theorem 3.3. Let M be an R-semimodule, N a QQ-subsemimodule of M and P a

subtractive subsemimodule of M with N C P.
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1) If P is a weakly 2-absorbing subsemimodule of M, then P/Nonpy is a weakly
(@nP)
2-absorbing subsemimodule of M /Nq).

(i) If N and P/Nonpy are weakly 2-absorbing subsemimodules of M and M /N q),

respectively, then P is a weakly 2-absorbing subsemimodule of M.

Proof. (i) Assume that P is a weakly 2-absorbing subsemimodule of M. Then
P/Ngnpy is a proper subsemimodule of M/N). Let a,b € R and ¢ + N €
M/N), where ¢; € @, be such that Oy + N # ab® (¢ + N) € P/Ngnp).
Then there exists unique ¢go € @ N P such that ab ® (g1 + N) = ¢2 + N where
abqy + N C g+ N. Since ¢o+ N C P, it follows that abqg; + N C P. Since N C P
and P is a subtractive subsemimodule, abg, € P.

Case 1: abg; = 0. Since abgq; € (0p + N) N (¢2 + N), we obtain that 0y = go.
Thus, 05+ N = g2+ N contradicts the fact that go+ N = ab® (¢1+N) # 0y + N.
This case is absurd.

Case 2: abq; # 0. Since P is a weakly 2-absorbing subsemimodule of M, it can
be concluded that ag; € P or bgy € P or abM C P. We claim that a ® (¢1 + N) €
P[Nignpy or b® (1 + N) € P/Nignpy or ab &€ (P/Nignp) : M/N(g)).

Subcase 2.1: ag; € P. Then aq; € QN P, so aqgi + N € P/Ngnp). Moreover,
a® (@1 + N)=¢ + N where ¢ € @ is unique such that ag; + N C ¢’ + N. Then
(aqi +N)N (¢ +N) # @ so that ¢ =agr € QNP. Thus a® (¢ + N) € P/Ngnp).

Subcase 2.2: bg; € P. We can conclude similarly to Subcase 2.1 that b ®
(¢1 +N) € P/Ngnp)-

Subcase 2.3: abM C P. Let ¢+ N € M/Ny) where ¢ € Q. Let ab©®
(¢ + N) = g3 + N where g3 € @ is unique such that abg + N C ¢3 + N. Then
abqg + N = g3 + N since abg € Q. Then g3+ N = abg + N C P since abM C P
and N C P so that g3 € P because P is subtractive. Thus ¢q3 € @ N P. Then
ab® (q+ N) = g3 + N € P/Ngnp). Thus ab © M/Ny C P/Nnp). Hence
ab € (P/Ngnp) : M/N(q)).

Therefore P/N(gnp) is a weakly 2-absorbing subsemimodule of M /N q).
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(ii) Assume that N and P/Ngnp) are weakly 2-absorbing subsemimodules of M
and M/N(q), respectively. Then P is a proper subsemimodule of M. Let 0 #
abm € P where a,b € R and m € M.

Case 1: 0 Zabm € N. Thenam € N C Porbm € N C Porabe (N: M) C
(P:M).

Case 2: 0 # abm € P~.N. Then by Proposition 2.25, there is unique ¢; € @
such that m € ¢ + N and abm € ab® (¢ + N). Let ab® (1 + N) = ¢ + N
where ¢, is a unique element of () such that abg; + N C ¢o + N. Now, abm € P
and abm € g, + N. So there is n € N such that ¢ +n = abm € P. Since P is
subtractive and n € N C P, we obtain ¢o € P. Then ¢» € Q N P. Suppose that
Op+N =ab® (g1 +N). Since a4+ N =ab® (1 +N) =0+ N and abm € g2+ N,
it follows that abm € 0y + N = N contradicts the fact that abm € P~ N. Thus
O+ N #ab® (g +N) = ¢+ N € P/Ngnp). Since P/Nnp) is a weakly
2-absorbing subsemimodule, a ® (¢1 + N) € P/Ngnp) or b® (¢1 + N) € P/Ngnp)
or ab® M/N)y C P/Nonp-

Subcase 2.1: a®(q1+N) € P/Nnp). Then a® (¢1 +N) = ¢+ N where ¢’ is
a unique element of @ N P such that ags + N C ¢+ N. Since a® (1 +N) =¢ + N
and a® (¢ + N) C P, we get ag; + N C P. Thus aq; € P because P is subtractive
and N C P. Then aq; € QN P. So ¢ = aq;. Since m € q; + N, it follows that
am€a(@+N)Capy+N=q¢d+N=a® (¢ +N)C P. Thus am € P.

Subcase 2.2: b® (¢1 + N) € P/Ngnp). Again, this is similar to Subcase 2.1,
we can conclude that bm € P.

Subcase 2.3: abM /Ny € P/Ngnp). Let x € M. By Proposition 2.25, there
is unique g3 € @ such that x € g3+ N and abx € ab® (g3+ N) = g4+ N where ¢4 is
a unique element of @) such that abgs+ N C g4+ N. Now, g4+ N = ab®(g3+ N) €
P/Ngnpy- Then abxr € ¢4 + N C P. Thus abM C P.

Therefore P is a weakly 2-absorbing subsemimodule of M. n

We observe from Theorem 3.2 that P is a 2-absorbing subsemimodule of M if
and only if P/Ngnp) is a 2-absorbing subsemimodule of M/N). However, this

is not true for the weakly 2-absorbing subsemimodule. Theorem 3.3 points out
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that if P is a weakly 2-absorbing subsemimodule of M, then P/Ngnp) is a weakly
2-absorbing subsemimodule of M/N(g) but not vice versa. Consider the proof of
Theorem 3.3 (ii). If 0 # abm € P where a,b € R and m € M, then it is not
sufficient to ensure that Oy + N # ab® (¢ + N).

Recall that 2-absorbing subsemimodules are weakly 2-absorbing subsemimod-
ules. But its converse does not necessary hold. Therefore some conditions are

needed in order to make the converse true.

Theorem 3.4. Let M be an R-semimodule and N a weakly 2-absorbing subsemi-
module of M. If N is a subtractve subsemimodule and (N : M)?>N # {0}, then N

18 a 2-absorbing subsemimodule.

Proof. Assume that N is a subtractive subsemimodule and (N : M)*N # {0}.
Proposition 2.13 provides that (N : M) is a subtractive ideal of R. Let a,b € R
and m € M be such that abm € N. We claim that am € N or bm € N or
ab € (N : M). If 0 # abm € N, then we are through because N is a weakly
2-absorbing subsemimodule of M. Then assume that abm = 0.
Case 1: abN # {0}. Then there is ng € N such that abng # 0. Now 0 # abng =
0 4 abng = abm + abng € N and ab(m + ng) = abm + abng. Since N is weakly 2-
absorbing, we obtain that am+ang = a(m-+mng) € N or bm—+bng = b(m+ngy) € N
orab € (N : M). Since N is a subtractive subsemimodule and ang,bng € N, it
follows that am € N or bm € N or ab € (N : M).
Case 2: abN = {0}. Consider the choices of a(N : M)M and b(N : M)M.
Subcase 2.1: a(N : M)M # {0} or b(N : M)M # {0}. Without loss of
generality, we assume that a(N : M)M # {0}. Then there exists r € (N : M)
such that arm # 0. Thus 0 # arm = abm + arm = a(b+ r)m € N. Since
N is weakly 2-absorbing, am € N or (b+r)m € N ora(b+r) € (N : M). If
(b+7)m € N ora(b+r) € (N : M), then applying the fact that N and (N : M)
are subtractive leads to bm € N or ab € (N : M). Thus am € N or bm € N or
abe (N : M).
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Subcase 2.2: a(N : M)M = {0} and b(N : M)M = {0}. Since (N : M)>N #
{0}, there exist ag,bp € (N : M) and zy € N with 0 # agbpzg € N. Then
apbom € N. Since a(N : M)M = {0} and b(N : M)M = {0}, we obtain that
abom = 0, agbm = 0, abyzry = 0 and agbry = 0. In addition, abzy = 0 because
abN = {0}.

Subcase 2.2.1: apbym # 0. Then 0 # agbym = abm + abym + agbm +
apbom = (a + ao)(b + by)m. Besides, (a + ag)(b+ bp)m € N because agbgm € N.
Since N is weakly 2-absorbing and 0 # (a + ag)(b + by)m € N, we obtain that
(a+ag)m € N or (b+bg)m € N or (a+ag)(b+by) € (N : M). Thus am~+aym € N
or bm+bym € N or ab+ aby + agh + agby € (N : M). Since ag, by € (N : M) which
is an ideal, it follows that agm,bym € N and aby + agh + agby € (N : M). Being
subtractive of N and (IV : M) implies that am € N or bm € N or ab € (N : M).

Subcase 2.2.2: agbym = 0. Then (a+ ag)(b+ by)(m + xo) = abm + abxy +
abom + abyzg + agbm + agbry + agbym + agborg = agbory # 0. We obtain that
0 # (a4 ag)(b+ bo)(m + xy) € N because 0 # apbpzg € N. Since N is weakly 2-
absorbing, (a4ag)(m-+x¢) € N or (b+bo)(m+xy) € N or (a+ag)(b+by) € (N : M).

Subcase 2.2.2.1: (a+ag)(m—+zy) € N. Then am+ axo+agm+apzo =
(a+ ag)(m + xo) € N. Since N is subtractive and azg, agm, apxg € N, we conclude
that am € N.

Subcase 2.2.2.2: (b+ by)(m + xy) € N. Similarly to Subcase 2.2.2.1,
we obtain that bm € N.

Subcase 2.2.2.3: (a+ag)(b+by) € (N : M). Then ab+aby+aob+agby =
(@ + ag)(b+by) € (N : M). We know that agb, aby,apby € (N : M) which is
subtractive, ab € (N : M).

Therefore N is a 2-absorbing subsemimodule. O]

Corollary 3.5. Let M be an R-semimodule and N a subtractive subsemimodule

of M. If N is weakly 2-absorbing but not 2-absorbing, then the followings hold.
(i) N is nilpotent.

(1) If M is a multiplication R-semimodule, then N3 = {0}.
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Proof. Assume that N is weakly 2-absorbing but not 2-absorbing.
(i) Theorem 3.4 yields that (N : M)?N = {0} which can be concluded that N

is nilpotent.

(ii) Assume that M is a multiplication R-semimodule. Then N = (N : M)M.
Consequently, N3 = (N : M)*M = (N : M)*(N: M)M = (N : M)*N = {0} by
Theorem 3.4. N

Next result, we provide a condition that weakly 2-absorbing subsemimodules
are 2-absorbing subsemimodules. However, this can be done in the case of faithful
multiplication R-semimodules. Recall that for an R-semimodule M, rady,({0}) is

the intersection of all prime subsemimodules of M.

Proposition 3.6. Let M be a faithful multiplication R-semimodule and N a
weakly 2-absorbing subtractive subsemimodule of M. If N is not 2-absorbing, then

N Crady({0}).

Proof. Assume that N is not a 2-absorbing subsemimodule. Then (N : M)?N =
{0} by Theorem 3.4. We claim that (N : M)* € (N : M)2N : M). To
show this, let » ¢ ((N : M)?N : M). Then there exists m € M such that
rm ¢ (N : M)?N. Since M is a multiplication R-semimodule, N = (N : M)M.
Thus rm ¢ (N : M)*(N: M)M = (N:M)*M. Then r ¢ (N : M)3 There-
fore (N : M)3 C ((N:M)?N : M) as claimed. We have {0} C (N : M)* C
(N:M)®N : M) = ({0} : M) = {0} since M is faithful. Thus (N : M)? =
{0}. Now, we have (N : M) C /{0}. Then N = (N:M)M C /{0IM =

Vv ({0} : M)M C radp ({0}) because of Proposition 2.38.
Therefore N C rad({0}). O

Proposition 3.6 shows that for a weakly 2-absorbing subtractive subsemimod-
ule N of a faithful multiplication R-semimodule M, if N is not contained in the
intersection of all prime subsemimodules of M, then N must be a 2-absorbing

subsemimodule.
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We found that being cyclic of an R-semimodule plays a major tool for our
results. Recall that cyclic R-semimodules are multiplication R-semimodules by
Proposition 2.31.

We show in the followings that there are some relationships between being
(weakly) 2-absorbing subsemimodules of N and being (weakly) 2-absorbing ideals

of (N : M) where N is a subsemimodule of a cyclic R-semimodule M.

Proposition 3.7. Let M be a cyclic R-semimodule and N a subsemimodule of M .

Then the followings hold.

(i) N is a 2-absorbing subsemimodule of M if and only if (N : M) is a 2-
absorbing ideal of R.

(i) If, in addition, M is faithful, then N is a weakly 2-absorbing subsemimodule
of M if and only if (N : M) is a weakly 2-absorbing ideal of R.

Proof. Let M = Rm for some m € M. Proposition 2.29 yields (N : M) = (N : m).
Note that N is a proper subsemimodule if and only if (N : M) is a proper ideal.

(i) First, assume that N is a 2-absorbing subsemimodule of M. Let a,b,c € R
be such that abc € (N : M) but ab ¢ (N : M) and ac ¢ (N : M). Then there
exist r,s € R such that ab(rm) ¢ N and ac(sm) ¢ N. Thus abm ¢ N and
acm ¢ N. Since abc € (N : M) and m € M, we get abem € N. Then bc(am) € N,
a(bm) ¢ N and c(am) ¢ N since R is commutative. Thus bc € (N : M) because
N is 2-absorbing.

Therefore (N : M) is a 2-absorbing ideal of R.

Conversely, assume that (N : M) is a 2-absorbing ideal of R. Let a,b € R
and x € M be such that abx € N. Then there exists ¢ € R such that x = ¢m,
so abcm € N, ie., abc € (N : m) = (N : M). Since (N : M) is a 2-absorbing
ideal and (N : m) = (N : M), we obtain that ac € (N : m) or bc € (N : m) or
ab € (N : M). Therefore ax = acm € N or bx = bem € N or ab € (N : M).

Therefore N is a 2-absorbing subsemimodule of M.



28

(ii) Assume further that M is faithful.

First, let N be a weakly 2-absorbing subsemimodule of M. Let a,b,c € R
be such that 0 # abc € (N : M) but ab ¢ (N : M) and ac ¢ (N : M). Then
there exist r, s € R such that ab(rm) ¢ N and ac(sm) ¢ N. Thus abm ¢ N and
acm ¢ N. Suppose that abem = 0. So, {0} = abcRm = abcM. Since M is faithful,
abc = 0 which is a contradiction. Thus abem # 0. Now, 0 # abem € N. Since R is
commutative, 0 # be(am) € N. Since N is a weakly 2-absorbing subsemimodule,
b(am) ¢ N and c(am) ¢ N, we obtain that bc € (N : M).

Therefore (N : M) is a weakly 2-absorbing ideal of R.

Next, let (N : M) be a weakly 2-absorbing ideal of R. Let a,b € R and z € M
be such that 0 # abx € N. Then there exists ¢ € R such that z = cm, so
0 # abem € N. Thus 0 # abc € (N :m). Since (N : M) is a weakly 2-absorbing
ideal and (N : m) = (N : M), we obtain that ac € (N : m) or bc € (N : m) or
ab e (N : M). Hence ax = acm € N or bx =bem € N or ab e (N : M).

Therefore N is a weakly 2-absorbing subsemimodule of M. O]

In fact, for a subsemimodule N of a cyclic R-semimodule M, if the ideal
(N : M) is weakly 2-absorbing, then the subsemimodule N is also weakly 2-absorbing
without the requirement that M has to be faithful.

In a commutative semiring R, if a proper ideal I of R is also subtractive, Darani

showed in [11] the equivalent definition of being 2-absorbing ideal of I as follows:

I is a 2-absorbing ideal of R if and only if I;/5l3 C I implies that
11]2 Q I or 11]3 Q I or ]2[3 Q I for any ideals ]1,]2 and 13 of R.

We also obtain the equivalent definition of being 2-absorbing subsemimodules in

the similar fashion. However, R-semimodules need to be cyclic R-semimodules.

Proposition 3.8. Let M be an R-semimodule and N a proper subsemimodule
of M satisfying the following property: for any ideals I and J of R and a subsemi-
module P of M, if IJP C N, then IP C N or JP C N orIJ C (N :M). Then

N is a 2-absorbing subsemimodule.
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Proof. Let a,b € R and m € M be such that abm € N. Recall that Ra and Rb
are ideals of R and Rm is a subsemimodule of M. Therefore RaRbRm C N. By
assumption, we get RaRm C N or RbRm C N or RaRb C (N : M). Since 1 € R,
it follows that am € N or bm € N or ab € (N : M).

Therefore N is a 2-absorbing subsemimodule. O

Proposition 3.9. Let M be a cyclic R-semimodule and N a 2-absorbing subtrac-
tive subsemimodule of M. Then, for any ideals I and J of R and a subsemimodule

PofM, if IJPC N, then IPC N or JPC N orlJC (N:M).

Proof. Note that (N : M) is a 2-absorbing subtractive ideal of R by Proposition
2.13 and Proposition 3.7. Let I and J be ideals of R and P a subsemimodule
of M such that IJP C N. Since M is cyclic, M is a multiplication R-semimodule.
Then there exists an ideal I’ of R such that P = I'M. Thus IJI'M C N, i.e.
IJI' C (N : M). Since (N : M) is a 2-absorbing subtractive ideal of R, we obtain
that IJ C (N : M) or II' C(N : M) or JI' C (N :M). Thatis IJ C (N : M) or
I'M CNor JI'M CN.

Therefore IJ C (N : M)or IPC N or JP C N. O

Being cyclic of the R-semimodule M in Proposition 3.9 is necessary eventhough
in its proof, it seems that having M be multiplication should be enough. This

requirement is needed because of making use of Proposition 3.7.

Proposition 3.10. Let M be a cyclic R-semimodule and N a proper subtractive

subsemimodule of M. The following statements are equivalent.
(i) N is a 2-absorbing subsemimodule.

(i1) For any ideals I and J of R and a subsemimodule P of M, if IJP C N,
then IP C N or JPC N orIJ C (N :M).

Proof. The proof follows from Proposition 3.8 and Proposition 3.9. m

A subsemimodule N satisfying (ii) in Proposition 3.10 is called a strongly

2-absorbing subsemimodule.
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Corollary 3.11. Let M be a cyclic R-semimodule and N a proper subtractive
subsemimodule of M. If N is a 2-absorbing subsemimodule of M, then for any
subsemimodules U, V. W of M such that UVW C N implies UV C N or UW C N
or VW C N.

Proof. Let U,V and W be subsemimodules of M be such that UVW C N. Since
M is cyclic, M is a multiplication R-semimodule. Then there exist ideals I,.J
and K of R such that U = IM, V = JM and W = KM. Thus IJ(KM) =
(IM)(JM)(KM)=UVW C N. By Proposition 3.9, we obtain that I(KM) C N
or J(KM) C NorlIJ C (N : M) Thus IMKM C N or JMKM C N or
IMJM C N.

Therefore UW C N or VW C N or UV C N. O

Nevertheless, the converse of Corollary 3.11 does not necessarily hold. For ex-

ample, consider where R = Z3, M = Zj5 and N = {0}. All subsemimodules of

any subsemimodules U,V and W of Zi, with UVIV C {0} implies UV C {0} or
UW C {0} or VW C {0}. This shows that the converse of Corollary 3.11 does not
hold because {0} is not a 2-absorbing subsemimodule of Z, by Proposition 2.22.

Recall that m;momsg is the product of the subsemimodules Rmq, Rms and Rmsg,
for any mq,me, mg € M, ie., mymomg = RmyRmoRms = ([1M)(IoM)(I3M) =
(I11513)M where I, I and I3 are presentation ideals of Rm;, Rmy and Rms,

respectively.

Corollary 3.12. Let M be a cyclic R-semimodule and N a proper subtractive
subsemimodule of M. If N is a 2-absorbing subsemimodule of M, then for any
mi,ma,m3 € M such that mymoms C N implies mymo C N or mymsz C N or

maomsg g N.
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Proof. Assume that N is a 2-absorbing subsemimodule of M. Let mq, mg, m3z € M
be such that mymams C N. Since Rm;, Rms and Rms are subsemimodules
of M and RmiRmoRmsz = mimoms C N, we obtain that Rm;Rms C N or
RmiRms C N or RmoRm3 C N by Corollary 3.11.

Therefore mime C N or myms C N or mams C N. O

If the condition that mimoms C N implies mimy € N or mymz C N or
moms C N in Corollary 3.12 is slightly changed, then the new condition forces N

to be a 2-absorbing subsemimodule.

Proposition 3.13. Let M be a cyclic R-semimodule and N a proper subtractive
subsemimodule of M. If for any mq, mo, ms € M such that miymsoms C N implies

my € N ormg € N or mg € N, then N is a 2-absorbing subsemimodule of M.

Proof. Assume that for any m, mo, ms € M such that mimaomsz C N implies m; €
N or mg € N or mg € N. Suppose that N is not a 2-absorbing subsemimodule.
By Proposition 3.10, let I and J be ideals of R and P a subsemimodule of M
such that IJP C N but IP ¢ N, JP & N and IJ & (N : M). Then there exist
p € IP~N,p € JP~N,a € IJ~(N : M) and m € M such that am ¢ N. Since M
is cyclic, M is a multiplication R-semimodule. Let P = I'M where I’ is an ideal
of R. Then pp'am = RpRp' Ram C (RIP)(RJP)(RIJM) C (IP)(JP)(IJM) =
(II'MY(JI'MYIJIM) = (II'JI'TI)M C (IJI')M = 1J(I'M) = 1JP C N. By
assumption, it follows that p € N or p’ € N or am € N contradicts the fact that
p€IP~N,p € JP~N and am ¢ N.

Therefore N is a 2-absorbing subsemimodule of M. O

Proposition 3.14. Let M be a cyclic R-semimodule and N a proper subtractive
subsemimodule of M. If for any subsemimodules U,V and W of M such that
UVW C N implies U C N orVC N or W C N, then N is a 2-absorbing

subsemimodule of M .

Proof. Assume that NN is not a 2-absorbing subsemimodule. By Proposition 3.13,

there are my, my, m3 € M with mymems C N but m; ¢ N, mg ¢ N and m3 ¢ N.
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Then Rmy € N, Rms € N and Rm3 € N. Note that Rm;, Rms and Rmg are
subsemimodules of M and RmiRmsRms = mimemz C N. Then the proof is

complete. n

The converse of Proposition 3.13 and Proposition 3.14 does not necessary hold.
For example, consider where R = ZJ, M = Zg and N = {0} which is a 2-absorbing
subtractive subsemimodule of Zg. We know that {0,3} and {0, 2,4} are subsemi-
modules of M and {0, 3} {0,3}{0,2,4} C N. But {0,3} £ N and {0,2,4} Z N.

We end this chapter by studying the collection of all 2-absorbing subtractive
subsemimodules of an R-semimodule. It turns out that this collection does satisfy

the Zariski topology. Anyhow, we first suggest some definitions and notation.

Definition 3.15. A subsemimodule L of an R-semimodule M is said to be semz-

2-absorbing if L is an intersection of 2-absorbing subtractive subsemimodules

of M.

We see that 2-absorbing subtractive subsemimodules are semi-2-absorbing sub-
semimodules. But the converse does not necessary hold. For example, let R = Z,
M =7¢, N =27§, L = 3Z§ and P = 5Z7. Thus N, L and P are 2-absorbing
subtractive subsemimodules of M so that N N LN P = 30Z7 is semi-2-absorbing.
But NN LN P = 30Z] is not a 2-absorbing subtractive subsemimodule of M
because 3-5-(2) € 30Z§ but 3-(2) & 30Zg, 5-(2) ¢ 30Z§ and 3-5 ¢ (30Z¢ : Zg).

Notation. For a subsemimodule N of an R-semimodule M, let

radys(N) be the intersection of all 2-absorbing subtractive subsemimodules
of M containing NV,

V/(N) be the collection of all 2-absorbing subtractive subsemimodules of M
containing N, and

spec(M) be the collection of all 2-absorbing subtractive subsemimodules of M.

Clearly, V(M) = @, V'({0}) = spec(M) and N C rady (V).
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Definition 3.16. A 2-absorbing subtractive subsemimodule N of an R-semimodule

M is called extraordinary if whenever A and B are semi-2-absorbing subtractive

subsemimodules of M with AN B C N, then AC N or BC N.

Example. Let R = ZJ, M = Z§ and N = 3ZJ. Moreover, let A and B
be semi-2-absorbing subtractive subsemimodules of M with AN B C N. Then
A = mZ{, B =m'Z{ and AN B = 3kZ{ where m,m/,k € ZJ. It can be
shown that AN B = lem(m,m')Z. Thus lem(m, m')Z{ = 3kZ{ so that 3 | m
or 3| m'. Hence A = mZ§ C 3Z§ or B =m'Z{ C 3Z§. Therefore N = 3Z is

extraordinary.

Proposition 3.17. Let M be an R-semimodule. Then the following statements
hold.

(i) If P and L are subsemimodules of M such that P C L, then V'(L) C V'(P).
(ii) If N is a subsemimodule of M, then V'(N) = V' (radM(N)>.

(iii) If {N;},c; is a family of subsemimodules of M, then V’(Z N,) = ﬂ V'(N;).
iel iel

Proof. (i) Assume that P and L are subsemimodules of M such that P C L. Let

A e V'(L). Thus A is a 2-absorbing subtractive subsemimodule and L C A. Since

P C L C A, we obtain that A € V/(P).

Therefore V'(L) C V'(P).

(ii) Assume that NV is a subsemimodule of M. First, let P € V/(N). Thus P is
a 2-absorbing subtractive subsemimodule of M and N C P. Then m C P.
That is P € V’<W(N)). Hence V'(N) C V’(W). Next, let P €
v (m) Then N C rady(N) C P. Thus P € V'(N). Hence V'’ (m)
C V'(N).

Therefore V/(N) =V’ (M)

(iii) Assume that {N;},.; is a family of subsemimodules of M. First, let P €
V/() N;). Then N; € > N; C P for all j € I. That is P € V'(N;) for all j € I.

il i€l
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Thus P € (|V'(NV;). Hence V(3 N;) C [|V/(N). Next, let P € [|V'(N).

iel iel iel iel
Then N; C P for all ¢+ € I. Thus ZNi C P. That is P € V’(Z N;). Hence
iel icl
V' () S V(O N).
iel il
Therefore V’(Z N;) = ﬂ V'(N;). O
el el

Let M be an R-semimodule and (M) denote the collection of all subsets V/(N)
of spec(M). Then £(M) contains @ and spec(M); moreover, £(M) is closed under
arbitrary intersection by Proposition 3.17(iii). Nevertheless, if £(M) is also closed
under finite union, i.e., for any subsemimodules Ny, ... N, of M, there exists a

subsemimodule 7" of M such that U V'(N;) = V/(T'), then (M) satisfies the ax-
i=1
ioms of closed subsets of any topological space. We call such £(M) the Zariski

topology and the R-semimodule M a top semimodule.

Example. (1) Let R = Z] and M = Zg. Recall that all subsemimodules of M
are {0}, {0,3}, {0,2,4} and Zg. It follows that V' ({0} )= {{0},{0,3},{0,2,4}},
V'({0,3})= {{0,3}}, V'({0,2,4} )= {{0,2,4}} and V'(Zs)= @. Note that for

any subsemimodule N of M,

Hence £(M) is not closed under finite union.

Therefore M is not a top semimodule.

(2) Let R = Z§ and M = Zg. All subsemimodules of M are {0}, {0,4},
{0,2,4,6} and Zg. Recall that {0} is not a 2-absorbing subsemimodule by Proposi-
tion 2.22. Then V' ({0} )= {{0,4},{0,2,4,6}}, V'({0,4} )= {{0,4},{0,2,4,6} },
V'({0,2,4,6} )= {{0,2,4,6}} and V'(Zs)= @. Thus V'({0,4} )uv’({0,2,4,6})
= {{(),Zl} ,{0,2,4, 6}} = V’({()}). By the same manner, we obtain that there

exists a subsemimodule 7" of M such that U V'(N;) = V'(T) where N; is a sub-
i=1
semimodule of M. Hence {(M) is closed under finite union.

Therefore M is a top semimodule.
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The following lamma shows necessary and sufficient conditions of R-semimodule M

in order to be a top semimodule.

Lemma 3.18. Let M be an R-semimodule. Then the following statements are

equivalent.
(i) M is a top semimodule.
(i1) Every 2-absorbing subtractive subsemimodule of M is extraordinary.

(iii) V'(T)UV'(L) = V(T'NL) for any semi-2-absorbing subtractive subsemimod-
ules T and L of M.

Proof. (i)=(ii) Assume that M is a top semimodule. Let N be a 2-absorbing
subtractive subsemimodule of M. Let T and L be semi-2-absorbing subtractive
subsemimodules of M such that TN L C N. Since M is a top semimodule, there
exists a subsemimodule U of M such that V'(T) U V'(L) = V/(U). Note that
T = ﬂNi where N; is a 2-absorbing subtractive subsemimodule of M for all ¢
becauzseel T is semi-2-absorbing. Then N; € V/(T) C V'(U) for each i € I. Thus
U C N, foralli e l. Hence U C T'. Similarly, U C L. This shows that U CTNL.
By Proposition 3.17(i), we obtain that V/(T'N L) C V'(U), V/(L) C V(TN L)
and V'(T) C V/(T'n L). Now, we have V/(T)U V(L) C V(T NnL) CV'(U) =
V/(T)u V'(L). That is V/(T) U V(L) = V/(I'N L). Since T N L C N, we have
VI(N) C V(TN L), Then N € V/(N) C V(TnL)=V(T)uV'(L). Thus
NeV'(T)or NeV'(L). Hence T C N or L C N.

Therefore N is extraordinary.

(ii)=-(iii) Assume that every 2-absorbing subtractive subsemimodule of M is
extraordinary. Let T" and L be semi-2-absorbing subtractive subsemimodules of M.
First, let A € V/(T)UV'(L). Then T C Aor L C A. That is TN L C A. Thus
AeV'(I'nlL). Hence V/(T)UV'(L) CV'(T'NL). Next, let A e V(T'NL). Thus
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TNLCA. Since A is a 2-absorbing subtractive subsemimodule and by assump-
tion, A is extraordinary. Then T C A or L C A. Thus A € V/(T) or A € V'(L).
That is A € V/(T')UV'(L). Hence V/(T'NL) CV'(T)UV'(L).

Therefore V/(T) U V'(L) = V(T N L).

(iii)=-(i) Assume that V'(T) U V'(L) = V'(T'N L) for any semi-2-absorbing
subtractive subsemimodules 7" and L of M. Let A and B be subsemimodules of M.
Then by Proposition 3.17(ii), we get V/(A)UV'(B) = V' (radM(A)> uv’ (radM(B)> .

Recall that rad,;(A) and rady;(B) are the intersections of all 2-absorbing subtrac-

tive subsemimodules of M containing A and B, respectively. Then rad, (A) and

rady, (B) are semi-2-absorbing subtractive subsemimodules and rad; (A)Nrad (B)

is a subsemimodule of M. Then by assumption, V' (rad m(A) Nrady (B )) =
v <radM(A)>U Vv <radM(B)). Thus V'(A) UV/(B) = V' (radM(A) N radM(B)).
This shows that for any subsemimodules A and B of M there exist a subsemimod-

ule C' of M such that V'(A) U V/(B) = V/(C). By Mathematical Induction, we

conclude that (M) is closed under finite union.

Therefore M is a top semimodule. O

Finally, we study the collection of all 2-absorbing subtractive subsemimodules

of multiplication R-semimodule M containing N where N is a subsemimodule

of M.

Theorem 3.19. Let M be an R-semimodule and N, P and L subsemimodules
of M. Then the following statements hold.

(1)) VVIIN)UV'(JN)UV'(IJM)=V'(INNJNNIJM)=V'(IJN) for every
ideals I and J of R.

(i) V'(IKM)UV'(JKM)UV'(IJM) =V'(IKMNJKMNOIJM) =V'(IJKM)
for every ideals I, J and K of R.

(11i) If M is a multiplication R-semimodule, then V'(NP)UV'(LP)UV'(NL) =
V/(NPALPNNL) = V/(NLP).
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Proof. (i) Let I and J be ideals of R. First, it is clear that V/(IN) C V/(INNJNN
[JM), V'(JN) C V'(INNJNAIJM) and V'(IJM) C V/(INAJNAIJM). Thus
V/(INYUV'(JN)UV'(IJM) C V/(INNJNALJIM). Since IJN C IN, IJN C JN
and [JN CIJM, we get IJN CINNJNNIJM. Thus V'(INNJNNIJM) C
V/(IJN). Hence V/(IN)UV'(JN)UV'(IJM) C V/(INNJNNIJM) C V'(IJN).

Next, let P € V/(IJN). Thus IJN C P. Since P is a 2-absorbing subtractive
subsemimodule, IN C Por JN C Por IJ C (P:M). Then INC Por JN C P
or IJM C P. Thus P € V/(IN) or P € V/(JN) or P € V'(IJM). That is
P e V/(IN)UV/(JN)UV/(IJM). Hence V'(LIN) C V'(INYUV'(JNYUV'(ITM).

Now, we have V/(IN)YUV*(JNYUV'(IJM) C VI(INNJNNIJM) C V/(IJN)
and V/(IJN) C V/(INYUV'(JN)U V' (IJM).

Therefore V/(IN) UV/(JN)UV/(IJM) = V'(IN N JN A LJM) = V'(IJN).

(ii) Let I, J and K be ideals of R. Thus K'M is a subsemimodule of M. Then by
(1), we obtain that V/(IKM)UV/(JKM)UV(IJM) = V/(IKMANJKMALIM) =
V/(IJKM).

(iii) Assume that M is a multiplication R-semimodule. Then there exist ideals
I, J and K of R such that N = IM, L = JM and P = KM. From (ii), we get
that V/(IKM)UV'(JKM)UV'(IJM) = V/(IKMNJKMNIJIM) = V'(IJK M)
so that V/(IMKM) U V'(JMKM)U V'(IMJM) = V/(IMKM N JMKM N
IMJM) = V'(IMJMKM) because M is a multiplication R-semimodule. Thus
V/(NP)UV'(LP)UV/(NL) = V/(NPALPNNL) = V/(NLP). O



CHAPTER IV
AG2-ABSORBING SUBSEMIMODULES AND
WEAKLY AG2-ABSORBING SUBSEMIMODULES
OVER COMMUTATIVE SEMIRINGS

In this section, we extend some characterizations in [5], [10] and [12] to AG2-
absorbing and weakly AG2-absorbing subsemimodules over a commutative semir-
ing.

Recall that a proper subsemimodule N of M is said to be an almost gener-
alized 2-absorbing subsemimodule (or AG2-absorbing subsemimodule)
if whenever a,b € R and m € M with abm € N, then am € N or bm € N
or (ab)* € (N : M) for some k € N and a proper subsemimodule N of M is
said to be a weakly almost generalized 2-absorbing subsemimodule (or
weakly AG2-absorbing subsemimodule) if whenever a,b € R and m € M
with 0 # abm € N, then am € N or bm € N or (ab)k € (N : M) for some k € N.

It is clear from the definition that AG2-absorbing subsemimodules are weakly
AG2-absorbing subsemimodules. Let us first provide another condition that sub-

semimodules of an R-semimodule are weakly AG2-absorbing subsemimodules.

Proposition 4.1. Let M be an R-semimodule and N a proper subsemimodule

of M. If \/(N :m) = /(N : M)U ({0} : m) for all m € M~ N, then N is a

weakly AG2-absorbing subsemimodule of M .

Proof. Assume that /(N :m) = /(N : M) U ({0} : m) for all m € M~ N. Let
a,b € R and m € M be such that 0 # abm € N but am ¢ N and bm ¢ N. Then
m ¢ N. Thus /(N : m) = /(N : M)U ({0} : m). The fact that abm € N implies
ab € (N :m) C /(N :m) and ab ¢ ({0} : m) because 0 # abm € N. This forces
ab e /(N : M).
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Therefore N is a weakly AG2-absorbing subsemimodule. [

However, weakly AG2-absorbing subsemimodules need not be AG2-absorbing
subsemimodules in general. Hence some conditions are needed to make weakly

AG2-absorbing subsemimodules and AG2-absorbing subsemimodules be identical.

Theorem 4.2. Let M be an R-semimodule and N a weakly AG2-absorbing sub-
semimodule of M. If N is a subtractive subsemimodule and (N : M)?*N # {0},

then N is an AG2-absorbing subsemimodule.

Proof. Assume that N is a subtractive subsemimodule and (N : M)2N # {0}.
Proposition 2.13 provides that (N : M) is a subtractive ideal of R. Let a,b € R
and m € M be such that abm € N. We claim that am € N or bm € N or
(ab)® € (N : M) for some k € N. If 0 # abm € N, then we are through because N
is a weakly AG2-absorbing subsemimodule of M. Then assume that abm = 0.
Case 1: abN # {0}. Then there is ng € N such that abny # 0. Now 0 #
abng = 0+ abng = abm + abng = ab(m + ng) € N. Since N is a weakly AG2-
absorbing subsemimodule, a(m + ng) € N or b(m + ng) € N or (ab)* € (N : M)
for some k € N. If a(m + ng) € N or b(m + ng) € N, then applying the fact
that N is subtractive leads to am € N or b € N. Thus am € N or bm € N or
(ab)* € (N : M) for some k € N.

Case 2: abN = {0}.

Subcase 2.1: a(N : M)M # {0} or b(N : M)M # {0}. Without loss of
generality, assume that a(N : M)M # {0}. Then there exists r € (N : M) such
that arm # 0. Thus 0 # arm = abm+arm = a(b+7r)m € N. Since N is a weakly
AG2-absorbing, am € N or (b+7)m € N or [a(b+7)]* € (N : M) for some k € N.
If (b+7)m € N or [a(b+7)]* € (N : M) for some k € N, then applying the fact
that N and (N : M) are subtractive leads to bm € N or (ab)* € (N : M). Thus
am € N or bm € N or (ab)* € (N : M) for some k € N.

Subcase 2.2: a(N : M)M = {0} and b(N : M)M = {0}. Since (N : M)>N #
{0}, there exist ag,bp € (N : M) and zy € N with 0 # agbpzg € N. Then

agbpm € N and abry = 0. Moreover, abym = 0, agbm = 0, abjrg = 0 and
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aogbzy = 0.

Subcase 2.2.1: agbgm # 0. Then 0 # agbym = abm + abym + agbm +
apbom = (a+ap)(b+bo)m. In addition, (a+ag)(b+by)m € N because agbym € N.
Since N is a weakly AG2-absorbing and 0 # (a + ag)(b + by)m € N, we obtain
that (a + ag)m € N or (b+by)m € N or [(a+ ao)(b+ b)]* € (N : M) for some
k € N. Thus am + agm € N or bm + bym € N or a*b* +r € (N : M) for some
r € (N : M). To see this, we consider [(a + ag)(b + by)]* as follows:

[(a+ ag)(b + b))

=a*tF +a"y b + a"a b,
i—1 \ 7 1 i—0 \ ?
k k .
+ a"2a? Vb A a"al Z A
i=0 \? J i=0 \?

k
k ./
+a’g§j ) 0Fb, where j € {0,1,2,... K}
i=0 1

k k k
Letr =a") b+ @ agy T N by
i—1 \ ! 1 i—0 \ ! 2 i=0 \
tet | d ) | A+ ag) || B b). Then v € (N : M)
J i=0 \ ¢ i=0 \ 7

because ag,by € (N : M). Moreover, since ag,by € (N : M), it follows that
agm,bym € N. Being subtractive of N and (N : M) implies that am € N or
bm € N or (ab)k = a*bF € (N : M).

Subcase 2.2.2: agbgm = 0. Then 0 # agborg = abm + abxg + abym +
abozy + agbm + apbxy + agbom + agboro = (a + ag)(b + by)(m + xg). We obtain
that 0 # (a + ag)(b + bo)(m + xy) € N because 0 # agbprg € N. Since N
is weakly AG2-absorbing, (a + ao)(m + x¢) € N or (b+ by)(m + zp) € N or
[(a + ag)(b+by)]* € (N : M) for some k € N,

Subcase 2.2.2.1: (a+ag)(m+z9) € N. Then am+ax+agm+apzo =

(a+ ag)(m + xo) € N. Since N is a subtractive subsemimodule, am € N.
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Subcase 2.2.2.2: (b+ by)(m + o) € N. Similarly to Subcase 2.2.2.1,
we obtain that bm € N.
Subcase 2.2.2.3: [(a + ag)(b+ bo)]F € (N : M) for some k € N. Then
[(a@ + ag)(b+ b)]* = a*b* + r for some r € (N : M). Since (N : M) is subtractive,
(ab)* = akb* € (N : M).
Therefore N is an AG2-absorbing subsemimodule. n
Corollary 4.3. Let M be an R-semimodule and N a proper subsemimodule of M.

If /(N :m) = /(N : M)U ({0} : m) for all m € M~N and N is a subtractive
subsemimodule with (N : M)>N # {0}, then N is an AG2-absorbing subsemimod-

ule.

Proof. Assume that \/(N :m) = /(N : M) U ({0} : m) for all m € M~ N and
N is a subtractive subsemimodule with (N : M)?>N # {0}. We obtain from
Proposition 4.1 that N is a weakly AG2-absorbing subsemimodule. Then N is an
AG2-absorbing subsemimodule by Theorem 4.2. O

The next proposition provides the condition for /(N : M) to be a 2-absorbing
ideal of R where N is a subsemimodule of an R-semimodule M. However, the

R-semimodule M has to be cyclic.

Proposition 4.4. Let M be a cyclic R-semimodule and N a subsemimodule of M .
If N is an AG2-absorbing subsemimodule of M, then /(N : M) is a 2-absorbing
ideal of R containing ann(M).

Proof. First of all, let M = Rm for some m € M and assume that N is an AG2-
absorbing subsemimodule of M. Recall that (N : M) = (N : m). To show that

\/m is a 2-absorbing ideal, let a, b, c € R be such that abc € \/m but
ab ¢ /(N : M) and ac ¢ /(N : M). Then there exists k € N such that a*b*c* €
(N : M), ie., a"bFc"M C N. Since ab ¢ /(N : M) and ac ¢ /(N : M), there are
11,79 € R such that (ab)*rim, (ac)*rym ¢ N so that a*b*rim,a*ckrom ¢ N. Thus
a*b*m ¢ N and a*c*m ¢ N. Since N is an AG2-absorbing subsemimodule and
bk (a*m) € N, it follows that b*a*m € N or *a*m € N or (b*c*)! € (N : M) for
some [ € N. As a result, bc € /(N : M) because b*a*m ¢ N and cfa*m ¢ N.
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Next, we show that ann(M) C /(N : M). We know that ann(M) = ({0} : M).
Then ann(M) = ({0} : M) C (N : M) C /(N : M) as desired.
Therefore /(N : M) is a 2-absorbing ideal of R containing ann(M). O

The followings provide some relationships between being (weakly) AG2-absorbing
subsemimodules of N and being (weakly) AG2-absorbing ideals of (N : M) where

N is a subsemimodule of a cyclic R-semimodule M.

Proposition 4.5. Let M be a cyclic R-semimodule and N a subsemimodule of M .

Then the followings hold.

(i) N is an AG2-absorbing subsemimodule of M if and only if (N : M) is an
AG2-absorbing ideal of R.

(i) If, in addition, M is faithful, then N is a weakly AG2-absorbing subsemi-
module of M if and only if (N : M) is a weakly AG2-absorbing ideal of R.

Proof. Let M = Rm for some m € M. Then (N : M) = (N :m).

(i) First, assume that N is an AG2-absorbing subsemimodule of M. Let
a,b,c € R be such that abc € (N : M) but ab ¢ (N : M) and ac ¢ (N : M).
Then there exist r, s € R such that ab(rm) ¢ N and ac(sm) ¢ N. Thus abm ¢ N
and acm ¢ N. Note that be(am) € N. Thus there exists & € N such that
(be)* € (N : M) because N is AG2-absorbing.

Therefore (N : M) is an AG2-absorbing ideal of R.

Conversely, assume that (N : M) is an AG2-absorbing ideal of R. Let a,b € R
and x € M be such that abx € N. Then there exists ¢ € R such that x = c¢m, so
abem € N, ie., abc € (N :m) = (N : M). Thus ac € (N : m) or bc € (N : m)
or (ab)* € (N : M) for some k € N, i.e., av = acm € N or bz = bem € N or
(ab)* € (N : M).

Therefore N is an AG2-absorbing subsemimodule of M.

(ii) Assume further that M is faithful.
First, let N be a weakly AG2-absorbing subsemimodule of M. Let a,b,c € R
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be such that 0 # abc € (N : M) but ab ¢ (N : M) and ac ¢ (N : M). Then
there exist r,s € R such that ab(rm) ¢ N and ac(sm) ¢ N. Thus abm ¢ N
and acm ¢ N. Suppose that abem = 0. So, {0} = abcRm = abcM. Since M is
faithful, abc = 0 which is a contradiction. Thus abem # 0. Now, 0 # abem € N.
Since N is a weakly AG2-absorbing subsemimodule, b(am) ¢ N and c(am) ¢ N,
we obtain that (bc)* € (N : M) for some k € N.

Therefore (N : M) is a weakly AG2-absorbing ideal of R.

Next, let (N : M) be a weakly AG2-absorbing ideal of R. Let a,b € R and
x € M be such that 0 # abxr € N. Then there exists ¢ € R such that x = em,
so 0 # abem € N. Thus 0 # abc € (N : m) = (N : M) so that ac € (N : m)
or bc € (N :m) or (ab)® € (N : M) for some k € N. Hence ax = acm € N or
br = bem € N or (ab)* € (N : M).

Therefore N is a weakly AG2-absorbing subsemimodule of M. n

This chapter is ended by providing relationship between (weakly) AG2-absorbing
subsemimodules and (weakly) AG2-absorbing ()-subsemimodules. This proof is

quite similar to the proof of Propositon 3.2 and Propositon 3.3 in Chapter III.

Theorem 4.6. Let M be an R-semimodule, N a Q-subsemimodule of M and P
a subtractive subsemimodule of M with N C P. Then P is an AG2-absorbing

subsemimodule of M if and only if P/Ngnpy 15 an AG2-absorbing subsemimodule
Of M/N(Q) .

Proof. First, assume that P is an AG2-absorbing subsemimodule of M. Then
P/Ngnpy is a proper subsemimodule of M/N). Let a,b € R and ¢, + N €
M /N, where ¢; € @, be such that ab ® (¢1 + N) € P/N(gnp). Then there exists
unique go € @ N P such that ab ® (¢ + N) = ¢ + N where abg; + N C ¢2 + N.
Since g+ N C P, it follows that abg; + N C P. Since N C P and P is subtractive,
abq, € P. Since P is AG2-absorbing, aq; € P or bq, € P or (ab)*M C P for some
k € N. We claim that a ® (¢; + N) € P/Ngnpy or b® (1 + N) € P/Ngnp) or
(ab)* € (P/Nignp) : M/N(g))-

Case 1: aqy € P. Then aqy € Q@ NP, so agg + N € P/Nnp)y. Moreover,
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a® (¢ + N)=¢ + N where ¢’ € @ is unique such that ag; + N C ¢’ + N. Then
¢ =aq € QNP. Thus a ® (1 + N) € P/Ngnp).
Case 2: bg; € P. We can conclude similarly to Case 1 that b ® (¢ + N) €
P/N@gnp).-
Case 3: (ab)*M C P. Let ¢+ N € M/Ng) and (ab)* ® (¢ + N) = g3 + N where
g3 € Q is unique such that (ab)*q + N C g3 + N. Then (ab)*q + N = g3 + N
since (ab)¥q € Q. Thus g3 + N = (ab)fq + N C P since (ab)*M C P and
N C P so that g3 € P because P is subtractive. As a result, g3 € Q N P. Then
(ab)* ® (g+ N) = g3+ N € P/Ngnp). Thus (ab)* © M /Ny C P/Ngnp). Hence
(ab)* € (P/Ngrp) : M/Ng)-

Therefore P/N(gnp) is an AG2-absorbing subsemimodule of M/N(q).

Conversely, assume that P/Ngnp) is an AG2-absorbing subsemimodule of
M/N). Then P is a proper subsemimodule of M. Let a,b € R and m € M
be such that abm € P. Then by Proposition 2.25, there is unique ¢; € ) such that
m € ¢+ N and abm € ab®(q1+N). Let ab®(q1+N) = g2+ N where g is a unique
element of () such that abg; + N C ¢ + N. Now, abm € P and abm € ¢ + N. So
there isn € N such that go+n = abm € P. Since P is subtractive andn € N C P,
we obtain ¢ € P. Then ¢ € QN P. Thus ab® (¢1 + N) = ¢2 + N € P/N(gnp).
Since P/Ngnp) is an AG2-absorbing subsemimodule, a ® (¢ + N) € P/N(gnp) or
b® (¢1 + N) € P/Nnpy or (ab)k ® M/N) € P/Ngnp) for some k € N.
Case 1: a ® (¢1 + N) € P/Ngnp). Then a ® (¢1 + N) = ¢' + N where ¢’ is a
unique element of @ N P such that ag; + N C ¢+ N. Since a® (¢; + N) C P and
a®(@+N)=q¢+ N, wegetag;+ N C P. Thus aqg; € P. Then aqg; € QN P. So
¢ = aqy. It follows from m € ¢; + N that am € a(¢1 + N) Caqg1 + N =¢ + N =
a® (¢ + N)C P. Thus am € P.
Case 2: b®(q1+N) € P/Ngnp)- Again, this is similar to Case 1, we can conclude
that bm € P.
Case 3: (ab)*M /N C P/Ngnp). Let @ € M. By Proposition 2.25, there is
unique g3 € @Q such that = € g3 + N and (ab)*z € (ab)* ® (g3 + N) = g4 + N
where ¢4 is a unique element of @) such that (ab)*q3 + N C ¢4 + N. Now,
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ga + N = (ab)* ® (g3 + N) € P/Nnp). Then (ab)fz € ¢4+ N C P. Thus
(ab)kM C P.
Therefore P is an AG2-absorbing subsemimodule of M. m

Theorem 4.7. Let M be an R-semimodule, N a Q-subsemimodule of M and P a

subtractive subsemimodule of M with N C P.

(i) If P is a weakly AG2-absorbing subsemimodule of M, then P/Nonpy is a
weakly AG2-absorbing subsemimodule of M/Nq).

(ii) If N and P/Ngnp) are weakly AG2-absorbing subsemimodules of M and
M /N q), respectively, then P is a weakly AG2-absorbing subsemimodule of M .

Proof. (i) Assume that P is a weakly AG2-absorbing subsemimodule of M. Then
P/Nnpy is a proper subsemimodule of M/N(g). Let a,b € R and ¢ + N €
M/N), where ¢ € @, be such that 0y + N # ab ® (¢1 + N) € P/Ngnp).
Then there exists unique ¢o € @ N P such that ab ® (¢ + N) = ¢2 + N where
abgi + N C g9 + N. Since ¢ + N C P, it follows that abg; + N C P and then
abq, € P.

Case 1: abg; = 0. Since abg; € (0p + N) N (g2 + N), we obtain that 0y = go.
Thus 0y, + N = go + N contradicts the fact that gg+N = ab® (¢ + N) # 0y + N.
Case 2: abq; # 0. Since P is a weakly AG2-absorbing subsemimodule of M, it can
be concluded that aq; € P or bq; € P or (ab)*M C P for some k € N. We claim
that a ® (¢1 + N) € P/Ngnp) or b® (1 + N) € P/N(gnp) or (ab)* € (P/Ngnp) :
M/N@)-

Subcase 2.1: aq; € P. Then aq; € QN P, so aqgi + N € P/Ngnp). Moreover,
a® (¢ + N)=¢q + N where ¢’ € @ is unique such that ag; + N C ¢’ + N. Then
¢ =aqp € QNP. Thus a ® (g1 + N) € P/Ngnp).

Subcase 2.2: bg; € P. We can conclude similarly to Subcase 2.1 that b ®
(g1 + N) € P/Ngnp).-

Subcase 2.3: (ab)*M C P. Let g+ N € M/Ng and (ab)*® (¢+N) = g3+ N
where ¢3 € @ is unique such that (ab)*q+ N C g3+ N. Then (ab)*q+ N = g3+ N
since (ab)*q € Q. Then g3 + N = (ab)fq + N C P since (ab)*M C P and
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N C P so that g3 € P because P is subtractive. Thus ¢3 € Q@ N P. Then
(ab)* ® (¢+ N) = g3+ N € P/Ngnp). Thus (ab)* © M /Ny C P/N(gnp). Hence
(ab)* € (P/Ngrp) : M/N(g)-

Therefore P/N(gnp) is a weakly AG2-absorbing subsemimodule of M/N(g).

(ii) Assume that N and P/Ngnp) are weakly AG2-absorbing subsemimodules
of M and M/Ny), respectively. Then P is a proper subsemimodule of M. Let
a,b € R and m € M be such that 0 # abm € P.

Case 1: 0 £ abm € N. Thenam € N C Porbm € N C P or (ab)f € (N: M) C
(P : M) for some k € N.

Case 2: 0 # abm € P~ N. Then by Proposition 2.25, there is unique ¢; € @
such that m € ¢s + N and abm € ab® (¢ + N). Let ab® (1 + N) = ¢o + N
where ¢, is a unique element of () such that abg; + N C ¢o + N. Now, abm € P
and abm € ¢ + N. So there is n € N such that ¢ +n = abm € P. Since P is
subtractive and n € N C P, we obtain ¢ € P. Then ¢, € Q N P. Assume that
Op+N =ab®(qi+N). Since g2+ N = ab® (¢ +N) =0y + N and abm € g2+ N,
it follows that abm € 0p; + N = N contradicts the fact that abm € P~ N. Thus
O +N #ab® (1 +N) =g+ N € P/Ngnp). Since P/N(gnp) is a weakly AG2-
absorbing subsemimodule, a ® (¢1 + N) € P/Ngnp) or b©® (¢ + N) € P/Ngnp)
or (ab)® ® M /N C P/Nnp) for some k € N.

Subcase 2.1: a® (¢1 + N) € P/Ngnp). Then a® (¢ + N) = ¢’ + N where ¢
is a unique element of @ N P such that agy + N C ¢+ N. Since a ® (¢ + N) C P
and a ® (g1 + N) = ¢+ N, we get that ag; + N C P. Thus aq; € P because P
is subtractive and N C P. Then aq; € QN P. So ¢ = aq;. Since m € ¢ + N,
it follows that am € a(¢ + N) Cag1+ N =¢ + N =a® (1 + N) C P. Thus
am € P.

Subcase 2.2: b® (¢1 + N) € P/Ngnp). Again, this is similar to Subcase 2.1,
we can conclude that bm € P.

Subcase 2.3: (ab)*M/N) C P/Nnp). Let z € M. By Proposition 2.25,
there is unique ¢z € @ such that x € g3+ N and (ab)*z € (ab)*© (g3 +N) = ¢4+ N
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where ¢4 is a unique element of ) such that (ab)*qs+ N C g4+ N. Now, ¢4 + N =
(ab)* ® (g3 + N) € P/N(gnp). Then (ab)*z € ¢, + N C P. Thus (ab)*M C P.
Therefore P is a weakly AG2-absorbing subsemimodule of M. m
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