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CHAPTER I 

INTRODUCTION 

1.1 Background and Problems of Interest 

Solid materials are generally observed to have the crystal structure. The 

structure is made up of periodically repeating a structural building block, the unit cell.  

The pattern of ions or atoms within the crystal is described by the lattice.  Atom or group 

of atoms attached at every lattice point is called the basis.  The lattice and basis 

completely specify the crystal structure.  The formation of the crystal is typically 

controlled by the valence electrons of the atoms that form the crystal.  The strength, 

color and other physical properties are affected by the crystal structure. 

Crystal is considered ‘perfect crystal’ when every atom stays in the 

correct position. This is the ideal condition which hardly exist.  Every crystal contains 

lattice defects, or imperfections, which locally disrupt the ideal structure of the crystal.  

The general types of defects are point defects, line defects or dislocations and surface 

defects.   Defects in the crystal structure can have a tremendous effect on a materials 

behavior, we can modify and improve many of the physical, electrical, magnetic, and 

optical properties of crystal materials by controlling imperfections in their lattice 

structure.  So, in many fields of science and engineering are largely concerned with how 

such lattice defects are formed, how they interact with each other, and how they affect 

macroscopic properties.  [1]   

Both experiments and simulations are widely developed.  Various 

experimental designs can show the appropriate results which are beneficial in many 

areas, but have the limitations in some conditions.  On the other side, simulation can 

often come very close to experimental conditions, to the extent that computer results 

can sometimes be compared directly with experimental results.  When this happens, 

simulation becomes an extremely powerful tool not only to understand and interpret the 

experiments at the microscopic level, but also to study regions which are not accessible 

experimentally, or which would imply very expensive experiments, such as under 

extremely high pressure. 
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The scale of simulation in computational crystal materials is vast, 

hierarchical models begin from nano-scale (characteristic length ~ 10-9 – 10-7 m.), micro-

scale (characteristic length ~ 10-8 – 10-6 m.), meso-scale (characteristic length ~ 10-7 – 

10-4 m.), and macro-scale (characteristic length ≥ 10-3

The motivation of this dissertation is trying to understand the dynamics of 

lattice defects, specifically the transient of this system.  The first objective aims to create 

a computer program to calculate the energy term, especially potential energy function.  

The reason for focusing on potential energy function is the behavior of lattice defects 

that atoms interact with each other.  These interactions originate forces which action of 

these instantaneous forces.  As the atoms move, their relative positions change and 

forces change as well.  Forces are usually obtained as the gradient of a potential energy 

function, depending on the positions of the particles.  The second objective aims to 

analyse the patterns of lattice defects and predict the possible final states of the 

transients.  

 m.).  Most of simulation must be 

connected with appropriate scale but these make limitation in them. 

1.2 Thesis Objective 

1. To develop a computer program for simulating point defect 

transients. 

2. To analyse the patterns in which the point defects may propagate 

over time. 

3. To predict the possible final states of the transients and/or the time in 

which a transient may require to reach its final state. 

1.3 Scope of Work 

1. The study will be concentrated on the system with simple lattice 

formation in order to minimize the time and resource required for the simulation. 

2. Various initial conditions for single and multiple defects will be 

attempted.   
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3. The obtained results are to be compared with the available data 

obtained from the experiments and/or from the theoretical prediction. 

1.4 Expected Benefit 

Obtain the computer program for simulating the transient of lattice 

defects.  The program will be used as a tool in which further study and the analysis on 

the formation of the lattice and the propagation of their defects can be conducted. 

1.5 Literature Review 

1. In 1997 [2], Furio Ercolessi presented ‘A molecular dynamics primer’ 

that summarize the skeleton for a short hands-on course on molecular dynamics.  These 

notes showed that in the past, interactions were obtained by two-body potentials with 

simple analytical form, such as Morse or Lennard-Jones (since 1957). After that, the 

most accurate potentials contain many-body terms and are determined numerically by 

reproducing as closely as possible forces predicted by first-principle methods (since 

1985).  Also explained about limitations of molecular dynamics when deal with the 

system at the atomistic level, everybody knows this level obey quantum laws rather than 

classical laws.  A simple test of the validity of the classical approximation is based on 

the de Broglie thermal wavelength, defined as 

Λ =  �
2𝜋𝜋ℎ�2

𝑀𝑀𝑘𝑘𝐵𝐵𝑇𝑇
,                                                  (1.1) 

where 𝑀𝑀 is the atomic mass and 𝑇𝑇 is the temperature.  The classical approximation is 

justified if Λ ≪ 𝑎𝑎, where 𝑎𝑎 is the mean nearest neighbor separation.  If one considers 

for instance liquids at the triple point, Λ 𝑎𝑎⁄  is of the order of 0.1 for light elements such 

as Li and Ar, decreasing further for heavier elements.  The classical approximation is 

poor for very light systems such as H2, He, Ne.  Moreover, quantum effects become 

important in any system when 𝑇𝑇 is sufficiently low.  The drop in the specific heat of 

crystals below the Debye temperature, or the anomalous behavior of the thermal 
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expansion coefficient, are well known examples of measurable quantum effects in 

solids.  Molecular dynamics results should be interpreted with caution in these regions. 

These notes also emphasized that the realism of the simulation depends 

on the ability of the potential chosen to reproduce the behavior of the material under the 

conditions at which the simulation is run. 

2. In 2000 [3], J. Merimaa, L.F. Perondi and K. Kaski introduced an 

interactive simulation program illustrating grain boundary and fracture phenomena in 

solids.  The dynamical behavior of a two-dimensional Lennard-Jones model system 

under stress, with either a grain boundary or an initial crack, is simulated through a 

molecular dynamics algorithm.  All parameters defining the system and the dynamical 

load are set through a graphical user interface.  A run-time representation of the system 

is displayed on a graphics window, which has been endowed with magnification and 

other visualization aid tools.  The program runs on a UNIX-X11 Window System platform.  

The graphical part relies on the MOTIF library.  The program has been devised for 

illustrative purposes.  It displays the main elements of an interactive simulation and may 

be regarded as giving an illustration of the concept of interactivity.    

3. In 2002 [4], L.E. Shilkrot, W.A. Curtin and R.E. Miller introduced a 

method for reducing the degree of freedom in simulations of mechanical behavior of 

materials without sacrificing important physics.  The method essentially combines the 

quasicontinuum (QC) method with continuum defect models such as the discrete 

dislocation (DD) method.  A procedure for the ‘passing’ of dislocation defects from the 

atomistic to the continuum description in 2d problems is also presented.  The overall 2d 

method with dislocation defects is validated by comparing the predictions of the 

coupled model to ‘exact’ fully atomistic models for several equilibrium dislocation 

geometries and a nanoindentation problem in aluminum, and excellent agreement is 

obtained. 

4. In 2004 [5], Mike Finnis proposed an overview of the nature of 

interatomic forces in materials based on the ideas of density functional theory and the 

variational principle, without details of the mathematics involved.  Also explain that ionic 



 

 

5 

materials and simple metals, arguments based on electrostatics and linear response 

have a firm foundation in quantum mechanics, and are key elements for making 

simplified models.  In other materials, he showed that it is possible to simplify the many-

body theory to such an extent that useful analytic models emerge. 

5. In 2004 [6], W.K. Liu et al. briefly reviewed the essential tools used 

by nanoscale researchers.  These simulation methods include the broad areas of 

quantum mechanics, molecular dynamics and multiple-scale approaches, based on 

coupling the atomistic and continuum models.  They conclusively demonstrated that the 

atomistic simulation tools themselves are not sufficient for many of the interesting and 

fundamental problems that arise in computational mechanics, and that these 

deficiencies lead to the thrust of multiple-scale methods.  They also summarized the 

strengths and limitations of currently available multiple-scale techniques, where the 

emphasis is made on the latest perspective approaches, such as the bridging scale 

method, multi-scale boundary conditions, and multi-scale fluidics. 

In detail of this paper showed that nanoscale materials will be used in 

conjunction with other components that are larger, and have different response times, 

thus operating at different time and length scales. Single scale methods such as ‘ab 

initio’ quantum mechanical methods or molecular dynamics (MD) will have difficulty in 

analyzing such hybrid structures due to the limitations in terms of the time and length 

scales that each method is confined to. Because of the availability of accurate 

interatomic potentials for a range of materials, classical MD simulations have become 

prominent as a tool for elucidating complex physical phenomena. 

The paper’s outline is given by the following. Section 2 reviews the 

fundamentals of classical molecular dynamic simulations, such as the Lagrangian and 

Hamiltonian formulations, and the structure of interatomic potential functions. Section 3 

informs the reader on the relevant quantum mechanical approaches and explains the 

energetic link between the quantum and classical systems. In Section 4, outline the 

intrinsic limitations of molecular dynamic simulations and emphasize the necessity in 

developing the coupled multi-scale methods. Section 5 reviews available multi-scale 

approaches: hierarchical and concurrent coupling of the atomistic and continuum 
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simulations (with the emphasis on the bridging scale method), multi-scale boundary 

conditions and multiple-scale fluidics. Section 6 concludes the paper by discussing 

future research needs in multiple-scale analysis. 

This paper also introduced for such systems, the computer-aided 

engineering tools must be able to span length scales from nanometers to microns, and 

time scales from femtoseconds to micro-seconds.  Therefore, these systems cannot be 

modeled by continuum methods alone, because they are too small, or by molecular 

methods alone, because they are too large.  And in supporting the design and 

qualification of nanostructured materials, a range of simulation tools must be available to 

designers just as they are today available at the macroscopic scales in general purpose 

software. 

6. In 2004 [7][8][9], Teik-Cheng Lim proposed the study of potential 

energy function in various papers, in particular the connection among classical 

interatomic potential functions, these papers showed the relationship among the 

classical functions of Lennard-Joneds, Morse, Rydberg and Buckingham potential, 

followed by relationships between the classical pair potentials of Morse and 

Buckingham with the 2-body portion of other empirical potentials, such as Biswas-

Hammann and Bauer-Maysenholder-Seeger.  The results showed imposing equal 

potential energy, and their first two derivatives at equilibrium as well as the usage of 

calculus and Maclaurin series expansions.   

7. In 2007 [10], M. Patriarca et al. proposed the study of crystal defects 

and the complex processes underlying their formation and time evolution has motivated 

the development of the program ALINE for interactive molecular dynamics experiments.  

They showed that ALINE couples a molecular dynamics code to a Graphical User 

Interface and runs on UNIX-X11 Window System platform with the MOTIF library, which 

is contained in many standard Linux releases.  ALINE is written in C, thus giving the user 

the possibility to modify the source code, and at the same time, provides and effective 

and user-friendly framework for numerical experiments, in which the main parameters 

can be interactively varied and the system visualized in various way.  They illustrated the 

main features of the program through some examples of detection and dynamical 
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tracking of point-defects, linear defects, and planar defects, such as stacking faults in 

lattice-mismatched heterostructures. 
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CHAPTER II 

THEORETICAL BACKGROUND 

2.1 Defects of Crystal Structure[11] 

Every crystal contains lattice defects, or imperfections, which locally 

disrupt the ideal structure of the crystal. Defects come in several types and are often 

classified according to the number of spatial dimensions which is required to 

geometrically describe them.  Their presence affects physical properties of the crystal 

and lead to various phenomena. 

2.1.1 Point Defects 

In a perfect lattice all atoms are located at specific lattice sites (ignoring 

thermal motion).  There are two possible point defects, namely vacancies and 

interstitials.  A vacancy is an unoccupied lattice point, while an interstitial is an atom 

located at a non-lattice site.  For each fixed temperature there is an equilibrium 

concentration of vacancies in a crystal.  In many common metals the fraction of vacant 

lattice sites just below the melting temperature is of the order of 410−  to 310− .  The 

equilibrium concentration of interstitials near the melting temperature  is expected to be 

of the order of magnitude smaller than that of the equilibrium concentration of 

vacancies.  In metals there may be impurities which can also be considered as point 

defects.  There are two type: substitutional (an atom of a kind different from the host 

atoms occupying a lattice site) and interstitial (an atom of a kind different from the host 

atoms occupying a non-lattice site.)  See Fig. 2.1. 

 

 

 

 

Fig. 2.1  (a) Vacancies and Self-interstitials, (b) and (c) Substitutional [11] 

   

(a) (b) (c) 
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Point defects influence many physical properties of metals.  For example, 

atoms surrounding a vacant lattice site are more loosely bound than those in a perfect 

lattice.  The forces between the atoms thus are weakened (i.e. the vibrational 

frequencies are lowered) giving an increased vibrational entropy because the lattice is 

more compressed in the vicinity of an interstitial.  Point defect mechanisms dominate in 

self-diffusion processes.  Vacancies cause an increase in the volume of a crystal, and 

hence contribute to the thermal expansion.  The enthalpy and heat capacity increase 

due to point defects. 

The formation of point defects in solids was first predicted by Frenkel in 

1926.  At high temperatures the thermal vibrations of the atoms may cause an atom to 

leave its equilibrium lattice site and occupy an interstitial position in the lattice.  In this 

mechanism a vacancy and an interstitial are created simultaneously, and are referred to 

as a Frenkel defect.  In 1930, Wagner and Schottky demonstrated a way for the creation 

of vacancies: an atom leaves its lattice site and occupies an available position at the 

surface of the crystal or at internal imperfections in the crystal such as dislocations, 

grain boundaries, or inclusions, (Fig. 2.2).  This mechanism dominates in metals with 

close-packed structure where the formation energy of vacancies generally is much 

lower than the formation energy of interstitials.  Experimental measurements of vacancy 

concentrations often rely on the influence of vacancies on thermophysical properties, 

e.g. thermal expansion and electric resistivity.  The problem is to separate the effect of 

vacancies from other effects, e.g. anharmonicity.  Differential dilatometry measures the 

vacancy concentration directly.  In such experiments the linear thermal expansion 

coefficient and the change in the lattice parameter with temperature are measured 

simultaneously.  From the difference between those quantities the vacancy 

concentration can be deduced.  The equilibrium concentration of interstitials can be 

determined using elastic constants measurements. 
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Fig. 2.2  Frenkel imperfection and Schottky imperfection [11] 

2.1.2  Line Defects or Dislocations 

Imagine that the bonds between the atoms in a simple cubic lattice are 

represented by flexible springs.  If all bonds intersected by a plane which goes through 

non-atomic sites were instantaneously broken, the lattice would separate along this line 

if pulled in tension.  A screw dislocation is introduced by displacing the two faces of 

such a cut relative to each other.  If instead an extra atomic plane would be placed 

between the faces, an edge dislocation is created.  In a real crystal, dislocations may 

have characteristics of both edge and screw type, (Fig. 2.3).  

 

 

 

 

 

 

 

Fig. 2.3  (a) Screw dislocations, (b) Edge dislocations [11] 

 

(a) 

(b) 
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Dislocations have high formation energy and are not thermally generated at 

normal temperatures.  However, dislocations are introduced through mechanical 

deformation even at intermediate temperature.  The dislocation density is defined as the 

total length of dislocations per volume.  In a carefully treated metallic crystal this value 

can be as low as 210−  cm-2

11105×

.  It increases rapidly with plastic deformation, and typical 

value for a heavily deformed metal is  cm-2

The idea of dislocations dates from the end of the 1920s.  In 1934 Orowan, 

Polanyi, and Taylor in simultaneous independent papers laid the foundations of the 

modern dislocation theory of slip, although the concept of dislocations had been 

introduced some years earlier.  The first major review of the dislocation theory of crystals 

was written by Seitz and Read (1941), and later by Cottrell (1949).  At the end of the 

1960s, much of the modern theory of dislocations had been completed.  The 

geometrical and elastic properties of dislocations, the theory of plastic deformation, and 

the role of dislocation theory in explaining crystal growth, were developed.  There are 

many techniques for the detection of dislocations in crystals, e.g. X-ray diffraction, 

transmission electron microscopy, and field ion microscopy. 

.  The dislocation density in metallic 

crystals generally is higher than in non-metallic crystals.  Thus, dislocations may 

become important at high temperatures, and are essential in understanding the 

deformation of materials.  They account for the difference, by many orders of magnitude, 

between measured critical shear stresses of crystals and theoretical estimations. 

2.1.3 Planar Defects : Stacking faults 

Perfect lattices can be described as a stacking of identical atom layers 

arranged in a regular sequence.  There may be one or several ways to position one 

layer on top of another.  In a face-centered cubic lattice there are two ways in which 

close packed planes (the (111) planes) can be placed on top of each other.  The 

stacking of such planes can schematically be described as the sequence ABCABC… . 

and C layer has been partially removed in the regular stacking sequence, which create 

and ‘intrinsic’ stacking fault. (Fig. 2.4) 

Stacking faults play an important role in materials science because of their 

interaction with dislocation.  They can be visualized by electron diffraction.  Dislocations 
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often split into partial dislocations (in face-centered cubic metals), which are connected 

by a stacking fault.  The stacking fault energy, 𝛾𝛾 is the energy required to introduce a 

stacking fault in a crystal.  It is directly related to, e.g.  the dissociation of a dislocation 

into two partials.  Calculations of the stacking fault energy have been carried out using 

classical simulations and ab-initio methods.  Using isotropic elasticity theory, the 

splitting distance, 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  between two partial dislocations can be calculated, from 

which 𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  ≈  𝛾𝛾−1 .  The relation between 𝛾𝛾 and  𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  may be used in 

experimental determinations of the stacking fault energy. 

 

 

 

 

 

 

 

 

Fig. 2.4  Intrinsic stacking fault [11] 

2.2 Vibrations of Molecules[12] 

When two atoms are separated from each other by a few atomic 

diameters, they can exert attractive forces on each other. But if the atoms are so close to 

each other that their electron shells overlap, the forces between the atoms are repulsive.  
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Between these limits, there can be an equilibrium separation distance at which two 

atoms form a molecule.  If these atoms are displaced slightly from equilibrium, they will 

oscillate. 

As an example, consider one type of interaction between atoms called 

the van der Waals interaction.  Let the center of one atom be at the origin, and let the 

center of the other atom be a distance r away; the equilibrium distance between centers 

is 𝑟𝑟 =  𝑅𝑅0.  Experiment shows that the van der Waals interaction can be described by 

the potential energy function 

𝑈𝑈 =  𝑈𝑈0 ��
𝑅𝑅0

𝑟𝑟 �
12

− 2 �
𝑅𝑅0

𝑟𝑟 �
6

� ,                                    (2.1) 

where 𝑈𝑈0  is a positive constant with units of joules.  If two atoms are very far apart, 

𝑈𝑈 = 0; if they are separated by the equilibrium distance 𝑟𝑟 =  𝑅𝑅0, 𝑈𝑈 =  −𝑈𝑈0.  The 

force on the second atom is the negative derivative of Eq. (2.1), 

𝐹𝐹 =  −
𝑑𝑑𝑈𝑈
𝑑𝑑𝑟𝑟 =  𝑈𝑈0 �

12𝑅𝑅0
12

𝑟𝑟13 − 2
6𝑅𝑅0

6

𝑟𝑟7 � 

=  12
𝑈𝑈0

𝑅𝑅0
��
𝑅𝑅0

𝑟𝑟 �
13

− �
𝑅𝑅0

𝑟𝑟 �
7

� .                     (2.2) 

The force is positive for 𝑟𝑟 <  𝑅𝑅0  and negative for 𝑟𝑟 >  𝑅𝑅0 , so this 

is a restoring force. 

To study small-amplitude oscillations around the equilibrium separation 

𝑟𝑟 =  𝑅𝑅0 ,  we introduce the quantity 𝑥𝑥 to represent the displacement from equilibrium: 

𝑥𝑥 = 𝑟𝑟 − 𝑅𝑅0 ,   so   𝑟𝑟 =  𝑅𝑅0 + 𝑥𝑥 

In terms of 𝑥𝑥, the force 𝐹𝐹  in Eq. (2.2)  becomes 

𝐹𝐹 =  12
𝑈𝑈0

𝑅𝑅0
��

𝑅𝑅0

𝑅𝑅0 + 𝑥𝑥�
13

− �
𝑅𝑅0

𝑅𝑅0 + 𝑥𝑥�
7

� 

 =  12
𝑈𝑈0

𝑅𝑅0
�

1
(1 + 𝑥𝑥 𝑅𝑅0⁄ )13 −

1
(1 + 𝑥𝑥 𝑅𝑅0⁄ )7� .               (2.3) 
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This looks nothing like Hooke’s law, 𝐹𝐹 =  −𝑘𝑘𝑥𝑥, so we might be tempted 

to conclude that molecular oscillations cannot be simple harmonic motion.  But let us 

restrict ourselves to small-amplitude oscillations so that the absolute value of the 

displacement 𝑥𝑥 will be small in comparison to 𝑅𝑅0 and the absolute value of the ratio 

𝑥𝑥 𝑅𝑅0⁄  will be much less than 1.  We can then simplify Eq. (2.3) by using the binomial 

theorem: 

(1 + 𝑢𝑢)𝑛𝑛 = 1 + 𝑛𝑛𝑢𝑢 +
𝑛𝑛(𝑛𝑛 − 1)

2! 𝑢𝑢2 +
𝑛𝑛(𝑛𝑛 − 1)(𝑛𝑛 − 2)

3! 𝑢𝑢3 + ⋯       (2.4) 

If |𝑢𝑢| is much less than 1, each successive term in Eq. (2.4) is much 

smaller than the one it follows, and we can safely approximate (1 + 𝑢𝑢)𝑛𝑛   by just the 

first two term.  In Eq. (2.3), 𝑢𝑢 is replaced by 𝑥𝑥 𝑅𝑅0⁄  and 𝑛𝑛 equals -13 or -7, so 

1
(1 + 𝑥𝑥 𝑅𝑅0⁄ )13 =  (1 + 𝑥𝑥 𝑅𝑅0⁄ )−13  ≈ 1 + (−13)

𝑥𝑥
𝑅𝑅0

 , 

1
(1 + 𝑥𝑥 𝑅𝑅0⁄ )7 =  (1 + 𝑥𝑥 𝑅𝑅0⁄ )−7  ≈ 1 + (−7)

𝑥𝑥
𝑅𝑅0

 , 

𝐹𝐹 ≈ 12
𝑈𝑈0

𝑅𝑅0
��1 + (−13)

𝑥𝑥
𝑅𝑅0
� − �1 + (−7)

𝑥𝑥
𝑅𝑅0
�� 

𝐹𝐹 =  −�
72𝑈𝑈0

𝑅𝑅0
2 �𝑥𝑥.                                               (2.5) 

This is just Hooke’s law, with force constant 𝑘𝑘 = 72𝑈𝑈0
𝑅𝑅0

2 , (Note that 𝑘𝑘  has 

the correct units, J/m2

We can also show that the potential energy 𝑈𝑈, Eq. (2.1), can be written 

as 𝑈𝑈 ≈  1
2
𝑘𝑘𝑥𝑥2 + 𝐶𝐶, where 𝐶𝐶 =  −𝑈𝑈0  and 𝑘𝑘 is again equal to  

72𝑈𝑈0
𝑅𝑅0

2 .  Adding a 

constant to the potential energy has no effect on the physics, so the system of two 

 or N/m.)  So oscillations of molecules bounded by the van der 

Waals interaction can be simple harmonic motion, provided that the amplitude is small in 

comparison to 𝑅𝑅0 so that the approximation |𝑥𝑥 𝑅𝑅0⁄ |  ≪ 1 used in the derivation of Eq. 

(2.5) is valid. 
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atoms is fundamentally no different from a mass attached to a horizontal spring for 

which 𝑈𝑈 =  1
2
𝑘𝑘𝑥𝑥2. 

2.3 Molecular Dynamic Simulation [13],[14] 

2.3.1 Potential Energy Function in Classical Molecular Dynamics Simulation 

One of the objectives of this dissertation is to simulate the transient of 

lattice defects.  In order to do so requires an understanding on the dynamics of lattice 

defects; the position, the velocity, the acceleration.  The dynamics can be explained 

through the Hamiltonian equations of motion.  The equations represent the energy of the 

physical system, that is, the sum of kinetic and potential energy.  An alternative 

description, the terms of the generalized coordinates and momentum, is also utilized 

within the Hamiltonian formulation. 

The complete differential of the Lagrangian function reads 

𝑑𝑑𝑑𝑑 =  �
𝜕𝜕𝑑𝑑
𝜕𝜕𝑞𝑞𝑠𝑠

𝑑𝑑𝑞𝑞𝑠𝑠

𝑛𝑛

𝑠𝑠=1

+ �
𝜕𝜕𝑑𝑑
𝜕𝜕𝑞𝑞�̇�𝑠

𝑑𝑑𝑞𝑞�̇�𝑠

𝑛𝑛

𝑠𝑠=1

,                                    (2.6) 

where 

𝑑𝑑  is the Lagrangian function. 

𝑞𝑞  is the generalized coordinates. 

We can rewrite this differential as 

𝑑𝑑𝑑𝑑 =  �𝑠𝑠�̇�𝑠
𝑠𝑠

𝑑𝑑𝑞𝑞𝑠𝑠 + �𝑠𝑠𝑠𝑠
𝑠𝑠

𝑑𝑑𝑞𝑞�̇�𝑠 ,                                    (2.7) 

where  𝑠𝑠𝑠𝑠  is the generalized momenta defined by 

𝑠𝑠𝑠𝑠 =
𝜕𝜕𝑑𝑑
𝜕𝜕𝑞𝑞�̇�𝑠

.                                                   (2.8) 

The right-hand side of Eq. (2.7) can be rearranged as 
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𝑑𝑑𝑑𝑑 =  �𝑠𝑠�̇�𝑠
𝑠𝑠

𝑑𝑑𝑞𝑞𝑠𝑠 + 𝑑𝑑 ��𝑠𝑠𝑠𝑠
𝑠𝑠

𝑑𝑑𝑞𝑞�̇�𝑠� −�𝑞𝑞�̇�𝑠
𝑠𝑠

𝑑𝑑𝑠𝑠𝑠𝑠 ,                  (2.9) 

𝑑𝑑 ��𝑠𝑠𝑠𝑠
𝑠𝑠

𝑞𝑞�̇�𝑠 − 𝑑𝑑�  =  �𝑞𝑞�̇�𝑠
𝑠𝑠

𝑑𝑑𝑠𝑠𝑠𝑠 −�𝑠𝑠�̇�𝑠
𝑠𝑠

𝑑𝑑𝑞𝑞𝑠𝑠 ,                  (2.10) 

where the function 

𝐻𝐻(𝑠𝑠, 𝑞𝑞, 𝑠𝑠) =  �𝑠𝑠𝑠𝑠
𝑠𝑠

𝑞𝑞�̇�𝑠 − 𝑑𝑑,                                 (2.11) 

is referred to as the Hamiltonian of the system.  The value of the Hamiltonian function is 

an integral of motion for conservative system, and it is defined to be the total energy of 

the system in terms of the generalized coordinates and momenta. Thus, we have 

obtained 

𝑑𝑑𝐻𝐻 =  �𝑞𝑞�̇�𝑠
𝑠𝑠

𝑑𝑑𝑠𝑠𝑠𝑠 −�𝑠𝑠�̇�𝑠
𝑠𝑠

𝑑𝑑𝑞𝑞𝑠𝑠 ,                            (2.12) 

and therefore, 

𝑞𝑞�̇�𝑠 =
𝜕𝜕𝐻𝐻
𝜕𝜕𝑠𝑠𝑠𝑠

,                        𝑠𝑠�̇�𝑠 = −
𝜕𝜕𝐻𝐻
𝜕𝜕𝑞𝑞𝑠𝑠

.                        (2.13) 

These are the Hamiltonian equations of motion in terms of new variable 𝑠𝑠 and 𝑞𝑞. 

For a conservative system of 𝑁𝑁 interacting atoms in a Cartesian 

coordinate system, the Hamiltonian description acquires the following form: 

𝐻𝐻(𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑁𝑁 ,𝑠𝑠1, 𝑠𝑠2, … ,𝑠𝑠𝑁𝑁) = �
𝑃𝑃𝑠𝑠2

2𝑚𝑚𝑠𝑠𝑠𝑠

+ 𝑈𝑈(𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑁𝑁),           (2.14) 

𝑟𝑟�̇�𝑠 =
𝜕𝜕𝐻𝐻
𝜕𝜕𝑠𝑠𝑠𝑠

,                         𝑠𝑠�̇�𝑠 = −
𝜕𝜕𝐻𝐻
𝜕𝜕𝑟𝑟𝑠𝑠

,                        (2.15) 

where the momenta are related to the radius vectors as  𝑠𝑠𝑠𝑠 = 𝑚𝑚𝑠𝑠𝑟𝑟𝑠𝑠 .̇  
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 If the Hamiltonian function and an initial state of the atoms in the system 

are known, one can compute the instantaneous positions and momentums of the atoms 

at all successive times that gives the dynamic evolution of the system. 

 Unlike the positions and momentums which can be computed quite 

easily from Hamiltonian function, the potential energy terms turns out to be difficult.  The 

potential energy function is an extremely complicated object, when accurately 

representing the atomic interactions within the simulated system. 

 In a model for atomic interaction, the form of potential energy function for 

various systems is produced, the general structure of this function is presented by the 

following: 

𝑈𝑈(𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑁𝑁) = �𝑉𝑉1(𝑟𝑟𝑠𝑠)
𝑠𝑠

+ �𝑉𝑉2�𝑟𝑟𝑠𝑠 , 𝑟𝑟𝑗𝑗 �
𝑠𝑠 ,𝑗𝑗>𝑠𝑠

+                               

� 𝑉𝑉3�𝑟𝑟𝑠𝑠 , 𝑟𝑟𝑗𝑗 , 𝑟𝑟𝑘𝑘�
𝑠𝑠 ,𝑗𝑗>𝑠𝑠 ,𝑘𝑘>𝑗𝑗

+ ⋯ ,                         (2.16) 

where 𝑟𝑟𝑛𝑛  is the radius vector of the nth particle and function 𝑉𝑉𝑚𝑚  is called the 𝑚𝑚-body 

potential.  The first term represents the energy due to an external force field, such as 

gravitational field or electrostatic field into which the system is immersed. The second 

term shows pair-wise interactions of the particles. The third term gives the three-body 

components.  In practice, the external field term is usually ignored, while all the multi-

body effects are incorporated into 𝑉𝑉2   in order to reduce the computational expense of 

the simulations. 

Explained in [6], there exist a variety of potential forms in classical 

molecular dynamics simulation. Among them are these two popular models to describe 

pair-wise atomic interactions: 

Lennard-Jones (LJ) potential, [6],[13], reads as 

𝑉𝑉�𝑟𝑟𝑠𝑠 , 𝑟𝑟𝑗𝑗 � = 𝑉𝑉(𝑟𝑟) = 4𝜀𝜀 ��
𝜎𝜎
𝑟𝑟�

12
+ �

𝜎𝜎
𝑟𝑟�

6
�, 
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𝑟𝑟 = �𝑟𝑟𝑠𝑠𝑗𝑗 � = �𝑟𝑟𝑠𝑠 − 𝑟𝑟𝑗𝑗 �.                                           (2.17) 

where 𝑟𝑟𝑠𝑠𝑗𝑗  is the interatomic radius-vector, 𝜎𝜎 is the collision diameter, the distance at 

which 𝑉𝑉(𝑟𝑟) = 0, and 𝜀𝜀 shows the bonding/dislocation energy.  The first term of this 

potential represents atomic repulsion and the second term shows attraction between 

two atoms. 

Morse potential reads as 

𝑉𝑉(𝑟𝑟) = 𝜀𝜀�𝑒𝑒2𝛽𝛽(𝜌𝜌−𝑟𝑟) − 2𝑒𝑒𝛽𝛽(𝜌𝜌−𝑟𝑟)�,                    (2.18) 

where 𝜌𝜌 and 𝜀𝜀 are equilibrium bond length and dislocation energy respectively;  𝛽𝛽 is 

an inverse length scaling factor.  The first term of this potential is repulsive whereas the 

second term is attractive and is interpreted as a representation of bonding.  Morse 

potential has been adapted for modeling atomic interaction in various types of materials 

and interfaces. 

 The LJ and Morse potentials are most commonly used in molecular 

dynamics simulations, in chemistry, physics and engineering. They describe multi-body 

interaction: 

Fig. 2.5  Pair-wise potentials and the interatomic forces (a) LJ, (b) Morse.[6] 
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 Tersoff potential [6],[15] for a class of covalent system reads as 

𝑉𝑉𝑠𝑠𝑗𝑗 =  𝑓𝑓𝑐𝑐�𝑟𝑟𝑠𝑠𝑗𝑗 ��𝐴𝐴𝑒𝑒−𝜆𝜆1𝑟𝑟𝑠𝑠𝑗𝑗 − 𝐵𝐵𝑠𝑠𝑗𝑗 𝑒𝑒−𝜆𝜆2𝑟𝑟𝑠𝑠𝑗𝑗 �,                   (2.19) 

where 𝑓𝑓𝑐𝑐  is the cutoff function. If the local bond-order is ignored, so that 𝐵𝐵 = 2𝐴𝐴 =
const., and 𝜆𝜆1 = 2𝜆𝜆2,  then potential reduces to the Morse model.   

 Not only used to describe the pair-wise atomic interactions, but also  the 

multi-body interaction, Brenner potential and Reactive Empirical Bond Order (REBO) 

potential [6],[16] is extended from the Tersoff model to account for different types of 

chemical bonds that occur in the diamond and graphite phases of the carbon, as well in 

hydrocarbon molecules.  

There is another special form of the multi-body potential: 

 Embedded atom method (EAM) [6],[10] : for metallic system 

𝑈𝑈 =  �𝐺𝐺𝑠𝑠 ��𝜌𝜌𝑗𝑗 𝑎𝑎�𝑟𝑟𝑠𝑠𝑗𝑗 �
𝑗𝑗≠𝑠𝑠

�
𝑠𝑠

+ �𝑉𝑉𝑠𝑠𝑗𝑗 �𝑟𝑟𝑠𝑠𝑗𝑗 �
𝑠𝑠 ,𝑗𝑗>𝑠𝑠

.                    (2.20) 
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CHAPTER III 

SPRING-MASS MODEL 

3.1 Description of the Model 

Using the concept of Hamiltonian, the general structure of potential 

energy function, and the revision of the vibration of molecules in CHAPTER II, we are 

ready to investigate the simplest model representing the system of atomic interaction 

namely the model of spring.  (Fig.3.1) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1  Spring model in three dimensional 

From Eq. (2.14), written as  the sum of kinetic energy and potential 

energy, Hamiltonian equation is  

𝐻𝐻 = 𝑇𝑇 + 𝑉𝑉,                                                         (3.1) 

where 𝑇𝑇 is the kinetic energy and 𝑉𝑉 is the potential energy.  

The potential energy function of the spring is harmonic potential, 

𝑉𝑉 =  �
1
2𝐾𝐾

(∆𝑙𝑙𝑖𝑖)2
𝑚𝑚

𝑖𝑖=1

,                                              (3.2) 
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where 

∆𝑙𝑙𝑖𝑖 =  �𝑟𝑟𝛼𝛼���⃑ − 𝑟𝑟𝛽𝛽���⃑ � − 𝐿𝐿,                                           (3.3) 

and 

�𝑟𝑟𝛼𝛼���⃑ − 𝑟𝑟𝛽𝛽���⃑ � =  ��𝑥𝑥𝛼𝛼 − 𝑥𝑥𝛽𝛽�
2 + �𝑦𝑦𝛼𝛼 − 𝑦𝑦𝛽𝛽�

2 + �𝑧𝑧𝛼𝛼 − 𝑧𝑧𝛽𝛽�
2 ,          (3.4) 

and the kinetic energy of this system is 

𝑇𝑇 =  �
1
2𝑀𝑀

(𝑣𝑣𝑖𝑖)2
𝑛𝑛

𝑗𝑗=1

.                                             (3.5) 

Hence, 

𝐻𝐻 =  �
1
2
𝑀𝑀(𝑣𝑣𝑖𝑖)2

𝑛𝑛

𝑗𝑗=1

+ �
1
2
𝐾𝐾(∆𝑙𝑙𝑖𝑖)2

𝑚𝑚

𝑖𝑖=1

                             (3.6) 

where 

𝑗𝑗 is the number of atom 

𝑖𝑖 is the number of spring 

𝑀𝑀 is the mass of atom  

𝑣𝑣𝑗𝑗  is the velocity of atom 𝑗𝑗 

𝐾𝐾 is the spring constant  

∆𝑙𝑙𝑖𝑖  is the displacement length of spring 𝑖𝑖  

𝐿𝐿 is the equilibrium length of spring 

 From Eq. (2.15), the force on atom 𝑛𝑛 in 𝑋𝑋,𝑌𝑌 and 𝑍𝑍 axis can be written 

as 
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𝐹𝐹𝑛𝑛𝑥𝑥 =  −
𝜕𝜕𝐻𝐻
𝜕𝜕𝑥𝑥𝑛𝑛

,                                             (3.7) 

𝐹𝐹𝑛𝑛𝑦𝑦 =  −
𝜕𝜕𝐻𝐻
𝜕𝜕𝑦𝑦𝑛𝑛

,                                             (3.8) 

𝐹𝐹𝑛𝑛𝑧𝑧 =  −
𝜕𝜕𝐻𝐻
𝜕𝜕𝑧𝑧𝑛𝑛

.                                             (3.9) 

Using formula method, we rewrite Eq. (3.7) as 

  𝐹𝐹𝑛𝑛𝑥𝑥  =  −
𝜕𝜕
𝜕𝜕𝑥𝑥𝑛𝑛

��
1
2𝐾𝐾

(∆𝑙𝑙𝑖𝑖)2
𝑚𝑚

𝑖𝑖=0

�, 

=  −
𝜕𝜕
𝜕𝜕𝑥𝑥𝑛𝑛

��
1
2𝐾𝐾��𝑟𝑟𝛼𝛼���⃑ − 𝑟𝑟𝛽𝛽���⃑ � − 𝐿𝐿�2

𝑚𝑚

𝑖𝑖=0

�, 

=  −��
𝜕𝜕
𝜕𝜕𝑥𝑥𝑛𝑛

�
1
2𝐾𝐾��𝑟𝑟𝛼𝛼���⃑ − 𝑟𝑟𝛽𝛽���⃑ � − 𝐿𝐿�2��

𝑚𝑚

𝑖𝑖=0

, 

=  −��
1
2𝐾𝐾 ∙ 2��𝑟𝑟𝛼𝛼���⃑ − 𝑟𝑟𝛽𝛽���⃑ � − 𝐿𝐿� ∙

𝜕𝜕�𝑟𝑟𝛼𝛼���⃑ − 𝑟𝑟𝛽𝛽���⃑ �
𝜕𝜕𝑥𝑥𝑛𝑛

�
𝑚𝑚

𝑖𝑖=0

, 

=  −��𝐾𝐾��𝑟𝑟𝛼𝛼���⃑ − 𝑟𝑟𝛽𝛽���⃑ � − 𝐿𝐿�
𝑚𝑚

𝑖𝑖=0

∙
1
2 ��𝑥𝑥𝛼𝛼 − 𝑥𝑥𝛽𝛽�

2 + �𝑦𝑦𝛼𝛼 − 𝑦𝑦𝛽𝛽�
2 + �𝑧𝑧𝛼𝛼 − 𝑧𝑧𝛽𝛽�

2�
−1

2

∙
𝜕𝜕
𝜕𝜕𝑥𝑥𝑛𝑛

�𝑥𝑥𝛼𝛼 − 𝑥𝑥𝛽𝛽�
2�, 

=  −��
𝐾𝐾
2
��𝑟𝑟𝛼𝛼���⃑ − 𝑟𝑟𝛽𝛽���⃑ � − 𝐿𝐿�

�𝑟𝑟𝛼𝛼���⃑ − 𝑟𝑟𝛽𝛽���⃑ �
∙ 2�𝑥𝑥𝛼𝛼 − 𝑥𝑥𝛽𝛽� ∙

𝜕𝜕
𝜕𝜕𝑥𝑥𝑛𝑛

�𝑥𝑥𝛼𝛼 − 𝑥𝑥𝛽𝛽�� .
𝑚𝑚

𝑖𝑖=0

 

That is, 
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𝐹𝐹𝑛𝑛𝑥𝑥 = −��𝐾𝐾 ∙
��𝑟𝑟𝛼𝛼���⃑ − 𝑟𝑟𝛽𝛽���⃑ � − 𝐿𝐿�

�𝑟𝑟𝛼𝛼���⃑ − 𝑟𝑟𝛽𝛽���⃑ �
∙ �𝑥𝑥𝛼𝛼 − 𝑥𝑥𝛽𝛽� ∙

𝜕𝜕
𝜕𝜕𝑥𝑥𝑛𝑛

�𝑥𝑥𝛼𝛼 − 𝑥𝑥𝛽𝛽��
𝑚𝑚

𝑖𝑖=0

.    (3.10) 

In a similar manner, Eq. (3.8) and Eq. (3.9) can be written as 

𝐹𝐹𝑛𝑛𝑦𝑦 = −��𝐾𝐾 ∙
��𝑟𝑟𝛼𝛼���⃑ − 𝑟𝑟𝛽𝛽���⃑ � − 𝐿𝐿�

�𝑟𝑟𝛼𝛼���⃑ − 𝑟𝑟𝛽𝛽���⃑ �
∙ �𝑦𝑦𝛼𝛼 − 𝑦𝑦𝛽𝛽� ∙

𝜕𝜕
𝜕𝜕𝑦𝑦𝑛𝑛

�𝑦𝑦𝛼𝛼 − 𝑦𝑦𝛽𝛽��
𝑚𝑚

𝑖𝑖=0

.    (3.11) 

𝐹𝐹𝑛𝑛𝑧𝑧 = −��𝐾𝐾 ∙
��𝑟𝑟𝛼𝛼���⃑ − 𝑟𝑟𝛽𝛽���⃑ � − 𝐿𝐿�

�𝑟𝑟𝛼𝛼���⃑ − 𝑟𝑟𝛽𝛽���⃑ �
∙ �𝑧𝑧𝛼𝛼 − 𝑧𝑧𝛽𝛽� ∙

𝜕𝜕
𝜕𝜕𝑧𝑧𝑛𝑛

�𝑧𝑧𝛼𝛼 − 𝑧𝑧𝛽𝛽��
𝑚𝑚

𝑖𝑖=0

.    (3.12) 

Using numerical difference, 

𝐹𝐹𝑛𝑛𝑟𝑟 =  −
𝜕𝜕𝐻𝐻
𝜕𝜕𝑟𝑟𝑛𝑛

, 

𝜕𝜕𝐻𝐻
𝜕𝜕𝑟𝑟𝑛𝑛

≈  
∆𝐻𝐻
∆𝑟𝑟𝑛𝑛

 , 

∆𝐻𝐻
∆𝑟𝑟𝑛𝑛

=  
𝐻𝐻(𝑟𝑟𝑛𝑛 + 𝑑𝑑𝑟𝑟𝑛𝑛) −𝐻𝐻(𝑟𝑟𝑛𝑛)

𝑑𝑑𝑟𝑟𝑛𝑛
, 

we have, 

𝐹𝐹𝑛𝑛𝑟𝑟  ≈  −
𝐻𝐻(𝑟𝑟𝑛𝑛 + 𝑑𝑑𝑟𝑟𝑛𝑛) −𝐻𝐻(𝑟𝑟𝑛𝑛)

𝑑𝑑𝑟𝑟𝑛𝑛
.                                (3.13) 

In the numerical computation, we use Runge Kutta 4th order (RK4) as the 

numerical integrator [14],[17].  Let the problem be specified as follows, 

𝑑𝑑2𝑓𝑓
𝑑𝑑𝑡𝑡2 = 𝑎𝑎(𝑓𝑓),                                                     (3.14) 

𝑔𝑔 =  
𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡 .                                                          (3.15) 
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Then the RK4 method for this problem is given by the following 

equations: 

𝑔𝑔 =  𝑔𝑔0 +
1
6

(𝑑𝑑𝑔𝑔1 + 2𝑑𝑑𝑔𝑔2 + 2𝑑𝑑𝑔𝑔3 + 𝑑𝑑𝑔𝑔4),                       (3.16) 

𝑓𝑓 =  𝑓𝑓0 +
1
6

(𝑑𝑑𝑓𝑓1 + 2𝑑𝑑𝑓𝑓2 + 2𝑑𝑑𝑓𝑓3 + 𝑑𝑑𝑓𝑓4),                           (3.17) 

where 

𝑑𝑑𝑔𝑔1 = 𝑎𝑎(𝑓𝑓0) ∙ 𝑑𝑑𝑡𝑡 

𝑑𝑑𝑓𝑓1 =  𝑔𝑔0 ∙ 𝑑𝑑𝑡𝑡 

 

𝑑𝑑𝑔𝑔2 = 𝑎𝑎 �𝑓𝑓0 +
𝑑𝑑𝑓𝑓1

2 � ∙ 𝑑𝑑𝑡𝑡 

𝑑𝑑𝑓𝑓2 = �𝑔𝑔0 +
𝑑𝑑𝑔𝑔1

2 � ∙ 𝑑𝑑𝑡𝑡 

 

𝑑𝑑𝑔𝑔3 = 𝑎𝑎 �𝑓𝑓0 +
𝑑𝑑𝑓𝑓2

2 � ∙ 𝑑𝑑𝑡𝑡 

𝑑𝑑𝑓𝑓3 = �𝑔𝑔0 +
𝑑𝑑𝑔𝑔2

2 � ∙ 𝑑𝑑𝑡𝑡 

 

𝑑𝑑𝑔𝑔4 = 𝑎𝑎(𝑓𝑓0 + 𝑑𝑑𝑓𝑓3) ∙ 𝑑𝑑𝑡𝑡 

𝑑𝑑𝑓𝑓4 = (𝑔𝑔0 + 𝑑𝑑𝑔𝑔3) ∙ 𝑑𝑑𝑡𝑡 

 

In the spring model, we start at the initial configuration of the system, 

coordinate of atoms in all axis.  Next, a selected atom is relocated from equilibrium. 

Hamiltonian is then calculated.  The force is computed in two ways; one is through Eq. 

(3.10-3.12) by formula method, and the other is through Eq. (3.13) by numerical method.  
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Yes 

No 

Initial Data 

𝑻𝑻 = 𝟎𝟎 

𝑻𝑻 >  𝑻𝑻𝒆𝒆𝒆𝒆𝒆𝒆 Stop 

Calculate the Hamiltonian 

Force 

Acceleration 

Velocity 

New Position 

Output 

𝑻𝑻 = 𝑻𝑻 + 𝒆𝒆𝑻𝑻 

Compute by 
Runge Kutta 4th order 

Calculate the initial 

Hamiltonian 

We divide the force by mass to obtain the acceleration.  After that, we use the RK4 to 

solve the integral form to take the velocity, and finally the new position.  Hamiltonian is 

calculated and these new positions are stored to the new configuration in the next time 

step.  (Fig. 3.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2  Flow chart of the spring model 
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3.2 Case Study on Simple Cubic Crystal 

The model observes the system of simple cubic 3x3x3.  The description 

of the system is set as shown in the table: 

Table 3.1 The description of the system; simple cubic 3x3x3. 

Variable Description of the variable 

The number of atom 𝑗𝑗 = 0,1,2,…,26. 

Mass of atom 𝑀𝑀 = 1.0 unit. 

The number of spring 𝑖𝑖 = 0,1,2,…,80. 

Spring constant 𝐾𝐾 = 1.0 unit. 

Equilibrium length of spring 𝐿𝐿 = 1.0 unit. 

Differential step 𝑑𝑑𝑟𝑟 = 1.0E-08. 

Time step 𝑑𝑑𝑡𝑡 = 0.01. 

Run time 2000. 

Initial configuration of the system: 

Atom no.13 is displaced from the coordinate  (1.0,1.0,1.0)  to  (1.1,1.1,1.1). 

Boundary condition of the system: 

Periodic boundary condition. 

The result from the simulation are shown as follows: 

3.2.1 Relation of Hamiltonian with Time 

 The model calculated the motion of atoms in the system and the 

Hamiltonian at each time step.  In calculation the forces acting on the atoms based on 

the obtained Hamiltonian, two methods were attempted.  One was done through the 

analytically derived derivative of Hamiltonian.  This was labeled as the 𝐻𝐻-formula 

method.  The other was to obtain the derivative numerically.  This was labeled as the 𝐻𝐻-
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numerical method.  The results obtained with these two methods were compared with 

the initial Hamiltonian (𝐻𝐻0) as shown in Fig. 3.3.   

 

Fig. 3.3  Hamiltonian of the system with time 

The Hamiltonian of the system by the formula method is found to be 

constant with time, meanwhile the value that calculated by the numerical method is 

slightly increases with time.  They both nevertheless are very close to 𝐻𝐻0.  The 

differences are at the 8th

3.2.2 Vibration of Atom No.13 

 decimal point, which is very small. Hence, we could verify the 

conservation of Hamiltonian of the system and identify that the model can simulate this 

system in run time 2000. 

The model can simulate the position of the displaced atom (no.13)  

versus time, also the Hamiltonian calculation.  The position can be calculated by the 

formula method and the numerical method.  The relation of position in 𝑋𝑋,𝑌𝑌 and 𝑍𝑍 axis 

with time are shown respectively in the Fig. 3.4-3.6 
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Fig. 3.4  Position of atom no.13 in 𝑋𝑋 axis 

The position of the atom no.13 varies around the equilibrium state that 

shows the vibration of the atom in the system.  The value of position of atom no.13 in 

each axis versus time by both methods is the same value until the run time is about 700.  

This means that the numerical method in this model can show the exact value in limited 

run time.  Therefore, making an adjustment of the differential step is needed for 

decreasing different value, but that will make more/longer time in simulation usage. 
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Fig. 3.5  Position of atom no.13 in 𝑌𝑌 axis 

 

Fig. 3.6  Position of atom no.13 in 𝑍𝑍 axis 
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CHAPTER IV 

SIMULATION ON POINT DEFECT FOR FCC STRUCTURE 

4.1 Simulation of Point Defect with ALINE 

In CHAPTER III, although it is clear that the model can accurately provide 

the results from calculation based on the Hamiltonian in order to simulate of the atom 

vibration in a simple cubic crystal, there still are some limitations in crystal system and 

particularly in terms of time usage of simulation.   

For this study, to reduce the time needed to develop and verify the code, 

the numerical program ALINE which was written with the same concept was 

implemented.  The ALINE program is strongly effective in simulating point defects in 

FCC crystal system. Thus, the program has been implied in this research to study the 

dynamics of point defects as well as the transients of the system. 

ALINE (Atomic Laboratory for Interactive Numerical Experiments) is a 

three-dimensional interactive molecular dynamics program designed to simulate 

dynamics of the defects in the crystalline structure.  This program couples a molecular 

dynamics code to a Graphical User Interface and runs on a UNIX-X11 Window System 

platform with the MOTIF library, which contained in many standard Linux releases.  

ALINE provides an effective and user-friendly framework for numerical experiments, in 

which the main parameters can be interactively varied and the system visualized in 

various ways.  So, this program is suitable for the problem of interest in this study. 

In model system, the core of the program is based on a Molecular 

Dynamics algorithm for a system of 𝑁𝑁 particles interacting with each other either 

through a pair-wise Lennard-Jones (LJ) potential or a many-body EAM potential,  

Lennard-Jones pair-wise potential 

In the case of LJ potential, the total potential energy at time 𝑡𝑡 is 

expressed as a sum over all the pairs 𝑖𝑖 − 𝑗𝑗, with 𝑖𝑖, 𝑗𝑗 = 1, … ,𝑁𝑁, 
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𝐸𝐸𝑝𝑝 =  
1
2�𝑊𝑊𝑖𝑖𝑗𝑗 �𝑟𝑟𝑖𝑖𝑗𝑗 �
𝑖𝑖≠𝑗𝑗

,                                        (4.1) 

where  𝑟𝑟𝑖𝑖 = �𝑟𝑟𝑖𝑖(𝑡𝑡)− 𝑟𝑟𝑗𝑗 (𝑡𝑡)�  is the distance between particles 𝑖𝑖 and 𝑗𝑗 located at 

𝑟𝑟𝑖𝑖(𝑡𝑡) and 𝑟𝑟𝑗𝑗 (𝑡𝑡).  To improve the performance of simulations without affecting 

considerably the dynamics of the system,  an interaction cut-off 𝑟𝑟𝑐𝑐  is introduced and the 

cell method used for computing the interatomic forces.  The functional form of the LJ 

potential used is modified as follows, 

𝑊𝑊𝑖𝑖𝑗𝑗 (𝑟𝑟) = �𝑉𝑉𝑖𝑖𝑗𝑗 (𝑟𝑟) − (𝑟𝑟 − 𝑟𝑟𝑐𝑐)𝑉𝑉𝑖𝑖𝑗𝑗́ (𝑟𝑟𝑐𝑐)− 𝑉𝑉𝑖𝑖𝑗𝑗 (𝑟𝑟𝑐𝑐), 𝑟𝑟 < 𝑟𝑟𝑐𝑐 ,
0,                                                                    𝑟𝑟 > 𝑟𝑟𝑐𝑐 .

�      (4.2) 

Where  𝑉𝑉𝑖𝑖𝑗𝑗́ (𝑟𝑟𝑐𝑐) = �𝜕𝜕𝑉𝑉𝑖𝑖𝑗𝑗 (𝑟𝑟) 𝜕𝜕𝑟𝑟⁄ �
𝑟𝑟=𝑟𝑟𝑐𝑐

,  while  𝑉𝑉𝑖𝑖𝑗𝑗 (𝑟𝑟)  represents the unperturbed LJ 

potential, the same as Eq. (2.17), 

𝑉𝑉𝑖𝑖𝑗𝑗 (𝑟𝑟) = 4𝜀𝜀𝑖𝑖𝑗𝑗 ��
𝜎𝜎𝑖𝑖𝑗𝑗
𝑟𝑟 �

12
− �

𝜎𝜎𝑖𝑖𝑗𝑗
𝑟𝑟 �

6
� ,                              (4.3) 

where 𝜀𝜀𝑖𝑖𝑗𝑗  and 𝜎𝜎𝑖𝑖𝑗𝑗  represent the energy and length scales, respectively, of the 

interaction potential between the 𝑖𝑖𝑡𝑡ℎ  and the 𝑗𝑗𝑡𝑡ℎ  particle.  The corresponding potential 

minimum is  𝑉𝑉𝑖𝑖𝑗𝑗 = −𝜀𝜀𝑖𝑖𝑗𝑗  at 𝑟𝑟 = 21 6⁄ 𝜎𝜎𝑖𝑖𝑗𝑗 .  The parameter 𝜀𝜀𝑖𝑖𝑗𝑗  and 𝜎𝜎𝑖𝑖𝑗𝑗  may be 

different depending on the particle types and are assumed to be related to those of 

particles 𝑖𝑖 and 𝑗𝑗 as  𝜀𝜀𝑖𝑖𝑗𝑗 = �𝜀𝜀𝑖𝑖𝑖𝑖𝜎𝜎𝑗𝑗𝑗𝑗  and 𝜎𝜎𝑖𝑖𝑗𝑗 = 𝜎𝜎𝑖𝑖𝑖𝑖 + 𝜎𝜎𝑗𝑗𝑗𝑗 .  The last two terms on the 

right-hand side of Eq. (4.2) represent correction terms which make the potential and its 

first derivative continuous at the cut-off  𝑟𝑟 = 𝑟𝑟𝑐𝑐 .  It is to be noticed that Eq. (4.2) 

represents a potential with functional form different from that of the original LJ potential, 

the equilibrium distance and the potential minimum may differ appreciably if 𝑟𝑟𝑐𝑐  is 

chosen too small.  Thus, the potential parameters 𝜀𝜀𝑖𝑖𝑗𝑗  and 𝜎𝜎𝑖𝑖𝑗𝑗  are properly rescaled at 

the beginning of the run in order to preserve the original values of the potential minimum 

and equilibrium distance for the unperturbed LJ potential.  All the LJ parameters 𝜀𝜀,𝜎𝜎, 
and 𝑟𝑟𝑐𝑐  are now the basic input parameters, which can be fixed by the user and are by 

default assigned the rescaled values 𝜀𝜀 = 1,𝜎𝜎 = 1, and 𝑟𝑟𝑐𝑐 𝜎𝜎⁄ = 2.5, while the 

equilibrium lattice constant 𝑎𝑎 is computed by minimizing the interaction energy with the 
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neighbors.  This does not create big problems because it is expected that if 𝜎𝜎 is of the 

order of unity, also the lattice constant 𝑎𝑎 will be of the same order of magnitude. For 

time scale, in ALINE used time step, 𝑑𝑑𝑡𝑡 = 0.01. 

   In general, the material of the study was presumed to have FCC type 

structure.  The kind of atoms on ions that formed the basis of the structure was not 

specified.  While this could have large effect on the length and time scale of the 

transient, the pattern in which the transient proceeded which was of major interest 

should be less affected. 

For the simulations, the lattice constant was presumed to have the value 

of unity and the periodic condition was used for the boundary condition.  Four cases of 

simulations were attempted on single vacancy.  The volumes of these systems were 

initially containing (a) 2000 atoms, (b) 6750 atoms, (c) 16000 atoms and (d) 31250 

atoms.  In each case, only one atom at the center of the system was assumed to be 

missing when the simulation was initiated.  Then the multiple vacancies (2-, 3-, 4-, and 5- 

atoms) were observed in system of 2000 atoms.  With the periodic boundary, the 

different number of atoms contained in the system then in turn identified the defect 

density in the actual material. 

4.2 Box-Counting Model 

In obtaining the average atomic volume, the volume averagely occupied 

by one atom, it was necessary to count the number of atom contained in a given small 

volume, subsystem, and then to divide it by the volume.  It should be noted that if the 

subsystem was too small, the number of atoms contained could be varied very widely.  

On the other hand, if the subsystem was too large, then the significant of difference in 

number of atoms then might be lost.  It was therefore necessary to choose the 

subsystem that suited the system.  The idea of dividing the system in subsystems or 

blocks of linear dimension had been applied to a number of problems related to phase 

transitions since 1964 [18],[19],[20]. 
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Since ALINE produced the output which described the positions of atoms 

at the different time step, by specifying the subsystem as described in Fig. 4.1, it was 

then possible to count the number of atoms contained in each subsystem. 

 

 

 

 

 

 

 

 

 

Fig. 4.1  System of length 𝐿𝐿𝑥𝑥 , width 𝐿𝐿𝑦𝑦  and height 𝐿𝐿𝑧𝑧   was divided in to subsystems,   

each with the length, the width and the height of   𝐵𝐵𝑥𝑥  ,𝐵𝐵𝑦𝑦  and 𝐵𝐵𝑧𝑧  

  �𝐵𝐵𝑥𝑥 =  𝐿𝐿𝑥𝑥
𝑛𝑛𝑑𝑑

 ,𝐵𝐵𝑦𝑦 =  𝐿𝐿𝑦𝑦
𝑛𝑛𝑑𝑑

 ,  𝐵𝐵𝑧𝑧 =  𝐿𝐿𝑧𝑧
𝑛𝑛𝑑𝑑
� . 

 

4.3 Average Atomic Volume  

From the distribution of atoms in the system and box-counting model, the 

information regarding the number of subsystems containing the same number of atoms 

was obtained and the frequency distribution was created.  With 𝑖𝑖 being the specific 

case where the number of atom 𝑛𝑛𝑖𝑖  in the subsystem was counted and 𝑓𝑓𝑖𝑖  being the 

number of such subsystems, the average atomic volume 𝑉𝑉𝑚𝑚  was calculated as  

𝑳𝑳𝒛𝒛 

𝑩𝑩𝒚𝒚 

𝑳𝑳𝒙𝒙 

𝑳𝑳𝒚𝒚 

𝑩𝑩𝒛𝒛 

𝑩𝑩𝒙𝒙 

𝒏𝒏𝒅𝒅 = 𝟓𝟓 
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𝑉𝑉𝑚𝑚 =  
∑ 𝑓𝑓𝑖𝑖

𝐵𝐵𝑥𝑥𝐵𝐵𝑦𝑦𝐵𝐵𝑧𝑧
𝑛𝑛𝑖𝑖𝑖𝑖  

∑  𝑓𝑓𝑖𝑖𝑖𝑖
                                      (4.4) 

It should be noted that ∑ 𝑓𝑓𝑖𝑖𝑖𝑖  was the total number of subsystems and 

∑ 𝑓𝑓𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖   was the total number of atoms contained in the whole system. 

4.4 Variation of Average Atomic Volume with Number of Divisions 

From the results obtained from ALINE, transformed to ‘dat’ files, 

containing the value of x, y, and z coordinates, the box-counting model was used and 

the average atomic volume was calculated.  As it was necessary to identify the suitable 

size of subsystem which would have allowed for the calculation of the average atomic 

volume that was both stable ( was not widely varied by the number of subsystems ) but 

still sensitive to the change in number of atoms that were moving in and out of the 

subsystems.  To consider for the suitable size, the counting obtained with different 

number of subsystems ( 𝑛𝑛𝑑𝑑3 ,𝑛𝑛𝑑𝑑  was the number of divisions in each axis ) were 

obtained and the related average atomic volume were calculated as shown in Fig. 4.2-

4.5 

From Fig. 4.2-4.5, the very large value of 𝑛𝑛𝑑𝑑  in every case resulted in 

the very small average atomic volume.  This was because the actual volumes of the 

subsystems in these cases were so small such that they would either contain only one 

atom or not at all.  This condition highly distorts and under estimated the average atomic 

volume.  On the other hand, with the very low number of 𝑛𝑛𝑑𝑑 , the subsystems became 

large such that the change in number of atoms it contained could be insignificant.  It 

was of interest that a peak in the average atomic volume curved was observed in every 

case.  It was tempting to assumed that the value of 𝑛𝑛𝑑𝑑  associated with such peak gave 

the suitable of subsystems to be used.  However, it must be reminded that with the FCC 

type of crystalline structure, the cube shape volume of the system meant that the total 

initial atoms of (a) 2000, (b) 6750, (c) 16000 and (d) 31250 were respectively associated 

with the arrangement of 2 structure sets; (a) 10x10x10, (b) 15x15x15, (c) 20x20x20 and  
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(d) 25x25x25.  As a result, in each case, the value of  𝑛𝑛𝑑𝑑  that was a common 

denominator to such arrangement should be avoided.  This was because it gave the 

subsystems that coincided with the crystalline arrangements and, therefore, might lead 

to the bias results.  This assessment was confirmed as shown by graphs for the systems 

with no defects in Fig. 4.2-4.5 

For the systems with one single vacancy defect, the different values were 

chosen for 𝑛𝑛𝑑𝑑  in each case.  For system with the total atoms of 2000, 𝑛𝑛𝑑𝑑  was 3.  The 

system with the total atoms of 6750,  𝑛𝑛𝑑𝑑  was 7.  For the system with the total atoms of 

16000, , 𝑛𝑛𝑑𝑑  was 11, and the value of 15 was chosen for 𝑛𝑛𝑑𝑑  for the system with the total 

atoms of 31250    

 

Fig. 4.2   Variation of Average Atomic Volumes with Number of subsystems (𝑛𝑛𝑑𝑑); 

(a) system with initial 2000 atoms. 
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Fig. 4.3   Variation of Average Atomic Volumes with Number of subsystems (𝑛𝑛𝑑𝑑); 

 (b) system with initial 6750 atoms. 

 

Fig. 4.4   Variation of Average Atomic Volumes with Number of subsystems (𝑛𝑛𝑑𝑑); 

 (c) system with initial 16000 atoms. 
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Fig. 4.5   Variation of Average Atomic Volumes with Number of subsystems (𝑛𝑛𝑑𝑑); 

 (d) system with initial 31250 atoms. 

4.5 Transients of Single Vacancy Defects 

With the values for 𝑛𝑛𝑑𝑑  as previously described, their transients were 

simulated.  Due to the very large number of atoms involved in the simulation and those 

complex movements, the change in the average atomic volume was chosen to 

represent the transient.  The results as obtained were shown in Fig. 4.6. 

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120

Av
er

ag
e  

A
to

m
ic

  V
ol

um
e

nd

No Defect
Single Vacancy

( 1 time step after initiation )

(d)  31250 atoms



 

 

38 

 

Fig. 4.6  Change in Average Atomic Volume over Times due to single vacancy defect 

of system with initial 2000 atoms, 6750 atoms, 16000 atoms and 31250 atoms. 

It was clearly seen for the cases of 2000 and 6750 initial atoms that the 

average atomic volumes were suddenly increased.  This was due to the space left by 

the missing atom which allowed the neighbor atoms to expand.  The average atomic 

volume then was gradually decreased as the neighboring atoms were expanding to fill 

such space.  It was observed that the process was slower as the total initial atom was 

increased.  Considering that the expanding was likely caused by the repulsion between 

atoms, the longer transient period would suggest that there are the shielding effects that 

retard the expanding process.   

4.6 Transients of Multiple Vacancies Defects 

For the systems with multiple vacancy defects, the different numbers of 

vacancies were studied in system of 2000 atoms, which their vacancies atoms were 2-, 

3-, 4-, and 5- atoms.  The transients of these systems were observed by choosing 𝑛𝑛𝑑𝑑  = 
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3, and the change in the average atomic volume over time of single vacancy showed in 

Fig. 4.7 to compare with multiple vacancies those were shown in Fig. 4.8-4.11. 

 

Fig. 4.7  Change in Average Atomic Volume over Times due to single vacancy defect in 

system with initial 2000 atoms. 

It showed that the more vacancies there were, the faster average atomic 

volume was decreased.  The average atomic volume were also found to be varied such 

that the more vacancies tended to result in the larger final average atomic volume.  
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Fig. 4.8  Change in Average Atomic Volume over Times due to 2-vacancies defect in 

system with initial 2000 atoms.  

 
Fig. 4.9  Change in Average Atomic Volume over Times due to 3-vacancies defect in 

system with initial 2000 atoms.  
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Fig. 4.10  Change in Average Atomic Volume over Times due to 4-vacancies defect in 

system with initial 2000 atoms.  

 
Fig. 4.11  Change in average atomic volume over times due to 5-vacancies defect in 

system with initial 2000 atoms.  
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CHAPTER V 

CONCLUSION AND SUGGESTION 

5.1 Conclusion 

The dissertation has studied the phenomena of the point defect transient 

via two models, the spring-mass model and the ALINE program. 

At first, the spring-mass model was created to observe the point defect 

dynamics in simple cubic crystal by the Hamiltonian calculation in MD simulation 

method, and then use RK4 is implied as a numerical integrator.  This model showed the 

conservation of Hamiltonian and the vibration of displaced atom over the run time 2000. 

In addition, the dissertation has studied the phenomena of the point 

defect transient via running ALINE program. The study on the transient of the single 

vacancy defect in the crystalline medium of FCC type was conducted.  Due to the range 

number of atoms and their complex movements, the change in the average atomic 

volume over time was used to indicate the process of transient. 

While it was observed in general that the crystalline medium would 

expand and eventually fill in the space left by the defect, the actual time needed for the 

process and the actual size of the defect were not indicated and analysed.  Even though 

the similar pattern of transients was to be expected, the effect of defect size and the 

time needed for transient process were still very crucial.  The effect of the defect density 

and/or the size of the system to be simulated were also of concern and required further 

investigation. 

Even more important was how the type of atoms/ions that formed basis of 

the crystalline structure affects the transient process.  Further study in this regard was 

necessary.  In this case, the actual model for the interaction between atoms/ions must 

be clearly described and verified. 
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5.2 Suggestions 

1. The study should be conducted in other different phenomena of 

point defect, such as self-interstitials, or substitutional.  Moreover, there should be 

extending results to other crystal system. 

2. There should be various forms of potential energy function that can 

represent the atomic interaction in molecular dynamic model, both of two-body 

interaction and multi-body interaction. 
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Appendix A 

Program A1: Spring-Mass model; Force calculation by formula method. 

#include <stdlib.h> 

#include <stdio.h> 

#include <math.h> 

#include <time.h> 

/*                         CONSTANT FOR ALL SYSTEM                           */ 

#define L      1.0                 //equilibrium distance 

//for Harmonic Potential 

#define K      1.0                   //force constant 

#define MS     1.0                  //mass 

#define T      0.01                  //time step 

#define NDIM   30                 //mass storage in each axis 

#define NDIM3  27000          //NDIM3 = NDIM^3 (mass storage in x,y,z) 

#define NDIM33 81000         //NDIM33 = NDIM3*3 (spring storage in x,y,z) 

#define D      3                       //lattice size (for SC : A*A*A) 

#define RT     5000                //run time 

 

/*                INITIAL DATA :: SPRING, POSITION, VELOCITY                 */ 

double fx[NDIM3],    fy[NDIM3],     fz[NDIM3],  ax[NDIM3],    ay[NDIM3],     az[NDIM3], 

              vx[NDIM3],  vy[NDIM3],    vz[NDIM3],   x[NDIM3],     y[NDIM3],      z[NDIM3]; 

double x_0[NDIM3],   y_0[NDIM3],    z_0[NDIM3]; 

double dvx[4][NDIM3],dvy[4][NDIM3],dvz[4][NDIM3], 

         dx[4][NDIM3],dy[4][NDIM3],dz[4][NDIM3];  

/*                         function :: m2ijkl                                */   

/*                  Convert 1D index for spring to 3D index                  */ 

void m2ijkl(int mm, int ndd, int *mi, int *mj, int *mk, int *ml) 

{ 

 int ii,jj,kk,ll; 

 kk=mm/(ndd*ndd*3); 
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 jj=(mm-kk*ndd*ndd*3)/(3*ndd); 

 ii=(mm-kk*ndd*ndd*3-jj*ndd*3)/3; 

 ll=mm-kk*ndd*ndd*3-jj*ndd*3-ii*3; 

 *mi=ii; 

 *mj=jj; 

 *mk=kk; 

 *ml=ll; 

}  

/*                          function :: ijk2n                                  */   

/*                   Convert 3D index for lattice to 1D index                */ 

int ijk2n(int a, int b, int c, int ndd) 

{ 

 int N; 

 N=a+b*ndd+c*ndd*ndd; 

 return N;    

}    

/*                         function :: n2ijk                                 */   

/*                   Convert 1D index for lattice to 3D index                */ 

void n2ijk(int nn, int ndd, int *ni, int *nj, int *nk) 

{ 

  int iii,jjj,kkk; 

  kkk=nn/(ndd*ndd); 

  jjj=(nn-kkk*ndd*ndd)/ndd; 

  iii=nn-kkk*ndd*ndd-jjj*ndd; 

  *ni=iii; 

  *nj=jjj; 

  *nk=kkk; 

}    

/*                         function :: xleft                                         */   

/*   find 1D index for the lattice connected to the left side of the spring  */ 

double xleft(int nright,int nleft) 
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{ 

  if(nleft!=nright+(D-1)) 

     return  x[nleft]; 

  else 

     return -(D*L-x[nleft]); 

} 

/*                         function :: yleft                                 */ 

double yleft(int nright,int nleft) 

{ 

  if(nleft!=nright+(D*(D-1))) 

     return  y[nleft]; 

  else 

     return -(D*L-y[nleft]); 

} 

/*                         function :: zleft                                 */ 

double zleft(int nright,int nleft) 

{ 

  if(nleft!=nright+(D*D*(D-1))) 

     return  z[nleft]; 

  else 

     return -(D*L-z[nleft]); 

} 

/*                         function :: xright                                */ 

double xright(int nright) 

{ 

    return x[nright]; 

} 

/*                         function :: yright                                */ 

double yright(int nright) 

{ 

    return y[nright]; 
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} 

/*                         function :: zright                                */ 

double zright(int nright) 

{ 

    return z[nright]; 

} 

/*                           Harmonic Potential                              */ 

/*                           function :: coeff_xh                            */   

/*Calculate the magnitude of the force exerted by a spring  in the X direction */ 

double coeff_x(double xa, double xb, double ya, double yb, double za, double zb) 

{ 

 double Fnx; 

 Fnx=-K*(1-(L/(sqrt(pow((xa-xb),2)+pow((ya-yb),2)+pow((za-zb),2)))))*(xa-xb); 

 return Fnx; 

} 

/*                        function :: coeff_yh                               */ 

double coeff_y(double xa, double xb, double ya, double yb, double za, double zb) 

{ 

 double Fny; 

 Fny=-K*(1-(L/(sqrt(pow((xa-xb),2)+pow((ya-yb),2)+pow((za-zb),2)))))*(ya-yb); 

 return Fny; 

} 

/*                        function :: coeff_zh                               */ 

double coeff_z(double xa, double xb, double ya, double yb, double za, double zb) 

{ 

 double Fnz; 

 Fnz=-K*(1-(L/(sqrt(pow((xa-xb),2)+pow((ya-yb),2)+pow((za-zb),2)))))*(za-zb); 

 return Fnz; 

} 

/*                            function e_k                                   */     

/*              Calculate the kinetic energy of a lattice                    */ 
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double e_k(double vxx, double vyy, double vzz) { 

  return 0.5*MS*(vxx*vxx+vyy*vyy+vzz*vzz); 

} 

/*                            function e_p                                      */     

/*          Calculate the potential energy by Harmonic Potential             */ 

double e_p(double xa, double xb, double ya, double yb, double za, double zb) { 

  return  0.5*K*pow(sqrt(pow((xa-xb),2)+ 

                         pow((ya-yb),2)+ 

                         pow((za-zb),2))-L,2); 

} 

/*                       function :: hamiltonian                             */ 

double ham(int nd)  

{ 

 double Hm,Ek,Ep,xl, yl, zl, xr, yr, zr; 

 int    i, nd3;  

 int    mii, mjj, mkk, mll; 

 int    ii, jj, kk; 

 int    nl, nr; 

  nd3=nd*nd*nd; 

 Ek=0.0; 

 for(i=0; i<nd3; i++)  

   Ek=Ek+e_k(vx[i],vy[i],vz[i]); 

nd3=nd3*3; 

 Ep=0.0; 

 for(i=0; i<nd3; i++) { 

   m2ijkl(i,nd,&mii,&mjj,&mkk,&mll); 

   nr=ijk2n(mii,mjj,mkk,nd); 

   xr=xright(nr); 

   yr=yright(nr); 

   zr=zright(nr); 

   n2ijk(nr,nd,&ii,&jj,&kk); 
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   if(mll==0) { 

     ii=ii-1; 

     if(ii<0) ii=nd-1; 

   } else if(mll==1) { 

     jj=jj-1; 

     if(jj<0) jj=nd-1; 

   } else { 

     kk=kk-1; 

     if(kk<0) kk=nd-1; 

   }  

   nl=ijk2n(ii,jj,kk,nd); 

   xl=xleft(nr,nl); 

   yl=yleft(nr,nl); 

   zl=zleft(nr,nl); 

   Ep=Ep+e_p(xl,xr,yl,yr,zl,zr); 

 } 

 Hm=Ek+Ep; 

  return Hm; 

} 

/*                 function :: accelerated calculation                        */ 

void calc_a(double f_x[], double f_y[], double f_z[],  

            double *a_xx, double *a_yy, double *a_zz){ 

int m, n, nd, mii, mjj, mkk, mll, ii, jj, kk, n_r, n_l; 

double cx, cy, cz;  

nd=D; 

    for(m=0; m<nd*nd*nd*3; m++){ 

      m2ijkl(m,nd,&mii,&mjj,&mkk,&mll); 

      n_r=ijk2n(mii,mjj,mkk,nd); 

      n2ijk(n_r,nd,&ii,&jj,&kk); 

      switch(m%3) { 

        case 0 : 
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          if(ii == 0) ii=nd; 

          n_l=ijk2n(ii-1,jj,kk,nd); 

                                        // x-direction 

          cx=coeff_x(xright(n_r),xleft(n_r,n_l), 

                     yright(n_r),yright(n_l), 

                     zright(n_r),zright(n_l)); 

          f_x[n_r]=f_x[n_r]+cx; 

          f_x[n_l]=f_x[n_l]-cx; 

                                        // y-direction 

          cy=coeff_y(xright(n_r),xleft(n_r,n_l), 

                     yright(n_r),yright(n_l), 

                     zright(n_r),zright(n_l)); 

          f_y[n_r]=f_y[n_r]+cy; 

          f_y[n_l]=f_y[n_l]-cy; 

                                        // z-direction 

          cz=coeff_z(xright(n_r),xleft(n_r,n_l), 

                     yright(n_r),yright(n_l), 

                     zright(n_r),zright(n_l)); 

          f_z[n_r]=f_z[n_r]+cz; 

          f_z[n_l]=f_z[n_l]-cz; 

        break; 

        case 1 : 

          if(jj == 0) jj=nd; 

          n_l=ijk2n(ii,jj-1,kk,nd); 

                                        // x-direction 

          cx=coeff_x(xright(n_r),xright(n_l), 

                     yright(n_r),yleft(n_r,n_l), 

                     zright(n_r),zright(n_l)); 

          f_x[n_r]=f_x[n_r]+cx; 

          f_x[n_l]=f_x[n_l]-cx; 

                                        // y-direction 
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          cy=coeff_y(xright(n_r),xright(n_l), 

                     yright(n_r),yleft(n_r,n_l), 

                     zright(n_r),zright(n_l)); 

          f_y[n_r]=f_y[n_r]+cy; 

          f_y[n_l]=f_y[n_l]-cy; 

                                        // z-direction 

          cz=coeff_z(xright(n_r),xright(n_l), 

                     yright(n_r),yleft(n_r,n_l), 

                     zright(n_r),zright(n_l)); 

          f_z[n_r]=f_z[n_r]+cz; 

          f_z[n_l]=f_z[n_l]-cz; 

        break; 

        case 2 : 

          if(kk == 0) kk=nd; 

          n_l=ijk2n(ii,jj,kk-1,nd); 

                                        // x-direction 

          cx=coeff_x(xright(n_r),xright(n_l), 

                     yright(n_r),yright(n_l), 

                     zright(n_r),zleft(n_r,n_l)); 

          f_x[n_r]=f_x[n_r]+cx; 

          f_x[n_l]=f_x[n_l]-cx; 

                                        // y-direction 

          cy=coeff_y(xright(n_r),xright(n_l), 

                     yright(n_r),yright(n_l), 

                     zright(n_r),zleft(n_r,n_l)); 

          f_y[n_r]=f_y[n_r]+cy; 

          f_y[n_l]=f_y[n_l]-cy; 

                                        // z-direction 

          cz=coeff_z(xright(n_r),xright(n_l), 

                     yright(n_r),yright(n_l), 

                     zright(n_r),zleft(n_r,n_l)); 
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          f_z[n_r]=f_z[n_r]+cz; 

          f_z[n_l]=f_z[n_l]-cz; 

        break; 

      } 

    } 

    for(n=0; n<nd*nd*nd; n++){ 

      *(a_xx+n)=f_x[n]/MS; 

      *(a_yy+n)=f_y[n]/MS; 

      *(a_zz+n)=f_z[n]/MS; 

    } 

} 

/****************************************************************************/ 

/*                             MAIN PROGRAM                                        */ 

/****************************************************************************/ 

main(){ 

        

 int i, j, k, l, m, mii, mjj, mkk, mll, n, nd, n_left, n_right, nprint; 

 int ii, jj, kk, d_n, d_a, runtime; 

 float d_x, d_y, d_z, rd_n, rd_a; 

 float t,dt, h0, hn, rkf; 

 char filename[20]; 

double time;// check running time; in ms. (divide CLOCK_PER_SEC to get in sec.) 

runtime=RT; 

nd=D; 

 for(n=0; n<nd*nd*nd; n++) { 

   n2ijk(n,nd,&i,&j,&k); 

   x[n]=i*1.0; 

   y[n]=j*1.0; 

   z[n]=k*1.0; 

   vx[n]=0.0; 

   vy[n]=0.0; 
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   vz[n]=0.0; 

 } 

printf("Displaced atom no. : "); 

  scanf("%d",&d_a); 

printf("displaced = "); 

  scanf("%f",&rd_a); 

printf("filename : "); 

  scanf("%s",filename); 

 

FILE *spring; 

spring=fopen(filename,"w"); 

 

d_n=d_a; 

rd_n=rd_a; 

fprintf(spring,"Displaced [%d] from %f %f %f ",d_n,x[d_n],y[d_n],z[d_n]); 

 

 x[d_n]=x[d_n]+rd_n; 

 y[d_n]=y[d_n]+rd_n; 

 z[d_n]=z[d_n]+rd_n;    

 

d_x=x[d_n]; 

d_y=y[d_n]; 

d_z=z[d_n]; 

 

fprintf(spring,"to %f %f %f \n\n",x[d_n],y[d_n],z[d_n]); 

//   Harmonic Potential 

 fprintf(spring,":: Harmonic Potential ::\n\n"); 

 fprintf(spring,"time step = %f\n\n",T); 

       

 h0=ham(nd); 

 //printf("h0 = %f \n\n",h0); 
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 //system("pause"); 

 

fprintf(spring,"h0= %20.10f\n\n",h0); 

 dt=T; 

 t=0; 

fprintf(spring,"time h0-nm hn-nm x y z\n");  

nprint=0; 

 do{ 

    for(n=0; n<nd*nd*nd; n++){   //1st step of rk 

      fx[n]=0.0; 

      fy[n]=0.0; 

      fz[n]=0.0; 

      x_0[n]=x[n]; 

      y_0[n]=y[n]; 

      z_0[n]=z[n]; 

    } 

    calc_a(fx,fy,fz,ax,ay,az); 

     

    for(n=0; n<nd*nd*nd; n++){ 

      dvx[0][n]=ax[n]*dt; 

      dx[0][n]=vx[n]*dt; 

      dvy[0][n]=ay[n]*dt; 

      dy[0][n]=vy[n]*dt; 

      dvz[0][n]=az[n]*dt; 

      dz[0][n]=vz[n]*dt; 

    } 

    for(n=0; n<nd*nd*nd; n++){    //2nd step of rk 

      fx[n]=0.0; 

      fy[n]=0.0; 

      fz[n]=0.0; 

      x[n]=x_0[n]+dx[0][n]/2.0; 
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      y[n]=y_0[n]+dy[0][n]/2.0; 

      z[n]=z_0[n]+dz[0][n]/2.0; 

    } 

    calc_a(fx,fy,fz,ax,ay,az); 

    for(n=0; n<nd*nd*nd; n++){ 

      dvx[1][n]=ax[n]*dt; 

      dx[1][n]=(vx[n]+dvx[0][n]/2.0)*dt; 

      dvy[1][n]=ay[n]*dt; 

      dy[1][n]=(vy[n]+dvy[0][n]/2.0)*dt; 

      dvz[1][n]=az[n]*dt; 

      dz[1][n]=(vz[n]+dvz[0][n]/2.0)*dt; 

    } 

    for(n=0; n<nd*nd*nd; n++){    //3rd step of rk 

      fx[n]=0.0; 

      fy[n]=0.0; 

      fz[n]=0.0; 

      x[n]=x_0[n]+dx[1][n]/2.0; 

      y[n]=y_0[n]+dy[1][n]/2.0; 

      z[n]=z_0[n]+dz[1][n]/2.0; 

    } 

    calc_a(fx,fy,fz,ax,ay,az); 

    for(n=0; n<nd*nd*nd; n++){ 

      dvx[2][n]=ax[n]*dt; 

      dx[2][n]=(vx[n]+dvx[1][n]/2.0)*dt; 

      dvy[2][n]=ay[n]*dt; 

      dy[2][n]=(vy[n]+dvy[1][n]/2.0)*dt; 

      dvz[2][n]=az[n]*dt; 

      dz[2][n]=(vz[n]+dvz[1][n]/2.0)*dt; 

    }     

    for(n=0; n<nd*nd*nd; n++){    //4th step of rk 

      fx[n]=0.0; 
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      fy[n]=0.0; 

      fz[n]=0.0; 

      x[n]=x_0[n]+dx[2][n]; 

      y[n]=y_0[n]+dy[2][n]; 

      z[n]=z_0[n]+dz[2][n]; 

    } 

    calc_a(fx,fy,fz,ax,ay,az); 

    for(n=0; n<nd*nd*nd; n++){ 

      dvx[3][n]=ax[n]*dt; 

      dx[3][n]=(vx[n]+dvx[2][n])*dt; 

      dvy[3][n]=ay[n]*dt; 

      dy[3][n]=(vy[n]+dvy[2][n])*dt; 

      dvz[3][n]=az[n]*dt; 

      dz[3][n]=(vz[n]+dvz[2][n])*dt; 

    } 

// Update the velocities and the positions for the next time step 

    for(n=0; n<nd*nd*nd; n++){ 

      vx[n]=vx[n]+(dvx[0][n]+2.0*dvx[1][n]+2.0*dvx[2][n]+dvx[3][n])/6.0; 

      vy[n]=vy[n]+(dvy[0][n]+2.0*dvy[1][n]+2.0*dvy[2][n]+dvy[3][n])/6.0; 

      vz[n]=vz[n]+(dvz[0][n]+2.0*dvz[1][n]+2.0*dvz[2][n]+dvz[3][n])/6.0; 

 

      x[n]=x_0[n]+(dx[0][n]+2.0*dx[1][n]+2.0*dx[2][n]+dx[3][n])/6.0; 

      y[n]=y_0[n]+(dy[0][n]+2.0*dy[1][n]+2.0*dy[2][n]+dy[3][n])/6.0; 

      z[n]=z_0[n]+(dz[0][n]+2.0*dz[1][n]+2.0*dz[2][n]+dz[3][n])/6.0; 

    } 

    hn=ham(nd); 

    if(t==0){ 

     fprintf(spring,"%5.2f %15.10f %15.10f",t,h0,hn); 

     fprintf(spring,"%15.5f %15.5f %15.5f\n",x[d_n],y[d_n],z[d_n]); 

    } 

    nprint=nprint+1; 
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    if(nprint==100){ 

     fprintf(spring,"%5.2f %15.10f %15.10f",t,h0,hn); 

     fprintf(spring,"%15.5f %15.5f %15.5f\n",x[d_n],y[d_n],z[d_n]); 

    nprint=0; 

    } 

    t=t+dt;                          // change to next step;   

}while (t<runtime); 

    time=clock(); 

    fprintf(spring,"time usage :: %f ms.\n",time); 

 system("pause");        

} 

============================================================ 

Program A2: Spring-Mass model; Force calculation by numerical method. 

#include <stdlib.h> 

#include <stdio.h> 

#include <math.h> 

#include <time.h> 

/*                         CONSTANT FOR ALL SYSTEM                           */ 

#define L      1.0                         //equilibrium distance 

//for Harmonic Potential 

#define K      1.0                        //force constant 

#define MS     1.0                         //mass 

#define T      0.01                        //time step 

#define dr     0.00000001                  //differential step 

#define NDIM   30                          //mass storage in each axis 

#define NDIM3  27000                      //NDIM3 = NDIM^3 (mass storage in x,y,z) 

#define NDIM33 81000                      //NDIM33 = NDIM3*3 (spring storage in x,y,z) 

#define D      3                           //lattice size (for SC : A*A*A) 

#define RT     2000                        //run time 
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/*                INITIAL DATA :: SPRING, POSITION, VELOCITY                 */ 

double fx[NDIM3],    fy[NDIM3],     fz[NDIM3], ax[NDIM3],    ay[NDIM3],     az[NDIM3], 

              vx[NDIM3],    vy[NDIM3],     vz[NDIM3], x[NDIM3],     y[NDIM3],      z[NDIM3], 

              rx[NDIM3],    ry[NDIM3],     rz[NDIM3]; 

double x_0[NDIM3],   y_0[NDIM3],    z_0[NDIM3]; 

double dvx[4][NDIM3],dvy[4][NDIM3],dvz[4][NDIM3], 

            dx[4][NDIM3],dy[4][NDIM3],dz[4][NDIM3];  

/*                          function :: m2ijkl                                */   

/*                 Convert 1D index for spring to 3D index                   */ 

void m2ijkl(int mm, int ndd, int *mi, int *mj, int *mk, int *ml) 

{ 

 int ii,jj,kk,ll; 

 kk=mm/(ndd*ndd*3); 

 jj=(mm-kk*ndd*ndd*3)/(3*ndd); 

 ii=(mm-kk*ndd*ndd*3-jj*ndd*3)/3; 

 ll=mm-kk*ndd*ndd*3-jj*ndd*3-ii*3; 

 *mi=ii; 

 *mj=jj; 

 *mk=kk; 

 *ml=ll; 

}  

/*                          function :: ijk2n                                */   

/*                   Convert 3D index for lattice to 1D index                */ 

int ijk2n(int a, int b, int c, int ndd) 

{ 

 int N; 

 N=a+b*ndd+c*ndd*ndd; 

 return N;    

}    

/*                         function :: n2ijk                                 */   

/*                   Convert 1D index for lattice to 3D index                */ 
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void n2ijk(int nn, int ndd, int *ni, int *nj, int *nk) 

{ 

  int iii,jjj,kkk; 

  kkk=nn/(ndd*ndd); 

  jjj=(nn-kkk*ndd*ndd)/ndd; 

  iii=nn-kkk*ndd*ndd-jjj*ndd; 

  *ni=iii; 

  *nj=jjj; 

  *nk=kkk; 

}    

/*                         function :: xleft                                  */   

/*   find 1D index for the lattice connected to the left side of the spring   */ 

double xleft(int nright,int nleft) 

{ 

  if(nleft!=nright+(D-1)) 

     return  x[nleft]; 

  else 

     return -(D*L-x[nleft]); 

} 

/*                         function :: yleft                                 */ 

double yleft(int nright,int nleft) 

{ 

  if(nleft!=nright+(D*(D-1))) 

     return  y[nleft]; 

  else 

     return -(D*L-y[nleft]); 

} 

/*                         function :: zleft                                 */ 

double zleft(int nright,int nleft) 

{ 

  if(nleft!=nright+(D*D*(D-1))) 
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     return  z[nleft]; 

  else 

     return -(D*L-z[nleft]); 

} 

/*                         function :: xright                                */ 

double xright(int nright) 

{ 

    return x[nright]; 

} 

/*                         function :: yright                                */ 

double yright(int nright) 

{ 

    return y[nright]; 

} 

/*                         function :: zright                                */ 

double zright(int nright) 

{ 

    return z[nright]; 

} 

/*                              function e_k                                 */     

/*                   Calculate the kinetic energy of a lattice               */ 

double e_k(double vxx, double vyy, double vzz) { 

  return 0.5*MS*(vxx*vxx+vyy*vyy+vzz*vzz); 

} 

/*                             function e_pm                                 */     

/*                   Calculate the potential energy by Harmonic Potential    */ 

double e_p(double xa, double xb, double ya, double yb, double za, double zb) { 

  return  0.5*K*pow(sqrt(pow((xa-xb),2)+ 

                         pow((ya-yb),2)+ 

                         pow((za-zb),2))-L,2); 

} 
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/*                       function :: hamiltonian                             */ 

double ham(int nd)  

{ 

 double Hm,Ek,Ep,xl, yl, zl, xr, yr, zr; 

 int    i, nd3;  

 int    mii, mjj, mkk, mll; 

 int    ii, jj, kk; 

 int    nl, nr; 

  

 nd3=nd*nd*nd; 

 Ek=0.0; 

 for(i=0; i<nd3; i++)  

   Ek=Ek+e_k(vx[i],vy[i],vz[i]); 

    

 nd3=nd3*3; 

 Ep=0.0; 

 for(i=0; i<nd3; i++) { 

   m2ijkl(i,nd,&mii,&mjj,&mkk,&mll); 

   nr=ijk2n(mii,mjj,mkk,nd); 

   xr=xright(nr); 

   yr=yright(nr); 

   zr=zright(nr); 

   n2ijk(nr,nd,&ii,&jj,&kk); 

   if(mll==0) { 

     ii=ii-1; 

     if(ii<0) ii=nd-1; 

   } else if(mll==1) { 

     jj=jj-1; 

     if(jj<0) jj=nd-1; 

   } else { 

     kk=kk-1; 
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     if(kk<0) kk=nd-1; 

   }  

   nl=ijk2n(ii,jj,kk,nd); 

   xl=xleft(nr,nl); 

   yl=yleft(nr,nl); 

   zl=zleft(nr,nl); 

   Ep=Ep+e_p(xl,xr,yl,yr,zl,zr); 

 } 

Hm=Ek+Ep; 

return Hm; 

} 

 

void coeff(double fnx[], double fny[], double fnz[]) 

{ 

 double hh, hnewx, hnewy, hnewz; 

 int n; 

for(n=0;n<D*D*D;n++){ 

   rx[n]=x[n]; 

   ry[n]=y[n]; 

   rz[n]=z[n]; 

 } 

 hh=ham(D); 

 for(n=0;n<D*D*D;n++){ 

   x[n]=x[n]+dr; 

   hnewx=ham(D); 

   fnx[n]=-(hnewx-hh)/dr; 

   x[n]=rx[n]; 

   y[n]=y[n]+dr; 

   hnewy=ham(D); 

   fny[n]=-(hnewy-hh)/dr; 

   y[n]=ry[n]; 
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   z[n]=z[n]+dr; 

   hnewz=ham(D); 

   fnz[n]=-(hnewz-hh)/dr; 

   z[n]=rz[n]; 

 } 

} 

/*                       function :: accelerated calculation                        */ 

void calc_a(double f_x[], double f_y[], double f_z[],  

            double *a_xx, double *a_yy, double *a_zz){ 

int m, n, nd, mii, mjj, mkk, mll, ii, jj, kk, n_r, n_l; 

double cx, cy, cz, cf; // cf = force from function Coeff  

nd=D; 

    for(n=0; n<nd*nd*nd; n++){ 

      *(a_xx+n)=f_x[n]/MS; 

      *(a_yy+n)=f_y[n]/MS; 

      *(a_zz+n)=f_z[n]/MS; 

    } 

} 

/****************************************************************************/ 

/*                             MAIN PROGRAM                                 */ 

/****************************************************************************/ 

main(){ 

        

 int i, j, k, l, m, mii, mjj, mkk, mll, n, nd, n_left, n_right, nprint; 

 int ii, jj, kk, d_n, d_a, runtime; 

 float d_x, d_y, d_z, rd_n, rd_a; 

 float t,dt, h0, hn, rkf; 

 char filename[20]; 

  

 double time;  // check running time; in ms. (divide CLOCK_PER_SEC to get in sec.) 
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 runtime=RT; 

 

nd=D; 

 for(n=0; n<nd*nd*nd; n++) { 

   n2ijk(n,nd,&i,&j,&k); 

   x[n]=i*1.0; 

   y[n]=j*1.0; 

   z[n]=k*1.0; 

   vx[n]=0.0; 

   vy[n]=0.0; 

   vz[n]=0.0; 

 } 

printf("Displaced atom no. : "); 

   scanf("%d",&d_a); 

 printf("displaced = "); 

   scanf("%f",&rd_a); 

 printf("filename : "); 

   scanf("%s",filename); 

 

FILE *spring; 

spring=fopen(filename,"w"); 

 

d_n=d_a; 

rd_n=rd_a; 

fprintf(spring,"Displaced [%d] from %f %f %f ",d_n,x[d_n],y[d_n],z[d_n]); 

 

 x[d_n]=x[d_n]+rd_n; 

 y[d_n]=y[d_n]+rd_n; 

 z[d_n]=z[d_n]+rd_n;    

d_x=x[d_n]; 

d_y=y[d_n]; 
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d_z=z[d_n]; 

fprintf(spring,"to %f %f %f\n\n",x[d_n],y[d_n],z[d_n]); 

 

//   Harmonic Potential 

 fprintf(spring,":: Harmonic Potential ::\n\n"); 

 fprintf(spring,"time step = %f\n\n",T); 

h0=ham(nd); 

fprintf(spring,"h0= %20.10f\n\n",h0); 

 

 dt=T; 

 t=0; 

fprintf(spring,"time h0-nm hn-nm x y z\n"); 

nprint=0; 

do{ 

    for(n=0; n<nd*nd*nd; n++){   //1st step of rk 

      fx[n]=0.0; 

      fy[n]=0.0; 

      fz[n]=0.0; 

      x_0[n]=x[n]; 

      y_0[n]=y[n]; 

      z_0[n]=z[n]; 

    } 

    coeff(fx,fy,fz); 

    calc_a(fx,fy,fz,ax,ay,az); 

    for(n=0; n<nd*nd*nd; n++){ 

      dvx[0][n]=ax[n]*dt; 

      dx[0][n]=vx[n]*dt; 

      dvy[0][n]=ay[n]*dt; 

      dy[0][n]=vy[n]*dt; 

      dvz[0][n]=az[n]*dt; 

      dz[0][n]=vz[n]*dt; 
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    } 

    for(n=0; n<nd*nd*nd; n++){    //2nd step of rk 

      fx[n]=0.0; 

      fy[n]=0.0; 

      fz[n]=0.0; 

      x[n]=x_0[n]+dx[0][n]/2.0; 

      y[n]=y_0[n]+dy[0][n]/2.0; 

      z[n]=z_0[n]+dz[0][n]/2.0; 

    } 

    coeff(fx,fy,fz); 

    calc_a(fx,fy,fz,ax,ay,az); 

    for(n=0; n<nd*nd*nd; n++){ 

      dvx[1][n]=ax[n]*dt; 

      dx[1][n]=(vx[n]+dvx[0][n]/2.0)*dt; 

      dvy[1][n]=ay[n]*dt; 

      dy[1][n]=(vy[n]+dvy[0][n]/2.0)*dt; 

      dvz[1][n]=az[n]*dt; 

      dz[1][n]=(vz[n]+dvz[0][n]/2.0)*dt; 

    } 

    for(n=0; n<nd*nd*nd; n++){    //3rd step of rk 

      fx[n]=0.0; 

      fy[n]=0.0; 

      fz[n]=0.0; 

      x[n]=x_0[n]+dx[1][n]/2.0; 

      y[n]=y_0[n]+dy[1][n]/2.0; 

      z[n]=z_0[n]+dz[1][n]/2.0; 

    } 

    coeff(fx,fy,fz); 

    calc_a(fx,fy,fz,ax,ay,az); 

    for(n=0; n<nd*nd*nd; n++){ 

      dvx[2][n]=ax[n]*dt; 
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      dx[2][n]=(vx[n]+dvx[1][n]/2.0)*dt; 

      dvy[2][n]=ay[n]*dt; 

      dy[2][n]=(vy[n]+dvy[1][n]/2.0)*dt; 

      dvz[2][n]=az[n]*dt; 

      dz[2][n]=(vz[n]+dvz[1][n]/2.0)*dt; 

    }     

    for(n=0; n<nd*nd*nd; n++){    //4th step of rk 

      fx[n]=0.0; 

      fy[n]=0.0; 

      fz[n]=0.0; 

      x[n]=x_0[n]+dx[2][n]; 

      y[n]=y_0[n]+dy[2][n]; 

      z[n]=z_0[n]+dz[2][n]; 

    } 

    coeff(fx,fy,fz); 

    calc_a(fx,fy,fz,ax,ay,az); 

    for(n=0; n<nd*nd*nd; n++){ 

      dvx[3][n]=ax[n]*dt; 

      dx[3][n]=(vx[n]+dvx[2][n])*dt; 

      dvy[3][n]=ay[n]*dt; 

      dy[3][n]=(vy[n]+dvy[2][n])*dt; 

      dvz[3][n]=az[n]*dt; 

      dz[3][n]=(vz[n]+dvz[2][n])*dt; 

    } 

    // Update the velocities and the positions for the next time step 

    for(n=0; n<nd*nd*nd; n++){  

      vx[n]=vx[n]+(dvx[0][n]+2.0*dvx[1][n]+2.0*dvx[2][n]+dvx[3][n])/6.0; 

      vy[n]=vy[n]+(dvy[0][n]+2.0*dvy[1][n]+2.0*dvy[2][n]+dvy[3][n])/6.0; 

      vz[n]=vz[n]+(dvz[0][n]+2.0*dvz[1][n]+2.0*dvz[2][n]+dvz[3][n])/6.0; 

 

      x[n]=x_0[n]+(dx[0][n]+2.0*dx[1][n]+2.0*dx[2][n]+dx[3][n])/6.0; 
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      y[n]=y_0[n]+(dy[0][n]+2.0*dy[1][n]+2.0*dy[2][n]+dy[3][n])/6.0; 

      z[n]=z_0[n]+(dz[0][n]+2.0*dz[1][n]+2.0*dz[2][n]+dz[3][n])/6.0; 

    } 

    hn=ham(nd); 

    if(t==0){ 

     fprintf(spring,"%5.2f %10.10f %10.10f ",t,h0,hn); 

     fprintf(spring,"%10.5f %10.5f %10.5f\n",x[d_n],y[d_n],z[d_n]); 

    } 

    nprint=nprint+1; 

    if(nprint==1000){ 

     fprintf(spring,"%5.2f %10.10f %10.10f ",t,h0,hn); 

     fprintf(spring,"%10.5f %10.5f %10.5f\n",x[d_n],y[d_n],z[d_n]); 

    nprint=0; 

    } 

    t=t+dt;                          // change to next step;   

}while (t<runtime); 

    time=clock(); 

    fprintf(spring,"time usage :: %f ms.\n",time); 

system("pause");        

} 

 

============================================================ 

 

Program A3: Box-Counting model. 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 
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#define MXI 500 

#define MXJ 500 

#define MXK 500 

#define MXC 10000 

#define MXD 71 

int box[MXI][MXJ][MXK], count[MXC]; 

main() { 

  char  filename[100],filenamer[100],filenameo[100]; 

  int   maxdata, n, ndiv, i, j, k; 

  double xmx, ymx, zmx, xmn, ymn, zmn; 

  double x, y, z, dx, dy, dz; 

  double vspec_avg, total_count, sumsd, sd; 

  FILE  *ifile; 

  FILE  *rfile; 

  FILE  *ofile; 

  maxdata=0; 

  xmx=0.0; 

  xmn=0.0; 

  ymx=0.0; 

  ymn=0.0; 

  zmx=0.0; 

  zmn=0.0; 

  printf("Input File : "); 

  scanf("%s",filename); 

  printf("run no. of divisions in file : "); 

  scanf("%s",filenamer); 

  printf("Vspect and S.D. in file : "); 

  scanf("%s",filenameo); 

  ifile=fopen(filename,"r"); 

  rfile=fopen(filenamer,"a+"); 
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  ofile=fopen(filenameo,"a+"); 

    do { 

    fscanf(ifile,"%d%lf%lf%lf%\n",&n,&x,&y,&z); 

    maxdata=maxdata+1; 

    if(x>xmx) xmx=x; 

    if(x<xmn) xmn=x; 

    if(y>ymx) ymx=y; 

    if(y<ymn) ymn=y; 

    if(z>zmx) zmx=z; 

    if(z<zmn) zmn=z; 

  } while(!feof(ifile)); 

  fclose(ifile); 

for(ndiv=1;ndiv<MXD;ndiv++){ 

  fprintf(rfile,"no. of divisions = %d\n",ndiv); 

  dx=(xmx-xmn)/ndiv; 

  dy=(ymx-ymn)/ndiv; 

  dz=(zmx-zmn)/ndiv; 

  xmx=xmx+0.001*dx; 

  xmn=xmn-0.001*dx; 

  ymx=ymx+0.001*dy; 

  ymn=ymn-0.001*dy; 

  zmx=zmx+0.001*dz; 

  zmn=zmn-0.001*dz; 

  fprintf(rfile,"maxdata  xmx  xmn  ymx  ymn  zmx  zmn  Volume\n"); 

  fprintf(rfile,"%10d %10.4lf %10.4lf %10.4lf %10.4lf %10.4lf %10.4lf 

%10.4lf\n", 

         maxdata,xmx,xmn,ymx,ymn,zmx,zmn, 

         (xmx-xmn)*(ymx-ymn)*(zmx-zmn)); 

  dx=(xmx-xmn)/ndiv; 

  dy=(ymx-ymn)/ndiv; 
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  dz=(zmx-zmn)/ndiv; 

  fprintf(rfile,"dx  dy  dz\n"); 

  fprintf(rfile,"%10.4lf %10.4lf %10.4lf  

%10.4lf\n",dx,dy,dz,dx*dy*dz*ndiv*ndiv*ndiv); 

 

  for(i=0; i<ndiv; i++) 

   for(j=0; j<ndiv; j++) 

    for(k=0; k<ndiv; k++) 

     box[i][j][k]=0; 

 

  ifile=fopen(filename,"r"); 

  do { 

    fscanf(ifile,"%d%lf%lf%lf%\n",&n,&x,&y,&z); 

    i=floor((x-xmn)/dx); 

    j=floor((y-ymn)/dy); 

    k=floor((z-zmn)/dz); 

    box[i][j][k]=box[i][j][k]+1; 

  } while(!feof(ifile)); 

  fclose(ifile); 

  for(i=0; i<MXC; i++) 

   count[i]=0; 

  for(i=0; i<ndiv; i++) 

   for(j=0; j<ndiv; j++) 

    for(k=0; k<ndiv; k++) 

     count[box[i][j][k]]=count[box[i][j][k]]+1; 

  vspec_avg=0.0; 

  total_count=0.0; 

    for(i=0; i<MXC; i++) 

   if((count[i]>0) && (i>0)) { 

    fprintf(rfile,"%5d  %10d  %10.4lf\n",i,count[i],dx*dy*dz/i); 
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    total_count=total_count+count[i]; 

    vspec_avg=vspec_avg+dx*dy*dz/i*count[i]; 

   } 

  vspec_avg=vspec_avg/total_count; 

  fprintf(rfile,"%10lf %10.4lf",total_count,vspec_avg); 

   sumsd=0.0; 

  for(i=0; i<MXC; i++) 

  if((count[i]>0) && (i>0)) {   

    sumsd=sumsd+(count[i]*pow(dx*dy*dz/i-vspec_avg,2)); 

  } 

  sd=pow(sumsd/total_count,0.5); 

  fprintf(rfile," %10.4lf\n\n",sd); 

  fprintf(ofile,"%d %10.4lf %10.4lf\n",ndiv,vspec_avg,sd); 

} 

fclose(rfile); 

fclose(ofile); 

} 
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Appendix B 

Procedure to run ALINE program 

1. Download program from http://cpc.cs.qub.ac.uk/ 

2. Expand the package by the commands: 

 gunzip aline.tar.gz 

 tar –xvf aline.tar 

3. Compile the program by the commands: 

 xmkmf 

 Make Makefiles 

 make 

4. Run program with command line: 

 ./aline 

5. Program could be started with the main GUI (Graphical User 

Interface) as shown in Fig. B1. 

6. At pull down menu, click ‘Program’ and select ‘Make a new 

configuration’, the window as shown in Fig. B2. 

7. Input data for system of interest: 

- CRYSTAL TYPE;  

- SIZE; 

- BOUNDARY CONDITIONS; 

- (Border Width)/(Lattice Constant) Ratio; 

- T(t=0); 

Then click ‘APPLY’ and ‘CONFIRM’. 

8. Create the defect by pull down menu ‘Specimen’ and select 

‘CRACK’ as shown in Fig. B3, to input data of 

- CRACK CENTER; 

- CRACK SIZE; 

- CRACK ANGLE; 

Then click ‘ON/OFF’ and ‘CONFIRM’. 

http://cpc.cs.qub.ac.uk/�


77 

 

 

Fig. B1  The main GUI window of ALINE. 

 

 

Fig. B2  Initial condition builder window appearing at the starting of the program. 
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Fig. B3  Window to create defects. 

 

Fig. B4 Window to set the time for 

recoding the output files. 
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9. Setting time to record the coordinate of each atom at the pull down menu 

‘Output’ and select ‘ANIMATION’ as shown in Fig. B4.  

10. At the main GUI, click ‘RUN’. 

11. For more information, please see reference no. [10]. 
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