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CHAPTER I

INTRODUCTION

In 2003, Anderson and Smith introduced the concept of weakly prime ideals of

a commutative ring in [1]. They defined a weakly prime ideal P of a commu-

tative ring R to be a proper ideal and if whenever a, b ∈ R with 0 6= ab ∈ P , then

a ∈ P or b ∈ P .

In 2007, Atani and Farzalipour introduced the concept of weakly prime sub-

modules over a commutative ring in [4]. They defined a weakly prime submod-

ule N of an R-module M to be a proper submodule and if whenever a ∈ R and

m ∈M with 0 6= am ∈ N , then m ∈ N or a ∈ (N : M). In the same year, Badawi

generalized the concept of prime ideals of a commutative ring to 2-absorbing ideals

of a commutative ring in [6]. He defined a 2-absorbing ideal I of a commutative

ring R to be a proper ideal and if whenever a, b, c ∈ R with abc ∈ I, then ab ∈ I

or ac ∈ I or bc ∈ I. Moreover, Badawi and Darani generalized the concept of

weakly prime ideals to weakly 2-absorbing ideals in [7]. They defined a weakly

2-absorbing ideal I of a commutative ring R to be a proper ideal and if when-

ever a, b, c ∈ R with 0 6= abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I.

In 2011, 2-absorbing and weakly 2-absorbing submodules have been introduced

and studied by Darani and Soheilnia, see [12]. A proper submodule N of an R-

module M is said to be a 2-absorbing submodule of M if whenever a, b ∈ R

and m ∈ M with abm ∈ N , then am ∈ N or bm ∈ N or ab ∈ (N : M) and

a proper submodule N of an R-module M is said to be a weakly 2-absorbing

submodule of M if whenever a, b ∈ R and m ∈ M with 0 6= abm ∈ N , then

am ∈ N or bm ∈ N or ab ∈ (N : M).

In 2012, Chaudhari introduced the concept of 2-absorbing ideals of a com-

mutative semiring in [8]. He defined a 2-absorbing ideal I of a commutative
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semiring R to be a proper ideal and if whenever a, b, c ∈ R with abc ∈ I, then

ab ∈ I or ac ∈ I or bc ∈ I.

Since a ring R is also an R-module, the concept of (weakly) prime and (weakly)

2-absorbing ideals of rings are the special case of the concept of (weakly) prime

and (weakly) 2-absorbing submodules. Similarly, a semiring R is an R-semimodule.

Moreover, semimodules are generalization of modules. This leads us to extend the

idea of 2-absorbing ideals of commutative semirings and (weakly) 2-absorbing sub-

modules over a commutative ring to (weakly) 2-absorbing subsemimodules over

a commutative semiring. In this research, we define a 2-absorbing subsemi-

module N of a semimodule M over a commutative semiring R to be a proper

subsemimodule and if whenever a, b ∈ R and m ∈M with abm ∈ N , then am ∈ N

or bm ∈ N or ab ∈ (N : M). And we define a proper subsemimodule N of

a semimodule M over a commutative semiring R to be a weakly 2-absorbing

subsemimodule of M if whenever a, b ∈ R and m ∈ M with 0 6= abm ∈ N ,

then am ∈ N or bm ∈ N or ab ∈ (N : M). Moreover, we define a weakly

2-absorbing ideal I of a commutative semiring R to be a proper ideal and if

whenever a, b, c ∈ R with 0 6= abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. Then, we

study some characterizations of 2-absorbing and weakly 2-absorbing subsemimod-

ules of semimodules over commutative semirings. In addition, we provide some

ralationships between being (weakly) 2-absorbing subsemimodules of semimodules

over commutative semirings and being (weakly) 2-absorbing ideals of commutative

semirings.

The inspiration of the next target of this research arose from the followings.

In 2010, prime subsemimodules were studied in multiplication R-semimodules by

Yesilot, Oral and Tekir in [14] and Atani and Kohan in [5]. An R-semimodule M is

called a multiplication R-semimodule if for all subsemimodule N of M there

exists an ideal I of R such that N = IM . Moreover, the product of subsemi-

modules are introduced. Let N and K be subsemimodules of a multiplication

R-semimodule M with N = IM and K = JM for some ideals I and J of R.

The product of N and K, denoted by NK, is defined by NK = (IJ)M . This
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definition is, of course, independent of the choices of ideals I and J . A multiplica-

tion R-semimodule is interesting because its elements are allowed to be multiplied

in some sense. For this reason, we study 2-absorbing subsemimodules of multi-

plication R-semimodules by extending some results of prime subsemimodules of

multiplication R-semimodules.

The collection of all prime subtractive subsemimodules of an R-semimodule is

a topology studied by Atani, S.E., Atani, R.E. and Tekir, U. in 2011, see [3]. This

topology is called the Zariski topology. In this work, we are also interested in

studying that the collection of all 2-absorbing subtractive subsemimodules of an R-

semimodule does satisfy the Zariski topology. We call an R-semimodule satisfying

the Zariski topology a top semimodule .

The notion of primary ideals of a commutative semiring and primary subsemi-

modules of semimodules over a commutative semiring have been introduced and

studied by Atani and Kohan in 2010, see [5]. They defined a primary ideal I

of a commutative semiring R to be a proper ideal and if whenever a, b ∈ R with

ab ∈ I, then a ∈ I or bk ∈ I for some k ∈ N and a primary subsemimodule N

of an R-semimodule M to be a proper subsemimodule and if whenever a ∈ R and

m ∈ M with am ∈ N , then m ∈ N or ak ∈ (N : M) for some k ∈ N. Later in

2011, Chaudhari and Bonde extended these to weakly primary ideals and weakly

primary subsemimodules, respectively, see [10]. They defined a weakly primary

ideal I of a commutative semiring R to be a proper ideal and if whenever a, b ∈ R

with 0 6= ab ∈ I, then a ∈ I or bk ∈ I for some k ∈ N and a weakly primary

subsemimodule N of an R-semimodule M to be a proper subsemimodule and

if whenever a ∈ R and m ∈ M with 0 6= am ∈ N , then m ∈ N or ak ∈ (N : M)

for some k ∈ N. Besides, in the same year, the idea of 2-absorbing and weakly

2-absorbing submodules of modules over a commutative ring have been introduced

by Darani and Soheilnia in [12].

In this reseach, we also aim to study the notion that generalizes primary and

weakly primary subsemimodules and ideals in the same way as prime and weakly

prime subsemimodules and ideals are extended. We define an almost general-
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ized 2-absorbing subsemimodule N of an R-semimodule M to be a proper

subsemimodule and if whenever a, b ∈ R and m ∈M with abm ∈ N , then am ∈ N

or bm ∈ N or (ab)k ∈ (N : M) for some k ∈ N, a weakly almost general-

ized 2-absorbing subsemimodule N of an R-semimodule M to be a proper

subsemimodule and if whenever a, b ∈ R and m ∈ M with 0 6= abm ∈ N , then

am ∈ N or bm ∈ N or (ab)k ∈ (N : M) for some k ∈ N, an almost generalized

2-absorbing ideal I of a commutative semiring R to be a proper ideal and if

whenever a, b, c ∈ R with abc ∈ I, then ab ∈ I or ac ∈ I or (bc)k ∈ I for some

k ∈ N and a weakly almost generalized 2-absorbing ideal I of a commuta-

tive semiring R to be a proper ideal and if whenever a, b, c ∈ R with 0 6= abc ∈ I,

then ab ∈ I or ac ∈ I or (bc)k ∈ I for some k ∈ N. Some of our results are

analogous to the results given in [5], [10] and [12].

For this thesis, we give in Chapter II some basic definitions, examples and

some known results. In Chapter III, we study 2-absorbing and weakly 2-absorbing

subsemimodules of semimodules over a commutative semiring and those of multi-

plication R-semimodules over a commutative semiring and 2-absorbing and weakly

2-absorbing ideals of commutative semirings. Moreover, we find necessary and suf-

ficient conditions of an R-semimodule in order to make it be a top semimodule.

Finally, in Chapter IV, we investigate almost generalized 2-absorbing and weakly

almost generalized 2-absorbing subsemimodules and ideals.



CHAPTER II

PRELIMINARIES

In this chapter, we collect definitions, some notation, terminology and some

known results which will be used for this thesis.

Let Z denote the set of all intergers, Z+ the set of all positive integers, Z− the

set of all negative integers, N the set of natural numbers (positive intergers), Z+
0

= Z+ ∪ {0}, Z−0 = Z− ∪ {0} and Zn =
{

0, 1, . . . , n− 1
}

where n ∈ N.

Definition 2.1. [13] A semiring is a nonempty set R on which the operations

of addition and multiplication are defined such that the following conditions are

satisfied:

(1) (R,+) is a commutative monoid with identity element 0R,

(2) (R, ·) is a monoid with identity element 1R (we write ab instead of a · b for all

a, b ∈ R),

(3) the multiplication distributes over the addition from both sides, and

(4) 0Rr = 0 = r0R for all r ∈ R.

Definition 2.2. [13] An ideal of a semiring R is a nonempty subset I of R

satisfying the following conditions:

(1) if a, b ∈ I, then a+ b ∈ I, and

(2) if a ∈ I and r ∈ R, then ra ∈ I and ar ∈ I.

Definition 2.3. [13] Let R be a semiring. A left R-semimodule (or a left

semimodule over R) is a commutative monoid (M,+) with additive identity 0M

for which a function R×M →M , denoted by (r,m) 7→ rm and called the scalar

multiplication, satisfies the following conditions for all elements r and r′ of R

and all elements m and m′ of M :

(1) (rr′)m = r(r′m),
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(2) r(m+m′) = rm+ rm′,

(3) (r + r′)m = rm+ r′m,

(4) 1Rm = m, and

(5) r0M = 0M = 0Rm.

A right R-semimodule is defined analogously to a left R-semimodule. We sim-

ply, sometimes, write 0 instead of 0R and 0M . In this thesis, all semirings are

commutative with nonzero identity. A semiring (R,+, ·) is commutative if · is

commutative, i.e., ab = ba for all a, b ∈ R. Moreover, by an R-semimodule we

mean a left R-semimodule, i.e., a left semimodule over a commutative semiring R.

Example. (1) Semirings R are R-semimodules.

(2) Modules over a ring R are R-semimodules.

(3) Vector spaces over a field F are F -semimodules.

(4) Let R = Z+
0 and M = 2Z+

0 . Then (2Z+
0 ,+, ·) is an R-semimodule, which is

not an R-module.

From the definitions of semirings and semimodules and above example, we see

that every ring with identity is a semiring and every unital module is a semimodule.

In other words, semirings and semimodules are generalization of rings with identity

and unital modules, respectively.

Definition 2.4. [13] Let M be an R-semimodule and N a subset of M . We say

that N is a subsemimodule of M percisely when N is itself an R-semimodule

with respect to the operations for M .

Proposition 2.5. [13] Let M be an R-semimodule and {Ni | i ∈ Λ} a family of

subsemimodules of M . Then
⋂
Ni is a subsemimodule of M .

Definition 2.6. [13] Let M be an R-semimodule. The set
∑
i∈Λ

Ni consists of all

finite sums of elements of
⋃
i∈Λ

Ni where Ni is a subsemimodule of M for all i.

Proposition 2.7. [13] Let M be an R-semimodule. If Ni is a subsemimodule of M

for all i, then
∑
i∈Λ

Ni is a subsemimodule of M which is the smallest subsemimodule

of M containing each of the Ni.
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Proposition 2.8. LetM be an R-semimodule, I and J ideals of R. Then (IJ)M =

I(JM).

Proof. First, assume that x ∈ (IJ)M . Then there exist ai ∈ I, bi ∈ J where

i ∈ {1, 2, . . . , n} and m ∈ M such that x = (
n∑

i=1

aibi)m. Thus x = (
n∑

i=1

aibi)m =

(a1b1)m+ (a2b2)m+ · · ·+ (anbn)m = a1(b1m) + a2(b2m) + · · ·+ an(bnm) ∈ I(JM).

Therefore (IJ)M ⊆ I(JM).

Next, assume that x ∈ I(JM). Thus x = a(bm) for some a ∈ I, b ∈ J and

m ∈M . Then x = a(bm) = (ab)m ∈ (IJ)M .

Therefore I(JM) ⊆ (IJ)M .

Notation: [10] Let M be an R-semimodule, N a subsemimodule of M , A a

nonempty subset of M and m ∈M . Let

(N : A) = {r ∈ R | rA ⊆ N} and

(N : m) =
(
N : {m}

)
= {r ∈ R | rm ∈ N}.

Example. Let R = Z+
0 , M = Z6, N = {0̄, 3̄} and A = {1̄, 2̄}.

Then (N : A) =
(
{0̄, 3̄} : {1̄, 2̄}

)
= 3Z+

0 .

Proposition 2.9. [13] Let M be an R-semimodule, N and N ′ subsemimodules

of M . If A is a nonempty subset of M , then (N ∩N ′ : A) = (N : A) ∩ (N ′ : A).

Proposition 2.10. [13] Let M be an R-semimodule, N a subsemimodule of M

and m ∈M . Then (N : M) and (N : m) are ideals of R.

Proposition 2.11. Let M be an R-semimodule and N a subsemimodule of M .

Then N is a proper subsemimodule of M if and only if (N : M) is a proper ideal

of R.

Proof. First, assume that N is a proper subsemimodule of M . Suppose that (N :

M) = R. Thus 1 ∈ (N : M). Then M ⊆ N contradicts the fact that N is a proper

subsemimodule of M .

Therefore (N : M) is a proper ideal of R.
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Next, assume that (N : M) is a proper ideal of R. Suppose that N = M . Since

RM ⊆M , we get that R = (M : M) = (N : M) contradicts the fact that (N : M)

is a proper ideal of R.

Therefore N is a proper subsemimodule of M .

Definition 2.12. [10] An ideal I of a semiring R is called a subtractive ideal

(or k-ideal) if a, a+ b ∈ I and b ∈ R, then b ∈ I.

A subsemimodule N of an R-semimodule M is called a subtractive subsemi-

module (or k-subsemimodule) if x, x+ y ∈ N and y ∈M , then y ∈ N .

Example. (1) Let R = Z+
0 . Consider I = 2Z+

0 . Clearly, I is an ideal of R. Next,

we show that I is subtractive. Let a, a + b ∈ I and b ∈ R. Then a = 2k and

a + b = 2k′ for some k, k′ ∈ Z+
0 . Thus 2k + b = 2k′. We get that 2(k′ − k) = b.

Since b ∈ Z+
0 , we have k′ − k ∈ Z+

0 . Hence b ∈ 2Z+
0 = I.

Therefore I is a subtractive ideal of R.

(2) Let M be an R-semimodule. Clearly, {0} is a subsemimodule of M . Next,

we show that {0} is subtractive. Let a, a + b ∈ {0} and b ∈ M . Then a = 0 and

a+ b = 0. Thus b = 0 + b = a+ b = 0. Hence b ∈ {0}.

Therefore {0} is always a subtractive subsemimodule of any R-semimodule M .

Proposition 2.13. [10] Let M be an R-semimodule. If N is a subtractive sub-

semimodule of M and m ∈ M , then (N : M) and (N : m) are subtractive ideals

of R.

Definition 2.14. [13] Let M be an R-semimodule. The annihilator of M ,

denoted by ann(M), is defined as ann(M) = {r ∈ R | rm = 0 for all m ∈M} =(
{0} : M

)
.

Definition 2.15. [13] A faithful R-semimodule M is one where the scalar mul-

tiplication of each r 6= 0 in R on M is nontrivial (i.e. rx 6= 0 for some x in M).

Equivalently, an R-semimodule M is faithful if the annihilator of M is the zero

ideal.
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Definition 2.16. [12] Let R be a commutative semiring. A proper ideal P of R is

said to be a prime ideal if whenever a, b ∈ R with ab ∈ P , then a ∈ P or b ∈ P .

A proper ideal P of R is said to be a weakly prime ideal if whenever a, b ∈ R

with 0 6= ab ∈ P , then a ∈ P or b ∈ P .

A proper ideal P of R is said to be a primary ideal if whenever a, b ∈ R with

ab ∈ P , then a ∈ P or bk ∈ P for some k ∈ N.

A proper ideal P of R is said to be a weakly primary ideal if whenever

a, b ∈ R with 0 6= ab ∈ P , then a ∈ P or bk ∈ P for some k ∈ N.

Definition 2.17. [10] Let M be an R-semimodule. A proper subsemimodule N

of M is said to be a prime subsemimodule if whenever a ∈ R and m ∈M with

am ∈ N , then m ∈ N or a ∈ (N : M).

A proper subsemimodule N of M is said to be a weakly prime subsemi-

module if whenever a ∈ R and m ∈ M with 0 6= am ∈ N , then m ∈ N or

a ∈ (N : M).

A proper subsemimodule N of M is said to be a primary subsemimodule

if whenever a ∈ R and m ∈ M with am ∈ N , then m ∈ N or ak ∈ (N : M) for

some k ∈ N.

A proper subsemimodule N of M is said to be a weakly primary subsemi-

module if whenever a ∈ R and m ∈ M with 0 6= am ∈ N , then m ∈ N or

ak ∈ (N : M) for some k ∈ N.

Definition 2.18. [8] Let R be a commutative semiring. A proper ideal I of R is

said to be a 2-absorbing ideal if whenever a, b, c ∈ R with abc ∈ I, then ab ∈ I

or ac ∈ I or bc ∈ I.

Definition 2.19. [12] Let M be a module over a commutative ring R. A proper

submodule N of M is said to be a 2-absorbing submodule if whenever a, b ∈ R

and m ∈M with abm ∈ N , then am ∈ N or bm ∈ N or ab ∈ (N : M).

A proper submodule N of M is said to be a weakly 2-absorbing submodule

if whenever a, b ∈ R and m ∈ M with 0 6= abm ∈ N , then am ∈ N or bm ∈ N or

ab ∈ (N : M).
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One can see that (weakly) prime and (weakly) 2-absorbing ideals of a com-

mutative ring are the special cases of (weakly) prime and (weakly) 2-absorbing

submodules of a module over a commutative ring. Also known that any semir-

ing R is an R-semimodule and semimodules are generalization of modules. These

guided us to extend the idea of 2-absorbing ideals of a commutative semiring and

(weakly) 2-absorbing submodules of a module over a commutative ring to weakly

2-absorbing ideals of a commutative semiring and (weakly) 2-absorbing subsemi-

modules of a semimodule over a commutative semiring, respectively. Moreover, we

extend the concept of (weakly) 2-absorbing subsemimodules to (weakly) almost

generalized 2-absorbing subsemimodules.

Definition 2.20. Let R be a commutative semiring. A proper ideal I of R is said

to be a weakly 2-absorbing ideal if whenever a, b, c ∈ R with 0 6= abc ∈ I, then

ab ∈ I or ac ∈ I or bc ∈ I.

A proper ideal I of R is said to be an almost generalized 2-absorbing ideal

(or AG2-absorbing ideal for short) if whenever a, b, c ∈ R with abc ∈ I, then

ab ∈ I or ac ∈ I or (bc)k ∈ I for some k ∈ N.

A proper ideal I of R is said to be a weakly almost generalized 2-absorbing

ideal (or weakly AG2-absorbing ideal for short) if whenever a, b, c ∈ R with

0 6= abc ∈ I, then ab ∈ I or ac ∈ I or (bc)k ∈ I for some k ∈ N.

Further, while we have done the research, the concept of a weakly 2-absorbing

ideal of a commutative semiring is defined in the same way that our definition by

Darani in [11].

Definition 2.21. Let M be an R-semimodule. A proper subsemimodule N of M

is said to be a 2-absorbing subsemimodule if whenever a, b ∈ R and m ∈ M

with abm ∈ N , then am ∈ N or bm ∈ N or ab ∈ (N : M).

A proper subsemimodule N of M is said to be a weakly 2-absorbing sub-

semimodule if whenever a, b ∈ R and m ∈ M with 0 6= abm ∈ N , then am ∈ N

or bm ∈ N or ab ∈ (N : M).
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A proper subsemimodule N of M is said to be an almost generalized 2-

absorbing subsemimodule (or AG2-absorbing subsemimodule for short)

if whenever a, b ∈ R and m ∈ M with abm ∈ N , then am ∈ N or bm ∈ N or

(ab)k ∈ (N : M) for some k ∈ N.

A proper subsemimodule N of M is said to be a weakly almost generalized

2-absorbing subsemimodule (or weakly AG2-absorbing subsemimodule

for short) if whenever a, b ∈ R and m ∈ M with 0 6= abm ∈ N , then am ∈ N or

bm ∈ N or (ab)k ∈ (N : M) for some k ∈ N.

Remark. From the definitions, we obtain the followings.

(1) {0} is weakly 2-absorbing and weakly AG2-absorbing subsemimodules.

(2) 2-absorbing subsemimodules are AG2-absorbing subsemimodules. But the

converse does not necessary hold. For example, consider the case where R = Z+
0 ,

M = Z+
0 and N = 8Z+

0 . Let x ∈ N , i.e., x = 8k for some k ∈ Z+
0 . Consider

a, b ∈ R and m ∈M with ab(m) = 8k ∈ N . Then there are 5 ways to write 8k

as a product of ab(m) as follows: 2a1 · 2a2 · (2a3); 4b1 · 1b2 · (2b3); 8c1 · 1c2 · (1c3);

2d1 ·1d2 · (4d3) and 1e1 ·1e2 · (8e3) where 0 ≤ ai, bi, ci, di, ei ≤ k; ai, bi, ci, di, ei ∈ Z+
0

and i ∈ {1, 2, 3}.

If 2a1 · 2a2 · (2a3) ∈ N , then (2a1 · 2a2)2 ∈ (N : M).

If 4b1 · 1b2 · (2b3) ∈ N , then (4b1 · 1b2)2 ∈ (N : M).

If 8c1 · 1c2 · (1c3) ∈ N , then 8c1 · 1c2 ∈ (N : M).

If 2d1 · 1d2 · (4d3) ∈ N , then (2d1 · 1d2)3 ∈ (N : M).

If 1e1 · 1e2 · (8e3) ∈ N , then 1e1 · 8e3 ∈ N .

Then N is an AG2-absorbing subsemimodule of M which is not 2-absorbing be-

cause 2 · 2 · (2) ∈ N but 2 · 2 /∈ N and 2 · 2 /∈ (N : M).

(3) Weakly 2-absorbing subsemimodules are weakly AG2-absorbing subsemi-

modules. But the converse does not necessary hold. For example, consider the case

where R = Z+
0 , M = Z24 and N =

{
0̄, 8̄, 16

}
. Then N is a weakly AG2-absorbing

subsemimodule of M which is not weakly 2-absorbing because 2 · 2 · (2̄) ∈ N but

2 · 2̄ /∈ N and 2 · 2 /∈ (N : M).

(4) AG2-absorbing subsemimodules are weakly AG2-absorbing subsemimod-
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ules. But the converse does not necessary hold. For example, consider the case

where R = Z+
0 , M = Z12 and N = {0̄}. Then N is a weakly AG2-absorbing sub-

semimodule of M which is not AG2-absorbing because 2 · 2 · (3̄) ∈ N but 2 · 3̄ /∈ N

and (2 · 2)k /∈ (N : M) for all k ∈ N.

(5) 2-absorbing subsemimodules are weakly 2-absorbing subsemimodules. But

the converse does not necessary hold. For example, consider the case where R =

Z+
0 , M = Z12 and N = {0̄}. Then N is a weakly 2-absorbing subsemimodule of M .

From (4), we know that N is not AG2-absorbing so that N is not 2-absorbing

by (2).

From (1), we see that {0} is always a weakly 2-absorbing subsemimodule, but

it is not a 2-absorbing subsemimodule as shown in the following proposition.

Proposition 2.22. If R = Z+
0 and M = Zn where n = pqr; p, q, r ∈ N and

1 < p, q, r < n, then the zero subsemimodule of M is not 2-absorbing.

Proof. Assume that R = Z+
0 and M = Zn where n = pqr with p, q, r ∈ N and

1 < p, q, r < n. Note that pq(r) = n ∈ {0̄} in Zn. Since 1 < pr, qr, pq < n, it

follows that pr /∈ {0̄}, qr /∈ {0̄} and pq /∈
(
{0̄} : Zn

)
.

Therefore {0̄} is not 2-absorbing.

We see that weakly 2-absorbing subsemimodules are generalization of 2-absorbing

subsemimodules.

Proposition 2.23. Let M be an R-semimodule and N a subsemimodule of M .

(i) If N is a prime subsemimodule, then N is a 2-absorbing subsemimodule.

(ii) If N is a weakly prime subsemimodule, then N is a weakly 2-absorbing sub-

semimodule.

Proof. (i) Assume that N is a prime subsemimodule. Let a, b ∈ R and m ∈ M

with abm ∈ N , but am /∈ N and bm /∈ N . We claim that ab ∈ (N : M). Since

abm ∈ N and N is a prime subsemimodule, m ∈ N or ab ∈ (N : M). If m ∈ N ,

then am ∈ N contradicts am /∈ N . Thus ab ∈ (N : M)

Therefore N is a 2-absorbing subsemimodule.
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(ii) The proof is similar to that of (i).

From Proposition 2.23, we obtain that prime and weakly prime subsemimodules

are 2-absorbing and weakly 2-absorbing subsemimodules, respectively. But the

converse does not necessary hold. For example, consider the case where R = Z+
0 ,

M = Z+
0 and N = 6Z+

0 . Then N is a (weakly) 2-absorbing subsemimodule of M

which is not weakly prime because 0 6= 2 · 3 ∈ N but 2 /∈ N and 3 /∈ (N : M).

Thus N is not a prime subsemimodule. Therefore 2-absorbing and weakly 2-

absorbing subsemimodules are indeed generalizations of prime and weakly prime

subsemimodules.

Given a submodule of a module leads to a factor module. Then we are curious

whether the construction of a factor semimodule can be made. Next, we study the

construction of a factor semimodule.

Definition 2.24. [2] A subsemimodule N of an R-semimodule M is called a par-

titioning subsemimodule if there exists a nonempty subset Q of M such that

(1) RQ ⊆ Q where RQ = {rq | r ∈ R and q ∈ Q},

(2) M =
⋃
{q +N | q ∈ Q} where q +N = {q + n | n ∈ N}, and

(3) if q1, q2 ∈ Q, then (q1 +N) ∩ (q2 +N) 6= ∅ if and only if q1 = q2.

In general, a partitioning subsemimodule N via a nonempty subset Q is called

a Q-subsemimodule.

The construction of a factor semimodule [2]

Let M be an R-semimodule and N a Q-subsemimodule of M . Let M/N(Q) =

{q +N | q ∈ Q}. Then M/N(Q) is a semimodule over R under the addition ⊕ and

the scalar multiplication � defined as follows: for any q1, q2, q ∈ Q and r ∈ R,

(q1 +N)⊕ (q2 +N) = q3 +N and r � (q +N) = q4 +N

where q3, q4 ∈ Q are the unique elements such that q1 + q2 + N ⊆ q3 + N and

rq +N ⊆ q4 +N . The R-semimodule M/N(Q) is called a factor semimodule .

To see that⊕ and� are well-defined, by (2) of the definition ofQ-subsemimodules,

there are q3, q4 ∈ Q such that q1 + q2 + N ⊆ q3 + N and rq + N ⊆ q4 + N . For
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the uniqueness of q3 and q4, (3) of the same definition guarantees this. Suppose

that there exist q′3, q
′
4 ∈ Q such that q1 + q2 + N ⊆ q′3 + N and rq + N ⊆ q′4 + N .

Thus (q3 +N)∩ (q′3 +N) 6= ∅ and (q4 +N)∩ (q′4 +N) 6= ∅. Then we obtain that

q3 = q′3 and q4 = q′4.

Since M/N(Q) is a semimodule, its zero element must exist. Let q0 + N be

the zero element of M/N(Q). For every q ∈ Q, from (1) of Definition 2.24, we

obtain that 0M = 0Rq ∈ Q. Consider (0M + N) ⊕ (q0 + N) = 0M + N because

q0 + N is the zero element. Thus 0M must be the unique element in Q such that

0M + q0 +N ⊆ 0M +N . Then q0 +N ⊆ 0M +N . So (q0 +N)∩ (0M +N) 6= ∅. We

can conclude that 0M = q0. This shows that the zero element of the semimodule

M/N(Q) is 0M +N .

Proposition 2.25. [10] Let N be a Q-subsemimodule of an R-semimodule M . If

r ∈ R and m ∈ M , then there exists a unique q ∈ Q such that m ∈ q + N and

rm ∈ r � (q +N).

Proposition 2.26. [9] Let M be an R-semimodule, N a Q-subsemimodule of M

and P a subtractive subsemimodule of M with N ⊆ P . Then the followings hold:

(i) N is a Q ∩ P -subsemimodule of P .

(ii) P/N(Q∩P ) = {q +N | q ∈ Q ∩ P} is a subsemimodule of M/N(Q).

Remark. The zero element of P/N(Q∩P ) is the same as the zero element of M/N(Q)

which is 0M +N .

Definition 2.27. [12] A subsemimodule N of an R-semimodule M is called a

nilpotent subsemimodule if (N : M)kN = {0} for some k ∈ N.

Definition 2.28. [13] An R-semimodule M is called cyclic if there exists an

element m ∈M such that M = Rm.

Let consider ideals (N : M) and (N : m) where M is a cyclic R-semimodule.

Let R = Z+
0 , M = Z6 = R1̄ and N = {0̄}. Then (N : M) =

(
{0̄} : Z6

)
= 6Z+

0 ,

(N : 2̄) =
(
{0̄} : 2̄

)
= 3Z+

0 and (N : 1̄) =
(
{0̄} : 1̄

)
= 6Z+

0 . This shows that

(N : R1̄) 6= (N : 2̄) but (N : R1̄) = (N : 1̄). Notice that 1̄ is a generator of M .
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Proposition 2.29. Let M be a cyclic R-semimodule with M = Rm. Then the

ideals (N : M) and (N : m) are identical.

Proof. It is clear that (N : M) ⊆ (N : m). Next, let x ∈ (N : m). Then xm ∈ N .

Thus Rxm ⊆ RN ⊆ N . So xRm ⊆ N and then xM ⊆ N , i.e., x ∈ (N : M).

Hence (N : m) ⊆ (N : M).

Therefore (N : M) = (N : m) as desired.

Definition 2.30. [14] Let M be an R-semimodule. We call M a multiplication

R-semimodule if for all subsemimodule N of M there exists an ideal I of R such

that N = IM and I is called a presentation ideal of N .

Note: [14] If M is a multiplication R-semimodule and N a subsemimodule of M ,

then there exists an ideal I of R such that N = IM . Thus I ⊆ (N : M). Then

N = IM ⊆ (N : M)M ⊆ N and therefore N = (N : M)M . This shows that one

presentation ideal of a subsemimodule N of a multiplication R-semimodule M is

(N : M).

Proposition 2.31. If M is a cyclic R-semimodule with generator m, then M is

a multiplication R-semimodule.

Proof. Assume that M = Rm for some m ∈M . Let N be a subsemimodule of M .

We claim that N = (N : m)Rm. First, let x ∈ N . Then there exists r ∈ R such

that x = rm, i.e., r ∈ (N : m). We obtain that x = rm ∈ rRm ⊆ (N : m)Rm.

Hence x ∈ (N : m)Rm. Next, n ∈ (N : m)Rm. Then there exist r ∈ (N : m)

and s ∈ R such that n = rsm. Since r ∈ (N : m), we get that rm ∈ N . Then

n = rsm = srm ∈ sN ⊆ N . Hence n ∈ N . Thus N = (N : m)Rm = (N : m)M

as claimed.

Therefore M is a multiplication R-semimodule.

The following proposition shows that in order to verify an R-semimodule M

is a multiplication R-semimodule it is sufficient to prove only that there exists a

presentation ideal of each subsemimodule of the form Rm where m ∈M .
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Proposition 2.32. [14] An R-semimodule M is a multiplication R-semimodule if

and only if there exists an ideal I of R such that Rm = IM for each m ∈M .

Definition 2.33. [14] Let M be a multiplication R-semimodule. Moreover, let N

and K be subsemimodules of M with N = IM and K = JM for some ideals I

and J of R. The product of N and K, denoted by NK, is defined by NK =

(IJ)M .

For m1,m2 ∈ M , the product of Rm1 and Rm2 is Rm1Rm2 = (I1M)(I2M) =

(I1I2)M where I1 and I2 are presentation ideals of the subsemimodules Rm1 and

Rm2, respectively. We write m1m2 instead of Rm1Rm2.

For a subsemimodule N ofM , ifN = IM for some ideal I of R, thenNn = InM

for any n ∈ N.

Theorem 2.34. [14] The product of two subsemimodules is independent of their

presentation ideals.

Theorem 2.34 makes sure that the product of subsemimodules N and K of a

multiplication R-semimodule is well-defined.

Definition 2.35. [13] Let J be an ideal of a commutative semiring R. Then the

radical of J , denoted by
√
J , is defined to be the intersection of all prime ideals

of R containing J .

For an ideal J of a commutative semiring R, one can show that the set .

{x ∈ R | xn ∈ J for some n ∈ N} is an ideal of R.

Proposition 2.36. [13] If J is an ideal of a commutative semiring R, then
√
J

is, in fact, the ideal {x ∈ R | xn ∈ J for some n ∈ N}.

We can rewrite the condition for being (weakly) AG2-absorbing ideals and

(weakly) AG2-absorbing subsemimodules as follows:

An AG2-absorbing ideal of a semiring R is a proper ideal I of R if whenever

a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈
√
I.

A weakly AG2-absorbing ideal of a semiring R is a proper ideal I of R if

whenever a, b, c ∈ R and 0 6= abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈
√
I.
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An AG2-absorbing subsemimodule of an R-semimodule M is a proper subsemi-

module N of M if whenever a, b ∈ R and m ∈M with abm ∈ N , then am ∈ N or

bm ∈ N or ab ∈
√

(N : M).

A weakly AG2-absorbing subsemimodule of an R-semimodule M is a proper

subsemimodule N of M if whenever a, b ∈ R and m ∈M with 0 6= abm ∈ N , then

am ∈ N or bm ∈ N or ab ∈
√

(N : M).

Definition 2.37. [10] LetN be a proper subsemimodule of a nonzeroR-semimodule

M . Then the M-radical of N , denoted by radM(N), is defined to be the inter-

section of all prime subsemimodules of M containing N .

Since a semiring R is also an R-semimodule, the radical of an ideal N of R

is the special case of the M -radical of N where N is a subsemimodule of an R-

semimodule M , i.e., radM(N) =
√
N .

Proposition 2.38. [5] If M is an R-semimodule and N is a subsemimodule of M ,

then
√

(N : M)M ⊆ radM(N).



CHAPTER III

2-ABSORBING SUBSEMIMODULES AND

WEAKLY 2-ABSORBING SUBSEMIMODULES

OVER COMMUTATIVE SEMIRINGS

In this chapter, we extend some definitions and results of [5], [6], [10], [12] and

[14] of modules over a commutative ring to those of semimodules over a commu-

tative semiring.

It is known that any intersections of prime subsemimodules are not necessary

prime subsemimodules. The following theorem shows the result of any intersections

of each pair of prime and weakly prime subsemimodules.

For the rest of this thesis, unless otherwise stated, let R be a commutative

semiring with nonzero identity.

Theorem 3.1. Let M be an R-semimodule.

(i) The intersection of each pair of distinct prime subsemimodules of M is a

2-absorbing subsemimodule of M .

(ii) The intersection of each pair of distinct weakly prime subsemimodules of M

is a weakly 2-absorbing subsemimodule of M .

Proof. (i) Let N and K be two distinct prime subsemimodules of M . Then

N ∩ K is a proper subsemimodule of M . Assume that a, b ∈ R and m ∈ M

with abm ∈ N ∩ K, but am /∈ N ∩ K and bm /∈ N ∩ K. Then abm ∈ N and

abm ∈ K. We claim that ab ∈ (N ∩K : M).

Case 1: am /∈ N and bm /∈ N . Since abm ∈ N and N is a prime subsemimodule,

bm ∈ N or a ∈ (N : M). So a ∈ (N : M) because bm /∈ N . Thus aM ⊆ N so that

am ∈ N contradicts am /∈ N . Hence Case 1 is impossible.
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Case 2: am /∈ K and bm /∈ K. The proof is similar to that of Case 1 so that

Case 2 is impossible.

Case 3: am /∈ N and bm /∈ K. Since b(am) = abm ∈ N which is a prime sub-

semimodule, am ∈ N or b ∈ (N : M). Thus b ∈ (N : M) because am /∈ N . We

obtain that bM ⊆ N . Then abM = baM ⊆ bM ⊆ N . Thus ab ∈ (N : M). The

fact that abm ∈ K also leads to ab ∈ (K : M). Thus ab ∈ (N : M) ∩ (K : M) =

(N ∩K : M).

Case 4: am /∈ K and bm /∈ N . Then ab ∈ (N ∩K : M) is obtained similarly to

Case 3.

Therefore the intersection of each pair of distinct prime subsemimodules of M

is a 2-absorbing subsemimodule of M .

(ii) Let P and Q be two distinct weakly prime subsemimodules of M . Then

P ∩ Q is a proper subsemimodule of M . Assume that a, b ∈ R and m ∈ M with

0 6= abm ∈ P ∩ Q, but am /∈ P ∩ Q and bm /∈ P ∩ Q. Then 0 6= abm ∈ P and

0 6= abm ∈ Q. We claim that ab ∈ (P ∩Q : M).

Case 1: am /∈ P and bm /∈ P . Since 0 6= abm ∈ P and P is a weakly prime

subsemimodule, bm ∈ P or a ∈ (P : M). So a ∈ (P : M) because bm /∈ P . Thus

aM ⊆ P so that am ∈ P contradicts am /∈ P . Hence Case 1 is impossible.

Case 2: am /∈ Q and bm /∈ Q. This is not possible either.

Case 3: am /∈ P and bm /∈ Q. Since 0 6= abm ∈ P which is a weakly prime

subsemimodule, am ∈ P or b ∈ (P : M). Thus b ∈ (P : M) because am /∈ P .

We obtain that bM ⊆ P . Then abM = baM ⊆ bM ⊆ P . Thus ab ∈ (P : M).

Similarly, we obtain that ab ∈ (Q : M). Now, we have ab ∈ (P : M) and

ab ∈ (Q : M). So ab ∈ (P : M) ∩ (Q : M) = (P ∩Q : M).

Case 4: am /∈ Q and bm /∈ P . Again ab ∈ (P ∩Q : M) similarly to Case 3.

Therefore the intersection of each pair of distinct weakly prime subsemimodules

of M is a weakly 2-absorbing subsemimodule of M .

However, it is not necessary true that the intersection of any finite (weakly)



20

prime subsemimodules of M is a (weakly) 2-absorbing subsemimodule of M . For

example, let R = Z+
0 , M= Z+

0 , N=2Z+
0 , K=3Z+

0 and P=5Z+
0 . Then N , K and P

are prime subsemimodules of M . But N∩K∩P= 30Z+
0 which is not a 2-absorbing

subsemimodule of M because 3 · 5 · (2) ∈ 30Z+
0 but 3 · (2) /∈ 30Z+

0 , 5 · (2) /∈ 30Z+
0

and 3 · 5 /∈ (30Z+
0 : Z+

0 ).

Recall that if N is a Q-subsemimodule of an R-semimodule M , then we can con-

struct a factor semimodule M/N(Q). The next results concern relationship between

(weakly) 2-absorbing subsemimodules and (weakly) 2-absorbingQ-subsemimodules.

Theorem 3.2. Let M be an R-semimodule, N a Q-subsemimodule of M and

P a subtractive subsemimodule of M with N ⊆ P . Then P is a 2-absorbing

subsemimodule of M if and only if P/N(Q∩P ) is a 2-absorbing subsemimodule of

M/N(Q).

Proof. First, assume that P is a 2-absorbing subsemimodule of M . Recall that

P/N(Q∩P ) is a subsemimodule of M/N(Q) by Proposition 2.26. Moreover, P/N(Q∩P )

is proper because P is proper. Let a, b ∈ R and q1 + N ∈ M/N(Q), where q1 ∈ Q,

be such that ab� (q1 +N) ∈ P/N(Q∩P ). Then there exists unique q2 ∈ Q∩P such

that ab � (q1 + N) = q2 + N where abq1 + N ⊆ q2 + N . Since q2 + N ⊆ P , it

follows that abq1 + N ⊆ P . Since N ⊆ P and P is a subtractive subsemimodule,

abq1 ∈ P . Since P is a 2-absorbing subsemimodule of M , it can be concluded that

aq1 ∈ P or bq1 ∈ P or abM ⊆ P . We claim that a � (q1 + N) ∈ P/N(Q∩P ) or

b� (q1 +N) ∈ P/N(Q∩P ) or ab ∈ (P/N(Q∩P ) : M/N(Q)).

Case 1: aq1 ∈ P . Since q1 ∈ Q, we have aq1 ∈ Q. Then aq1 ∈ Q ∩ P , so

aq1 +N ∈ P/N(Q∩P ). Moreover, a� (q1 +N) = q′+N where q′ ∈ Q is unique such

that aq1 +N ⊆ q′ +N . Then (aq1 +N) ∩ (q′ +N) 6= ∅ so that q′ = aq1 ∈ Q ∩ P .

Thus a� (q1 +N) ∈ P/N(Q∩P ).

Case 2: bq1 ∈ P . We can conclude similarly to Case 1 that b � (q1 + N) ∈

P/N(Q∩P ).

Case 3: abM ⊆ P . Let q+N ∈M/N(Q) where q ∈ Q and ab� (q+N) = q3 +N
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where q3 ∈ Q is unique such that abq+N ⊆ q3 +N . Then abq+N = q3 +N since

abq ∈ Q. Thus q3 +N = abq +N ⊆ P since abM ⊆ P and N ⊆ P . Hence q3 ∈ P

because P is subtractive. As a result, q3 ∈ Q ∩ P . Then ab� (q +N) = q3 +N ∈

P/N(Q∩P ). Thus ab�M/N(Q) ⊆ P/N(Q∩P ). Hence ab ∈ (P/N(Q∩P ) : M/N(Q)).

Therefore P/N(Q∩P ) is a 2-absorbing subsemimodule of M/N(Q).

Conversely, assume that P/N(Q∩P ) is a 2-absorbing subsemimodule of M/N(Q).

Then P is a proper subsemimodule of M . Let a, b ∈ R and m ∈ M be such that

abm ∈ P . Then by Proposition 2.25, there is unique q1 ∈ Q such that m ∈ q1 +N

and abm ∈ ab�(q1 +N). Let ab�(q1 +N) = q2 +N where q2 is the unique element

of Q such that abq1 + N ⊆ q2 + N . Now, abm ∈ P and abm ∈ q2 + N . So there

is n ∈ N such that q2 + n = abm ∈ P . Since P is subtractive and n ∈ N ⊆ P ,

we obtain q2 ∈ P . Then q2 ∈ Q ∩ P . Thus ab � (q1 + N) = q2 + N ∈ P/N(Q∩P ).

Since P/N(Q∩P ) is a 2-absorbing subsemimodule, a � (q1 + N) ∈ P/N(Q∩P ) or

b� (q1 +N) ∈ P/N(Q∩P ) or ab�M/N(Q) ⊆ P/N(Q∩P ).

Case 1: a�(q1+N) ∈ P/N(Q∩P ). Then a�(q1+N) = q′+N where q′ is the unique

element of Q ∩ P such that aq1 +N ⊆ q′ +N . Since a� (q1 +N) = q′ +N ⊆ P ,

we get aq1 + N ⊆ P . Thus aq1 ∈ P because P is subtractive and N ⊆ P . Since

q1 ∈ Q, we have aq1 ∈ Q. Then aq1 ∈ Q∩P . Since q′ is the unique element of Q∩P

such that aq1 + N ⊆ q′ + N and aq1 ∈ Q ∩ P , we obtain that q′ = aq1. It follows

from m ∈ q1 + N that am ∈ a(q1 + N) ⊆ aq1 + N = q′ + N = a� (q1 + N) ⊆ P .

Thus am ∈ P .

Case 2: b � (q1 + N) ∈ P/N(Q∩P ). Again, this is similar to Case 1, so we can

conclude that bm ∈ P .

Case 3: ab �M/N(Q) ⊆ P/N(Q∩P ). Let x ∈ M . By Proposition 2.25, there is

unique q3 ∈ Q such that x ∈ q3 + N and abx ∈ ab � (q3 + N) = q4 + N where

q4 is the unique element of Q such that abq3 + N ⊆ q4 + N . Now, q4 + N =

ab� (q3 +N) ∈ P/N(Q∩P ). Then abx ∈ q4 +N ⊆ P . Thus abM ⊆ P .

Therefore P is a 2-absorbing subsemimodule of M .

Theorem 3.3. Let M be an R-semimodule, N a Q-subsemimodule of M and P a

subtractive subsemimodule of M with N ⊆ P .
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(i) If P is a weakly 2-absorbing subsemimodule of M , then P/N(Q∩P ) is a weakly

2-absorbing subsemimodule of M/N(Q).

(ii) If N and P/N(Q∩P ) are weakly 2-absorbing subsemimodules ofM andM/N(Q),

respectively, then P is a weakly 2-absorbing subsemimodule of M .

Proof. (i) Assume that P is a weakly 2-absorbing subsemimodule of M . Then

P/N(Q∩P ) is a proper subsemimodule of M/N(Q). Let a, b ∈ R and q1 + N ∈

M/N(Q), where q1 ∈ Q, be such that 0M + N 6= ab � (q1 + N) ∈ P/N(Q∩P ).

Then there exists unique q2 ∈ Q ∩ P such that ab � (q1 + N) = q2 + N where

abq1 +N ⊆ q2 +N . Since q2 +N ⊆ P , it follows that abq1 +N ⊆ P . Since N ⊆ P

and P is a subtractive subsemimodule, abq1 ∈ P .

Case 1: abq1 = 0. Since abq1 ∈ (0M + N) ∩ (q2 + N), we obtain that 0M = q2.

Thus, 0M +N = q2 +N contradicts the fact that q2 +N = ab� (q1 +N) 6= 0M +N .

This case is absurd.

Case 2: abq1 6= 0. Since P is a weakly 2-absorbing subsemimodule of M , it can

be concluded that aq1 ∈ P or bq1 ∈ P or abM ⊆ P . We claim that a� (q1 +N) ∈

P/N(Q∩P ) or b� (q1 +N) ∈ P/N(Q∩P ) or ab ∈ (P/N(Q∩P ) : M/N(Q)).

Subcase 2.1: aq1 ∈ P . Then aq1 ∈ Q∩P , so aq1 +N ∈ P/N(Q∩P ). Moreover,

a� (q1 + N) = q′ + N where q′ ∈ Q is unique such that aq1 + N ⊆ q′ + N . Then

(aq1 +N)∩ (q′+N) 6= ∅ so that q′ = aq1 ∈ Q∩P . Thus a� (q1 +N) ∈ P/N(Q∩P ).

Subcase 2.2: bq1 ∈ P . We can conclude similarly to Subcase 2.1 that b �

(q1 +N) ∈ P/N(Q∩P ).

Subcase 2.3: abM ⊆ P . Let q + N ∈ M/N(Q) where q ∈ Q. Let ab �

(q + N) = q3 + N where q3 ∈ Q is unique such that abq + N ⊆ q3 + N . Then

abq + N = q3 + N since abq ∈ Q. Then q3 + N = abq + N ⊆ P since abM ⊆ P

and N ⊆ P so that q3 ∈ P because P is subtractive. Thus q3 ∈ Q ∩ P . Then

ab � (q + N) = q3 + N ∈ P/N(Q∩P ). Thus ab � M/N(Q) ⊆ P/N(Q∩P ). Hence

ab ∈ (P/N(Q∩P ) : M/N(Q)).

Therefore P/N(Q∩P ) is a weakly 2-absorbing subsemimodule of M/N(Q).
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(ii) Assume that N and P/N(Q∩P ) are weakly 2-absorbing subsemimodules of M

and M/N(Q), respectively. Then P is a proper subsemimodule of M . Let 0 6=

abm ∈ P where a, b ∈ R and m ∈M .

Case 1: 0 6= abm ∈ N . Then am ∈ N ⊆ P or bm ∈ N ⊆ P or ab ∈ (N : M) ⊆

(P : M).

Case 2: 0 6= abm ∈ P rN . Then by Proposition 2.25, there is unique q1 ∈ Q

such that m ∈ q1 + N and abm ∈ ab � (q1 + N). Let ab � (q1 + N) = q2 + N

where q2 is a unique element of Q such that abq1 + N ⊆ q2 + N . Now, abm ∈ P

and abm ∈ q2 + N . So there is n ∈ N such that q2 + n = abm ∈ P . Since P is

subtractive and n ∈ N ⊆ P , we obtain q2 ∈ P . Then q2 ∈ Q ∩ P . Suppose that

0M +N = ab�(q1 +N). Since q2 +N = ab�(q1 +N) = 0M +N and abm ∈ q2 +N ,

it follows that abm ∈ 0M + N = N contradicts the fact that abm ∈ PrN . Thus

0M + N 6= ab � (q1 + N) = q2 + N ∈ P/N(Q∩P ). Since P/N(Q∩P ) is a weakly

2-absorbing subsemimodule, a� (q1 +N) ∈ P/N(Q∩P ) or b� (q1 +N) ∈ P/N(Q∩P )

or ab�M/N(Q) ⊆ P/N(Q∩P ).

Subcase 2.1: a�(q1 +N) ∈ P/N(Q∩P ). Then a�(q1 +N) = q′+N where q′ is

a unique element of Q∩P such that aq1 +N ⊆ q′+N . Since a� (q1 +N) = q′+N

and a� (q1 +N) ⊆ P , we get aq1 +N ⊆ P . Thus aq1 ∈ P because P is subtractive

and N ⊆ P . Then aq1 ∈ Q ∩ P . So q′ = aq1. Since m ∈ q1 + N , it follows that

am ∈ a(q1 +N) ⊆ aq1 +N = q′ +N = a� (q1 +N) ⊆ P . Thus am ∈ P .

Subcase 2.2: b� (q1 +N) ∈ P/N(Q∩P ). Again, this is similar to Subcase 2.1,

we can conclude that bm ∈ P .

Subcase 2.3: abM/N(Q) ⊆ P/N(Q∩P ). Let x ∈M . By Proposition 2.25, there

is unique q3 ∈ Q such that x ∈ q3 +N and abx ∈ ab�(q3 +N) = q4 +N where q4 is

a unique element of Q such that abq3 +N ⊆ q4 +N . Now, q4 +N = ab�(q3 +N) ∈

P/N(Q∩P ). Then abx ∈ q4 +N ⊆ P . Thus abM ⊆ P .

Therefore P is a weakly 2-absorbing subsemimodule of M .

We observe from Theorem 3.2 that P is a 2-absorbing subsemimodule of M if

and only if P/N(Q∩P ) is a 2-absorbing subsemimodule of M/N(Q). However, this

is not true for the weakly 2-absorbing subsemimodule. Theorem 3.3 points out
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that if P is a weakly 2-absorbing subsemimodule of M , then P/N(Q∩P ) is a weakly

2-absorbing subsemimodule of M/N(Q) but not vice versa. Consider the proof of

Theorem 3.3 (ii). If 0 6= abm ∈ P where a, b ∈ R and m ∈ M , then it is not

sufficient to ensure that 0M +N 6= ab� (q1 +N).

Recall that 2-absorbing subsemimodules are weakly 2-absorbing subsemimod-

ules. But its converse does not necessary hold. Therefore some conditions are

needed in order to make the converse true.

Theorem 3.4. Let M be an R-semimodule and N a weakly 2-absorbing subsemi-

module of M . If N is a subtractive subsemimodule and (N : M)2N 6= {0}, then N

is a 2-absorbing subsemimodule.

Proof. Assume that N is a subtractive subsemimodule and (N : M)2N 6= {0}.

Proposition 2.13 provides that (N : M) is a subtractive ideal of R. Let a, b ∈ R

and m ∈ M be such that abm ∈ N . We claim that am ∈ N or bm ∈ N or

ab ∈ (N : M). If 0 6= abm ∈ N , then we are through because N is a weakly

2-absorbing subsemimodule of M . Then assume that abm = 0.

Case 1: abN 6= {0}. Then there is n0 ∈ N such that abn0 6= 0. Now 0 6= abn0 =

0 + abn0 = abm + abn0 ∈ N and ab(m + n0) = abm + abn0. Since N is weakly 2-

absorbing, we obtain that am+an0 = a(m+n0) ∈ N or bm+bn0 = b(m+n0) ∈ N

or ab ∈ (N : M). Since N is a subtractive subsemimodule and an0, bn0 ∈ N , it

follows that am ∈ N or bm ∈ N or ab ∈ (N : M).

Case 2: abN = {0}. Consider the choices of a(N : M)M and b(N : M)M .

Subcase 2.1: a(N : M)M 6= {0} or b(N : M)M 6= {0}. Without loss of

generality, we assume that a(N : M)M 6= {0}. Then there exists r ∈ (N : M)

such that arm 6= 0. Thus 0 6= arm = abm + arm = a(b + r)m ∈ N . Since

N is weakly 2-absorbing, am ∈ N or (b + r)m ∈ N or a(b + r) ∈ (N : M). If

(b + r)m ∈ N or a(b + r) ∈ (N : M), then applying the fact that N and (N : M)

are subtractive leads to bm ∈ N or ab ∈ (N : M). Thus am ∈ N or bm ∈ N or

ab ∈ (N : M).
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Subcase 2.2: a(N : M)M = {0} and b(N : M)M = {0}. Since (N : M)2N 6=

{0}, there exist a0, b0 ∈ (N : M) and x0 ∈ N with 0 6= a0b0x0 ∈ N . Then

a0b0m ∈ N . Since a(N : M)M = {0} and b(N : M)M = {0}, we obtain that

ab0m = 0, a0bm = 0, ab0x0 = 0 and a0bx0 = 0. In addition, abx0 = 0 because

abN = {0}.

Subcase 2.2.1: a0b0m 6= 0. Then 0 6= a0b0m = abm + ab0m + a0bm +

a0b0m = (a + a0)(b + b0)m. Besides, (a + a0)(b + b0)m ∈ N because a0b0m ∈ N .

Since N is weakly 2-absorbing and 0 6= (a + a0)(b + b0)m ∈ N , we obtain that

(a+a0)m ∈ N or (b+b0)m ∈ N or (a+a0)(b+b0) ∈ (N : M). Thus am+a0m ∈ N

or bm+ b0m ∈ N or ab+ ab0 + a0b+ a0b0 ∈ (N : M). Since a0, b0 ∈ (N : M) which

is an ideal, it follows that a0m, b0m ∈ N and ab0 + a0b + a0b0 ∈ (N : M). Being

subtractive of N and (N : M) implies that am ∈ N or bm ∈ N or ab ∈ (N : M).

Subcase 2.2.2: a0b0m = 0. Then (a+ a0)(b+ b0)(m+ x0) = abm+ abx0 +

ab0m + ab0x0 + a0bm + a0bx0 + a0b0m + a0b0x0 = a0b0x0 6= 0. We obtain that

0 6= (a + a0)(b + b0)(m + x0) ∈ N because 0 6= a0b0x0 ∈ N . Since N is weakly 2-

absorbing, (a+a0)(m+x0) ∈ N or (b+b0)(m+x0) ∈ N or (a+a0)(b+b0) ∈ (N : M).

Subcase 2.2.2.1: (a+a0)(m+x0) ∈ N . Then am+ax0 +a0m+a0x0 =

(a+ a0)(m+ x0) ∈ N . Since N is subtractive and ax0, a0m, a0x0 ∈ N , we conclude

that am ∈ N .

Subcase 2.2.2.2: (b + b0)(m + x0) ∈ N . Similarly to Subcase 2.2.2.1,

we obtain that bm ∈ N .

Subcase 2.2.2.3: (a+a0)(b+b0) ∈ (N : M). Then ab+ab0+a0b+a0b0 =

(a + a0)(b + b0) ∈ (N : M). We know that a0b, ab0, a0b0 ∈ (N : M) which is

subtractive, ab ∈ (N : M).

Therefore N is a 2-absorbing subsemimodule.

Corollary 3.5. Let M be an R-semimodule and N a subtractive subsemimodule

of M . If N is weakly 2-absorbing but not 2-absorbing, then the followings hold.

(i) N is nilpotent.

(ii) If M is a multiplication R-semimodule, then N3 = {0}.
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Proof. Assume that N is weakly 2-absorbing but not 2-absorbing.

(i) Theorem 3.4 yields that (N : M)2N = {0} which can be concluded that N

is nilpotent.

(ii) Assume that M is a multiplication R-semimodule. Then N = (N : M)M .

Consequently, N3 = (N : M)3M = (N : M)2(N : M)M = (N : M)2N = {0} by

Theorem 3.4.

Next result, we provide a condition that weakly 2-absorbing subsemimodules

are 2-absorbing subsemimodules. However, this can be done in the case of faithful

multiplication R-semimodules. Recall that for an R-semimodule M , radM({0}) is

the intersection of all prime subsemimodules of M .

Proposition 3.6. Let M be a faithful multiplication R-semimodule and N a

weakly 2-absorbing subtractive subsemimodule of M . If N is not 2-absorbing, then

N ⊆ radM({0}).

Proof. Assume that N is not a 2-absorbing subsemimodule. Then (N : M)2N =

{0} by Theorem 3.4. We claim that (N : M)3 ⊆
(
(N : M)2N : M

)
. To

show this, let r /∈
(
(N : M)2N : M

)
. Then there exists m ∈ M such that

rm /∈ (N : M)2N . Since M is a multiplication R-semimodule, N = (N : M)M .

Thus rm /∈ (N : M)2(N : M)M = (N : M)3M . Then r /∈ (N : M)3. There-

fore (N : M)3 ⊆
(
(N : M)2N : M

)
as claimed. We have {0} ⊆ (N : M)3 ⊆(

(N : M)2N : M
)

= ({0} : M) = {0} since M is faithful. Thus (N : M)3 =

{0}. Now, we have (N : M) ⊆
√
{0}. Then N = (N : M)M ⊆

√
{0}M =√

({0} : M)M ⊆ radM({0}) because of Proposition 2.38.

Therefore N ⊆ radM({0}).

Proposition 3.6 shows that for a weakly 2-absorbing subtractive subsemimod-

ule N of a faithful multiplication R-semimodule M , if N is not contained in the

intersection of all prime subsemimodules of M , then N must be a 2-absorbing

subsemimodule.
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We found that being cyclic of an R-semimodule plays a major tool for our

results. Recall that cyclic R-semimodules are multiplication R-semimodules by

Proposition 2.31.

We show in the followings that there are some relationships between being

(weakly) 2-absorbing subsemimodules of N and being (weakly) 2-absorbing ideals

of (N : M) where N is a subsemimodule of a cyclic R-semimodule M .

Proposition 3.7. Let M be a cyclic R-semimodule and N a subsemimodule of M .

Then the followings hold.

(i) N is a 2-absorbing subsemimodule of M if and only if (N : M) is a 2-

absorbing ideal of R.

(ii) If, in addition, M is faithful, then N is a weakly 2-absorbing subsemimodule

of M if and only if (N : M) is a weakly 2-absorbing ideal of R.

Proof. Let M = Rm for some m ∈M . Proposition 2.29 yields (N : M) = (N : m).

Note that N is a proper subsemimodule if and only if (N : M) is a proper ideal.

(i) First, assume that N is a 2-absorbing subsemimodule of M . Let a, b, c ∈ R

be such that abc ∈ (N : M) but ab /∈ (N : M) and ac /∈ (N : M). Then there

exist r, s ∈ R such that ab(rm) /∈ N and ac(sm) /∈ N . Thus abm /∈ N and

acm /∈ N . Since abc ∈ (N : M) and m ∈M , we get abcm ∈ N . Then bc(am) ∈ N ,

a(bm) /∈ N and c(am) /∈ N since R is commutative. Thus bc ∈ (N : M) because

N is 2-absorbing.

Therefore (N : M) is a 2-absorbing ideal of R.

Conversely, assume that (N : M) is a 2-absorbing ideal of R. Let a, b ∈ R

and x ∈ M be such that abx ∈ N . Then there exists c ∈ R such that x = cm,

so abcm ∈ N , i.e., abc ∈ (N : m) = (N : M). Since (N : M) is a 2-absorbing

ideal and (N : m) = (N : M), we obtain that ac ∈ (N : m) or bc ∈ (N : m) or

ab ∈ (N : M). Therefore ax = acm ∈ N or bx = bcm ∈ N or ab ∈ (N : M).

Therefore N is a 2-absorbing subsemimodule of M .
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(ii) Assume further that M is faithful.

First, let N be a weakly 2-absorbing subsemimodule of M . Let a, b, c ∈ R

be such that 0 6= abc ∈ (N : M) but ab /∈ (N : M) and ac /∈ (N : M). Then

there exist r, s ∈ R such that ab(rm) /∈ N and ac(sm) /∈ N . Thus abm /∈ N and

acm /∈ N . Suppose that abcm = 0. So, {0} = abcRm = abcM . Since M is faithful,

abc = 0 which is a contradiction. Thus abcm 6= 0. Now, 0 6= abcm ∈ N . Since R is

commutative, 0 6= bc(am) ∈ N . Since N is a weakly 2-absorbing subsemimodule,

b(am) /∈ N and c(am) /∈ N , we obtain that bc ∈ (N : M).

Therefore (N : M) is a weakly 2-absorbing ideal of R.

Next, let (N : M) be a weakly 2-absorbing ideal of R. Let a, b ∈ R and x ∈M

be such that 0 6= abx ∈ N . Then there exists c ∈ R such that x = cm, so

0 6= abcm ∈ N . Thus 0 6= abc ∈ (N : m). Since (N : M) is a weakly 2-absorbing

ideal and (N : m) = (N : M), we obtain that ac ∈ (N : m) or bc ∈ (N : m) or

ab ∈ (N : M). Hence ax = acm ∈ N or bx = bcm ∈ N or ab ∈ (N : M).

Therefore N is a weakly 2-absorbing subsemimodule of M .

In fact, for a subsemimodule N of a cyclic R-semimodule M , if the ideal

(N : M) is weakly 2-absorbing, then the subsemimoduleN is also weakly 2-absorbing

without the requirement that M has to be faithful.

In a commutative semiring R, if a proper ideal I of R is also subtractive, Darani

showed in [11] the equivalent definition of being 2-absorbing ideal of I as follows:

I is a 2-absorbing ideal of R if and only if I1I2I3 ⊆ I implies that

I1I2 ⊆ I or I1I3 ⊆ I or I2I3 ⊆ I for any ideals I1, I2 and I3 of R.

We also obtain the equivalent definition of being 2-absorbing subsemimodules in

the similar fashion. However, R-semimodules need to be cyclic R-semimodules.

Proposition 3.8. Let M be an R-semimodule and N a proper subsemimodule

of M satisfying the following property: for any ideals I and J of R and a subsemi-

module P of M , if IJP ⊆ N , then IP ⊆ N or JP ⊆ N or IJ ⊆ (N : M). Then

N is a 2-absorbing subsemimodule.
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Proof. Let a, b ∈ R and m ∈ M be such that abm ∈ N . Recall that Ra and Rb

are ideals of R and Rm is a subsemimodule of M . Therefore RaRbRm ⊆ N . By

assumption, we get RaRm ⊆ N or RbRm ⊆ N or RaRb ⊆ (N : M). Since 1 ∈ R,

it follows that am ∈ N or bm ∈ N or ab ∈ (N : M).

Therefore N is a 2-absorbing subsemimodule.

Proposition 3.9. Let M be a cyclic R-semimodule and N a 2-absorbing subtrac-

tive subsemimodule of M . Then, for any ideals I and J of R and a subsemimodule

P of M , if IJP ⊆ N , then IP ⊆ N or JP ⊆ N or IJ ⊆ (N : M).

Proof. Note that (N : M) is a 2-absorbing subtractive ideal of R by Proposition

2.13 and Proposition 3.7. Let I and J be ideals of R and P a subsemimodule

of M such that IJP ⊆ N . Since M is cyclic, M is a multiplication R-semimodule.

Then there exists an ideal I ′ of R such that P = I ′M . Thus IJI ′M ⊆ N , i.e.

IJI ′ ⊆ (N : M). Since (N : M) is a 2-absorbing subtractive ideal of R, we obtain

that IJ ⊆ (N : M) or II ′ ⊆ (N : M) or JI ′ ⊆ (N : M). That is IJ ⊆ (N : M) or

II ′M ⊆ N or JI ′M ⊆ N .

Therefore IJ ⊆ (N : M) or IP ⊆ N or JP ⊆ N .

Being cyclic of the R-semimodule M in Proposition 3.9 is necessary eventhough

in its proof, it seems that having M be multiplication should be enough. This

requirement is needed because of making use of Proposition 3.7.

Proposition 3.10. Let M be a cyclic R-semimodule and N a proper subtractive

subsemimodule of M . The following statements are equivalent.

(i) N is a 2-absorbing subsemimodule.

(ii) For any ideals I and J of R and a subsemimodule P of M , if IJP ⊆ N ,

then IP ⊆ N or JP ⊆ N or IJ ⊆ (N : M).

Proof. The proof follows from Proposition 3.8 and Proposition 3.9.

A subsemimodule N satisfying (ii) in Proposition 3.10 is called a strongly

2-absorbing subsemimodule .
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Corollary 3.11. Let M be a cyclic R-semimodule and N a proper subtractive

subsemimodule of M . If N is a 2-absorbing subsemimodule of M , then for any

subsemimodules U, V,W of M such that UVW ⊆ N implies UV ⊆ N or UW ⊆ N

or VW ⊆ N .

Proof. Let U, V and W be subsemimodules of M be such that UVW ⊆ N . Since

M is cyclic, M is a multiplication R-semimodule. Then there exist ideals I, J

and K of R such that U = IM , V = JM and W = KM . Thus IJ(KM) =

(IM)(JM)(KM) = UVW ⊆ N . By Proposition 3.9, we obtain that I(KM) ⊆ N

or J(KM) ⊆ N or IJ ⊆ (N : M). Thus IMKM ⊆ N or JMKM ⊆ N or

IMJM ⊆ N .

Therefore UW ⊆ N or VW ⊆ N or UV ⊆ N .

Nevertheless, the converse of Corollary 3.11 does not necessarily hold. For ex-

ample, consider where R = Z+
0 , M = Z12 and N = {0̄}. All subsemimodules of

Z12 are known to be {0̄} , {0̄, 3̄, 6̄, 9̄} , {0̄, 4̄, 8̄} , {0̄, 6̄} ,
{

0̄, 2̄, 4̄, 6̄, 8̄, 10
}

and Z12. We

claim that for any subsemimodules U, V and W of Z12 with UVW ⊆ {0̄} implies

UV ⊆ {0̄} or UW ⊆ {0̄} or VW ⊆ {0̄}. It is clear that {0̄, 6̄} {0̄, 2̄, 4̄, 6̄, 8̄, 1̄0}Z12 ⊆

{0̄} implies {0̄, 6̄}
{

0̄, 2̄, 4̄, 6̄, 8̄, 10
}
⊆ {0̄}. By the same manner, we obtain that

any subsemimodules U, V and W of Z12 with UVW ⊆ {0̄} implies UV ⊆ {0̄} or

UW ⊆ {0̄} or VW ⊆ {0̄}. This shows that the converse of Corollary 3.11 does not

hold because {0̄} is not a 2-absorbing subsemimodule of Z12 by Proposition 2.22.

Recall thatm1m2m3 is the product of the subsemimodules Rm1, Rm2 and Rm3,

for any m1,m2,m3 ∈ M , i.e., m1m2m3 = Rm1Rm2Rm3 = (I1M)(I2M)(I3M) =

(I1I2I3)M where I1, I2 and I3 are presentation ideals of Rm1, Rm2 and Rm3,

respectively.

Corollary 3.12. Let M be a cyclic R-semimodule and N a proper subtractive

subsemimodule of M . If N is a 2-absorbing subsemimodule of M , then for any

m1,m2,m3 ∈ M such that m1m2m3 ⊆ N implies m1m2 ⊆ N or m1m3 ⊆ N or

m2m3 ⊆ N .
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Proof. Assume that N is a 2-absorbing subsemimodule of M . Let m1,m2,m3 ∈M

be such that m1m2m3 ⊆ N . Since Rm1, Rm2 and Rm3 are subsemimodules

of M and Rm1Rm2Rm3 = m1m2m3 ⊆ N , we obtain that Rm1Rm2 ⊆ N or

Rm1Rm3 ⊆ N or Rm2Rm3 ⊆ N by Corollary 3.11.

Therefore m1m2 ⊆ N or m1m3 ⊆ N or m2m3 ⊆ N .

If the condition that m1m2m3 ⊆ N implies m1m2 ⊆ N or m1m3 ⊆ N or

m2m3 ⊆ N in Corollary 3.12 is slightly changed, then the new condition forces N

to be a 2-absorbing subsemimodule.

Proposition 3.13. Let M be a cyclic R-semimodule and N a proper subtractive

subsemimodule of M . If for any m1,m2,m3 ∈M such that m1m2m3 ⊆ N implies

m1 ∈ N or m2 ∈ N or m3 ∈ N , then N is a 2-absorbing subsemimodule of M .

Proof. Assume that for any m1,m2,m3 ∈M such that m1m2m3 ⊆ N implies m1 ∈

N or m2 ∈ N or m3 ∈ N . Suppose that N is not a 2-absorbing subsemimodule.

By Proposition 3.10, let I and J be ideals of R and P a subsemimodule of M

such that IJP ⊆ N but IP 6⊆ N , JP 6⊆ N and IJ 6⊆ (N : M). Then there exist

p ∈ IPrN , p′ ∈ JPrN , a ∈ IJr(N : M) and m ∈M such that am /∈ N . Since M

is cyclic, M is a multiplication R-semimodule. Let P = I ′M where I ′ is an ideal

of R. Then pp′am = RpRp′Ram ⊆ (RIP )(RJP )(RIJM) ⊆ (IP )(JP )(IJM) =

(II ′M)(JI ′M)(IJM) = (II ′JI ′IJ)M ⊆ (IJI ′)M = IJ(I ′M) = IJP ⊆ N . By

assumption, it follows that p ∈ N or p′ ∈ N or am ∈ N contradicts the fact that

p ∈ IPrN , p′ ∈ JPrN and am /∈ N .

Therefore N is a 2-absorbing subsemimodule of M .

Proposition 3.14. Let M be a cyclic R-semimodule and N a proper subtractive

subsemimodule of M . If for any subsemimodules U, V and W of M such that

UVW ⊆ N implies U ⊆ N or V ⊆ N or W ⊆ N , then N is a 2-absorbing

subsemimodule of M .

Proof. Assume that N is not a 2-absorbing subsemimodule. By Proposition 3.13,

there are m1,m2,m3 ∈M with m1m2m3 ⊆ N but m1 /∈ N , m2 /∈ N and m3 /∈ N .
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Then Rm1 6⊆ N , Rm2 6⊆ N and Rm3 6⊆ N . Note that Rm1, Rm2 and Rm3 are

subsemimodules of M and Rm1Rm2Rm3 = m1m2m3 ⊆ N . Then the proof is

complete.

The converse of Proposition 3.13 and Proposition 3.14 does not necessary hold.

For example, consider where R = Z+
0 , M = Z6 and N = {0̄} which is a 2-absorbing

subtractive subsemimodule of Z6. We know that {0̄, 3̄} and {0̄, 2̄, 4̄} are subsemi-

modules of M and {0̄, 3̄} {0̄, 3̄} {0̄, 2̄, 4̄} ⊆ N . But {0̄, 3̄} 6⊆ N and {0̄, 2̄, 4̄} 6⊆ N .

We end this chapter by studying the collection of all 2-absorbing subtractive

subsemimodules of an R-semimodule. It turns out that this collection does satisfy

the Zariski topology. Anyhow, we first suggest some definitions and notation.

Definition 3.15. A subsemimodule L of an R-semimodule M is said to be semi-

2-absorbing if L is an intersection of 2-absorbing subtractive subsemimodules

of M .

We see that 2-absorbing subtractive subsemimodules are semi-2-absorbing sub-

semimodules. But the converse does not necessary hold. For example, let R = Z+
0 ,

M = Z+
0 , N = 2Z+

0 , L = 3Z+
0 and P = 5Z+

0 . Thus N , L and P are 2-absorbing

subtractive subsemimodules of M so that N ∩ L ∩ P = 30Z+
0 is semi-2-absorbing.

But N ∩ L ∩ P = 30Z+
0 is not a 2-absorbing subtractive subsemimodule of M

because 3 · 5 · (2) ∈ 30Z+
0 but 3 · (2) /∈ 30Z+

0 , 5 · (2) /∈ 30Z+
0 and 3 · 5 /∈ (30Z+

0 : Z+
0 ).

Notation. For a subsemimodule N of an R-semimodule M , let

radM(N) be the intersection of all 2-absorbing subtractive subsemimodules

of M containing N ,

V ′(N) be the collection of all 2-absorbing subtractive subsemimodules of M

containing N , and

spec(M) be the collection of all 2-absorbing subtractive subsemimodules of M .

Clearly, V ′(M) = ∅, V ′({0}) = spec(M) and N ⊆ radM(N).
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Definition 3.16. A 2-absorbing subtractive subsemimoduleN of anR-semimodule

M is called extraordinary if whenever A and B are semi-2-absorbing subtractive

subsemimodules of M with A ∩B ⊆ N , then A ⊆ N or B ⊆ N .

Example. Let R = Z+
0 , M = Z+

0 and N = 3Z+
0 . Moreover, let A and B

be semi-2-absorbing subtractive subsemimodules of M with A ∩ B ⊆ N . Then

A = mZ+
0 , B = m′Z+

0 and A ∩ B = 3kZ+
0 where m,m′, k ∈ Z+

0 . It can be

shown that A ∩ B = lcm(m,m′)Z+
0 . Thus lcm(m,m′)Z+

0 = 3kZ+
0 so that 3 | m

or 3 | m′. Hence A = mZ+
0 ⊆ 3Z+

0 or B = m′Z+
0 ⊆ 3Z+

0 . Therefore N = 3Z+
0 is

extraordinary.

Proposition 3.17. Let M be an R-semimodule. Then the following statements

hold.

(i) If P and L are subsemimodules of M such that P ⊆ L, then V ′(L) ⊆ V ′(P ).

(ii) If N is a subsemimodule of M , then V ′(N) = V ′
(

radM(N)
)
.

(iii) If {Ni}i∈I is a family of subsemimodules of M , then V ′(
∑
i∈I

Ni) =
⋂
i∈I

V ′(Ni).

Proof. (i) Assume that P and L are subsemimodules of M such that P ⊆ L. Let

A ∈ V ′(L). Thus A is a 2-absorbing subtractive subsemimodule and L ⊆ A. Since

P ⊆ L ⊆ A, we obtain that A ∈ V ′(P ).

Therefore V ′(L) ⊆ V ′(P ).

(ii) Assume that N is a subsemimodule of M . First, let P ∈ V ′(N). Thus P is

a 2-absorbing subtractive subsemimodule of M and N ⊆ P . Then radM(N) ⊆ P .

That is P ∈ V ′
(

radM(N)
)

. Hence V ′(N) ⊆ V ′
(

radM(N)
)

. Next, let P ∈

V ′
(

radM(N)
)

. Then N ⊆ radM(N) ⊆ P . Thus P ∈ V ′(N). Hence V ′
(

radM(N)
)

⊆ V ′(N).

Therefore V ′(N) = V ′
(

radM(N)
)

.

(iii) Assume that {Ni}i∈I is a family of subsemimodules of M . First, let P ∈

V ′(
∑
i∈I

Ni). Then Nj ⊆
∑
i∈I

Ni ⊆ P for all j ∈ I. That is P ∈ V ′(Nj) for all j ∈ I.
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Thus P ∈
⋂
i∈I

V ′(Ni). Hence V ′(
∑
i∈I

Ni) ⊆
⋂
i∈I

V ′(Ni). Next, let P ∈
⋂
i∈I

V ′(Ni).

Then Ni ⊆ P for all i ∈ I. Thus
∑
i∈I

Ni ⊆ P . That is P ∈ V ′(
∑
i∈I

Ni). Hence⋂
i∈I

V ′(Ni) ⊆ V ′(
∑
i∈I

Ni).

Therefore V ′(
∑
i∈I

Ni) =
⋂
i∈I

V ′(Ni).

Let M be an R-semimodule and ξ(M) denote the collection of all subsets V ′(N)

of spec(M). Then ξ(M) contains ∅ and spec(M); moreover, ξ(M) is closed under

arbitrary intersection by Proposition 3.17(iii). Nevertheless, if ξ(M) is also closed

under finite union, i.e., for any subsemimodules N1, . . . , Nn of M , there exists a

subsemimodule T of M such that
n⋃

i=1

V ′(Ni) = V ′(T ), then ξ(M) satisfies the ax-

ioms of closed subsets of any topological space. We call such ξ(M) the Zariski

topology and the R-semimodule M a top semimodule.

Example. (1) Let R = Z+
0 and M = Z6. Recall that all subsemimodules of M

are {0̄}, {0̄, 3̄}, {0̄, 2̄, 4̄} and Z6. It follows that V ′
(
{0̄}

)
=
{
{0̄} , {0̄, 3̄} , {0̄, 2̄, 4̄}

}
,

V ′
(
{0̄, 3̄}

)
=
{
{0̄, 3̄}

}
, V ′

(
{0̄, 2̄, 4̄}

)
=
{
{0̄, 2̄, 4̄}

}
and V ′

(
Z6

)
= ∅. Note that for

any subsemimodule N of M ,

V ′
(
{0̄, 3̄}

)
∪V ′

(
{0̄, 2̄, 4̄}

)
=
{
{0̄, 3̄} , {0̄, 2̄, 4̄}

}
6= V ′(N).

Hence ξ(M) is not closed under finite union.

Therefore M is not a top semimodule.

(2) Let R = Z+
0 and M = Z8. All subsemimodules of M are {0̄}, {0̄, 4̄},

{0̄, 2̄, 4̄, 6̄} and Z8. Recall that {0̄} is not a 2-absorbing subsemimodule by Proposi-

tion 2.22. Then V ′
(
{0̄}

)
=
{
{0̄, 4̄} , {0̄, 2̄, 4̄, 6̄}

}
, V ′

(
{0̄, 4̄}

)
=
{
{0̄, 4̄} , {0̄, 2̄, 4̄, 6̄}

}
,

V ′
(
{0̄, 2̄, 4̄, 6̄}

)
=
{
{0̄, 2̄, 4̄, 6̄}

}
and V ′

(
Z8

)
= ∅. Thus V ′

(
{0̄, 4̄}

)
∪V ′

(
{0̄, 2̄, 4̄, 6̄}

)
=
{
{0̄, 4̄} , {0̄, 2̄, 4̄, 6̄}

}
= V ′

(
{0̄}

)
. By the same manner, we obtain that there

exists a subsemimodule T of M such that
n⋃

i=1

V ′(Ni) = V ′(T ) where Ni is a sub-

semimodule of M . Hence ξ(M) is closed under finite union.

Therefore M is a top semimodule.
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The following lamma shows necessary and sufficient conditions ofR-semimoduleM

in order to be a top semimodule.

Lemma 3.18. Let M be an R-semimodule. Then the following statements are

equivalent.

(i) M is a top semimodule.

(ii) Every 2-absorbing subtractive subsemimodule of M is extraordinary.

(iii) V ′(T )∪V ′(L) = V ′(T ∩L) for any semi-2-absorbing subtractive subsemimod-

ules T and L of M .

Proof. (i)⇒(ii) Assume that M is a top semimodule. Let N be a 2-absorbing

subtractive subsemimodule of M . Let T and L be semi-2-absorbing subtractive

subsemimodules of M such that T ∩ L ⊆ N . Since M is a top semimodule, there

exists a subsemimodule U of M such that V ′(T ) ∪ V ′(L) = V ′(U). Note that

T =
⋂
i∈I

Ni where Ni is a 2-absorbing subtractive subsemimodule of M for all i

because T is semi-2-absorbing. Then Ni ∈ V ′(T ) ⊆ V ′(U) for each i ∈ I. Thus

U ⊆ Ni for all i ∈ I. Hence U ⊆ T . Similarly, U ⊆ L. This shows that U ⊆ T ∩L.

By Proposition 3.17(i), we obtain that V ′(T ∩ L) ⊆ V ′(U), V ′(L) ⊆ V ′(T ∩ L)

and V ′(T ) ⊆ V ′(T ∩ L). Now, we have V ′(T ) ∪ V ′(L) ⊆ V ′(T ∩ L) ⊆ V ′(U) =

V ′(T ) ∪ V ′(L). That is V ′(T ) ∪ V ′(L) = V ′(T ∩ L). Since T ∩ L ⊆ N , we have

V ′(N) ⊆ V ′(T ∩ L). Then N ∈ V ′(N) ⊆ V ′(T ∩ L) = V ′(T ) ∪ V ′(L). Thus

N ∈ V ′(T ) or N ∈ V ′(L). Hence T ⊆ N or L ⊆ N .

Therefore N is extraordinary.

(ii)⇒(iii) Assume that every 2-absorbing subtractive subsemimodule of M is

extraordinary. Let T and L be semi-2-absorbing subtractive subsemimodules of M .

First, let A ∈ V ′(T ) ∪ V ′(L). Then T ⊆ A or L ⊆ A. That is T ∩ L ⊆ A. Thus

A ∈ V ′(T ∩L). Hence V ′(T )∪ V ′(L) ⊆ V ′(T ∩L). Next, let A ∈ V ′(T ∩L). Thus
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T ∩ L ⊆ A. Since A is a 2-absorbing subtractive subsemimodule and by assump-

tion, A is extraordinary. Then T ⊆ A or L ⊆ A. Thus A ∈ V ′(T ) or A ∈ V ′(L).

That is A ∈ V ′(T ) ∪ V ′(L). Hence V ′(T ∩ L) ⊆ V ′(T ) ∪ V ′(L).

Therefore V ′(T ) ∪ V ′(L) = V ′(T ∩ L).

(iii)⇒(i) Assume that V ′(T ) ∪ V ′(L) = V ′(T ∩ L) for any semi-2-absorbing

subtractive subsemimodules T and L of M . Let A and B be subsemimodules of M .

Then by Proposition 3.17(ii), we get V ′(A)∪V ′(B) = V ′
(

radM(A)
)
∪V ′

(
radM(B)

)
.

Recall that radM(A) and radM(B) are the intersections of all 2-absorbing subtrac-

tive subsemimodules of M containing A and B, respectively. Then radM(A) and

radM(B) are semi-2-absorbing subtractive subsemimodules and radM(A)∩radM(B)

is a subsemimodule of M . Then by assumption, V ′
(

radM(A) ∩ radM(B)
)

=

V ′
(

radM(A)
)
∪ V ′

(
radM(B)

)
. Thus V ′(A) ∪ V ′(B) = V ′

(
radM(A) ∩ radM(B)

)
.

This shows that for any subsemimodules A and B of M there exist a subsemimod-

ule C of M such that V ′(A) ∪ V ′(B) = V ′(C). By Mathematical Induction, we

conclude that ξ(M) is closed under finite union.

Therefore M is a top semimodule.

Finally, we study the collection of all 2-absorbing subtractive subsemimodules

of multiplication R-semimodule M containing N where N is a subsemimodule

of M .

Theorem 3.19. Let M be an R-semimodule and N , P and L subsemimodules

of M . Then the following statements hold.

(i) V ′(IN) ∪ V ′(JN) ∪ V ′(IJM) = V ′(IN ∩ JN ∩ IJM) = V ′(IJN) for every

ideals I and J of R.

(ii) V ′(IKM)∪V ′(JKM)∪V ′(IJM) = V ′(IKM∩JKM∩IJM) = V ′(IJKM)

for every ideals I, J and K of R.

(iii) If M is a multiplication R-semimodule, then V ′(NP ) ∪ V ′(LP ) ∪ V ′(NL) =

V ′(NP ∩ LP ∩NL) = V ′(NLP ).
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Proof. (i) Let I and J be ideals of R. First, it is clear that V ′(IN) ⊆ V ′(IN∩JN∩

IJM), V ′(JN) ⊆ V ′(IN∩JN∩IJM) and V ′(IJM) ⊆ V ′(IN∩JN∩IJM). Thus

V ′(IN)∪V ′(JN)∪V ′(IJM) ⊆ V ′(IN∩JN∩IJM). Since IJN ⊆ IN , IJN ⊆ JN

and IJN ⊆ IJM , we get IJN ⊆ IN ∩ JN ∩ IJM . Thus V ′(IN ∩ JN ∩ IJM) ⊆

V ′(IJN). Hence V ′(IN)∪V ′(JN)∪V ′(IJM) ⊆ V ′(IN ∩JN ∩IJM) ⊆ V ′(IJN).

Next, let P ∈ V ′(IJN). Thus IJN ⊆ P . Since P is a 2-absorbing subtractive

subsemimodule, IN ⊆ P or JN ⊆ P or IJ ⊆ (P : M). Then IN ⊆ P or JN ⊆ P

or IJM ⊆ P . Thus P ∈ V ′(IN) or P ∈ V ′(JN) or P ∈ V ′(IJM). That is

P ∈ V ′(IN)∪V ′(JN)∪V ′(IJM). Hence V ′(IJN) ⊆ V ′(IN)∪V ′(JN)∪V ′(IJM).

Now, we have V ′(IN)∪V ′(JN)∪V ′(IJM) ⊆ V ′(IN ∩JN ∩IJM) ⊆ V ′(IJN)

and V ′(IJN) ⊆ V ′(IN) ∪ V ′(JN) ∪ V ′(IJM).

Therefore V ′(IN) ∪ V ′(JN) ∪ V ′(IJM) = V ′(IN ∩ JN ∩ IJM) = V ′(IJN).

(ii) Let I, J and K be ideals of R. Thus KM is a subsemimodule of M . Then by

(i), we obtain that V ′(IKM)∪V ′(JKM)∪V ′(IJM) = V ′(IKM∩JKM∩IJM) =

V ′(IJKM).

(iii) Assume that M is a multiplication R-semimodule. Then there exist ideals

I, J and K of R such that N = IM , L = JM and P = KM . From (ii), we get

that V ′(IKM)∪V ′(JKM)∪V ′(IJM) = V ′(IKM ∩JKM ∩IJM) = V ′(IJKM)

so that V ′(IMKM) ∪ V ′(JMKM) ∪ V ′(IMJM) = V ′(IMKM ∩ JMKM ∩

IMJM) = V ′(IMJMKM) because M is a multiplication R-semimodule. Thus

V ′(NP ) ∪ V ′(LP ) ∪ V ′(NL) = V ′(NP ∩ LP ∩NL) = V ′(NLP ).



CHAPTER IV

AG2-ABSORBING SUBSEMIMODULES AND

WEAKLY AG2-ABSORBING SUBSEMIMODULES

OVER COMMUTATIVE SEMIRINGS

In this section, we extend some characterizations in [5], [10] and [12] to AG2-

absorbing and weakly AG2-absorbing subsemimodules over a commutative semir-

ing.

Recall that a proper subsemimodule N of M is said to be an almost gener-

alized 2-absorbing subsemimodule (or AG2-absorbing subsemimodule)

if whenever a, b ∈ R and m ∈ M with abm ∈ N , then am ∈ N or bm ∈ N

or (ab)k ∈ (N : M) for some k ∈ N and a proper subsemimodule N of M is

said to be a weakly almost generalized 2-absorbing subsemimodule (or

weakly AG2-absorbing subsemimodule) if whenever a, b ∈ R and m ∈ M

with 0 6= abm ∈ N , then am ∈ N or bm ∈ N or (ab)k ∈ (N : M) for some k ∈ N.

It is clear from the definition that AG2-absorbing subsemimodules are weakly

AG2-absorbing subsemimodules. Let us first provide another condition that sub-

semimodules of an R-semimodule are weakly AG2-absorbing subsemimodules.

Proposition 4.1. Let M be an R-semimodule and N a proper subsemimodule

of M . If
√

(N : m) =
√

(N : M) ∪ ({0} : m) for all m ∈ MrN , then N is a

weakly AG2-absorbing subsemimodule of M .

Proof. Assume that
√

(N : m) =
√

(N : M) ∪ ({0} : m) for all m ∈ MrN . Let

a, b ∈ R and m ∈ M be such that 0 6= abm ∈ N but am /∈ N and bm /∈ N . Then

m /∈ N . Thus
√

(N : m) =
√

(N : M)∪ ({0} : m). The fact that abm ∈ N implies

ab ∈ (N : m) ⊆
√

(N : m) and ab /∈ ({0} : m) because 0 6= abm ∈ N . This forces

ab ∈
√

(N : M).
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Therefore N is a weakly AG2-absorbing subsemimodule.

However, weakly AG2-absorbing subsemimodules need not be AG2-absorbing

subsemimodules in general. Hence some conditions are needed to make weakly

AG2-absorbing subsemimodules and AG2-absorbing subsemimodules be identical.

Theorem 4.2. Let M be an R-semimodule and N a weakly AG2-absorbing sub-

semimodule of M . If N is a subtractive subsemimodule and (N : M)2N 6= {0},

then N is an AG2-absorbing subsemimodule.

Proof. Assume that N is a subtractive subsemimodule and (N : M)2N 6= {0}.

Proposition 2.13 provides that (N : M) is a subtractive ideal of R. Let a, b ∈ R

and m ∈ M be such that abm ∈ N . We claim that am ∈ N or bm ∈ N or

(ab)k ∈ (N : M) for some k ∈ N. If 0 6= abm ∈ N , then we are through because N

is a weakly AG2-absorbing subsemimodule of M . Then assume that abm = 0.

Case 1: abN 6= {0}. Then there is n0 ∈ N such that abn0 6= 0. Now 0 6=

abn0 = 0 + abn0 = abm + abn0 = ab(m + n0) ∈ N . Since N is a weakly AG2-

absorbing subsemimodule, a(m + n0) ∈ N or b(m + n0) ∈ N or (ab)k ∈ (N : M)

for some k ∈ N. If a(m + n0) ∈ N or b(m + n0) ∈ N , then applying the fact

that N is subtractive leads to am ∈ N or bm ∈ N . Thus am ∈ N or bm ∈ N or

(ab)k ∈ (N : M) for some k ∈ N.

Case 2: abN = {0}.

Subcase 2.1: a(N : M)M 6= {0} or b(N : M)M 6= {0}. Without loss of

generality, assume that a(N : M)M 6= {0}. Then there exists r ∈ (N : M) such

that arm 6= 0. Thus 0 6= arm = abm+arm = a(b+r)m ∈ N . Since N is a weakly

AG2-absorbing, am ∈ N or (b+ r)m ∈ N or [a(b+ r)]k ∈ (N : M) for some k ∈ N.

If (b + r)m ∈ N or [a(b + r)]k ∈ (N : M) for some k ∈ N, then applying the fact

that N and (N : M) are subtractive leads to bm ∈ N or (ab)k ∈ (N : M). Thus

am ∈ N or bm ∈ N or (ab)k ∈ (N : M) for some k ∈ N.

Subcase 2.2: a(N : M)M = {0} and b(N : M)M = {0}. Since (N : M)2N 6=

{0}, there exist a0, b0 ∈ (N : M) and x0 ∈ N with 0 6= a0b0x0 ∈ N . Then

a0b0m ∈ N and abx0 = 0. Moreover, ab0m = 0, a0bm = 0, ab0x0 = 0 and
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a0bx0 = 0.

Subcase 2.2.1: a0b0m 6= 0. Then 0 6= a0b0m = abm + ab0m + a0bm +

a0b0m = (a+a0)(b+ b0)m. In addition, (a+a0)(b+ b0)m ∈ N because a0b0m ∈ N .

Since N is a weakly AG2-absorbing and 0 6= (a + a0)(b + b0)m ∈ N , we obtain

that (a + a0)m ∈ N or (b + b0)m ∈ N or [(a + a0)(b + b0)]k ∈ (N : M) for some

k ∈ N. Thus am + a0m ∈ N or bm + b0m ∈ N or akbk + r ∈ (N : M) for some

r ∈ (N : M). To see this, we consider [(a+ a0)(b+ b0)]k as follows:

[(a+ a0)(b+ b0)]k

= akbk + ak
k∑

i=1

k
i

 bk−ibi0 +

k
1

 ak−1a0

k∑
i=0

k
i

 bk−ibi0

+

k
2

 ak−2a2
0

k∑
i=0

k
i

 bk−ibi0 + · · ·+

k
j

 ak−jaj0

k∑
i=0

k
i

 bk−ibi0 + · · ·

+ ak0

k∑
i=0

k
i

 bk−ibi0 where j ∈ {0, 1, 2, . . . , k}.

Let r = ak
k∑

i=1

k
i

 bk−ibi0+

k
1

 ak−1a0

k∑
i=0

k
i

 bk−ibi0+

k
2

 ak−2a2
0

k∑
i=0

k
i

 bk−ibi0

+ · · · +

k
j

 ak−jaj0

k∑
i=0

k
i

 bk−ibi0 + · · · + ak0

k∑
i=0

k
i

 bk−ibi0. Then r ∈ (N : M)

because a0, b0 ∈ (N : M). Moreover, since a0, b0 ∈ (N : M), it follows that

a0m, b0m ∈ N . Being subtractive of N and (N : M) implies that am ∈ N or

bm ∈ N or (ab)k = akbk ∈ (N : M).

Subcase 2.2.2: a0b0m = 0. Then 0 6= a0b0x0 = abm + abx0 + ab0m +

ab0x0 + a0bm + a0bx0 + a0b0m + a0b0x0 = (a + a0)(b + b0)(m + x0). We obtain

that 0 6= (a + a0)(b + b0)(m + x0) ∈ N because 0 6= a0b0x0 ∈ N . Since N

is weakly AG2-absorbing, (a + a0)(m + x0) ∈ N or (b + b0)(m + x0) ∈ N or

[(a+ a0)(b+ b0)]k ∈ (N : M) for some k ∈ N.

Subcase 2.2.2.1: (a+a0)(m+x0) ∈ N . Then am+ax0 +a0m+a0x0 =

(a+ a0)(m+ x0) ∈ N . Since N is a subtractive subsemimodule, am ∈ N .
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Subcase 2.2.2.2: (b + b0)(m + x0) ∈ N . Similarly to Subcase 2.2.2.1,

we obtain that bm ∈ N .

Subcase 2.2.2.3: [(a + a0)(b + b0)]k ∈ (N : M) for some k ∈ N. Then

[(a+ a0)(b+ b0)]k = akbk + r for some r ∈ (N : M). Since (N : M) is subtractive,

(ab)k = akbk ∈ (N : M).

Therefore N is an AG2-absorbing subsemimodule.

Corollary 4.3. Let M be an R-semimodule and N a proper subsemimodule of M .

If
√

(N : m) =
√

(N : M) ∪ ({0} : m) for all m ∈ MrN and N is a subtractive

subsemimodule with (N : M)2N 6= {0}, then N is an AG2-absorbing subsemimod-

ule.

Proof. Assume that
√

(N : m) =
√

(N : M) ∪ ({0} : m) for all m ∈ MrN and

N is a subtractive subsemimodule with (N : M)2N 6= {0}. We obtain from

Proposition 4.1 that N is a weakly AG2-absorbing subsemimodule. Then N is an

AG2-absorbing subsemimodule by Theorem 4.2.

The next proposition provides the condition for
√

(N : M) to be a 2-absorbing

ideal of R where N is a subsemimodule of an R-semimodule M . However, the

R-semimodule M has to be cyclic.

Proposition 4.4. Let M be a cyclic R-semimodule and N a subsemimodule of M .

If N is an AG2-absorbing subsemimodule of M , then
√

(N : M) is a 2-absorbing

ideal of R containing ann(M).

Proof. First of all, let M = Rm for some m ∈ M and assume that N is an AG2-

absorbing subsemimodule of M . Recall that (N : M) = (N : m). To show that√
(N : M) is a 2-absorbing ideal, let a, b, c ∈ R be such that abc ∈

√
(N : M) but

ab /∈
√

(N : M) and ac /∈
√

(N : M). Then there exists k ∈ N such that akbkck ∈

(N : M), i.e., akbkckM ⊆ N . Since ab /∈
√

(N : M) and ac /∈
√

(N : M), there are

r1, r2 ∈ R such that (ab)kr1m, (ac)
kr2m /∈ N so that akbkr1m, a

kckr2m /∈ N . Thus

akbkm /∈ N and akckm /∈ N . Since N is an AG2-absorbing subsemimodule and

bkck(akm) ∈ N , it follows that bkakm ∈ N or ckakm ∈ N or (bkck)l ∈ (N : M) for

some l ∈ N. As a result, bc ∈
√

(N : M) because bkakm /∈ N and ckakm /∈ N .
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Next, we show that ann(M) ⊆
√

(N : M). We know that ann(M) = ({0} : M).

Then ann(M) = ({0} : M) ⊆ (N : M) ⊆
√

(N : M) as desired.

Therefore
√

(N : M) is a 2-absorbing ideal of R containing ann(M).

The followings provide some relationships between being (weakly) AG2-absorbing

subsemimodules of N and being (weakly) AG2-absorbing ideals of (N : M) where

N is a subsemimodule of a cyclic R-semimodule M .

Proposition 4.5. Let M be a cyclic R-semimodule and N a subsemimodule of M .

Then the followings hold.

(i) N is an AG2-absorbing subsemimodule of M if and only if (N : M) is an

AG2-absorbing ideal of R.

(ii) If, in addition, M is faithful, then N is a weakly AG2-absorbing subsemi-

module of M if and only if (N : M) is a weakly AG2-absorbing ideal of R.

Proof. Let M = Rm for some m ∈M . Then (N : M) = (N : m).

(i) First, assume that N is an AG2-absorbing subsemimodule of M . Let

a, b, c ∈ R be such that abc ∈ (N : M) but ab /∈ (N : M) and ac /∈ (N : M).

Then there exist r, s ∈ R such that ab(rm) /∈ N and ac(sm) /∈ N . Thus abm /∈ N

and acm /∈ N . Note that bc(am) ∈ N . Thus there exists k ∈ N such that

(bc)k ∈ (N : M) because N is AG2-absorbing.

Therefore (N : M) is an AG2-absorbing ideal of R.

Conversely, assume that (N : M) is an AG2-absorbing ideal of R. Let a, b ∈ R

and x ∈ M be such that abx ∈ N . Then there exists c ∈ R such that x = cm, so

abcm ∈ N , i.e., abc ∈ (N : m) = (N : M). Thus ac ∈ (N : m) or bc ∈ (N : m)

or (ab)k ∈ (N : M) for some k ∈ N, i.e., ax = acm ∈ N or bx = bcm ∈ N or

(ab)k ∈ (N : M).

Therefore N is an AG2-absorbing subsemimodule of M .

(ii) Assume further that M is faithful.

First, let N be a weakly AG2-absorbing subsemimodule of M . Let a, b, c ∈ R
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be such that 0 6= abc ∈ (N : M) but ab /∈ (N : M) and ac /∈ (N : M). Then

there exist r, s ∈ R such that ab(rm) /∈ N and ac(sm) /∈ N . Thus abm /∈ N

and acm /∈ N . Suppose that abcm = 0. So, {0} = abcRm = abcM . Since M is

faithful, abc = 0 which is a contradiction. Thus abcm 6= 0. Now, 0 6= abcm ∈ N .

Since N is a weakly AG2-absorbing subsemimodule, b(am) /∈ N and c(am) /∈ N ,

we obtain that (bc)k ∈ (N : M) for some k ∈ N.

Therefore (N : M) is a weakly AG2-absorbing ideal of R.

Next, let (N : M) be a weakly AG2-absorbing ideal of R. Let a, b ∈ R and

x ∈ M be such that 0 6= abx ∈ N . Then there exists c ∈ R such that x = cm,

so 0 6= abcm ∈ N . Thus 0 6= abc ∈ (N : m) = (N : M) so that ac ∈ (N : m)

or bc ∈ (N : m) or (ab)k ∈ (N : M) for some k ∈ N. Hence ax = acm ∈ N or

bx = bcm ∈ N or (ab)k ∈ (N : M).

Therefore N is a weakly AG2-absorbing subsemimodule of M .

This chapter is ended by providing relationship between (weakly) AG2-absorbing

subsemimodules and (weakly) AG2-absorbing Q-subsemimodules. This proof is

quite similar to the proof of Propositon 3.2 and Propositon 3.3 in Chapter III.

Theorem 4.6. Let M be an R-semimodule, N a Q-subsemimodule of M and P

a subtractive subsemimodule of M with N ⊆ P . Then P is an AG2-absorbing

subsemimodule of M if and only if P/N(Q∩P ) is an AG2-absorbing subsemimodule

of M/N(Q).

Proof. First, assume that P is an AG2-absorbing subsemimodule of M . Then

P/N(Q∩P ) is a proper subsemimodule of M/N(Q). Let a, b ∈ R and q1 + N ∈

M/N(Q), where q1 ∈ Q, be such that ab� (q1 +N) ∈ P/N(Q∩P ). Then there exists

unique q2 ∈ Q ∩ P such that ab � (q1 + N) = q2 + N where abq1 + N ⊆ q2 + N .

Since q2 +N ⊆ P , it follows that abq1 +N ⊆ P . Since N ⊆ P and P is subtractive,

abq1 ∈ P . Since P is AG2-absorbing, aq1 ∈ P or bq1 ∈ P or (ab)kM ⊆ P for some

k ∈ N. We claim that a � (q1 + N) ∈ P/N(Q∩P ) or b � (q1 + N) ∈ P/N(Q∩P ) or

(ab)k ∈ (P/N(Q∩P ) : M/N(Q)).

Case 1: aq1 ∈ P . Then aq1 ∈ Q ∩ P , so aq1 + N ∈ P/N(Q∩P ). Moreover,
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a� (q1 + N) = q′ + N where q′ ∈ Q is unique such that aq1 + N ⊆ q′ + N . Then

q′ = aq1 ∈ Q ∩ P . Thus a� (q1 +N) ∈ P/N(Q∩P ).

Case 2: bq1 ∈ P . We can conclude similarly to Case 1 that b � (q1 + N) ∈

P/N(Q∩P ).

Case 3: (ab)kM ⊆ P . Let q +N ∈M/N(Q) and (ab)k � (q +N) = q3 +N where

q3 ∈ Q is unique such that (ab)kq + N ⊆ q3 + N . Then (ab)kq + N = q3 + N

since (ab)kq ∈ Q. Thus q3 + N = (ab)kq + N ⊆ P since (ab)kM ⊆ P and

N ⊆ P so that q3 ∈ P because P is subtractive. As a result, q3 ∈ Q ∩ P . Then

(ab)k � (q +N) = q3 +N ∈ P/N(Q∩P ). Thus (ab)k �M/N(Q) ⊆ P/N(Q∩P ). Hence

(ab)k ∈ (P/N(Q∩P ) : M/N(Q)).

Therefore P/N(Q∩P ) is an AG2-absorbing subsemimodule of M/N(Q).

Conversely, assume that P/N(Q∩P ) is an AG2-absorbing subsemimodule of

M/N(Q). Then P is a proper subsemimodule of M . Let a, b ∈ R and m ∈ M

be such that abm ∈ P . Then by Proposition 2.25, there is unique q1 ∈ Q such that

m ∈ q1+N and abm ∈ ab�(q1+N). Let ab�(q1+N) = q2+N where q2 is a unique

element of Q such that abq1 +N ⊆ q2 +N . Now, abm ∈ P and abm ∈ q2 +N . So

there is n ∈ N such that q2 +n = abm ∈ P . Since P is subtractive and n ∈ N ⊆ P ,

we obtain q2 ∈ P . Then q2 ∈ Q ∩ P . Thus ab � (q1 + N) = q2 + N ∈ P/N(Q∩P ).

Since P/N(Q∩P ) is an AG2-absorbing subsemimodule, a� (q1 +N) ∈ P/N(Q∩P ) or

b� (q1 +N) ∈ P/N(Q∩P ) or (ab)k �M/N(Q) ⊆ P/N(Q∩P ) for some k ∈ N.

Case 1: a � (q1 + N) ∈ P/N(Q∩P ). Then a � (q1 + N) = q′ + N where q′ is a

unique element of Q∩P such that aq1 +N ⊆ q′+N . Since a� (q1 +N) ⊆ P and

a� (q1 +N) = q′+N , we get aq1 +N ⊆ P . Thus aq1 ∈ P . Then aq1 ∈ Q∩P . So

q′ = aq1. It follows from m ∈ q1 +N that am ∈ a(q1 +N) ⊆ aq1 +N = q′ +N =

a� (q1 +N) ⊆ P . Thus am ∈ P .

Case 2: b�(q1 +N) ∈ P/N(Q∩P ). Again, this is similar to Case 1, we can conclude

that bm ∈ P .

Case 3: (ab)kM/N(Q) ⊆ P/N(Q∩P ). Let x ∈ M . By Proposition 2.25, there is

unique q3 ∈ Q such that x ∈ q3 + N and (ab)kx ∈ (ab)k � (q3 + N) = q4 + N

where q4 is a unique element of Q such that (ab)kq3 + N ⊆ q4 + N . Now,
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q4 + N = (ab)k � (q3 + N) ∈ P/N(Q∩P ). Then (ab)kx ∈ q4 + N ⊆ P . Thus

(ab)kM ⊆ P .

Therefore P is an AG2-absorbing subsemimodule of M .

Theorem 4.7. Let M be an R-semimodule, N a Q-subsemimodule of M and P a

subtractive subsemimodule of M with N ⊆ P .

(i) If P is a weakly AG2-absorbing subsemimodule of M , then P/N(Q∩P ) is a

weakly AG2-absorbing subsemimodule of M/N(Q).

(ii) If N and P/N(Q∩P ) are weakly AG2-absorbing subsemimodules of M and

M/N(Q), respectively, then P is a weakly AG2-absorbing subsemimodule ofM .

Proof. (i) Assume that P is a weakly AG2-absorbing subsemimodule of M . Then

P/N(Q∩P ) is a proper subsemimodule of M/N(Q). Let a, b ∈ R and q1 + N ∈

M/N(Q), where q1 ∈ Q, be such that 0M + N 6= ab � (q1 + N) ∈ P/N(Q∩P ).

Then there exists unique q2 ∈ Q ∩ P such that ab � (q1 + N) = q2 + N where

abq1 + N ⊆ q2 + N . Since q2 + N ⊆ P , it follows that abq1 + N ⊆ P and then

abq1 ∈ P .

Case 1: abq1 = 0. Since abq1 ∈ (0M + N) ∩ (q2 + N), we obtain that 0M = q2.

Thus 0M +N = q2 +N contradicts the fact that q2 +N = ab� (q1 +N) 6= 0M +N .

Case 2: abq1 6= 0. Since P is a weakly AG2-absorbing subsemimodule of M , it can

be concluded that aq1 ∈ P or bq1 ∈ P or (ab)kM ⊆ P for some k ∈ N. We claim

that a� (q1 +N) ∈ P/N(Q∩P ) or b� (q1 +N) ∈ P/N(Q∩P ) or (ab)k ∈ (P/N(Q∩P ) :

M/N(Q)).

Subcase 2.1: aq1 ∈ P . Then aq1 ∈ Q∩P , so aq1 +N ∈ P/N(Q∩P ). Moreover,

a� (q1 + N) = q′ + N where q′ ∈ Q is unique such that aq1 + N ⊆ q′ + N . Then

q′ = aq1 ∈ Q ∩ P . Thus a� (q1 +N) ∈ P/N(Q∩P ).

Subcase 2.2: bq1 ∈ P . We can conclude similarly to Subcase 2.1 that b �

(q1 +N) ∈ P/N(Q∩P ).

Subcase 2.3: (ab)kM ⊆ P . Let q+N ∈M/N(Q) and (ab)k�(q+N) = q3 +N

where q3 ∈ Q is unique such that (ab)kq+N ⊆ q3 +N . Then (ab)kq+N = q3 +N

since (ab)kq ∈ Q. Then q3 + N = (ab)kq + N ⊆ P since (ab)kM ⊆ P and
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N ⊆ P so that q3 ∈ P because P is subtractive. Thus q3 ∈ Q ∩ P . Then

(ab)k � (q +N) = q3 +N ∈ P/N(Q∩P ). Thus (ab)k �M/N(Q) ⊆ P/N(Q∩P ). Hence

(ab)k ∈ (P/N(Q∩P ) : M/N(Q)).

Therefore P/N(Q∩P ) is a weakly AG2-absorbing subsemimodule of M/N(Q).

(ii) Assume that N and P/N(Q∩P ) are weakly AG2-absorbing subsemimodules

of M and M/N(Q), respectively. Then P is a proper subsemimodule of M . Let

a, b ∈ R and m ∈M be such that 0 6= abm ∈ P .

Case 1: 0 6= abm ∈ N . Then am ∈ N ⊆ P or bm ∈ N ⊆ P or (ab)k ∈ (N : M) ⊆

(P : M) for some k ∈ N.

Case 2: 0 6= abm ∈ P rN . Then by Proposition 2.25, there is unique q1 ∈ Q

such that m ∈ q1 + N and abm ∈ ab � (q1 + N). Let ab � (q1 + N) = q2 + N

where q2 is a unique element of Q such that abq1 + N ⊆ q2 + N . Now, abm ∈ P

and abm ∈ q2 + N . So there is n ∈ N such that q2 + n = abm ∈ P . Since P is

subtractive and n ∈ N ⊆ P , we obtain q2 ∈ P . Then q2 ∈ Q ∩ P . Assume that

0M +N = ab�(q1 +N). Since q2 +N = ab�(q1 +N) = 0M +N and abm ∈ q2 +N ,

it follows that abm ∈ 0M + N = N contradicts the fact that abm ∈ PrN . Thus

0M +N 6= ab� (q1 +N) = q2 +N ∈ P/N(Q∩P ). Since P/N(Q∩P ) is a weakly AG2-

absorbing subsemimodule, a � (q1 + N) ∈ P/N(Q∩P ) or b � (q1 + N) ∈ P/N(Q∩P )

or (ab)k �M/N(Q) ⊆ P/N(Q∩P ) for some k ∈ N.

Subcase 2.1: a� (q1 +N) ∈ P/N(Q∩P ). Then a� (q1 +N) = q′+N where q′

is a unique element of Q∩ P such that aq1 +N ⊆ q′ +N . Since a� (q1 +N) ⊆ P

and a � (q1 + N) = q′ + N , we get that aq1 + N ⊆ P . Thus aq1 ∈ P because P

is subtractive and N ⊆ P . Then aq1 ∈ Q ∩ P . So q′ = aq1. Since m ∈ q1 + N ,

it follows that am ∈ a(q1 + N) ⊆ aq1 + N = q′ + N = a � (q1 + N) ⊆ P . Thus

am ∈ P .

Subcase 2.2: b� (q1 +N) ∈ P/N(Q∩P ). Again, this is similar to Subcase 2.1,

we can conclude that bm ∈ P .

Subcase 2.3: (ab)kM/N(Q) ⊆ P/N(Q∩P ). Let x ∈ M . By Proposition 2.25,

there is unique q3 ∈ Q such that x ∈ q3 +N and (ab)kx ∈ (ab)k�(q3 +N) = q4 +N
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where q4 is a unique element of Q such that (ab)kq3 +N ⊆ q4 +N . Now, q4 +N =

(ab)k � (q3 +N) ∈ P/N(Q∩P ). Then (ab)kx ∈ q4 +N ⊆ P . Thus (ab)kM ⊆ P .

Therefore P is a weakly AG2-absorbing subsemimodule of M .
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