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CHAPTER I 

INTRODUCTION 

 

1.1 Motivation 

 Nowadays, glass containers are widely used around the world due to its transparency, 

alkaline properties and acidic resistance. Moreover, they are recyclable. Glass container productions 

have high requested orders every month, which cause a lot of setup cost and manpower cost. 

Therefore, optimization techniques are needed for organizing available resources by ordering a 

sequence of operations of orders assigned to each resource. 

 Many glass manufacturers still use planning staff to schedule the production planning. 

However, the optimal solution may not be obtained. There are many researches on scheduling 

problem with the machine-dependent setup time in the glass container industry that use optimization 

techniques to find an optimal solution. Therefore the problem needs to be formulated as a mixed-

integer mathematical programming model, so optimization techniques can be used to help the 

production planning staff for scheduling the glass production process. Next, the glass container 

production process will be described for understanding the work flow of the problem. 

1.2 Glass container production process 

 A glass container production process composes of two sections: the hot zone and the cold 

zone. The hot zone handles furnaces, annealing ovens or lehrs, and forming machines. The cold 

zone contains product inspection units and packaging equipment units, see Figure 1.1. However, a 

glass container production process contains three main sub-processes. They are glass mixing and 

melting (MM), glass containers manufacturing-forming (GF) and palletizing which can be seen in 

Figure 1.2. 
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Figure 1.1: A glass container production process 

 

 

 

 

   

 

 

 

 Figure 1.2: The sub-processes of a glass container production process 
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1.2.1 Raw materials and mixing process 

 Raw materials (silica sand, feldspar, dolomite, soda ash and limestone) are fed separately 

into a storage site before mixing with treated cullet processed in the cullet treatment process. The 

cullet treatment process starts by crushing used bottles. Then, unwanted metal, plastic and paper 

are filtered out of the glass waste before being mixed with raw materials and other components in a 

batch mixing. Raw materials are weighted according to a required glass formulae and then mixed 

with the treated cullet proportionally. The process of melting is applied after obtaining the 

appropriate mixture of glass production. 

1.2.2 Melting process 

 The mixture is melted at temperature of 1,600 Celsius in a glass furnace which can be seen 

in Figure 1.3. Then, glass containers are formed by molten raw materials in heat which is generated 

by fuel oil burners or natural gas or electric booster. In addition, Salt cake, Selenium, Coke dust, and 

Iron oxide are applied for the required properties and colours. If cullet is used an increasingly large 

proportion of glass batch, up to 98%, then it can save energy consumption, the main cost in glass 

container industries. 

 Figure 1.3: A glass furnace 

 Source: Olivier Auchet, et al., 2008 

   

 The molten glass is transported through the fining, and conditioning zone to the spout. 

When a molten glass moves to the end of the spout, the glass temperature must be within the 

required tolerance to make the forming of the bottle possible. The batch material takes about one 
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day to pass through the melting state. The unit of furnace output is a ton per day. The furnace 

outputs range from 100 tons per day to over 600 tons per day.  

1.2.3 Forming process 

 Molten glass moves through the furnace throat where the temperature is controlled between 

1,000 – 1,300 Celsius before it is transported into the parallel forming machine which is shown in 

Figure 1.4. The molten glass is cut into the cylinder shape which is called ‘a gob’ according to the 

weight and design of each bottle. The forming machine has several characteristics; mold sizes and 

process types, which restrict the set of bottles. Each forming machine can only process one order at 

a time. There are three forming types; blow and blow (BB) for narrow-neck bottles, press and blow 

(PB) for wide mouth bottles, and narrow neck press and blow (NNPB) for the light weight bottles. 

Since the production rate of each machine is not the same which implies the gob speeds for each 

forming machine is also different. The production rate can be calculated by the formula: 

    
1000000

1440
 iki

ik

GSGW
PR , 

where     Set of jobs, 

      Set of machines, 

ik
PR  Production rate of the job   at the machine   for     and 

      (tons per day), 

  
i

GW   One unit of the job   for     (grams) and 

  
ik

GS   Speed of the job   at the machine   for     and       

(units per minute). 

 For example, if we set       and          and gob speeds of each forming 

machine is 100 and 200 units per minute. Assume that one unit of gob of job A weighs 165 grams. 

Then,The constant 1440 is the total minutes of one day calculated. The constant 1000000 is used to 

convert the gram unit to the ton unit. Therefore,  
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    7623
1000000

1440100165
1 .PRA 


  tons per day 

    5247
1000000

1440200165
2 .PRA 


 tons per day 

 If the marketing requirement of job   is 500 tons then the processing times of job   for each 

forming machine are 0421
7623

500
.

.
 days and 5210

5247

500
.

.
 days, respectively. 

 Figure 1.4: A glass container forming machine 

 Source: http://www.recycleglass.co.nz(5th March 2013) 

  

 

1.2.4 Annealing process 

 Annealing process is a process of formed bottles which are transported into the annealing 

oven or lehr for reducing stress, see Figure 1.5. During the move from the forming machine to the 

oven, the temperature of each bottle will drop. The annealing oven will raise the temperature of the 

containers to approximately 540 Celsius, holding for specified minutes and then cooling at a 

consistent rate to remove the stress from predetermined wall thickness. 

  

 

 

http://www.recycleglass.co.nz/
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Figure 1.5: The glass bottles are transporting into the annealing oven. 

 Source: http://globalpackage.net(5th March 2013) 

   

 

1.2.5 Quality control and inspection process  

 After moving out of the annealing process, glass bottles are transported to the inspection 

process. The inspection process consists of machine check, laboratory check and visual check to 

guarantee that the durability and solidity, shapes and sizes are satisfied. 

 Figure 1.6: The inspection machine 

 Source: http://englishrussia.com/2013/02/06/birth-of-a-bottle/(5th March 2013) 

   

 

 

http://globalpackage.net/
http://englishrussia.com/2013/02/06/birth-of-a-bottle/
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1.2.6 Packing process 

 After taking out of the inspection process, glass bottles are transported into the automatic 

packaging machine with plastic layer sheets to prevent contamination and to ensure that they are 

ready to be delivered to customers in top quality, which can be seen in Figure 1.7.  

 Figure 1.7: The glass bottles for shipping pallets 

 Source: http://en.wikipedia.org/wiki/File:Glass_bottles.jpg(5th March 2013) 

    

 

1.3 Current planning strategy 

 Many glass manufacturers still use their production planning staff to schedule their 

production planning. Production planning staff receives a marketing requirements from the marketing 

and sales divisions. The marketing requirement consists of name of products, colours, and request 

quantities. The draft plan will be made based on the needs of customers, stocks on hand, machine 

constraints, and standard planning factors such as gob speed, gob weight, standard efficiency, and 

setup time. Next, the master production planning report is generated by consulting with 

manufacturers for ensuring the working plan that satisfied all production constraints. The current 

production planning work flow is shown in Figure 1.8. The solution of this strategy may not be 

optimized. In the case of large volumes of demand, many researchers proved that the scheduling 

problem with the machine-dependent setup time is a combinatorial problem or NP-hard. 

  

http://en.wikipedia.org/wiki/File:Glass_bottles.jpg


    
 
    
   8 
 

Figure 1.8: The current production planning work flow 

   

  

 

 

 

 

 

 

 

1.4 Research objective 

The first objective is to formulate a mixed-integer mathematical programming model using a goal 

programming for minimizing the setup time and the makespan in a glass container industry. The 

second objective is to extend the model from Gharehgozli et al.[1]. 

1.5 Structure of the thesis 

The rest of the thesis is described as follows. 

In Chapter II, the theoretical backgrounds and literature review are described. This includes an 

important instance of the constraint relationships. The set of parameters, the decision variables and 

the mixed-integer mathematical programming model are presented in Chapter III. Chapter IV shown 

that the formulated mathematical model in Chapter III will be converted into the SAGE language. In 

Chapter V, the experiments and results are described and the results are discussed and analysed 

and the conclusion from the study are drawn in Chapter VI. 
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CHAPTER II 

THEORETICAL BACKGROUND AND LITERATURE REVIEW 

 

2.1. Mathematical model  

 We begin our discussion by giving basic definitions and notations of each part in the 

following linear programming problem. 

               Minimize
nnxcxcxc z  ...

2211
         

          

.x,...,x,x

bxa...xaxa

...

bxa...xaxa

bxa...xaxa

n

mnmnmm

nn

nn

021

2211

22222121

11212111











                                            

 The term nnxc...xcxc  2211  is the objective function to be minimized and will be 

denoted by  . The coefficients nc,...,c,c 21  are the cost coefficient and nx,...,x,x 21  are the 

decision variables. The inequality 



n

j

ijij bxa
1

denotes the ith constraint. These ija  for 

n,...,,j,m,...,,i 2121   form the constraint matrix  . 

      


















mnmm

n

n

aaa

aaa

aaa









21

22221

11211

. 

 The constant            are the elements in the column vector which is called the right-

hand-side vector. The constraints 021 nx,...,x,x  are the nonnegativity constraints. A set of 

variables nx,...,x,x 21  satisfying all the constraints is called a feasible point or a feasible solution. 

The set of all feasible points constitutes the feasible region.  

 

subject to 
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2.1.1 Decision variables 

 The decision variables are a set of quantities that need to be determined in order to solve 

the problem. Typically, the decision variables represent the amount of a resource to use. Frequently, 

defining decision variables of a problem is a crucial formulating step. Decision makers have some 

freedom to assign numerical values to decision variables because decision variables subject to 

constraints. Solving a mathematical model means finding these numerical values for decision 

variables to minimize or maximize an objective function in the presence of constraints. 

2.1.2 Objective function 

 With the mathematical model, we wish to minimize or maximize a quantity such as cost, 

profit, risk, net present value, number of employees and customer satisfaction. The quantity we wish 

to maximize or minimize is known as an objective function. Deciding on the correct objective in 

practical situations is not trivial.  At one extreme there may be no clear objectives. At the other, there 

may be clear objectives or multiple objectives.  

2.1.3 Constraints 

 Constraints represent the limitations such as available capacities, daily working hours, raw 

material availability, etc. Sometimes constraints are also used to represent relationships between 

decision variables. 

2.2 Integer programming 

 In this section, we will discuss an integer-programming formulation. We consider basic 

approaches which are binary variables and important techniques that have been developed for 

solving pure integer and mixed-integer programming problems. We consider an optimization 

problem: 

  Maximize  



n

j
jj

xcz
1

 

  subject to: 



n

j

ijij bxa
1

for mi ,...,2,1  
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    0jx  for nj ,...,2,1  

    jx integer for some or all .,...,, nj 21  

 This problem is called an integer-programming problem. It can be called a mixed integer 

programing when for some, but not for all, decision variables are integer variable. It is called a pure 

integer program when all decision variables are define to be integer variable. We consider basic 

approaches which are binary variables and important techniques that have been developed for 

solving pure integer and mixed-integer programming problems. 

2.2.1 Binary variables 

 Consider the following activities which engage in (i) building a new plant, (ii) undertaking an 

advertising campaign, or (iii) developing a new product. In each case, a yes–no or so-called go–no–

go decision must be identified. These choices are formulated by setting 1jx  if the activity is 

engaged and 0jx  otherwise. Decision variables that are defined to 0 or 1 are called binary 

variables. Binary variables are important because they are used in many model formulations. 

 If the manager decided that at most one of three activities can be pursued, the following 

constraint can be used. 

     .1
3

1


j

jx  

 In this thesis, the binary variable is an important decision variable to use for formulating a 

mathematical model in the glass container industry. It can be used to find a job sequence which can 

be seen in Chapter III. 

2.2.2 Logical constraints 

 Frequently, Logical constraints are used to build the model on the decision variables. The 

following subsections review four most used logical relationships. 
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2.2.2.1 Constraint feasibility 

 We consider a general constraint 

     bxxxf n ),...,,( 21 .    ... (a) 

 We define a binary variable   with the following: 

    





otherwise,,

satisfied, is  constraint the if
  

 ,

1

0
  

and create the constraint   bM)x,...,x,x(f n    21 ,  ... (b) 

where M is a constant which is chosen to be big enough and the constraint (b) must be satisfy if 

1  that is, 

    Mb)x,...,x,x(f n  21 , 

for each solution of the decision variables nxxx ,...,, 21 . While the constraint (a) is satisfied when 

0  which gives a feasible solution to constraint (b). 

2.2.2.2 Alternative constraints 

 Consider the constraints: 

    1211 ),...,,( bxxxf n  , 

    2212 ),...,,( bxxxf n  . 

 If at least one, but not all, of these constraints must be satisfied. We can formulate a model 

with this restriction by using the technique from 2.2.2.1: 

    111211 bM)x,...,x,x(f n    , 

    222212 bM)x,...,x,x(f n    , 

     121  , 
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21  ,  are 0 or 1. 

 The decision variables 
1  and 

2  and the large constants 
1M  and 

2M  are used to 

solve when these two constraints are satisfied. The constraint 121   implies that    or    

are equal to 0, so that at least one constraint must be satisfied. 

 We can eliminate one binary variable by using the relation 121   , or equivalently, 

12 1   , because this formulation also implies that either 
1  or 

2  equals 0. The resulting 

formulation is written by: 

    111211 bM)x,...,x,x(f n    , 

    212212 1 b)(M)x,...,x,x(f n    , 

     101   or   . 

2.2.2.3 Conditional constraints 

 A conditional constraint is in the form: 

   if 1211 ),...,,( bxxxf n   then 2212 ),...,,( bxxxf n  . 

When both 1211 ),...,,( bxxxf n  and 2212 ),...,,( bxxxf n  , this statement is not satisfied. The 

conditional constraint is logically equivalent to the alternative constraints 

   1211 ),...,,( bxxxf n   or 2212 ),...,,( bxxxf n  , 

where at least one constraint must be satisfied. Therefore, this problem can be formulated by the 

alternative constraints as discussed in section 2.2.2.2. 

2.2.2.4 k-fold alternative constraints 

 In k-fold alternative constraints technique, we want to satisfy at least k of the following 

constraints: 

   ini bxxxf ),...,,( 21  for m,...,,i 21 . 



    
 
    
   14 
 

 For instance, these conditions may satisfy to the cold zone constraints for m  inspection 

machines in the quality control process. If a planner has decided to use at least k inspection 

machines, then the k constraints for these systems must be satisfied and the remaining constraints 

can be ignored. Assuming that iM for m,..., ,i 21 , are chosen. The ignored constraints can not 

be equal to the right-hand side values. This problem can be formulated as follows: 

  iiini b)(M)x,...,x,x(f  121  for m,...,,i 21 , 

     



m

i

i k
1

 , 

    10  or  i  for m,...,,i 21 . 

 Therefore, 1i  implies that the ith constraint is satisfied, and at least k of the constraints 

must be satisfied.  

2.3 Goal programing 

 Goal programming is a branch of the multi-objective optimization. Goal programming 

models are very similar to linear programming models but having several objectives. It can be 

thought of as an extension or generalisation of linear programming to handle multiple, normally 

conflicting objective measures. Goal programming is used to perform three types of analysis: 

1. Determining the required resources to achieve a desired set of objectives. 

2. Determining the degree of attainment of the goals with the available resources. 

3. Providing the best satisfying solution under a varying amount of resources and priorities 

of the goals. 

2.4 Literature review 

 As discussed in [3], the single forming machine production scheduling problem calculated 

with the sequence-dependent setup times is experimented to be combinatorial problem. Another the 

sequence-dependent setup time and parallel machine production scheduling with the non-zero 

release time was proposed by [4]. For the case of two identical or unrelated parallel machines, it is 
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proved that the problem of the minimal makespan is NP-hard [5] and the production scheduling 

problem of the minimal makespan with m identical or unrelated parallel machines and sequence-

dependent setup times where m is greater than two is also NP-hard [6, 7, 8]. The phenomenon of 

sequence-dependent setup times has been investigated by researchers for real-World job shop 

environments such as the glass industry, metallurgical industry, paper industry, textile industry, wood 

industry and aerospace industry [9]. Several authors investigated the impact of the setup time 

variation of the problem [10, 11, 12].  

 Gharehgozli et al. (2009) [1] presented a new mixed-integer goal programming model to 

minimize the total weighted flow time and the total weighted tardiness simultaneously for a parallel 

machine scheduling problem with sequence-dependent setup times and release dates. Cheol Min 

Joo and Byung Soo Kim [2] presented the new mixed-integer programming model which extended 

from [1] and determined the allocation policy of jobs and the scheduling policy of machines to 

minimize the weighted sum of setup times, delay times and tardy times. 

 Motivated by the literatures discussed above, this thesis presents a parallel machine 

scheduling problem in the glass container industry with setup times and makespan by using the 

mixed-integer programming model and a goal programming. We extend the mathematical model 

from [1] for covering all of constraints in our case study. 

 

 

 

 

 

 

 



 
 

CHAPTER III 

MIXED-INTEGER PROGRAMMING MODEL FOR GLASS CONTAINER 

PRODUCTION SCHEDULING 

 

 This section proposes a mixed-integer mathematical programming model using a goal 

programming which can be used to minimize total weighted setup time and total weighted makespan 

of day by day. Orders are posted and requested monthly referred as jobs. We schedule all orders 

monthly. 

3.1 Notations 

Parameters 

P  Set of jobs 0

k
P  Initial processing time at the machine   

MC  Set of machines M  Big number 

ij
S  

Setup time of the job   processed 

directly after the  job   
ik

P  
Processing time of the job   at the 

machine   

0

ik
S  

Setup time of the job   if job is the first 

job sequence at the machine       

m

ik

s

ik
ww ,

 

Weights of the job   considered by 

setup time and makespan at the 

machine   

kD  
The set of jobs that cannot be 

assigned at the machine   
  

Decision variables 

ik
ES  

The starting date of the job   at the 

machine   
    Dummy starting date at the machine   
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ijk
X  

 



 otherwise
 machine theat   job the after process  job the if

 0

  1

,

, kij
 

ikON  




 otherwise
   machine theat  assigned  is   job the if

 0

  1

,

, ki  

3.2 Mathematical model 

 The mathematical model for the glass production scheduling is 

minimize  
 





Pi MCk

ij
Pj

jikjiikik

s

ik
XSXSwz and   )( 00

1
 

 .
 


Pi MCk

k

m

ik
EDwz

2
 

 The objective functions of this model are classified into two goals. The objective function 
1

z  

is used to minimize total weighted setup time. The objective function 
2

z  is used to minimize total 

weighted makespan, processing time for each job, see Figure 3.3.  

 These objective functions need not be minimize at the same time. In our thesis, the objective 

function 
1

z  must be included in all schedules since the setup time is the main cost of the glass 

container production process. The objective function 
2

z  is an option of production planning staff for 

scheduling when the demand is larger than the production rate. Next, the set of constraints is 

 MCkjiPjiXMESSXPES
ijkjkijijkikik

 ;;,),(1           ... (1) 

 Figure 3.1: The job   starts directly after the job   on the machine   

  

0

ik
X  

 



 otherwise
 machine theat  jobfirst  theat  processed  job the if

 0

  1

,

, ki
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 Constraint (1) ensures the relation of jobs assigned to the same machine. The constant M  

is chosen to be large enough so that the constraint is satisfied if 0
ijk

X . If the job   is assigned 

after the job   at the machine  , 1ijkX , then the last term is equal to zero so this constraint is 

satisfied. Therefore, the sum of starting date of the job  , processing time of the job   and setup time 

of the job   processed after the job   is less than or equal to starting date of the job  , see Figure 3.1. 

The processing time is calculated from the formula as discussed in section 1.2.3. The setup time 

depends only on two adjacent products not their orders, i.e. jiij SS  for Pji , . The processing 

time depends only on each machine’s production rate. The processing time of a machine that has a 

low production rate takes longer time than a machine that has a high production rate. 

  MCkPiXMESXSP
ikikikikk

 ;, )( 0000 1   ... (2) 

 Figure 3.2: The job   at the first position on the machine    

   

 Constraint (2) ensures that starting date of the first job in job sequence is less than or equal 

to sum of the processing time of last job in the previous month and its setup time, see Figure 3.2. 

   MCkPiONXX
ikik

ij
Pj

jik





;, 0   … (3)  

 Constraint (3) ensures that jobs assigned to the same machine can be appeared once in 

their sequence. The term 



ij
Pj

jikX  means that the job   is processed adjacently after some job at 

the machine  . This constraint is divided into two cases. 

 Case 1: 0ikON ; 
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 Since 0

ikjik
XX  and  are binary variables. Then 0

ik

ij
Pj

jik
XX  and 




 equal zero. This implies 

that the job   is not allocated on the machine  . Therefore 

   ikik

ij
Pj

jik ONXX 



0000 . 

 Case 2: 1ikON ; 

  Case 2.1: 01 0 



ik

ij
Pj

jik X,X ; 

  This implies that the job   is processed at the machine   but it is not the first 

position in the job sequence 

  Case 2.2: 10 0 



ik

ij
Pj

jik X,X ; 

Thus the job   is the first job in the job sequence. 

 MCkPjONMEDPES
jkkjkjk

 ;, )(1    ... (4) 

 MCkPiXMEDPXSP
ikkikikikk

 ;, )( 0000 1   ... (5) 

 Figure 3.3: Minimal makespan for each job sequence 

  

  

 

 

 

Constraints (4) to (5) ensure that a dummy starting time at the machine   is greater than or 

equal to each starting time in a job sequence at the machine  . If the minimal makespan is required 

𝐸𝐷  

Machine k 

0 

Machine 1 

Machine 2 

⋮ 

… 

… 

⋮ 

… 𝐸𝐷𝑘  

𝐸𝐷  
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then the dummy starting time will reduce the length of each processing time so the maximum job 

sequence is the makespan, see Figure 3.3. 

    PiON
MCk

ik




 ,1     ... (6) 

    MCkX
Pi

ik




 ,10     ... (7) 

 Constraint (6) guarantees that each job is processed exactly on one machine. If one order 

generates into several jobs then number of job changes will increase accordingly. Constraint (7) 

ensures that last jobs in the previous month can be assigned only one job per machine. 

MCkPiONX
ik

ij
Pj

ijk





;,    … (8) 

  Constraint (8) portrays that a machine can be derived from (7).  

   MCkDiON
kik

 ;, 0     … (9) 

   MCkPiEDES
kik

 ;,,  0    ... (10) 

   MCkPjiXXON
ijkikik

 ;,,,,    or100   ... (11) 

  Constraint (9) ensures the jobs that cannot be assigned at the machine  . One job can be 

appeared in one process type and some machine cannot be used to produce all production 

processes. Constraint (10) guarantees that the starting times and the dummy starting time are 

greater than or equal to zero. Constraint (11) ensures that  0

ikik
XON , and ijkX are binary variables. 

Example 3.1: Assume that there exists 4 jobs and m

ik

s

ik
ww 1  for 214321  ,k, , , ,i  . The 

parameters are shown in Tables 3.1 and 3.2. Suppose    is an empty set for 21 k ,  and each 

objective function is considered separately. All processing times can be calculated from the division 

of requirements and production rates.  
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Table 3.1: Example of setup times and marketing requirements 

 

 

 

  

Table 3.2: Example of Setup times with the last jobs in the previous month, production rates 

and processing times of the last jobs in the previous month 

 

Table 3.3: Results after solved Example 3.1 

 
Setup times (days) 

Requirements (tons) 
Job 1 Job 2 Job 3 Job 4 

Job 1 0 0.05 0.1 0.25 200 
Job 2 0.05 0 0.75 0.05 250 
Job 3 0.1 0.75 0 0.25 300 
Job 4 0.25 0.05 0.25 0 350 

Forming 
machines 

Setup times with jobs in the 
previous month (days) 

Production 
rates 

(tons/day) 

Processing times of last 
jobs in the previous 

month (days) Job 1 Job 2 Job 3 Job 4 
1 0.25 0.25 0.25 0.25 25 3 
2 0.15 0.15 0.10 0.10 50 5 

Minimization 
the objective 

function 

Forming 
machines 

Job 
sequence 

Starting times 
(days) 

Processing 
times 
(days) 

Setup times 
(days) 

1
z  

1 3 31ES  = 3.25 31P = 12 0

31S = 0.25 

2 4-2-1 
42ES  = 5.10 42P  = 7 0

42S  = 0.10 

22ES  = 12.15 22P  = 5 42S  = 0.05 

12ES  = 17.20 12P = 4 21S  = 0.05 
Total 28 0.45 

2
z  

1 1 11ES  = 3.25 11P  = 8 0

11S  = 0.25 

2 3-4-2 
32ES  = 5.10 32P  = 5 0

32S  = 0.10 

42ES  = 11.35 42P  = 6 34S  = 0.25 

22ES  = 18.40 22P  = 7 42S  = 0.05 
Total 26 0.65 
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 As shown in Table 3.3, the minimization of 
1

z has a minimum total weighted setup time and 

the optimal value is 0.45 days. The minimization of 
2

z  has a lowest sum of total weighted processing 

time and total weighted setup time, i.e. it has a minimal makespan and the optimal value is 26.65 

days. The results indicate that if the setup time minimization is considered then the total processing 

time may not be the shortest. While the makespan minimization has the lowest sum of the total 

weighted processing time and the total weighted setup time but total weighted setup time is not the 

minimum value.  Example of the Gantt chart created from the optimal solution from minimization of 

1
z  is shown in Figure 3.4. 

 Figure 3.4: The Gantt chart calculated from the solution of 
1

z minimization in Example 3.1 

  

 The minimal makespan is used to extend the model from [1, 2]. The last jobs in the previous 

month are combined into our mixed-integer mathematical programming model. Normally, it is hardly 

impossible that each job sequence will be completed at the same day. The first setup time effects 

with the setup time of the production scheduling. The processing time in [2] did not satisfy the glass 

container production process because the production rate of each machine is not the same. This 

thesis adds the machine index into the processing time parameter for satisfying with the real glass 

container production process. This model has |||||||||||| 



MCk

k
DMCPPMCP )( 4

constraints, )( 1|||||| PMCP  binary variables and )( 1|||| PMC  continuous variables. 

 

 

 



 
 

CHAPTER IV 

SAGE MATHEMATICAL MODEL FORMULATION 

 

 This chapter presents the conversion of the mathematical model presented in Chapter III 

into Python language using SAGE, a free open-source mathematic software system licensed under 

the GPL. It combines the power of many existing open-source packages into a common Python-

based interface. SAGE covers many aspects of mathematics, including algebra, combinatorics, 

numerical mathematics, number theory, and calculus.  

 This thesis solves the glass production scheduling problem through SAGE [13] using its 

mixed-integer programming solver; GLPK [14]. The GLPK (GNU Linear Programming Kit) package is 

intended for solving large-scale linear programming, mixed-integer programming, and other related 

problems. It is a set of routines written in ANSI C and organized in the form of a callable library.  

4.1 MixedIntegerLinearProgram class 

 As discussed in Chapter II, a mixed-integer program consists of decision variables, 

constraints associated with these decision variables, and an objective function which is to be 

maximized or minimized. The MixedIntegerLinearProgram class in SAGE is used for solving 

a mixed-integer programming problem either maximized or minimized. Four solvers are available 

through this class which consists of GLPK, Coin-OR, CPLEX and GUROBI. This thesis is a 

minimization problem and solved through GLPK solver. Define the object of our problem as p, the 

first statement in SAGE is 

p = MixedIntegerLinearProgram(maximization=False, solver=”GLPK”). 

          … (12) 

When maximization is set to be True, the MixedIntegerLinearProgram is defined as 

maximization. When maximization is set to be False, the objective function is defined as 

minimization. 
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4.2 Parameter conversion 

 This thesis contains the set of parameters such as jobs, forming machines, setup times, 

initial setup times, initial processing time, processing times, big number, and a set of jobs that cannot 

be assigned in some forming machines. We define  

Product      P   List of jobs 

Machine     MC  List of forming machines 

SetupTime    ijS  List of setup times where the first index is for the  

     starting job and the second index is for the target job 

StartSetupTime   0

ikS  List of the first setup times where the first index is for 

     the starting job and the second index is the forming  

         machine 

Duration    ikP  List of processing times where the first index is for the 

     job and the second index is for the forming machine 

PreDuration    0

kP  List of initial processing time  

BigM     M  Big number 

Dk     kD  List of jobs that cannot be assigned at some forming 

     machine where the first index is for the job and the  

          second index is for the forming machine 

Ws,Wm         m

ik

s

ik
ww ,    List of Weights of jobs considered by setup time and 

     makespan  

From Example 3.1, we can convert the set of parameters into SAGE so  

 

Product = [0, 1, 2, 3]       … (13) 
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Machine = [0, 1]        … (14) 

SetupTime = [[0, 0.05, 0.1, 0.25], [0.05, 0, 0.75, 0.05], [0.1, 0.75, 

0, 0.25], [0.25, 0.05, 0.25, 0]]      … (15) 

PreSetupTime = [[0.25, 0.15], [0.25, 0.15], [0.25, 0.1], [0.25, 0.1]] 

          … (16) 

Duration = [[8, 4], [10, 5], [12, 6], [14, 7]]    … (17) 

PreDuration = [3, 5]        … (18) 

BigM = 1000         … (19) 

Ws = [[1, 1, 1, 1], [1, 1, 1, 1]]      … (20) 

Wm = [[1, 1, 1, 1], [1, 1, 1, 1]]      … (21) 

4.3 Decision variable declaration 

 The statement new_variables() is used to declare the decision variables. We can 

define the type of a decision variable, binary or integer, by adding the type into its argument and also 

define the number of dimensions. For example, if we want to create a binary variable, namely X, with 

two dimensions then we can code  

  X = p.new_variables(binary=True, dim = 2). 

If we do not input the type of the decision variable then the default type is set to continuous variable. 

 From Example 3.1, we define 

EarlyStart     ikES  Starting time where the first index is for the job and  

           the second index is for the forming machine 

DummyStart    kED  Dummy starting time 

AdjFlag     ijkX  




 otherwise
 machine theat   job the after process  job the if

 0

  1

,

, kij
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StartAdjFlag      0

ikX     

On        ikON




 otherwise
   machine theat  assigned is  job the if

 0

  1

,

, ki
 

 We can declare the decision variables using the statement  new_variables() so  

EarlyStart = p.new_variables(dim=2)     … (22) 

DummyStart = p.new_variables(dim=2)      … (23) 

AdjFlag = p.new_variables(binary=True, dim=3)    … (24) 

StartAdjFlag = p.new_variables(binary=True, dim=2)   … (25) 

On = p.new_variables(binary=True, dim=2).     … (26) 

4.4 Objective function conversion 

 This thesis uses a goal programming with two objective functions but SAGE cannot use 

multi-objective function directly. We can apply a goal programming by weighting two objective 

functions and using a linear combination for combining into one objective function. Thus we can 

convert two objective functions in Chapter II, 

       and 
 





Pi MCk

ij
Pj

jikjiikik

s

ik
XSXSwz )( 00

1
 

,
 


Pi MCk

k

m

ik
EDwz

2
 

into SAGE by using the statement set_objective() as follows 

w1 = 1; w2 = 0         … (27) 

p.set_objective(w1*sum([PreSetupTime[i][k]*StartAdjFlag[i][k]+sum([Se
tupTime[j][i]*AdjFlag[j][i][k] for j in Product if j <> i]) for i in 
Product for k in Machine]) + w2*sum([DummyStart[k][0] for k in 

Machine])).          … (28) 





 otherwise
 machine theat  jobfirst  theat  processed  job the if

 0

  1

,

, ki
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 The w1 and w2 are the weights for the objective functions 
1

z  and 
2

z , respectively. For 

example, if we consider the objective 
1

z  only then we set w1 is equal to one and set w2 is equal to 

zero. 

4.5 Constraint conversion 

 The statement add_constraint() is used to create the constraints. As discussed in 

Chapter II, we consider constraint (1) to (11) presented in Chapter III which can be converted into 

SAGE as follow: 

MCkjiPjiXMESXSPES
ijkjkijkijikik

 ;;,),(1   

_=[p.add_constraint(EarlyStart[i][k] + Duration[i][k] + 
SetupTime[i][k]*AdjFlag[i][j][k] <= EarlyStart[j][k] + BigM*(1 – 
AdjFlag[i][j][k])) for i in Product for j in Product for k in Machine 

if i <> j]          … (29) 

 

  MCkPiXSPXMES
ikikkikik

 ;,)(  00001  

_=[p.add_constraint(EarlyStart[i][k] + BigM*(1 – StartAdjFlag[i][k]) 
>= PreSetupTime[k] + PreSetupTime[i][k]*StartAdjFlag[i][k]) for i in 

Product for k in Machine]       … (30) 

 

  MCkPjONMEDPES
jkkjkjk

 ;),(  1  

_=[p.add_constraint(EarlyStart[j][k] + Duration[j][k] <= 
DummyStart[k][0] + BigM*(1 – On[j][k])) for j in Product for k in 

Machine]          … (31) 
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MCk;Pi),X(MEDPXSP ikkikikikk   0000 1  

_=[p.add_constraint(PreDuration[k] + 
PreSetupTime[i][k]*StartAdjFlag[i][k] + Duration[i][k] <= 
DummyStart[k][0] + BigM*(1 – StartAdjFlag[i][k])) for i in Product 

for k in Machine]        … (32) 

 

    Pi,ON
MCk

ik 


 1  

_=[p.add_constraint(sum([On[i][k] for k in Machine]) == 1) for i in 

Product]         … (33) 

 

    MCk,X
Pi

ik 


 10  

_=[p.add_constraint(sum([StartAdjFlag[i][k] for i in product]) == 1) 

for k in Machine]        … (34) 

 

   MCk;Pi,ONXX ikik

ij
Pj

jik 



 0  

_=[p.add_constraint(sum([AdjFlag[j][i][k] for j in Product if j <> 
i]) + StartAdjFlag[i][k] == On[i][k]) for i in Product for k in 

Machine]          … (35) 

 

         MCk;Pi,ONX ik

ij
Pj

ijk 



  

_=[p.add_constraint(sum([AdjFlag[i][j][k] for j in Product if j <> 

i]) <= On[i][k]) for i in Product for k in Machine]   … (36) 
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    MCk;Di,ON kik   0  

for k in Machine: 

 _=[p.add_constraint(On[i][k] == 0) for i in D[k]]  … (37) 

 Constraint (10) and (11) are not input in the constraint part because each decision variable 

have assigned to positive values in the step of decision variable declaration. When the model 

components are completed the equations and inequalities from (12) to (37) can be solved by the 

statement 

      p.solve() .  

 All the objective function and the constraints can be showed by typing he command 

      p.show(). 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER V 

EXPERIMENTS AND COMPUTATIONAL RESULTS 

 

 To evaluate the performances of the mixed-integer mathematical programming model 

proposed in this thesis, the previous production planning from three months of the company in 

Thailand were used to compare, data set I to III. These parameters can be seen in Table 4.1. 

 Table 4.1: Details of data set I to III 

Data 
sets 

Jobs Forming 
machines 

Number of 
constraints 

Number of binary 
variables 

Number of continuous 
variables 

I 11 4 679 528 48 
II 12 8 1,660 1,248 104 
III 15 8 2,311 1,920 128 

 

SAGE version 5.4.1 was used for finding the optimal solution. These tests have been done 

on a portable computer with Intel Core i7 with 8GB RAM and MS Windows 8 Operating System. 

Experiments proved that average the average setup time loss calculated from the mixed-integer 

programming model presented in Chapter III is better than the actual production scheduling, see 

Table 4.2. 

 The comparison considers the objective function     only (minimize setup time). Minimal 

makespan optimization was not used in our case study because production rate and demand are not 

different but the makespan calculated from our case study is shown in Table 4.3.   
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Table 4.2:  Compare the total setup time with the actual production scheduling for three 

months 

 

Table 4.3:  Makespan calculated from data set I to III   

 

 

 

 

 

Table 4.3 implies that the production planning staff can assign the other orders to the 

machine available times. For example, the data set I can be assigned the other orders to fulfil the 

machine available times, -14.85 days. The N/A in Table 4.3 means the total weighted makespan of 

the data set III cannot be calculated with our portable computer because the internal memories are 

not enough to calculate the solution. 

The linear combination of objective functions,          , are considered for analysing 

sensitivity when the production planning staff want to use both objective functions. For example, the 

value of    and    are varied from 0 to 1 and used for the data set I, see Table 4.4. 

 

Data sets 
Total setup time (minutes)  Gain = Actual - Model 

(minutes) 
%Gain 

Actual Model 

I 1,713.6 1,598.4 115.2 7.21% 
II 1,972.8 1,843.2 129.6 7.03% 
III 2,476.8 2,304.0 172.8 7.50% 

Grand total 6,163.2 5,745.6 417.6 7.27% 
Average 2,054.4 1,915.2 139.2 7.27% 

Data sets 
∑    

    

 

(days) 

     ∑     

    

     

(days) 

I 105.15 -14.85 
II 159.32 -82.01 
III N/A - 
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Table 4.4: Compare the total setup time and the makespan of data set I by varying weights 

of objective functions 

 

 The first row of Table 4.4,      and     , means that the model minimizes the 

objective function    only. The result after solved this case show that the makespan is not calculated 

because the dummy starting date was not combine in the related jobs constraint which can be seen 

in the constraint (1) and (2) presented in Chapter III. The total setup time in this case has the 

minimum value, 1.11 days, but the makespan may not be minimized. The case      and      

and the case      and      have the same optimal solution because the setup time is 

implicated in the makespan constraints, constraints (4) and (5) presented in Chapter III, which 

causes the setup time and the makespan to be minimized at the same time. The case       and 

     and the case      and      may have the same optimal solution where each 

machine has high production rate and gob weight and process type of each job are similar. 

      Total setup time (days) Makespan (days) 

1 0 1.11 114.11 
0.95 0.05 1.15 105.15 
0.75 0.25 1.15 105.15 
0.50 0.50 1.15 105.15 
0.25 0.75 1.15 105.15 

0 1 1.15 105.15 



 
 

       CHAPTER VI 

CONCLUSION 

 

 In this thesis, the parallel machine scheduling with setup time and makespan in the glass 

container industry is considered. The first objective is to formulate a mixed-integer programming 

model using a goal programming for minimizing totoal weighted setup time and total weighted 

makespan. The second objective is to extend the model from Gharehgozli et al. [1] for covering all of 

constraints in the glass container production process.  

 The test results indicate that the average setup time calculated from the mixed-integer 

mathematical programming model is better than the actual production scheduling from the company 

in Thailand 7.27%. If the production planning department still uses staffs to construct the production 

scheduling then the optimal solution may not be obtained because the production scheduling with 

machine-dependent setup time is a combinatorial problem. Therefore, the mixed-integer 

mathematical programming model can be used to help the production planning department for 

finding the optimal solution in the case of a high volume of orders. This thesis adds the minimal 

makespan condition for using in the case of the demand exceeds the production rate. The 

experiment proved that the minimization makespan can be used for reducing the processing times 

for each the job sequences. The planning staff can use two objective functions separately by setting 

the weight of another objective to be zero. 
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Appendix A: Setup times of data set I to III (days) 

Data set I 

 

 

 

 

 

 

 

 

    1 2 3 4 5 6 7 8 9 10 11 

1 0.00 0.09 0.09 0.09 0.12 0.10 0.10 0.10 0.09 0.09 0.09 

2 0.10 0.00 0.10 0.10 0.14 0.13 0.13 0.13 0.10 0.10 0.10 

3 0.10 0.10 0.00 0.10 0.14 0.13 0.13 0.13 0.10 0.10 0.10 

4 0.10 0.10 0.10 0.00 0.14 0.13 0.13 0.13 0.10 0.10 0.10 

5 0.13 0.13 0.13 0.13 0.00 0.13 0.13 0.13 0.13 0.13 0.13 

6 0.19 0.19 0.19 0.19 0.5 0.00 0.10 0.10 0.19 0.19 0.19 

7 0.19 0.19 0.19 0.19 0.5 0.10 0.00 0.10 0.19 0.19 0.19 

8 0.19 0.19 0.19 0.19 0.5 0.10 0.10 0.00 0.14 0.13 0.13 

9 0.10 0.10 0.10 0.10 0.14 0.13 0.13 0.13 0.00 0.10 0.10 

10 0.10 0.10 0.10 0.10 0.14 0.13 0.13 0.13 0.10 0.00 0.10 

11 0.10 0.10 0.10 0.10 0.14 0.13 0.13 0.13 0.10 0.10 0.00 
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Data set II 

 

 

 

 

 

 

 

 

    1 2 3 4 5 6 7 8 9 10 11 12 

1 0.00 0.10 0.19 0.19 0.19 0.19 0.10 0.10 0.10 0.10 0.19 0.19 

2 0.10 0.00 0.19 0.19 0.19 0.19 0.10 0.10 0.10 0.10 0.19 0.19 

3 0.13 0.13 0.00 0.10 0.10 0.10 0.13 0.13 0.13 0.13 0.10 0.10 

4 0.10 0.10 0.09 0.00 0.09 0.09 0.10 0.10 0.10 0.10 0.09 0.09 

5 0.13 0.13 0.10 0.10 0.00 0.10 0.13 0.13 0.13 0.13 0.10 0.10 

6 0.13 0.13 0.10 0.10 0.10 0.00 0.13 0.13 0.13 0.13 0.10 0.10 

7 0.10 0.10 0.19 0.19 0.19 0.19 0.00 0.10 0.00 0.10 0.19 0.19 

8 0.10 0.10 0.14 0.14 0.14 0.14 0.10 0.00 0.10 0.10 0.14 0.14 

9 0.10 0.10 0.19 0.19 0.19 0.19 0.10 0.10 0.00 0.10 0.19 0.19 

10 0.10 0.10 0.19 0.19 0.19 0.19 0.10 0.10 0.10 0.00 0.19 0.19 

11 0.13 0.13 0.10 0.10 0.10 0.10 0.13 0.13 0.13 0.13 0.00 0.10 

12 0.13 0.13 0.10 0.10 0.10 0.10 0.13 0.13 0.13 0.13 0.10 0.00 
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Data set III 

 

 

 

 

 

 

 

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0.00 0.19 0.10 0.10 0.19 0.19 0.19 0.19 0.10 0.10 0.10 0.10 0.19 0.19 0.50 

2 0.10 0.00 0.10 0.10 0.09 0.09 0.09 0.09 0.10 0.10 0.10 0.10 0.09 0.09 0.12 

3 0.10 0.19 0.00 0.10 0.19 0.19 0.19 0.19 0.10 0.10 0.10 0.10 0.19 0.19 0.50 

4 0.10 0.19 0.10 0.00 0.19 0.19 0.19 0.19 0.10 0.10 0.10 0.10 0.19 0.19 0.5 

5 0.13 0.10 0.13 0.13 0.00 0.10 0.10 0.10 0.13 0.13 0.13 0.13 0.10 0.10 0.14 

6 0.10 0.09 0.10 0.10 0.5 0.00 0.09 0.09 0.10 0.10 0.10 0.10 0.09 0.09 0.12 

7 0.13 0.10 0.13 0.13 0.5 0.10 0.00 0.10 0.13 0.13 0.13 0.13 0.10 0.10 0.14 

8 0.13 0.10 0.13 0.13 0.5 0.10 0.10 0.00 0.13 0.13 0.13 0.13 0.10 0.10 0.14 

9 0.10 0.19 0.10 0.10 0.19 0.19 0.19 0.19 0.00 0.10 0.10 0.10 0.19 0.19 0.5 

10 0.10 0.14 0.10 0.10 0.14 0.14 0.14 0.14 0.10 0.00 0.10 0.10 0.14 0.14 0.5 

11 0.10 0.19 0.10 0.10 0.19 0.19 0.19 0.19 0.10 0.10 0.00 0.10 0.19 0.19 0.5 

12 0.10 0.19 0.10 0.10 0.19 0.19 0.19 0.19 0.10 0.10 0.10 0.00 0.19 0.19 0.5 

13 0.13 0.10 0.13 0.13 0.10 0.10 0.10 0.10 0.13 0.13 0.13 0.13 0.00 0.10 0.14 

14 0.13 0.10 0.13 0.13 0.10 0.10 0.10 0.10 0.13 0.13 0.13 0.13 0.10 0.00 0.14 

15 0.13 0.13 0.13 0.13 0.5 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.00 
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Appendix B: Processing times (   ) of data set I to III (days) 

Data set I 

Jobs 
Forming machines 

1 2 3 4 
1 10 10 7 5 
2 13 13 10 7 
3 12 12 9 6 
4 7 7 5 3 
5 4 4 4 2 
6 14 14 10 7 
7 8 8 6 4 
8 12 12 8 6 
9 14 14 11 7 
10 10 10 8 5 
11 21 21 16 11 
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Data set II 

Jobs 
Forming machines 

1 2 3 4 5 6 7 8 
1 6 6 6 8 8 6 4 4 
2 9 9 9 12 12 9 6 6 
3 8 8 8 11 11 8 5 5 
4 10 10 10 13 13 10 7 7 
5 4 4 4 6 6 4 3 3 
6 6 6 6 8 8 6 4 4 
7 6 6 6 8 8 6 4 4 
8 7 7 7 9 9 7 4 4 
9 5 5 5 7 7 5 3 3 
10 9 9 9 12 12 9 6 6 
11 14 14 14 18 18 14 9 9 
12 8 8 8 11 11 8 5 5 
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Data set III 

Jobs 
Forming machines 

1 2 3 4 5 6 7 8 
1 28 28 28 44 44 28 21 21 
2 19 19 19 26 26 19 13 13 
3 7 7 7 9 9 7 4 4 
4 11 11 11 15 15 11 7 7 
5 9 9 9 12 12 9 6 6 
6 11 11 11 15 15 11 7 7 
7 6 6 6 7 7 6 4 4 
8 7 7 7 9 9 7 5 5 
9 7 7 7 9 9 7 5 5 
10 8 8 8 11 11 8 5 5 
11 6 6 6 8 8 6 4 4 
12 10 10 10 14 14 10 7 7 
13 15 15 15 20 20 15 10 10 
14 9 9 9 12 12 9 6 6 
15 7 7 7 7 7 7 4 4 
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Appendix C: Setup times with the last jobs in the previous month, production rates and 

        processing times of the last jobs in the previous month of data set I to III 

Data set I 

 

Data set II 

 

 

 

 

Forming 
machines 

   
  (days) 

  
 (days) Job 

1 
Job 

2 
Job 

3 
Job 

4 
Job 

5 
Job 

6 
Job 

7 
Job 

8 
Job 

9 
Job 
10 

Job 
11 

1 0.09 0.10 0.10 0.10 0.13 0.19 0.19 0.19 0.10 0.10 0.10 4 

2 0.09 0.10 0.10 0.10 0.13 0.19 0.19 0.19 0.10 0.10 0.10 9 

3 0.10 0.13 0.13 0.13 0.13 0.10 0.10 0.10 0.13 0.13 0.13 2 

4 0.09 0.10 0.10 0.10 0.13 0.19 0.19 0.19 0.10 0.10 0.10 5 

Forming 
machines 

   
  (days)   

  

(days) 
Job 

1 
Job 

2 
Job 

3 
Job 

4 
Job 

5 
Job 

6 
Job 

7 
Job 

8 
Job 

9 
Job 
10 

Job 
11 

Job 
12 

1 0.10 0.10 0.19 0.19 0.19 0.19 0.10 0.10 0.10 0.10 0.19 0.19 16 

2 0.10 0.10 0.09 0.09 0.09 0.09 0.10 0.10 0.10 0.10 0.09 0.09 7 

3 0.10 0.10 0.19 0.19 0.19 0.19 0.10 0.10 0.10 0.10 0.19 0.19 2 

4 0.13 0.13 0.10 0.10 0.10 0.10 0.13 0.13 0.13 0.13 0.10 0.10 17 

5 0.13 0.13 0.10 0.10 0.10 0.10 0.13 0.13 0.13 0.13 0.10 0.10 14 

6 0.10 0.10 0.19 0.19 0.19 0.19 0.10 0.10 0.10 0.10 0.19 0.19 21 

7 0.10 0.10 0.19 0.19 0.19 0.19 0.10 0.10 0.10 0.10 0.19 0.19 8 

8 0.13 0.13 0.10 0.10 0.10 0.10 0.13 0.13 0.13 0.13 0.10 0.10 15 
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Data set III 

 

 

 

 

 

 

 

 

 

 

 

Forming 
machines 

   
  (days)   

  

(days) 
Job 

1 
Job 

2 
Job 

3 
Job 

4 
Job 

5 
Job 

6 
Job 

7 
Job 

8 
Job 

9 
Job 
10 

Job 
11 

Job 
12 

1 0.10 0.19 0.10 0.10 0.19 0.19 0.19 0.19 0.10 0.10 0.10 0.10 2 

2 0.10 0.09 0.10 0.10 0.09 0.09 0.09 0.09 0.10 0.10 0.10 0.10 11 

3 0.10 0.19 0.10 0.10 0.19 0.19 0.19 0.19 0.10 0.10 0.10 0.10 12 

4 0.13 0.10 0.13 0.13 0.10 0.10 0.10 0.10 0.13 0.13 0.13 0.13 18 

5 0.13 0.10 0.13 0.13 0.10 0.10 0.10 0.10 0.13 0.13 0.13 0.13 6 

6 0.10 0.19 0.10 0.10 0.19 0.19 0.19 0.19 0.10 0.10 0.10 0.10 9 

7 0.10 0.19 0.10 0.10 0.19 0.19 0.19 0.19 0.10 0.10 0.10 0.10 23 

8 0.13 0.10 0.13 0.13 0.10 0.10 0.10 0.10 0.13 0.13 0.13 0.13 9 

Forming 
machines 

   
  (days) 

Job 
13 

Job 
14 

Job 
15 

1 0.19 0.19 0.50 

2 0.09 0.09 0.12 

3 0.19 0.19 0.50 

4 0.10 0.10 0.14 

5 0.10 0.10 0.14 

6 0.19 0.19 0.50 

7 0.19 0.19 0.50 

8 0.10 0.10 0.14 
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