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Impulsive noise in compressed measurement signal (y) leads to the
reconstruction of the sparse signal whose energy distribution is different than the
original signal. In Approximated Measurement Preprocessing (AMP), the highest
elements in y are successively removed until the energy distribution conforms to the
one of images. This thesis proposes two greedy algorithms, namely Greedy Boundary
Finder (GBF) and Greedy Steep Slope Finder (GSSF), with an aim to reduce the
computational cost of AMP. Images are assumed to be sparse in octave discrete
wavelet domain. The ratio of energy outside L; subband and the total energy is used to
detect the impulsive noise. Information in an image is highly redundant; therefore,
some largest elements can be removed without causing severe degradation to the
reconstruction result. Binary search is used to estimate the number of the noisy
element to within +g of the actual number, where g is the predefined constant. The
number of the reconstruction is a fixed number, when g is set as the unit of the percent
to the length of y. GBF and GSSF uses the energy ratio and the change of energy ratio
as the cost function for binary search, respectively. GBF and GSSF were compared
with AMP, the reconstruction with Huber penalty function (HUBER) and Lorentzian
Iterative Hard Thresholding (LIHT). The experiment on 100 16x16 image blocks and
20 256x256 images revealed that GBF and GSSF provided the comparable PSNR and
visual quality to AMP, and required less computational time when the noise
probability was higher than 0.05. Furthermore, GBF, GSSF and AMP were better than
HUBER and LIHT. GBF provided higher PSNR with lower computational cost than
GSSF. However, GSSF was more robust when the noise magnitude was smaller than
the largest element in y. GBF and GSSF were not efficient in case that (1) an image
could not be sparsified by wavelet shrinkage thresholding or (2) the noise magnitude
was smaller than the largest element in y. The integration of the energy ratio to
HUBER is being investigated for the rejection of small noise.
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CHAPTER

INTRODUCTION

1.1 Introduction

Compressed Sensing (CS) is a paradigm for the sampling and reconstruction
of a compressible signal at the rate lower than the Nyquist rate [1-3]. A signal is
defined to be compressible if it can be represented by a few nonzero elements in some
domain. The domain is not definitely defined; therefore, most signals can be
considered compressible. CS has a wide range of applications including hyperspectral
imaging [4] , super-resolution [5] and medical image processing [6-7]. The
reconstruction from a compressed signal in CS is an underdetermined problem. The
sparsity of an original signal and an incoherency between the sparse and the sensing
domains are the major keys to achieve the unique reconstruction [1]. The
reconstruction is set up as a problem to find the sparsest signal that can construct the
input compressed signal. The sparsity, which is the number of non-zero elements, can
be measured by L, norm; however, the minimization of Lo norm is a non-deterministic
polynomial-time (NP) hard problem, so it is either heuristically approximated by L;
norm [8-9], or replaced by heuristic rules [10-14].

In the reconstruction from a noisy signal, it is often assumed that the noise is
bound and the CS reconstruction becomes a constraint minimization problem [8-9].
The noise tolerance can be increased by (1) choosing the penalty function to conform
to the noise in the system and (2) adding the model of a signal into the reconstruction.
The most popular penalty function is L, norm, but L., norm [15] or a function in the
robust statistic [16-19] can also be used to increase the tolerance of the bounded

noise.

Though most noise is bounded, it is not guaranteed that all noise will be
bounded such as the impulsive noise during the thunder storm or power surge. In case

of the unbounded noise, the error becomes very large and the constraint minimization



of the popular L,-norm penalty function leads to incorrect reconstruction. To reduce
the effect of the large error, a function from robust statistics is often used as the
penalty function [16-19]. It is found that the model of generalized Cauchy distribution
(GCD) in an M-estimator is tolerant to impulsive noise [16]. The Lorentzian function
is often used in robust CS reconstruction [16-18], because it is the special case of
GCD. However, Lorentzian function is not convex; therefore, the global minimum is
not guaranteed. The greedy algorithm for the reconstruction using Lorentzian function
is also proposed [18]. It is based on an iterative hard thresholding (IHT) [14].
However, IHT requires a high measurement rate; hence, it is suitable only for a very
sparse signal. The Huber function, which is another popular function in robust
statistics, is also used in CS reconstruction [19]. The optimization of Huber function
can be formulated as a convex optimization problem and can be solved by many
existing algorithms. However, the value of Huber function is not bound; thus, its

performance is degraded when the noise is large or heavily populated.

Signal models can be used to reduce the effect of noise. The model of an
image signal is used to detect the existence of impulsive noise in [20]. An image
signal has most of its energy contained inside a low frequency domain. The failed
reconstruction due to the impulsive noise leads to large energy leaking out of the low
frequency domain [20]. The ratio of leakage energy and the total energy of the
reconstructed sparse signal is used to detect the existence of impulsive noise. The
method in [20], defined as Approximated Measurement Preprocessing (AMP), rejects
the impulsive noise by successively removing the largest elements until the ratio is
within the predefined threshold. In AMP, the elements corrupted by impulsive noise
are considered to have much larger magnitude than the noise-free elements, because
the magnitude of impulsive noise is very large. The major benefits of AMP over the
reconstruction by robust statistic are the simpler implementation and the tolerance to
large noise. However, the computational time is not low, because the number of the

CS reconstruction applied in AMP is the same as the number of noise levels.



1.2 Objectives

1. To reduce the computational time of AMP, while the simplicity and the
large noise tolerance are preserved.
2. To investigate the limitation of detecting the impulsive noise by the ratio

between the leakage energy and the total energy.

1.3 Problem Statements

The image signal is highly redundant, it is unnecessary to remove the exact
number of noisy elements. Hence the redundancy in an image can be exploited to
reduce the computational time, since some noiseless elements can be removed without

affecting the visual quality of the reconstruction.

1.4 Contributions

1. This thesis proposes the integration of a binary search and AMP to reduce
the computational time. The redundancy in image signal is exploited. The
binary search is used to detect the number of noisy elements to within the
value of g of the actual number, where g is the predefined constant and has
the unit of percent of the size of a compressed measurement signal.

2. This thesis investigates the limitation of the impulsive noise detection by

measuring the ratio of the leakage energy and the total energy.

1.5 Scopes
1. The proposed algorithm is for gray-scale image only.

2. The algorithm is applicable to images that can be sparsified by octave-tree

DWT with db8 as a mother wavelet.

3. The compressed measurement signal is corrupted by impulsive noise only.



1.6

4. The magnitude of impulsive noise must be at least three times higher than
the peak of a signal, y,.. When the distribution of the noise magnitude is
Gaussian with the standard deviation (SD) of the .., the lowest
magnitude mean is 5y, The value of 5y, is used to ensure that most
noise will be higher than 3y,,,, (within 2 SD) and there is a little chance
that the noise will be smaller than the signal. The assumption that the noise
must be larger than the signal is based on that the impulsive noise is very

large.

Research Procedures

1. Study previous researches relevant to the dissertation.
Researches on CS
Researches on impulsive noise removal in CS

2. Design and implement the proposed algorithm.

3. Evaluate the proposed algorithm by the following datasets.

100 image blocks of 16x16 pixels. The result is evaluated by %MSE and

computational time.

10 standard test images of 256x256 pixels. The result is evaluated by

PSNR, computational time and visual quality.
4. Check whether the conclusions meet all the objectives of the dissertation.

5. Write the dissertation.



CHAPTER 11

BACKGROUND

This chapter addresses the related research of the dissertation. It is divided into
three sections. The Compressed Sensing (CS) theory is described in Section 2.1. Since
the CS reconstruction method used in this thesis is Orthogonal Matching Pursuit with
Partially Known Support (OMP-PKYS)), it is described in detail in Section 2.2. The CS

reconstruction in impulsive noise environment is then described in Section 2.3.

2.1 Compressed Sensing (CS)

CS is a compression technique at a sub-Nyquist rate [1-3]. It is applicable to a
compressible signal which is defined as a signal that is sparse in some domain. It is
based on a sparse representation and an incoherence property. The sparse
representation implies compressibility, while the incoherence property implies the

isometric mapping in reconstruction process.

Most natural signals are compressible, because they can be transformed by an
orthonormal basis expansion to become sparse. The sparsity is defined as the number
of non-zero elements in the sparse representation, i.e. a signal is k-sparse, when its

sparse representation has k non-zero elements.

CS consists of two processes: (1) compression and (2) reconstruction
processes. In the compression process, the sparse signal is compressed using a
measurement matrix. The compressed signal is called the compressed measurement
signal in CS. The compression of a compressible signal, x € RY, is summarized as the

following linear equation.
y=0s=0¥'x, 2.1)

where y € RY is a compressed measurement signal (M << N);



® ¢ R is a random measurement matrix;
¥ ¢ R"" is a predefined matrix whose column corresponds to the basis of a
sparse domain;

s e RY isa sparse signal.

Without loss of generality, x is assumed to be sparse in this proposal.

Consequently, ¥ is an identity matrix, and x and s can be used interchangeably.

In the reconstruction process, X is estimated from y. Since the dimension of x
is larger than the one of y, the reconstruction is an underdetermined problem. Two
additional criteria are introduced to guarantee the high probability of the successful

reconstruction.

1) Restricted Isometric Properties (RIP)

RIP is introduced to guarantee the almost orthogonal property of ®@. It is

defined as the following equation.
(1= 8)ff; <[@x]; < 1+5)x[; (22)
0, >0 is the k-restricted isometry constant and ||, is the L, norm.

2) Measurement bound

The measurement bound provides the smallest y that has a high probability
of successful reconstruction. The size of the smallest y is defined according to

the following equation.
M =cklogN, (2.3)

where ¢>1 is a constant;

k is the number of non-zero elements in the sparse signal.

a priori is often introduced to solve an underdetermined problem. In CS, a
priori is that the signal is sparse. The sparsity can be measured by L) norm; thus, the

reconstruction of CS can be written as the following problem.



X = arg.;lrzrwlin||x||0 +af(Px—y) (2.4)

where HHO is the Lo norm;

o 1s a regularization parameter;

f(+) is a penalty function.

There are various choices of f(-) depending on how the residual error is

penalized. However, the L, norm is often used.

Since the minimization of L, norm is an NP-hard problem, L; norm is used as
the heuristic estimation of sparsity [8, 9]. CS reconstruction becomes the optimization

of the following problem:

f(zargmin”x”1 +af(®Px-y) (2.5)
xeRY
where HH1 is the L; norm.

If f(-) is convex, Equation (2.5) can be solved by many existing efficient

convex optimization algorithms.

In a greedy CS reconstruction algorithm, the minimization of L) norm is
replaced by heuristic rules [10-14]. One of popular rules is that a non-zero element
has a high correlation between its corresponding basis in ® and y [10-11]. After the
index of the non-zero element has been found, the value of the non-zero element is

estimated such that f(®x—y) is the lowest.

There are many ways to improve a noise tolerance in CS reconstruction. For
example, a penalty function from robust statistics is used as f'(-) to increase the noise
tolerance [16-19]; a signal model can be included into the penalty function
as f(®x—y+Ex), where Ex is the function measuring how x compiles with the
predefined model [21]; the model of a signal can be incorporated directly into the

reconstruction algorithm [10-14].



2.2  OMP-PKS [12]

OMP-PKS is adapted from OMP [11], which is one of the most popular
greedy algorithms for CS reconstruction. OMP-PKS has the same benefits as OMP in
that it has low computational time and its implementation is simple; however, it has

higher stability and requires a lower measurement rate (M/N) than OMP.

When the original signal is sparsified by a wavelet transform, LL subband
contains most of the important information and should be selected as the known
support in OMP-PKS. The algorithm of OMP-PKS for the reconstruction of a sparse

signal in the wavelet domain can be summarized as follows.

Input

e  The number of the non-zero elements (the sparsity level), &
¢ A random measurement matrix, ® ¢ R

e A compressed measurement signal, y

The selection of known supports

1) Define a set containing the indices of elements (bases) in LL subband as

T ={y.,7,*, 7y}, Where y is the index of the i™ element in LL subband,

and |I| is the size of I'. The process to select every element in LL subband

as non-zero elements is as follows.

e Set the number of the selected non-zero elements to |['|: # = ||

e Set an index set of non-zero elements to A: A, =1I".

e Set a matrix containing the bases of non-zero elements as follows:

(I)t:[(zjy1 ¢72 ¢m]’

where ¢ is the i"™ column in @.



2)

3)

Estimate the values of the non-zero elements by the following least

squared problem.

Z,= armeinHy —(I)tz” 5

Calculate the compressed measurement signal estimated by z, as a,. Then

find the residual, r;.

at = ¢1Zt

rL=y—-a,

The selection of the remaining non-zero elements

iy

2)

3)

Terminate the algorithm if the number of the selected non-zero elements, ¢,

is not less than k.

Find the index of the non-zero element as the index of the column in ®

that has the highest correlation to r;.

A, = argmax Krt s ¢j>

j=1,..N

If there are multiple columns with the highest correlation, select one

deterministically.
Update ¢ and construct A; and ®@,.

e The number of the selected element is increased by 1: =17+ 1.
e The set containing the indices of the non-zero elements is constructed as

follows:

e The matrix containing the bases of nonzero elements is constructed as

follows:
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4) Solve the following least squared problem to estimate the values of the

nonzero elements.
zZ,= arg;nin”y—(l)tz” )
5) Calculate the compressed measurement signal estimated by the current z

as a;. Then find the residual, r;.

at 7 (tht

L=y—-4a
6) Go to Step /) to select the remaining non-zero elements

The selection of non-zero elements provides the indices of non-zero elements
and their values in A; and z;, respectively. The sparse signal, X, can be reconstructed as

follows.
1) Set every element in X to zero.
2) Set the Kith element of X to z;, where i = [1,k] and z; is the i element of Z.

Though OMP-PKS is fast and more robust to noise than OMP, it has no
mechanism against impulsive noise. Therefore, it fails to reconstruct from y corrupted

by impulsive noise.
2.3 Reconstruction in Impulsive Noise Environment

The robustness of the CS reconstruction in this proposal is defined as the
tolerance to impulsive noise. There are two major approaches in the robust CS

reconstruction: (1) a robust statistic [17-19] and (2) a signal model approaches [20].
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2.3.1 Robust Statistics Approach

When y was corrupted by noise, the noise variance affects the quality of a
reconstructed signal. In conventional CS reconstruction techniques, the reconstruction
error is assumed to be bounded within a limit and penalized as an L, norm. The L,
norm as a penalty function is effective when y was corrupted by noise with small
variance. When y was corrupted by noise with large variance, such as impulsive
noise, the large penalty by L, norm leads to a failed reconstruction. L, norm is
replaced with a function in robust statistics for the reconstruction of signal corrupted

by noise with large variance.

Figure 2.1 shows examples of the function of robust statistics. The value of the
most functions in the figure is bounded; thus, it is less affected by large error (x-axis
value). However, the bounded function is not convex, so it requires additional
mechanism to ensure the local minimum. In case of the Huber function (Figure
2.1(d)), the value is not bounded; however, it has slower increasing rate after the error

is larger than 1; therefore, the effect of the large noise is less than L, norm.
i. Lorentzian Function

A generalized Cauchy distribution (GCD) is often used as a model of
impulsive noise probability density function. M-GC estimator is an estimator for
reconstructing signals that are corrupted by noise in GCD family. M-GC estimator is a
local estimator based on Maximum Likelihood (ML). The penalty function of M-GC

estimator is the LL, norm (p) defined as follows.
» » -2/p
p(u) =log {ay()/ + |u| ) } (2.6)

where a = pr(2p)/2(r(1/p))*, where I'(*) is the Gamma function defined as follows;

I'(x)= Ttxfleftdt (2.7)

ue R" is the reconstruction error;
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y 1s the scale parameters;

p is the tail constant.

Lorentzian function is the special case of Equation (2.6), where p is set to 2. The
Lorentzian function is used as the penalty function in Lorentzian Basis Pursuit (LBP)

[12]. In LBP, CS reconstruction is formulated as follows.
X =arg min”x”1 st. g (y-®x)<¢, (2.8)

where g (-) is the Lorentzian penalty function and is defined as
g,@)=2 1, (a), (29)
i=1

where a; is the i element of ae R";

[(-) 1s the Lorentzian function and 1s defined as follows.

|a,
2

Zy(ai)zlog(1+}/—j. (2.10)

>0 is defined according to the noise variance which is a priori in [17]. The magnitude
of Lorentzian function increases very slowly, after the magnitude of a; reaches y; hence,
the effect of impulsive noise can be reduced. According to [17], yis set as the median

absolute deviation (MAD) of y—®x.

Though the reconstructed sparse signal, X, has the error bounded by the
Lorentzian function, it may not be optimal. Consequently, the post-processing in form
of the regression is applied to ensure that non-zero elements in X have large magnitude.

The regression is formulated as the following problem.

i,:argﬁrellizg g:(y—®x) (2.11)

where [ = {i;

fci| > a} ,where >0 is the constant (to be determined later); %,is the /"

element of X and || is the magnitude; / is the set containing the indices of
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non-zero elements;

d is the size of I,

X, € R“is the vector containing the value of the nonzero elements;

®; eR¥™ is the random measurement matrix after every column whose index is
not in / is removed;

& is the scale parameter for noise distribution.

a is used to select the non-zero elements in the reconstruction by Equation

(2.8). From the experiment in [17], the optimal value of a is Amax, |fcl| where

0<A<l.

After Equation (2.11) is applied, the sparse signal, X, is reconstructed as

follows.
1) Setevery element in X to zero.

2) Set the I element of Xto x,where i = [1, k]; 1; and X, are the i-th elements

of /and X, , respectively.

Because the Lorentzian function is not convex, the global minimum is not
guaranteed. Complex optimization and parameter adjustments are often required. To
reduce the computational complexity, Lorentzian Iterative Hard Thresholding (LIHT)
[18] is proposed as a greedy alternative of [17]. The sparse representation is
approximated by the hard thresholding. The reconstruction in LIHT is according to the

following equation.
arg mxin g,(y—®x) st ||x||0 <k, (2.12)
where g (y —®x)is defined as Equation (2.9). The algorithm of LIHT is as follows.

1) Set x(0) and ¢ to zero vector and 0, respectively.

2) Set x(¢+1) as follows.



3)

15
R(¢+1)=H, (X(¢) + 1S(1)), (2.13)

where Hy(-) is the non-linear operator, which keeps only k largest
components, and sets the remaining components to zero. u is the step size.

S is defined as follows.
S(t) = ®"W,(y - ®x(1)), (2.14)
where W, € R"" is an diagonal matrix whose diagonal elements are

defined as follows.

2

.. V4 .
W, (i,i) = —_i=1..,M. (2.15)
Y+, —® ()

The step size is set according to the following equation.

2 2° °
H tl/ k(t) k(t)( )Hz

When g, (y - ®x(1+1)) > g (y = ®X(7)), «7) is set to 0.5247).

Terminate when ®X —y is within a predefined error bound.

Although LIHT has the benefit over LBP in that it is fast and robust, it shares

the same problem as IHT. It requires that x must be very sparse or that the

compression has high measurement rate. Though IHT is faster than OMP, it is less

stable.

ii. Huber function

Huber function has a benefit over Lorentzian function in that it is convex. The

CS reconstruction using Huber function is formulated as the following convex

optimization problem [19].

X =argmin h(y —®x) + ax (2.17)

1’
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where /(-) is the Huber penalty function and defined as follows.

h(a)zzn:p(ai), (2.18)

where ¢, is the i™ element of ae R”;

() 1s the Huber function and is defined as

@<=l %
a.) =
P 2a,-1 ;

(2.19)

The optimum value of a is proved in [19] to be between 0 and ¢, which is defined as

A = [@7p(y)| (2.20)

2
)

where p(y) =[p(») p(»,) ..p(»,)] and ””w is the L., norm.

Equation (2.17) can be optimized by many existing convex optimization
solvers. The global minimum solution is guaranteed. However, Huber function is not
bounded; therefore, when the noise is large and/or dense, the quality of the

reconstruction is degraded.
2.3.2 Signal Model Approach

Sermwuthisarn et. al. [20] proposed the detection and the removal of
impulsive noise by the characteristic of x. When x is an image sparsified by octave-
tree discrete wavelet transform (DWT), most of its energy is confined in the third
level (L;) subband. However, when x is reconstructed from y contaminated by
impulsive noise, lots of its energy will leak out of L3 subband. Figure 2.2 shows two
examples of the reconstruction from the noisy y by OMP-PKS [12]. OMP-PKS was
used because it has no mechanism against impulsive noise so the effect of noise is
clearly shown. Compared to the original x’s (Figures 2.2(a) and 2.2(c)), the
reconstruction results from the noisy y’s (Figures 2.2(b) and 2.2(d)) had large energy
leaking out of L; subband (right of the red line).
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Though it is impossible to detect impulsive noise directly from y, Figure 2.2
indicates that the presence of noise can be detected via the energy leaking out of Ls
subband in the reconstructed X. The method in [20], namely Approximated
Measurement Preprocessing (AMP) in this thesis, iteratively removes the elements in
y until most of the energy in X is confined inside L; subband. The removal order is
from the maximum to the minimum magnitudes. The energy leaking out of Lj
subband is measured as the ratio to the total energy. The ratio is referred in this thesis

as the Energy Ratio (ER) and is defined as follows.

_ gl
ER =5 (2.21)

where x and L; are the i"™ element of % and the set of the wavelet coefficients

in the third level subband.
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Figure 2.2: The effect of impulsive noise to the CS reconstruction. Figures (a) and (c¢) are the
original sparse signals; Figures (b) and (d) are the reconstructed sparse signals for the signal
shown in Figures (a) and (c), respectively. The elements at the left of the red line are inside

the L; subband.
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After the noise corrupted elements are all removed, the removed elements will
be approximated from the remaining noiseless elements. AMP consists of 2 stages:
the removal and the approximation of the noise corrupted elements. The removal of

the noise corrupted elements in AMP is as follows.

1) Apply OMP-PKS to reconstruct the sparse signal, x , from the compressed

measurement signal, y.

2) Determine whether there is impulsive noise in y. If the ER of x in Step /)

is less than the predefined energy ratio threshold (77), AMP is terminated.

3) Remove the elements with the largest magnitude in y. Note that more than

one element may be removed in this step.
4) Apply OMP-PKS to reconstruct x from the remaining y.

5) Terminate the removal process if ER of x in 4) is lower than 7. Otherwise,

go to Step 3).

The removal of elements will not lead to very low possibility of successful
reconstruction, if the removal amount is within 40% of the size of y [20]. y after the
removal stage, defined as y,, contains only the noise-free elements. In the second
stage, the values of the noise corrupted elements are then approximated from y,. The

algorithm is as follows.

1) Apply OMP-PKS to reconstruct the approximated sparse signal, %, from

Ys-
2) Set §to @X,.
3) Set the estimated noise-free y, y,s; according to the following equation.

_ | ¥ sy, s the noise corrupted element.
Yuri y, ;otherwise ’ (2.22)

where y,z;, ¥, and y; are the i™ elements of Y. ¥ andy, respectively.
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The threshold in AMP can be easily set by experiment. AMP requires no
complex optimization. Furthermore, it is robust against very large noise. However, it
requires n+1 reconstruction when y is corrupted by # levels of impulsive noise. Even
though OMP-PKS is a greedy reconstruction, the application of OMP-PKS for n+1

times leads to very high computational time.



CHAPTER III

PROPOSED METHODS

This chapter addresses the reconstruction of a compressed measurement signal
(y) in impulsive noise environments. Two preprocessing algorithms are proposed in
this dissertation.  Section 3.1 introduces a basic idea of how to reduce the
computational time of AMP. Sections 3.2 and 3.3 describe two proposed
preprocessing algorithms: Greedy Boundary Finder (GBF) and Greedy Steep Slope
Finder (GSSF). In GBF and GSSF a binary search is adopted to approximate the
number of noisy elements to within +g of the actual number, where g is the

predefined constant and has the unit of percent of the size of'y.

3.1 Basic Idea

When an image is sparsified by octave-tree discrete wavelet transform (DWT),
most of its energy is confined in the third level (L3;) subband. In Approximated
Measurement Preprocessing (AMP) [20], the amount of the energy leaking out of the
L; subband is used as the indicator of the presence of impulsive noise. AMP is
divided into two stages: (1) the noise removal and (2) the approximation stages. The
approximation stage is applied after all noise has been removed in noise removal
stage. The removal without any approximation of the removed elements in-between is
possible, because information in an image is highly redundant. In this thesis, the
information redundancy is further exploited to reduce the computational time of
AMP. It is hypothesized that successful CS reconstruction is possible even when
some largest elements in y is missing. Therefore, it is unnecessary to remove only the
noise contaminated elements as in AMP. Binary search is applied to estimate the

number of the noisy element to within the predefined range of the correct value.

Figures 3.1 - 3.3 show three examples of the reconstruction from the

incomplete y, when y was corrupted by impulsive noise. In all three images, Figure



21

(a) shows the original images. Figure (b) shows the image after it was sparsified by
wavelet shrinkage thresholding [22]. When y was corrupted by impulsive noise,
Figures (c) - (f) show the reconstruction by OMP-PKS. Figure (c) shows the
reconstruction when every element in y (both noisy and noise-free elements) was
used. The figure clearly indicates that OMP-PKS failed to reconstruct the image when
the elements corrupted by impulsive noise were included. Figure (d) shows the
reconstruction when all noisy elements were removed; Figure (e) shows the
reconstruction when the additional noiseless elements (4.5%, 4.5% and 4.6% of y in
Figures 3.1, 3.2 and 3.3, respectively) were also removed. Figures (b), (d) and (e)
were almost similar; therefore, the degradation was due to the wavelet shrinkage
thresholding. These results supported the hypothesis that some largest elements could
be removed without severe visual degradation. However, if too many elements were
removed as shown in Figure (f) (14.5%, 14.5% and 14.5% of'y in Figures 3.1, 3.2 and
3.3, respectively), the visual degradation would be distinct. From Figures 3.1 - 3.3, it
could be concluded that though the largest element could be removed, the number of

removed elements should not be high

Though the visual quality of Figure (f) was distinctly lower than Figure (e),
the image still conveyed most information of the original image. It implied that the
structure of the signal might be conserved. In the contrary, the information of Figure
(c) was almost entirely destroyed and the structure of the signal in term of the energy

distribution was changed [20].
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(d) | | O ¢

Figure 3.1: The reconstruction of Peppers when 5.5% of y was contaminated by impulsive
noise. (a) original image; (b) image after wavelet shrinkage thresholding; the reconstructed
image when (c) 0%, (d) 5.5% , (¢) 10% (the number of removed noiseless elements = 4.5%
of y) and (f) 20% (the number of removed noiseless elements = 14.5% of y) of y was
removed. The removal order is from the maximum to the minimum magnitudes.
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Figure 3.2: The reconstruction of Mandrill when 5.5% of y was contaminated by impulsive
noise. (a) original image; (b) image after wavelet shrinkage thresholding; the reconstructed
image when (c) 0%, (d) 5.5% , (e) 10% (the number of removed noiseless elements = 4.5% of
y) and (f) 20% of y was removed (the number of removed noiseless elements = 14.5% of'y).
The removal order is from the maximum to the minimum magnitudes.
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Figure 3.3: The reconstruction of Lena when 5.4% of y was contaminated by impulsive
noise. (a) original image; (b) image after wavelet shrinkage thresholding; the reconstructed
image when (c) 0%, (d) 5.4% , (e) 10% (the number of removed noiseless elements = 4.6% of
y) and (f) 20% (the number of removed noiseless elements = 14.6% of y) of y was removed.
The removal order is from the maximum to the minimum magnitudes.

Figures 3.4 - 3.8 show one example of how the energy distribution changed in
the reconstruction from y corrupted by impulsive noise. In every plots, Figures (a) and
(b) show y and the reconstructed X, respectively. The elements corrupted by
impulsive noise are depicted in red in Figure (a). The elements inside the L; subband
were located at the left of the red line in Figure (b). Figure 3.4 shows the original
signal. When the noisy element in y was included in the reconstruction (Figure 3.5),
the energy distribution of X was considerably changed. Lots of energy was leaked out
of L; subband. On the other hand, when the noisy elements were not included
(Figures 3.6 - 3.8), most energy of Xwas confined within the L; subband The energy
distribution characteristic held even when 14.5% of the largest noiseless element were

not used in the reconstruction (Figure 3.8).
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Figure 3.4: Original signal: (a) compresed measurement signal (y) and (b) the sparse signal
(X ). The left of the red line in Figure (b) indicates the region in L; subband.
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Figure 3.5: The reconstruction of y corrupted by impulsive noises, when every element in y
was used: (a) y used in the reconstruction and (b) its correspondingx . Impulsive noise
corrupted element is depicted in red in Figure (a). The left of the red line in Figure (b)
indicates the region in L; subband.

wooa L i 2000+
1500
1000

500

Amplitude
o

Amphtude

-500F

-1000 - 4 -1000

-1500

-1500 ¢ . . . . . . . T . . | . |
10 20 30 40 50 60 70 80 0 50 100 150 200 250

Signal Elements Signal Elements
(a) (b)

Figure 3.6: The reconstruction of y when only the noiseless elements in y are used: (a) y
used in the reconstruction and (b) its corresponding x . The left of the red line in Figure (b)
indicates the region in L; subband.
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Figure 3.7: The reconstruction example when the highest 10% of y were removed (the
number of noisy elements = 5.5% of'y, and the number of removed noiseless elements = 4.5%
of y): (a) y used in the reconstruction and (b) its correspondingx . The left of the red line in
Figure (b) indicates the region in L; subband.
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Figure 3.8: The reconstruction example when the highest 20% of y were removed (the
number of noisy elements = 5.5% of y, and the number of removed noiseless elements =
14.5% of y): (a) y used in the reconstruction and (b) its correspondingx . The left of the red
line in Figure (b) indicates the region in L; subband.

Since the energy distribution does not change when the incomplete y is used, it
can be used to indicate whether the reconstruction is successful. The energy
distribution is measured by (leakage) energy ratio (ER, Equation (2.21)). The effect of
the number of the removed element to ER is investigated. Figure 3.9 shows two
examples when y was contaminated by impulsive noise. A point in the graph was the
average from 100 reconstructed images of 16x16 pixels. Different colors depict
different impulsive noise densities (in term of the noise probability, p). The removal
order was from the maximum to the minimum magnitudes. The measurement rate, the

ratio between the length of y and the length of x (M/N), was set to 0.3.

Figures 3.9(a) and 3.9(b) show the relationship of ER and the percentage of

removed elements at the noise magnitude means () of 5y,. and 10y, respectively.
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At the left and the right of the graphs, there were the regions with high ER, the
deviation from the general characteristic of an image. In the left of the graph, the
number of removed elements that the £R dropped to the low ratio was higher when p
was larger, and the magnitude of ER depended on x The dependence of the noise
parameters indicated that the high ER at the left was caused by noise. The regions
with the high ER at the right were almost the same for all p’s and u’s. The
independence of the noise parameters indicated that the high ER was not caused by
noise but by the lack of information in y to reconstructx . The low ER at the middle of
the graphs corresponded to the reconstruction in (d) - (f) of Figures 3.1 - 3.3. The
distribution complied with the image characteristic and indicated the high probability
of successful reconstruction of %, i.e. the impulsive noise was completely removed

and there was sufficient information left in y for reconstruction.
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Figure 3.9: The relationship between the (leakage) energy ratio and the percent of the

removed elements in the compressed measurement at the measurement rate of 0.3. The
magnitude mean of impulsive noise were (a) 5y, and (b) 10y,,4,.
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Since the complete removal of impulsive noise corrupted elements led to the
drop in ER at the middle of the graphs in Figure 3.9, the impulsive noise rejection is
the problem of finding the left border of the region with low ER. Binary search, which
is one of efficient search strategies with O(log(n)) cost, is adopted in this thesis. The
lower and the upper boundaries of the binary search are the minimum and the
maximum numbers of removed elements, respectively. The lower boundary () is
initialized as zero (every element is used), while the upper boundary (/) is initialized
as 40% of the size of y (0.4M). The value of 40% is taken from [20]. Thus, it is
assumed that at most 40% of y is corrupted by impulsive noise. The cost function is
applied to calculate the cost of removing the 0.5(a+/) highest elements from y (the
middle of the upper and the lower boundaries). ¢ and f are then updated according to
the cost function. The binary search is applied until the difference between o and £ is
less than the threshold, which indicates that the difference to the actual number of
noisy elements is within the desired resolution. The threshold is defined as the gap

resolution (g) with the unit of percent to the size of y.

In this thesis, two cost functions are proposed. In the first cost function, the
region of low ER is defined as the “gap” at the middle of the graph. The value of ER
is directly used to search for the minimum number of removed elements that is still in
the gap. The preprocessing using the first cost function is defined as Greedy Boundary
Finder (GBF) and is described in Section 3.2.

In the second cost function, the left border of the gap is detected as the abrupt
change in ER. Average slope is used to estimate the amount of change. The
preprocessing using the second cost function is defined as Greedy Steep Slope Finder

(GSSF) and is described in Section 3.3.
3.2 Greedy Boundary Finder (GBF)

In GBF, ER at 0.5(a+p) is directly used to detect whether it is within the gap
or not. If the ER is low, it indicates that all impulsive noise is rejected; thus, 0.5(a+/)
is the maximum possible number of noise corrupted elements; £, which is the

maximum number of noisy (removed) elements, is changed to 0.5(a+f). In the
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contrary, the high ER at 0.5(a+/f) indicates that the incomplete removal of noisy

elements; therefore, o, which is the minimum number of noisy elements, is changed

to 0.5(a+p). The algorithm of GBF is as follows.

1)

2)

3)

4)

)

6)

7)

8)

Apply OMP-PKS to reconstruct the sparse signal, X, from the input

measurement signal, y.

Determine whether there is impulsive noise in y. If ER ofX in Step /) is
less than the predefined energy ratio threshold (7), GBF is terminated. ER

is calculated according to Equation (2.21).

Set o and p to 0% and 40%, respectively. 40% is used as the upper
removal boundary, because it is the highest number of noisy elements in

the assumption.

Set ¢ to 0.5(a + p). Define y. as y after the highest ¢ elements (according to

the magnitude) have been removed.

Apply OMP-PKS to reconstruct the sparse signal, X o> fromy.

Update the upper and lower boundaries. If ER of X_is less than 7 (no
impulsive noise in y,), set S to ¢; otherwise set a to ¢.

Go to Step 4), if the difference between a and £ is more than the gap

resolution, g.

Set y, to y after the highest § elements (according to the magnitude) have
been removed. The highest f elements are considered as the noisy

elements. y; is considered as the impulsive-noise-free signal.

In the same manner as AMP, the removal stage in GBF is followed by the

approximation stage to estimate the values of the removed elements. The method in

AMP (Section 2.3.2) is adopted.
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Table 3.1: The number of reconstruction in GBF and AMP

The number of noise The number of reconstruction
level
GBF GBF GBF GBF GBF AMP
(=20%) | (g=10%) | (8=5%) | (g=2%) | (g=1%)
pM* 2 3 4 5 6 pM+1

a. pand M are the probability of impulsive noise and the size of'y, respectively.

Since most of the computational load in GBF belongs to the reconstruction
process, the number of reconstruction is kept constant by having the value of g in the
unit of the percent of the size of y. g is set as the ratio to the initial value of f which is
40%; g can be 20%, 10%, 5%, 2.5%, 1.25%, .... For simplicity, g is set to the highest
integer that is lower than the possible gap resolution. Table 3.1 compares the number

of reconstruction required by AMP and GBF at various g.
3.3  Greedy Steep Slope Finder (GSSF)

The absolute threshold, 7, is used to distinguish the region of low ER in GBF.
However, it is not guaranteed the reconstruction from the noiseless elements always
leads to X whose ER is smaller than 7. If the reconstruction with noiseless y has ER
larger than 7, the incorrect update of a and £ in GBF will lead to an excess removal
and lots of noise-free elements (useful information) will be lost. Since it is possible to
detect the change of ER as the indicator of complete removal of impulsive noise, the
slope of ER between 0.5(a+/f) and £ is used to detect the complete noise removal in

GSSF.

If the slope is steep, it indicates the complete removal of the noisy elements.
However, the left border of the gap becomes steeper when the number of removed
elements is smaller. Therefore, the detection for the steepest slope at any particular
point will lead to the rightmost point of the high ER region. In GSSF, the steep slope is
detected indirectly via the slope to the point where ER is low. If the slope is small, it
implies all noisy elements are removed and the steep slope is to the left of the current

point. Since the steepness of the slope (the left border of the gap in Figure 3.9) depends
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on the noise parameters, the threshold to detect the shallow slope is estimated as

follows.

_ (B —E)
40

T (3.1)

where T is the slope threshold;
c is the predefined slope scale;

E4 is the ER of xreconstructed from y after its largest 40% elements are

removed;

Eyis the ER of % reconstructed from y when every element is used.

Similar to GBF, the process of GSSF is divided into two stages: (1) noise
removal and (2) approximation stages. OMP-PKS is adopted as the reconstruction

algorithm in GSSF. The process in the noise removal stage is as follows.
1) Initialize o and £ to 0% and 40%, respectively.

2) Determine whether there is impulsive noise in y. If £, is less than Ep GSF

is terminated since there is no impulsive noise in y .
3) Calculate the slope threshold (7)) according to (3.1).
4) Set&to 0.5(a + p).
5) Calculate the estimated slope (J) between & and £ as follows.

_ (Eg _Eﬂ)
(5-¢)

)

E.and E, are the ER of % reconstructed from y after its largest £&% and

[% elements are removed, respectively.
6) Update a and f. If J is less than 7, set /8 to & otherwise set a to &

7) Go to Step 4), if the difference between a and £ is more than g.



Table 3.2: The number of reconstruction used by GSSF and AMP
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The number of noise level

The number of reconstruction

GSSF GSSF | GSSF | GSSF ..,
(g=10%) | (g=5%) @ (g=2%) | (g=1%)
M 4 5 6 7 pM+1

*pand M are the probability of impulsive noise and the size of y, respectively.

8) Setys toy after its largest S elements (according to the magnitude) have
been removed. The largest S elements are considered as the noisy elements
and y; is the noiseless signal.

The noise removal stage is followed by the approximation stage. The

algorithm in AMP is adopted.

In the same reasoning as GBF, the number of reconstruction in GSSF is kept

constant by having the value of g in the unit of the percent of the size of y. Table 3.2

compares the number of reconstruction required by AMP and GSSF at various g.




CHAPTER 1V

EXPERIMENT AND DISCUSSION

The proposed algorithms are evaluated in this chapter. Experiment setup is
first presented in Section 4.1. Greedy Boundary Finder (GBF) and Greedy Steep
Slope Finder (GSSF) are evaluated in Sections 4.2 and 4.3, respectively. The
comparison between GBF and GSSF is presented in Section 4.4. Finally, the
limitation of the (leakage) energy ratio (ER, Equation (2.21)) as the mean for
detecting the impulsive noise in compressed measurement signal (y) is provided in

Section 4.5.

4.1 Experiment Setup

The experiment was conducted on a PC with 2.83 GHz Intel Core 2 Quad
CPU and 4 GB of RAM. All methods were implemented by 64-bit MATLAB
R2011a. Two datasets were used in the experiment: (1) 100 image blocks of the size
16x16 pixels and (2) 20 test images (Figure 4.1). Images in the first row and the
second row are the standard test images. The remaining images in the third row and
the fourth row are the artificial images. (The artificial images are available at

http://sourceforge.net/projects/testimages/files/.) All test images were resized to

256%256 pixels.

Octave-tree DWT with db8 as the mother wavelet was used to transform
images to sparse domain. Wavelet shrinkage thresholding [22] was used to further

sparsify the data. Hadamard matrix was used as the random measurement matrix.

In the first dataset, the sparsity rate and the measurement rate (M/N) were set
to 0.1 and 0.4 respectively. In the second dataset, each test image was divided into
256 blocks of 1x256 pixels. The sparsity level and the average measurement rate were

intentionally varied among blocks to test the tolerance of the algorithms to the
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The performance of GBF and GSSF were compared with (1) Lorentzian
Iterative Hard Thresholding (LIHT) [18], (2) the CS reconstruction using Huber

penalty function (HUBER) [19] and (3) Approximated Measurement Preprocessing
(AMP) [20]. Since AMP, GBF and GSSF are the preprocessing, Orthogonal Matching
Pursuit with Partially Known Support (OMP-PKS) [12] was used to reconstruct the

final result.

The reconstruction of the first dataset was evaluated by the computational time

and the percent of a mean square error (%MSE) which is defined as follows.

vonsE =%k 100 41
M, ¢

where X and x are the reconstructed and the original sparse signals, respectively;



35

|I|l2 1s the Lr-norm.

The reconstruction of the second dataset was evaluated by PSNR, the

computational time and the visual inspection.

4.2 The Evaluation of GBF

The evaluation was divided into two main sections: (1) evaluation for the
optimal energy ratio threshold (7) in Section 4.2.1 and (2) the performance evaluation
in Section 4.2.2. The first dataset was used in both sections, while the second dataset

was used only in Section 4.2.2.

The magnitude of the impulsive noise was set relative to y,.y, the maximum
magnitude of the elements in the original (noiseless) y. In Section 4.2.1, the
magnitude was fixed to one value. In Section 4.2.2, the distribution of the noise
magnitude was Gaussian. The deviation was set to V... The performance under three
different magnitude means (£ = S5Vimax, 7Vmax, and 10y,,.,) was evaluated. In the second
dataset, there were 256 y’s for each image, so V. Was set to the maximum magnitude
among 256 y’s. The noise level was described by the probability of the impulsive
noise (p). Four levels of p (0.05, 0.10, 0.15, and 0.20) were tested.

4.2.1 Evaluation for the Energy Ratio Threshold (7))

Figure 4.2 shows the relationship between the percent of the inaccurate
rejection and energy ratio threshold (7). In the figure, different colors depict different
magnitudes of impulsive noise. The range of optimal threshold (low inaccurate
rejection) was wider when the magnitude (power) of noise was higher, since the effect
of impulsive noise to the ER was more distinct. 77 in the subsequent experiment was
set to 0.1, because it was among one of the optimal values for all cases. It should be
noted that there were cases when the noiseless y would provide the reconstruction
results with the ER higher than 0.1; in such cases, the preprocessing by GBF and
AMP led to the removal of some noiseless elements in y. Figure 4.2 also indicates that
the detection of the impulsive noise by the ER was possible even when the magnitude

of impulsive noise was as low as 1.25y,4,.
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The percent of inaccurate rejection

ni nz n3 n4 1] 0a
Energyr-ratio threshold

Figure 4.2: The relationship between the energy ratio threshold (7) and the percent of
inaccurate rejection. Different colors depict different magnitudes of impulsive noise. yn.x 1S
the maximum magnitude of the elements in the noiseless y.

4.2.2 Performance Evaluation
i. First Dataset

Figure 4.3 shows the performances of GBF (bold line), AMP (dashed magenta
line), HUBER (dashed green line) and LIHT (dashed blue line) for the first dataset.
Different colors of the bold line indicate different gap resolutions (g). g was set to 1%,
2%, 5% and 10%. Figure 4.3(a) indicated that g of 1%, 2% and 5% provided the
comparable %MSE to AMP, while HUBER and LIHT provided very high error in the
reconstruction. At p = 0.2 and g = 10%, the %MSE sharply increased, so g = 10% was
not robust in the high noise environment. In most cases, when g was higher (lower
resolution), %MSE became higher. At p = 0.15, g = 5% provided lower % MSE than g
< 5%, because the reconstruction from the noiseless y had the ER larger than 0.1;

consequently, the gap’s boundary was set incorrectly.

The computational time of GBF was higher than AMP at p = 5%, g < 10%
(Figure 4.3 (b)). However, at p > 10%, the computational time of GBF was lower. The
result was in accordance with Table 3.1 (Section 3.3), i.e. the computational time of
AMP increased with p; whereas, the one of GBF was almost the same. The

computational time of GBF was lower when g was higher, since the number of
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Figure 4.3: Performance comparison between GBF (bold line), AMP (dashed magenta line),
HUBER (dashed green line) and LIHT (dashed blue line) in the first dataset. (a) average %MSE
and (b) average computational time. g is the gap resolution in GBF. In this experiment M/N was
set at 0.4 and u of the impulsive noise is 7,4

iteration in GBF was inversely varied with g. Though the computational time of LIHT

was low, the reconstruction error was too high to be considered as an efficient

algorithm. HUBER had the highest computational time in all cases.
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ii. Second Dataset

Evaluation by PSNR and Computational time

Figures 4.4 - 4.6 shows the performance comparison between GBF (bold line)
and the three control algorithms (dashed lines) at different 4 when M/N = 0.3.
Different colors of the bold lines indicate different g’s. Five values of g (1%, 2%, 5%,
10% and 20%) were tested. Among the dashed lines, the magenta, blue and green
lines indicate the performance of AMP, HUBER and LIHT, respectively. In all nine
images, Figures (a) and (b) shows the PSNR and computational time at different p,

respectively.

The performances of AMP and GBF in term of PSNR were comparable in all
p and g at p < 0.15 the performance of HUBER was comparable to the lowest
performance of GBF (Figures 4.4 — 4.6). PSNR of the reconstruction by HUBER
drastically dropped when p = 0.2 at £ = 5y,,4x and 7yy4,. Furthermore, HUBER has
visibly lower PSNR at x# = 10y,,,,. LIHT provided the lowest PSNR in all cases. By
further investigating the performance of GBF at different g, it was founded that g =
1%, 2% and 5% provided comparable performance to AMP (less than 1 dB PSNR
difference), while g = 10% and 20% had notably lower PSNR (more than 3 dB PSNR
difference). This is due to the removal of more noiseless elements in reconstruction
when g was larger. The PSNR difference between AMP and GBF was less distinct

when u was higher.

Regarding the computational time at M/N = 0.3, AMP, GBF and LIHT had the
comparable computational time at p = 0.05; however, the computational time of AMP
increased linearly to p. The computational time of GBF and LIHT was about the same
for all p. By further investigating the computational time of GBF at different g, it was
founded that g = 1%, 2% and 5% provided comparable performance to LIHT.
HUBER had the highest computational time in most case. This was to be expected
since HUBER was the only technique that was not greedy. Similar to the first dataset,

the computational time of GBF was lower when g was higher.
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The PSNR and computational time at M/N = 0.35 and 0.4 followed the same
trend as M/N = 0.3. The results at M/N = 0.35 and 0.4 were shown in Section A.1 of
Appendix A. When the PSNR of the reconstruction at different M/N but the same p
was compared, it revealed that there was the strong influence of M/N to the efficiency

of LIHT; higher M/N led to higher PSNR.
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Figure 4.4: Performance comparison between GBF (bold line), AMP (dashed magenta line),
HUBER (dashed green line) and LIHT (dashed blue line) when M/N =0.30, and 4=5y,.4.. (2)
average PSNR and (b) average computational time (per block). g is the gap resolution in GBF.
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Figure 4.5: Performance comparison between GBF (bold line), AMP (dashed magenta line),
HUBER (dashed green line) and LIHT (dashed blue line) when M/N =0.30, and u=7y,,4.. (2)
average PSNR and (b) average computational time (per block). g is the gap resolution in GBF.
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Figure 4.6: Performance comparison between GBF (bold line), AMP (dashed magenta line),
HUBER (dashed green line) and LIHT (dashed blue line) when M/N =0.30, and x=10y,,... (a)
average PSNR and (b) average computational time (per block). g is the gap resolution in GBF.
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From Figures 4.4 - 4.6 and the additional results from Section A.1 in
Appendix A (Figures A.1 - A.6), the following conclusion could be drawn.

LIHT was equipped with Lorentzian penalty function which was suitable
for impulsive noise rejection and had fast computational time; however, it
provided the lowest PSNR because the iterative hard thresholding in LIHT
required large M/N (>0.4). Since the benefit of CS was small M/N, LIHT
was not efficient for normal images.

HUBER provided good reconstruction result at p < 0.20 and u < 10V4y;
however, it required approximately twice the computational time than the
other techniques. The lower performance at higher p and x was expected
since the error from impulsive noise was not bounded in Huber penalty
function.

AMP provided the highest PSNR among AMP, HUBER and LIHT;
however, it was not suitable for the environment where p was high because
its computational time became very high.

GBF with g = 1%, 2% and 5% provided the comparable PSNR to AMP,
while the PSNR of GBF with g = 10% and 20% notably decreased. GBF
with g = 5% provided comparable or lower computational time than AMP,
thus g = 5% was optimal.

Except at p < 0.05, GBF provided the comparable PSNR, while its
computational time was less than AMP’s. GBF should be used in place of

AMP when p > 0.05.

Evaluation by Visual Inspection

When y was corrupted by impulsive noise at p = 0.1, M/N = 0.40 and u =

10yax, Figures 4.7 - 4.11 show the reconstructed Pepper, Mandrill, Lena, Ripple and

Circle, respectively, Figures (a) in all three images show the original image; Figures

(b), (¢), (d), (e) and (f) show the images reconstructed by OMP-PKS when the

preprocessing was GBF at g = 1%, 2%, 5%, 10% and 20%, respectively; Figure (g)

show the image reconstructed by OMP-PKS when the preprocessing was AMP;

Figures (h) and (i) show the image reconstructed by HUBER and LIHT, respectively.
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Figure 4.7: The reconstruction of Peppers at M/N = 0.40, 4 = TYax, p = 0.10. (a) original

image, the reconstructed images by (b) GBF at g = 1%, (c) GBF at g = 2%, (d) GBF at g =

5% and (e) GBF at g = 10%, (f) GBF at g =20%, (g) AMP, (h) HUBER, and (i) LIHT.
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PSNR =20.7 dB PSNR =19.29 dB PSNR = 14.97 dB
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Figure 4.8: The reconstruction of Mandrill at M/N = 0.40, 4 = 7V, p = 0.10. (a) original
image, the reconstructed images by (b) GBF at g = 1%, (c) GBF at g = 2%, (d) GBF at g =
5% and (e) GBF at g = 10%, (f) GBF at g =20% , (g) AMP, (h) HUBER, and (i) LIHT.
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Figure 4.9: The reconstruction of Lena at M/N = 0.40, u = 7y, p = 0.10. (a) original image,
the reconstructed images by (b) GBF at g = 1%, (c) GBF at g = 2%, (d) GBF at g = 5% and
(e) GBF at g = 10%, (f) GBF at g =20% , (g) AMP, (h) HUBER, and (i) LIHT.
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Figure 4.10: The reconstruction of Ripples at M/N = 0.40, it = 7yua, p = 0.10. (a) original
image, the reconstructed images by (b) GBF at g = 1%, (c) GBF at g = 2%, (d) GBF at g =
5% and (e) GBF at g = 10%, (f) GBF at g =20% , (g) AMP, (h) HUBER, and (i) LIHT.
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Figure 4.11: The reconstruction of Circles at M/N = 0.40, u = 7V,uar, p = 0.10. (a) original
image, the reconstructed images by (b) GBF at g = 1%, (c) GBF at g = 2%, (d) GBF at g =
5% and (¢) GBF at g = 10%, (f) GBF at g =20% , (g) AMP, (h) HUBER, and (i) LIHT.

In all cases, there was no distinct visual difference among the reconstructed
results of GBFs at g = 1%, 2% and 5% and AMP. The degradation of the
reconstructed results was mostly due to the shrinkage thresholding. It can be
concluded that g should be set to 5%, since it produced the comparable performance

to AMP, while it used the lowest computational time. The figure also indicated that
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the reconstruction by HUBER provided slightly worse visual quality, while the one by

LIHT was the worst in term of the visual quality.

Because all blocks in Figure 4.7 - 4.11 did not have the same M/N and sparsity
rates, the smoothness of all reconstructed images indicated that one threshold of

GSSF and AMP were effective for multiple measurement and sparsity rates.

4.3 The Evaluation of GSSF

The evaluation was divided into two main sections: (1) evaluation for the
optimal threshold in Section 4.3.1 and (2) the performance evaluation in Section
4.3.2. The first dataset was used in both sections, while the second dataset was used

only in Section 4.3.2.

Similar to the evaluation of GBF (Section 4.2), the magnitude of the impulsive
noise was set relative to y,,... The distribution of the noise magnitude was Gaussian.
The deviation was set to y,,.. The first dataset was corrupted by the noise with u =
SVmax- In the second dataset, three levels of £ (5 Vmax, 7Vmax and 10y,,,,) were tested. In
both datasets, the experiment was performed on four levels of p (0.05, 0.10, 0.15 and
0.20).

4.3.1 Evaluation for Optimal Threshold

Figure 4.12 shows the performance of GSSF at different g. Different colors
depicted different slope scale (c in Equation (3.1)). Figure 4.12(a) indicated that g has
little effect to %MSE, while ¢ = 0.5 and 0.125 provided almost the same PSNR.
Regarding the computational time (Figure 4.12(b)), the higher g led to the lower
computational time, while ¢ had little effect. From the experiment, it can be concluded
that g should be set to 10%, since it produced the comparable %MSE to other lower g
but with the lowest computational time. The optimal value of ¢ could not be definitely

concluded; however, Figure 4.12 indicated that ¢ = 1 should not be used.



49

1F T T T
w= SYM; GE5F, c=1.000
sk L= Symx; GE5F, c=0.500
W= Symax; GEEF, c=0.125
0.6 .
[ed]
W
a\% 04 .
n.2F .
nF -
1 1 1 1 1 1 1 1
1 2 3 4 5 fi F 8 a 1o
og
(a)
0.4 T T T

w= Symax; GEEF, c=1.000

= Symax; GEEF, c =0.500
W= Sym; CGREF, c=0.125

=
[E%)
Lh

Computational Time(s.)

02

(b)

Figure 4.12: The performance of GSSF at different g in term of (a) %MSE and (b) computational
time. Different color depicts different c.
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4.3.2 Performance Evaluation

i. First Dataset

Figure 4.13 shows the performance of GSSF (bold line), AMP (dashed
magenta line), HUBER (dashed green line) and LIHT (dashed blue line) in term
of %MSE (Figure 4.13(a)) and computational time (Figure 4.13(b)). In GSSF, g = 10%
had comparable performance and provided the lowest %MSE in all cases. Since g was
set to 10%, GSF had lower computational time than AMP. Though HUBER was better
than LIHT, its reconstruction had more %MSE than AMP and GSSF, and consumed

more computational time (approximately two times of the one of GSSF).

Even though 4 in this experiment was different than Section 4.3.1, there was no
distinct difference in the performance when ¢ = 0.5, 0.25 and 0.125. Thus, the optimal

value of ¢ could not be established.
ii. Second Dataset

Evaluation by PSNR and Computational time

Figure 4.14 - 4.16 show the PSNR and computational time at different x when
M/N = 0.3. In most cases, AMP (dashed magenta line) provided the highest PSNR;
however, the PSNR from GSSF (bold line) was only slightly lower than AMP. In
term of the computational time, GSSF consumed less computational time than AMP
in most cases, since g = 10% was used. However, the computational time in GSSF
could be changed in both increasing and decreasing manners when p increased. In
most cases, HUBER (dashed green line) provided less PSNR than AMP and GSSF,
while its computational time was two times of GSSF. Though LIHT (dashed blue

line) was among the fastest technique, it provided much lower PSNR.

The PSNR and computational time at M/N = 0.35 and 0.4 followed the same
trend as M/N = 0.3. The results at M/N = 0.35 and 0.4 were shown in Section A.2 of
Appendix A. It was found that the PSNR different became less when M/N was higher.
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Figure 4.13: Performance comparison between GSSF (bold line), AMP (dashed magenta line),
HUBER (dashed green line) and LIHT (dashed blue line) in the first dataset (a) average %MSE
and (b) average computational time. g and c are the gap resolution and slope scale in GSSF,
respectively. In this experiment M/N was set at 0.4 and u of the impusive noise was set to 5V,
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Figure 4.14: Performance comparison between GSSF (bold line), AMP (dashed magenta line),
HUBER (dashed green line) and LIHT (dashed blue line) at M/N = 0.30, and ¢ = 5y, (a)
average PSNR and (b) average computational time (per block). g and c are the gap resolution
and slope scale in GSSF.
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Figure 4.15: Performance comparison between GSSF (bold line), AMP (dashed magenta line),
HUBER (dashed green line) and LIHT (dashed blue line) at M/N = 0.30, and y = 7y (a)
average PSNR and (b) average computational time (per block). g and c are the gap resolution
and slope scale in GSSF.
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Figure 4.16: Performance comparison between GSSF (bold line), AMP (dashed magenta line),
HUBER (dashed green line) and LIHT (dashed blue line) at M/N = 0.30, and x4 = 10y,,.. (2)
average PSNR and (b) average computational time (per block). g and ¢ are the gap resolution

and slope scale in GSSF.
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Even though three different M/N’s and three different y were used in the
experiment, there was no distinct different when ¢ was varied. Though no optimal
value of ¢ could be established, the lack of performance drop was not undesired. It
indicated that it was unnecessary to experiment for the exact value of c.

From Figure 4.14 - 4.16 and the additional results from Section A.2 in
Appendix A (Figures A.7 - A.12), the following conclusion could be drawn.

e  GSSF provided comparable PSNR to AMP but required less computational
time. The experiment showed that the computational time of GSSF was
less in all cases when p > 0.10. Similar to GBF, GSSF provided higher
PSNR than HUBER and LIHT in all cases.

e GSSF did not require the carefully selected c. The performance at ¢ =
0.125, 0.25 and 0.5 were almost the same; however, ¢ should not be too
large. The large value of ¢ would lead to more difficulty in accepting the
existence of impulsive noise. The experiment indicated that the risk of
accepting the impulsive noise outweighed the risk of rejecting the noiseless
elements.

e  GSSF should be used in place of AMP when p > 0.05.

Evaluation by Visual Inspection

Figures 4.17 - 4.21 show the reconstructed Peppers, Mandrills, Lena, Ripples
and Circles, respectively. y was corrupted by impulsive noise at p = 0.1 and ¢ = 7yuay-
M/N was set to 0.4. Figure (a) shows the original image. When ¢ # 1, the
reconstruction results of AMP (Figure (f)) and GSSF (Figures (b) - (d)) were almost
the same. Some visual degradation was found, when ¢ of GSSF was set to 1 (Figure
4.15(e)). The reconstruction by HUBER (Figures (g)) was visually worse than the
ones of AMP and GSSF, while the reconstruction of LIHT (Figure (h)) were far worse
than the ones of AMP and GSSF.

Because all blocks in the image did not have the same measurement rate and
the sparsity level, the smoothness of all reconstructed images indicated that one
threshold of GSSF and AMP were effective for multiple measurement rates and

sparsity levels.
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Figure 4.17: The reconstruction of Peppers at M/N=0.40, 4 =7Ypa, p = 0.10. (a) original

image, the reconstructed images by (b) GSSF at ¢ = 0.125, (¢) GSSF at ¢ = 0. 25, (d) GSSF at
¢=0.5,and (e) GSSF at ¢ = 1, (f) AMP, (g) HUBER and (i) LIHT.
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Figure 4.18: The reconstruction of Mandrill at M/N=0.40, 4 =7y, p = 0.10. (a) original
image, the reconstructed images by (b) GSSF at ¢ = 0.125, (¢) GSSF at ¢ = 0. 25, (d) GSSF at
¢=0.5,and (e) GSSF at ¢ = 1, (f) AMP, (g) HUBER and (i) LIHT.
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Figure 4.19: The reconstruction of Lena at M/N=0.40, u =7y, p = 0.10. (a) original image,

the reconstructed images by (b) GSSF at ¢ = 0.125, (¢) GSSF at ¢ = 0. 25, (d) GSSF at ¢ =

0.5, and (e) GSSF at ¢ = 1, (f) AMP, (g) HUBER and (i) LIHT.
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Figure 4.20: The reconstruction of Ripple at M/N=0.40, & =7y,a., p = 0.10. (a) original image,
the reconstructed images by (b) GSSF at ¢ = 0.125, (¢) GSSF at ¢ = 0. 25, (d) GSSF at ¢ =
0.5, and (e) GSSF at ¢ = 1, (f) AMP, (g) HUBER and (i) LIHT.
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Figure 4.21: The reconstruction of Circle at M/N=0.40, u =7y,.ax, p = 0.10. () original image,
the reconstructed images by (b) GSSF at ¢ = 0.125, (¢) GSSF at ¢ = 0. 25, (d) GSSF at ¢ =
0.5, and (e) GSSF at ¢ = 1, (f) AMP, (g) HUBER and (i) LIHT.
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4.4 Comparative Evaluation Between GBF and GSSF

Since the performances of GBF and GSSF were almost the same, GBF and
GSSF were evaluated with each other. In this section, the second dataset was
corrupted by the noise with the same characteristic as Sections 4.2.2 and 4.3.2, where
the distribution of the noise magnitude was Gaussian with the deviation of y,,,.. The
experiment was performed on three values of & (5Vmax, 7Vmax and 10y,,,) and four

values of p (0.05, 0.10, 0.15 and 0.20).

Figures 4.22 show the PSNR (Figure (a)) and the computational time (Figure
(b)) of GBF (bold line) and GSSF (dashed lines) at M/N = 0.30. g of GBF was set to
5%, while ¢ and g of GSSF were set to 0.125 and 10%, respectively. The PSNR of
GBF was slightly higher in most cases. At the same p, the higher x led to higher

PSNR, because the change in the ER was more distinct.

Even though GBF at g = 5% and GSSF at g = 10% require the same number of
reconstruction, the computational time of GBF was lower. GBF directly used ER, so
there was no additional calculation step as GSSF which required the recalculation of
ER slope in every reconstruction. Furthermore, the computational time of GBF was
more stable. Thus, in an application that imposes severe constraint to computational

time, GBF is the more suitable of the two.

The results at M/N = 0.35 and 0.40 followed the same trend as M/N = 0.30 and
were provided in Section A.3 of Appendix A (Figures A.13 - A.14). It was also found
that the PSNR difference between GBF and GSSF was less when M/N increased.

Figures 4.23 and 4.24 show the reconstruction examples at M/N = 0.35 and
0.40, respectively. The impulsive noise was set at p = 0.20 and 4= 5y,,.». There was
no distinct difference between the reconstruction by GBF and GSSF. The benefit of
using the change in ER to detect the impulsive noise in GSSF was not found in the
experiment. This was caused by the preference for smaller ¢ in GSSF. The small ¢ led
to the threshold that detected the impulsive noise with smaller change in ER (less

steep slope), i.e. the possibility of removing noiseless elements was higher. Thus, the
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benefit of avoiding removing the noiseless elements was negated by the preference of

small c.

In conclusion, GBF and GSSF provided comparable PSNR but the
computational time of GBF was more predictable and usually smaller than GSSF.

Thus, GBF is recommended as the better of the two algorithms.
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Figure 4.22: Performance comparison between GBF (g = 5%, bold line), and GSSFs (g =
10%, ¢ = 0.125, dashed line) when M/N = 0.30. (a) average PSNR and (b) average
computational time (per block).
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Figure 4.23: The example of the reconstruction by GBF (g = 5%) and GSSF (g =10% and ¢ =
0.125) at M/N=0.35, p=0.2, and 1= 5y0-
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Figure 4.24: The example of the reconstruction by GBF (g = 5%) and GSSF (g =10% and ¢ =
0.125)at M/IN= 0.4, p=0.2, and z1= 5y,0.
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4.5 Evaluation for the Limitation of Noise Removal by ER

In the previous three sections, the experiment was performed within the scope
of the thesis and there were not any cases that GBF, GSSF as well as AMP failed to
reject impulsive noise. In order to investigate for the cases where these three
algorithms failed, the experiment in this section was performed with the data not
within the scope of the thesis. Since ER was used to detect the noise existence, the
three algorithms would fail if ER was no longer a valid indicator. Therefore, the

limitation of ER was investigated.

4.5.1 Type of Image

Images used in Sections 4.2 - 4.4 were selected such that they were sparsified
by octave tree DWT. Wavelet shrinkage thresholding is possible, when information is
sparse in every subband but LL subband. However, the sparsity level is not the same
among images. When images have lots of fine details, the wavelet shrinkage
thresholding will lead to severe degradation. Figure 4.25 show examples of the failed
sparsification by the wavelet shrinkage thresholding. Compared to the original image
(the left column), lots of details after the wavelet shrinkage thresholding (the right
column) were missing. ER’s before and after were investigated. It was founded that
the images could be categorized in to two groups: (1) images with £R higher than 0.1,
which was the threshold used in AMP and GBF, and (2) images whose ER drop was
large (Ex. 32.2% and 28.6% drop in ER for Figures (a.3) and (a.4), respectively).
Though the wavelet shrinkage thresholding did not cause severe degradation for the
images in the second group, the details were blurred out so the images were not used
in the experiment.

ER as the indicator for the presence of noise was possible in all experiments,
because wavelet shrinkage thresholding ensured that most energy in an image was
inside the LL subband (which was inside the L3 subband). Therefore, if the image
cannot be sparsified or details are lost by the wavelet shrinkage thresholding, ER will
not be a good indicator. Consequently, AMP, GBF and GSF will not be effective.

Note that the direct experiment is not possible because the input image (the

sparse signal) is degraded; thus, the detection for the degradation by impulsive noise
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becomes difficult. Original After Wavelet Shrinkage Thresholding

ER=0.17 ER=0.12, PSNR = 12.1 dB
_(b.1)

ER = 0.16, PSNR = 5.0 dB

ER =0.031
(a3

=0.015,PSNR=17.0d
(b.4)

B

Figure 4.25: The examples of images that cannot be sparsified by wavelet shrinkage
thresholding. (a.7) original image and (b.7) image after the wavelet shrinkage thresholding.
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4.5.2 Effect of Noise Magnitude

In Figure 4.2, the higher noise magnitude led to the larger range of effective
7. In this experiment, the minimum magnitude of 3y,,,. (Which is the 2 SD distance
from u# = S5ym.) was ignored. Pepper, Mandrill, Lena, Circle and Ripple were
corrupted by impulsive noise with x# = 3y,,,, and the magnitude of impulsive noise
was allowed to be lower than .. Since y,, was 2 SD distance from g, very few
noise element (2.2% of noisy elements) would be lower than y,,,,. M/N was set to 0.40
which would lead to the best performance. Four levels of p (0.05, 0.10, 0.15 and 0.20)
were investigated. Since HUBER was effective when the noise magnitude was small,
the reconstruction by GBF and GSSF were compared with the one by HUBER.

Figures 4.26 - 4.30 show the reconstruction result. At p = 0.05, 0.10 and 0.15,
the reconstruction by GBF (the second row) was the worst among the three. The
reconstruction by GSSF (the third row) was better than GBF in all cases, which
indicated that the slope detection was more robust. The reconstruction by HUBER
(the fourth row) was much better at p = 0.05 and 0.10; however, the reconstruction
quality was quickly deteriorated when p = 0.15 and 0.20.

The experiment indicated that GBF and GSSF were not effective when the
noise was allowed to be smaller than y,,,, since the drop in the £R would not be
distinct. Furthermore, the disappearance of elements with large magnitude, while the
large noise exists, leads to unpredictable change of ER. For small impulsive noise,

HUBER was found to be the effective algorithm up until p < 0.10.
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Original
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p=0.05 p=0.10 p=0.15 p=0.20
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PSNR=278dB  PSNR=244dB  PSNR=194dB  PSNR=18.3dB
.1 (d.2) (d.3) (d.4)

Figure 4.26: The reconstruction of Peppers at M/N = 0.40 and g = 3y,.... (a.1) original
image, the reconstruction by (b.;) GBF (g= 5%), (c.i) GSSF (g= 10%, ¢ = 0.125), (d.i)
HUBER.
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Figure 4.27: The reconstruction of Mandrills at M/N = 0.40 and ¢ = 3y,.. (a.1)
original image, the reconstruction by (b.f) GBF (g= 5%), (c.i)) GSSF (g= 10%, ¢ =
0.125), (d.f)) HUBER.
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Figure 4.28: The reconstruction of Lenas at M/N = 0.40 and g = 3y, (a.1) original
image, the reconstruction by (b.;) GBF (g= 5%), (c.i) GSSF (g= 10%, ¢ = 0.125), (d.i)
HUBER.
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Figure 4.29: The reconstruction of Ripples at M/N = 0.40 and x = 3y, (a.1) original
image, the reconstruction by (b.7) GBF (g= 5%), (c.i) GSSF (g= 10%, ¢ = 0.125), (d.i)
HUBER.
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Figure 4.30: The reconstruction of Circles at M/N = 0.40 and x = 3y,,,,. (a.1) original
image, the reconstruction by (b.i) GBF (g= 5%), (c.i) GSSF (g= 10%, ¢ = 0.125), (d.i)
HUBER.



CHAPTER V

CONCLUSIONS

5.1 Conclusions

This thesis proposes the integration of a binary search to Approximated
Measurement Preprocessing (AMP) [20] in order to reduce the computational time of
AMP. Two preprocessing algorithms were proposed: the Greedy Boundary Finder
(GBF) and the Greedy Steep Slope Finder (GSSF). The computational time is reduced
by exploiting the redundancy characteristic of an image signal. The binary search is
used to detect the number of noisy elements to within +g of the actual number, where
g is the predefined constant and has the unit of percent to the length of a compressed
measurement signal (y). The experiments show that GBF and GSSF provided the
comparable result to AMP, while the computational time was reduced, when y
contained a high number of noisy elements which could be caused by longer y or

higher noise probability (p).

GBF and GSSF were compared with AMP, reconstruction by Huber penalty
function (HUBER) [19] and Lorentzian Iterative Hard Thresholding (LIHT) [18]. It
was found that GBF, GSSF and AMP were more optimal (provided higher PSNR at
lower computational time) than HUBER and LIHT.

GBF can be considered as AMP with the binary search as the searching
technique. The experiment indicated that GBF with g = 5% and the energy ratio
threshold (77) = 0.1 was optimal. It should be used in place of AMP when p was
higher than 0.05.

GSSF uses the change of the energy ratio (ER) to detect the presence of
impulsive noise. The experiment indicated that GBF with g = 10% and the slope scale
(c) < 1 is optimal. It provided the comparable PSNR to AMP but with lower
computational time. Compared to GBF, GSSF provided slightly lower PSNR and
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required higher computational time. The benefit of GSSF over GBF was slightly more

robustness against small noise.
GBF and GSSF are not efficient in the following cases.

e The application to the image that is severely degraded by wavelet
shrinkage thresholding.
e The rejection of the noise whose magnitude is lower than the maximum

magnitude in the noiseless y.

5.2 Future Research

In Section 4.5, it was found that HUBER was a good reconstruction when the
magnitude of the impulsive noise was allowed to be smaller than the maximum
magnitude. However, the reconstruction with Huber regularization function is not
robust to (1) high p and (2) the large noise. To increase the tolerance to the noise
density and the noise magnitude, ER is included as a priori to HUBER. The
regularization term from the L; norm of the sparse signal is replaced by the L, norm of
the high frequency component of the sparse signal (L;-HF). The reconstruction with

L-HF is formulated as follows.

X =argmin h(y —®x)+ a”th

1’ (5.1

where X, is the vector containing elements outside LL; subband;

h(-) is the Huber penalty function and defined as (2.13).

a is the regularization parameter;
||| 1s the L; norm.

The preliminary comparison between the two regularization terms was
performed on Pepper (Figure 5.1) and Mandrill (Figure 5.2). The figures clearly show
that the change in the regularization term improved the tolerance of the noise
magnitude (in term of the magnitude mean (x)) and p. However, the computational
time of HUBER is high and should be reduced. Furthermore, though a priori

increases the robustness of HUBER, its weakness to large noise is not completely
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solved, because the weakness is caused by the unbound characteristic of Huber
function. Thus, the integration of L;-HF with GBF (as well as GSSF) should be

investigated in order to create the rejection that is robust to all noise levels.

Original image Reconstructed images

.‘

p=0.10, 4= 5V pax p=0.10, 4= TYnu p=0.15, 1= 5ypax

Figure 5.1: The reconstruction of Peppers at different p’s and magnitude means (). The top
and the bottom rows of the reconstructed images show the results of of HUBER with L,;-HF
norm and L,; norm, respectively.
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Original image Reconstructed images

p=0.10, 1= 5V,0x p=0.10, 1= Tymax p=0.15 1= 5Vu

Figure 5.2: The reconstruction of Mandrill at different p’s and magnitude means. The top
and the bottom rows of the reconstructed images show the results of of HUBER with L,;-HF
norm and L; norm, respectively.
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APPENDIX A

Plots of Performance Comparison

A.1 Greedy Boundary Finder (GBF) at M/N = 0.35 and 0.40
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Figure A.1: Performance comparison between GBF (bold line), AMP (dashed magenta line),
HUBER (dashed green line) and LIHT (dashed blue line) when M/N =0.35, and u=5y,.x. (2)
average PSNR and (b) average computational time (per block). g is the gap resolution in GBF.
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Figure A.2: Performance comparison between GBF (bold line), AMP (dashed magenta line),
HUBER (dashed green line) and LIHT (dashed blue line) when M/N =0.35, and u=7y,4.. (2)
average PSNR and (b) average computational time (per block). g is the gap resolution in GBF.
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Figure A.3: Performance comparison between GBF (bold line), AMP (dashed magenta line),
HUBER (dashed green line) and LIHT (dashed blue line) when M/N =0.35, and x=10y,,... (2)
average PSNR and (b) average computational time (per block). g is the gap resolution in GBF.
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Figure A.4: Performance comparison between GBF (bold line), AMP (dashed magenta line),
HUBER (dashed green line) and LIHT (dashed blue line) when M/N =0.40, and u=5y,,4.. (2)
average PSNR and (b) average computational time (per block). g is the gap resolution in GBF.
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Figure A.5: Performance comparison between GBF (bold line), AMP (dashed magenta line),
HUBER (dashed green line) and LIHT (dashed blue line) when M/N =0.40, and u=7y,,4.. (2)
average PSNR and (b) average computational time (per block). g is the gap resolution in GBF.
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Figure A.6: Performance comparison between GBF (bold line), AMP (dashed magenta line),
HUBER (dashed green line) and LIHT (dashed blue line) when M/N =0.40, and x=10y,,... (a)
average PSNR and (b) average computational time (per block). g is the gap resolution in GBF.
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A.2  Greedy Steep Slope Finder (GSSF) at M/N = 0.35 and 0.40
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Figure A.7: Performance comparison between GSSF (bold line), AMP (dashed magenta line),
HUBER (dashed green line) and LIHT (dashed blue line) at M/N = 0.35, and g = 5y, (2)
average PSNR and (b) average computational time (per block). g and ¢ are the gap resolution
and slope scale in GSSF.
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Figure A.8: Performance comparison between GSSF (bold line), AMP (dashed magenta line),
HUBER (dashed green line) and LIHT (dashed blue line) at M/N = 0.35, and g = 7y, (2)
average PSNR and (b) average computational time (per block). g and ¢ are the gap resolution
and slope scale in GSSF.
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Figure A.9: Performance comparison between GSSF (bold line), AMP (dashed magenta line),
HUBER (dashed green line) and LIHT (dashed blue line) at M/N = 0.35, and ¢ = 10y, (2)
average PSNR and (b) average computational time (per block). g and ¢ are the gap resolution

and slope scale in GSSF.
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Figure A.10: Performance comparison between GSSF (bold line), AMP (dashed magenta
line), HUBER (dashed green line) and LIHT (dashed blue line) at M/N = 0.40, and ¢ = 5y,4-
(a) average PSNR and (b) average computational time (per block). g and c are the gap
resolution and slope scale in GSSF.
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Figure A.11: Performance comparison between GSSF (bold line), AMP (dashed magenta
line), HUBER (dashed green line) and LIHT (dashed blue line) at M/N = 0.40, and ¢ = 7y,4-
(a) average PSNR and (b) average computational time (per block). g and c are the gap
resolution and slope scale in GSSF.
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Figure A.12: Performance comparison between GSSF (bold line), AMP (dashed magenta
line), HUBER (dashed green line) and LIHT (dashed blue line) at M/N = 0.40, and u =
10y, (2) average PSNR and (b) average computational time (per block). g and c are the gap
resolution and slope scale in GSSF.
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A.3 Comparative Evaluation Between GBF and GSSF at M/N =
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Figure A.13: Performance comparison between GBF (g = 5%, bold line), and GSSFs (g =

10%, ¢ = 0.125, dashed line) when M/N = 0.35.
computational time (per block).
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Figure A.14: Performance comparison between GBF (g = 5%, bold line), and GSSFs (g =

10%, ¢ = 0.125, dashed line) when M/N = 0.40.
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