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CHAPTER |

INTRODUCTION

1.1 Background and Problems of Interest

The pattern of ions of atOMSwithi
S ——
of atoms attachW

controlled by the v ¥ h fm, the crystal. The strength,

the lattice. Atom or group

The lattice and basis

gbns Glorc® f
correct position. T .' / e fies | con ;;-?’ ich igt. Every crystal contains
lattice defects, 4 imp@ieg ons, which-10 of ihided structure of the crystal.
The general types gifdef, 0 nt-defecis, line de or dislocations and surface
defects. Defects in . ; al-strui e a endous effect on a materials
behavior, we can modify Ji ove e e physical, electrical, magnetic, and

optical properties of ag imperfections in their lattice

structure. @1 Nd € g€ oncerned with how
- e =

\ rJand how they affect

macroscopic pffﬁwerties.

Bot‘ eriments and S|mula are widely developed. Various

uﬂ’;\:mmwmm;:::

often ome very close to experlme‘!al conditions, to t extent that computer

qRIANT TUUMIINGIAY

experiments at the microscopic level, but also to study regions which are not accessible
experimentally, or which would imply very expensive experiments, such as under

extremely high pressure.



The scale of simulation in computational crystal materials is vast,
hierarchical models begin from nano-scale (characteristic length ~ 10° - 10" m.), micro-
scale (characteristic length ~ 10° - 10° m.), meso-scale (characteristic length ~ 107 -

10" m.), and macro-scale (characteristic length = 10° m. ). Most of simulation must be

connected with appropriate sc\\iv /

The moti dlsse ] to understand the dynamics of

limitation in them.

lattice defects, spmsie@f thism-fst objective aims to create
— 1 -

a computer pro otential energy function.
The reason for g Hotertial A (o "Wegbehavior of lattice defects
that atoms interac jith , £ hes ) Inate forces which action of
these instant ! ihe atoms \ ir\gglative positions change and
forces change a v/ s @ e ned » Jignt of a potential energy
function, dependingffon’ osttions’ of tho e i | second objective aims to

analyse the pa | ects* ane iGt the sible final states of the

over time. H| ; I'

dlct the possible flnal‘ues of the transients and/or the time in

wﬂumwamw g1n73

q MAsNTBimY ANy

2. Various initial conditions for single and multiple defects will be

attempted.



3. The obtained results are to be compared with the available data

obtained from the experiments and/or from the theoretical prediction.

1.4 Expected Benefit

rther study and the analysis on

ts can be conducted.

lar dynamics. These

‘ o-body potentials with

o Ssince 1957). After that, the

e determined numerically by

reproducing as close J !.’ cespPred -‘i‘\!‘v. st-principle methods (since

1985). Also explam about. ___;__,..,,..%.; Cul'ynamics when deal with the
Al

4'#..1: 'j-'

system at the atomistic‘ levelfeverybody kn evel obey quantum laws rather than

classical laws. A simple_te Jf':}' ne

the de Bro{'eyw bt
{

assical approximation is based on

(1.1)

where M is the a ss and T is the temuture The classical approximation is

ﬂw ﬂ 5 w Bara non Con3|ders
fori nce liquids at the tr|p|e point, A/ a@’is of the order of 0.1 for light elements such

as Li and Ar, decreasing further fo‘heawer elements classical approxm

RN MINEaY

crystals below the Debye temperature, or the anomalous behavior of the thermal



expansion coefficient, are well known examples of measurable quantum effects in
solids. Molecular dynamics results should be interpreted with caution in these regions.
These notes also emphasized that the realism of the simulation depends

on the ability of the potential chosen to reproduce the behavior of the material under the

\W’/

conditions at which the simulati

d| and K. Kaski introduced an

imdo
other visualization aigf tool§. '&9{9 ns.on | t Window System platform.
| Ju F ! % -

The graphical the gs ESiSEa Y . \ !”-:i ograin has been devised for
‘alh v . \

illustrative purposes #t di I% 17 ” ents «i\ nteractive simulation and may

be regarded as giving afif illustzet .-....a.u".‘.‘;‘ ; pt of Int@ractivity.

3. In 2002 4] T —Shitke LA, Curtin and R.E. Miller introduced a
method for reducing i ~freed i@Rs of mechanical behavior of
materials Wi ...::: hysi =es6CAtially combines the
quasicontin®y

dislocation Dd‘}Jvethod A procedurefo

atomistic to the Co?muum description in 2d problems is also presented. The overall 2d

comum NENINGINT.

rles and a nanoindentation roblem in alumlnum and excellent agreement is

TN um NEINY

interatomic forces in materials based on the ideas of density functional theory and the

flelgNsdich as the discrete

.
passing’ of d@ration defects from the

variational principle, without details of the mathematics involved. Also explain that ionic



materials and simple metals, arguments based on electrostatics and linear response
have a firm foundation in quantum mechanics, and are key elements for making

simplified models. In other materials, he showed that it is possible to simplify the many-

5. In 200

body theory to such an extent that useful analytic models emerge.
! reviewed the essential tools used

/!

by nanoscale researc simu ®Cs include the broad areas of
quantum mechani ’; 1 le approaches, based on
coupling the atomﬁf’J ly demonstrated that the

atomistic simulati of the interesting and

fundamental

prob bl , hel ';.,_;c and that these

deficiencies | eV also summarized the

strengths and i A&y techniques, where the
. . L\ \ .
emphasis is made , e?pe Spective oA 0 e such as the bridging scale
& bodnda con i multiede alet Ui igs

j ‘- dade .,.

il O hil o.“;. ';‘:_ d Athat '\o ale materials will be used in

method, multi-s¢

In de

-(

conjunction with other C n-......ahf.'.:&.. er, andihave different response times,
thus operating at dlffrent ‘*.-..i..u Egl ytt Single scale methods such as ‘ab
initio’ quantum mechanicalsp _ < | amics (MD) will have difficulty in

analyzing @ ] \ £ he time and length

scales that‘

interatomic potﬁh[ia ﬁwulatlons have become
| 1
prominent as | for elucidating complex physical phenome v

The‘ 's outline is given e following. Section 2 reviews the

AUHINERINEIN 3

informs the reader on the relevantﬂantum mechanic proaches and expl

IR TULRIINAIRY

developing the coupled multi-scale methods. Section 5 reviews available multi-scale

approaches: hierarchical and concurrent coupling of the atomistic and continuum



simulations (with the emphasis on the bridging scale method), multi-scale boundary
conditions and multiple-scale fluidics. Section 6 concludes the paper by discussing
future research needs in multiple-scale analysis.

This paper also introduced for such systems, the computer-aided

designers just ; yava 3 i ales in general purpose

software.

g the study of potential
energy function ingt '_ Jpap ,_ : nection among classical
interatomic pote i8 C W\ clationship among the

classical functions @f Lg na%

?_ g \ 3 %nd Buckingham potential,
4 -‘ l;r
followed by relationshipps bet den’ the sical Tpair potentials of Morse and

Buckingham with the 2- o"' pirical potentials, such as Biswas-

Hammann and Bauer-May ;f_,,?' er-See results showed imposing equal

potential e@v, : _ije” as the usage of
calculus anl \ J
I L

'
. proposed @study of crystal defects

and the complex ;)‘chsses underlying their format|on and time evolution has motivated

AU INININYINT

Inte e and runs on UNIX-X11 W| ow System platform with the MOTIF library, which

RTBIATN W ATienaY

and user-friendly framework for numerical experiments, in which the main parameters

can be interactively varied and the system visualized in various way. They illustrated the

main features of the program through some examples of detection and dynamical



7

tracking of point-defects, linear defects, and planar defects, such as stacking faults in
lattice-mismatched heterostructures.

ﬂuﬂ?ﬂ8ﬂ§W81ﬂi
RIANTUUMINGINY



CHAPTER 1l

THEORETICAL BACKGROUND

2.1 Defects of Crystal Structure[11]

Every crysta lagti fgcts, or imperfections, which locally
disrupt the ideal struc , }ﬁ in several types and are often

classified accordin jons which is required to

geometrically des /Sieal properties of the crystal

ific lattice sites (ignoring

thermal moti amely vacancies and

interstitials. A v lElan interstitial is an atom

located at a non-lafi 3 Forv edeh o ! atlire there is an equilibrium

concentration of vacanci€s in aen ,;‘s,g:,‘. )/ CO -,\\ etals the fraction of vacant

J'I'“J‘:' ¥

lattice sites just belowPthe Wgeliin of thé order of 10 to 10°. The

equilibrium concentration of inteFst elting temperature is expected to be

of the ordexf m l smaller th guilibp concentration of

Vacancies_ - !-‘:im-III-\_'."-"----—l-——llwa.- He=<Considered as po|n’[
defects. The r , ||n~él different from the host
atoms occupyingfa lattice site) and Interstitial (an atom of a @ different from the host

atoms occ

Fig. 2.1 (a) Vacancies and Self-interstitials, (b) and (c) Substitutional [11]



Point defects influence many physical properties of metals. For example,
atoms surrounding a vacant lattice site are more loosely bound than those in a perfect
lattice. The forces between the atoms thus are weakened (i.e. the vibrational

frequencies are lowered) giving an increased vibrational entropy because the lattice is

first predicted by Frenkel in
oy

1926. At hig , "=.' , . may cause an atom to

9

leave its equilibgi i€c sitefagd oectipy a gl POsitien in the lattice. In this
mechanism a vac an@ am intefsi :_- e Cr 3d S| t@heously, and are referred to

",

as a Frenkel ct. U 1930, \ -and| ,_,‘.\‘- &g a way for the creation
of vacancies: an 2fom TV & attices oecly i h, available position at the
surface of the cryst or/ rf"r‘ IQRs ‘*.\ . rystal such as dislocations,
grain boundaries, | |n sions, 'i!,; ; his \'\w'l dominates in metals with
close-packed structure h e .r_,‘r;c— gy ofl vacancies generally is much
lower than the formation i---ﬂ,—"----j EXxperimental measurements of vacancy
Concentratien,s often, e o 8.0n thermophysical properties,
e.g. therm& “pansion and electric resist : _)parate the effect of

vacancies 0
e
vacancy conc¢|r]1 ation

metry measures the

'
ents the ‘jﬂfar thermal expansion

coefficient and the change in the lattice parameter with temperature are measured

AU YANTNIWYINT

dete ned using elastic constants measurements

wwmnmummmaﬂ
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; s 2 \ -F}..'..'n!k} pan;‘-lC:TiﬂEﬁ
@t .- @ FPL DL
o o . o e

el e e el 0
@ 9 9

D00 2 (T} = re

;
'

non-atomic si _' f Proks A'S A ( eparate along this line
if pulled in tensi el 4t intre > Vo) displacing the two faces of
such a cut refative _ ' @ :

| o . \ L ) .
an dg' o-"'fg‘n':f__ 1N &, realiicrystal, dislocations may

"

et At Jpic plane would be placed

erew dislos al it

‘ = _ W

AUt
AR

Fig. 2.3 (a) Screw dislocations, (b) Edge dislocations [11]

i,
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Dislocations have high formation energy and are not thermally generated at
normal temperatures. However, dislocations are introduced through mechanical
deformation even at intermediate temperature. The dislocation density is defined as the

total length of dislocations per volume. a carefully treated metallic crystal this value

between mea itig# : trésses o s, cNghtheoretical estimations.

Athof glho20s. In 1934 Orowan,

Polanyi, and Taylog o the foundations of the

modern dislogatfon tiieonyf offf slip, AltAC ;QNCeml OMgislocations had been
i v‘. i y 1 L Il.l .l--"- .
introduced some y@ars garligr. f br revieW affbe'dislocation theory of crystals
" L N.‘ .
o\\ 0 (1

was written by eitz 949). At the end of the

1960s, much of #§ [ j : L, e Iocat| w.\ ael been completed. The
geometrical and elastig ro er 1_;.* r,z’ e gory of plastic deformation, and
the role of dislocation theory T—explaming: tal growth, were developed. There are

many techniques fo rystals, e.g. X-ray diffraction,

transmissigh __________ e . 9
L\

213 Planar B

Perfect‘pttlces can be described as a stacking of identical atom layers

FUES AINGVINGIAT

C|OS acked planes (the (111) planes can be placed on top of each other. The

OREE I WGUIHG()

and ‘intrinsic’ stacking fault. (Fig. 2.4)
Stacking faults play an important role in materials science because of their

interaction with dislocation. They can be visualized by electron diffraction. Dislocations
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often split into partial dislocations (in face-centered cubic metals), which are connected
by a stacking fault. The stacking fault energy, Y is the energy required to introduce a
stacking fault in a crystal. It is directly related to, e.g. the dissociation of a dislocation

into two partials. Calculations of the stacking fault energy have been carried out using

classical simulations and ap: ing isotropic elasticity theory, the

' 4 U
splitting distance, ds D ‘ ﬁ jtions can be calculated, from
which dgpip & é \& dgplit may be used in

experimental determi

ﬂummmmmm
*ammﬂﬁmmmmw

When two atoms are separated from each other by a few atomic
diameters, they can exert attractive forces on each other. But if the atoms are so close to

each other that their electron shells overlap, the forces between the atoms are repulsive.
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Between these limits, there can be an equilibrium separation distance at which two
atoms form a molecule. If these atoms are displaced slightly from equilibrium, they will

oscillate.

As an example, ¢ gj type of interaction between atoms called

the van der Waals interacti : ' atom be at the origin, and let the
center of the other ato sa %rium distance between centers
isT = Ry. Expeig 2 @Ction can be described by

the potential en

(2.1)
where Uy is a ( oms are very far apart
U=0;ifth y are 9p: gtodlog ¢‘.¢ 0, U= —Up. The
force on the sec isfihe neg "gf

i N N ol "
‘. W }
= - L

(2.2)

is a restoring foﬁj

To ?ud small-amplitude oscnlanons around the equilibrium separation

AUy ’WTEWI“?W g3

wmm YRTINYAY

_ U 1 ]
= LR T x/R)E ~ Tt x/Ry)) 23
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This looks nothing like Hooke’s law, F = —kx, so we might be tempted
to conclude that molecular oscillations cannot be simple harmonic motion. But let us

restrict ourselves to small-amplitude oscillations so that the absolute value of the

x/Rg will be much less than

displacement X will be small in CO¥ ison to R and the absolute value of the ratio

\ /f//pfy Eq. (2.3) by using the binomial

theorem:

A+w" =

3)—
Ry’
19 X/ 0)7 .":&‘1 i. \ Ry ,

rf .-r-r-ui?

(2.5)
= k- J
![-Bs is just Hooke's gereonstant k :ﬂ{Z_UZO, (Note that kK has
the correct unlrts ; or N/m.) So OSC|IIatlons of molecules bounded by the van der

mﬂnummm pd ) RN

alld

M AR

C, where

. a i}ﬂ 11’] |tE|
= o and K is again equal to Adding a

constant to the potential energy has no effect on the physics, so the system of two
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atoms is fundamentally no different from a mass attached to a horizontal spring for

1
which U = Ekxz.

2.3 Molecular Dynamic Simulation [13] [14]

cular Dynamics Simulation

& sis to simulate the transient of

lattice defects. In-eiclemiosdo-se reqdes an-understanaing on the dynamics of lattice

mics can be explained

defects; the positi

through the Hanr Epresent the energy of the

physical system, i U i Top' ni: lwenergy.  An alternative

description, the ter heralized ¢oof @ aRBlL.momentum, is also utilized

where

We can rewrite VIS differential as

ﬂummm‘iwmm .
am AT INIINYaY

dq;

The right-hand side of Eq. (2.7) can be rearranged as
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(2.10)
where the function

(2.11)
is referred to as the he Hamiltonian function is
an integral of motio ed to be the total energy of
the system i oralized, cadidipates “dn MBlhcnia. Thus, we have
obtained

(2.12)
and therefore,

(2.13)

A @Ie p and q.

These are@
g=atoms in a Cartesian

Fm EJ’Q ‘ﬂﬂWﬂ‘lﬂ’i

ammmmm iama )

coordinate sys , the Hamiltonia
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If the Hamiltonian function and an initial state of the atoms in the system
are known, one can compute the instantaneous positions and momentums of the atoms

at all successive times that gives the dynamic evolution of the system.

erms turns out to be difficult. The

Pated object, when accurately

various systene" : # w &0 ths, n is presented by the
following:
(2.16)
where T, is the radiugfectd] ,{{-vﬂﬁf : i fuMgtion 1, is called the m-body
otential. The first term reppeseRE-—the;eF e to an external force field, such as
’ ZTRIATD,
grawtatlonal«:ild Q fielc @ is iprnersed. The second
term show wise interactions ol e particlesThe thirdte _ ives the three-body
A
components. = 1r:
=

9 ored, while all the multi-
body effects aﬁcorporated into V" Tn"order to reduce thei putational expense of

the simulations.

AURINENTNEIAT

mol Iar dynamics simulation. Among them are these two popular models to describe

pair-wise atomic interactions:

" AATRINNNAINYNA Y

V() = V() = 4e [( ) +(g) ]

r
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r=|r| =|n -5l (2.17)

where 13; is the interatomic radius—vector O is the collision diameter, the distance at

which V(T) = 0, and € sho n@/djslocation energy. The first term of this
potential represents ato ,

two atoms.

' ], (2.18)

where p and inffugt Ponddeng 'l"=,1."'. dtion GMekgy respectively; B is
an inverse lengt ing' f: ‘ . first i,. i his repulsive whereas the
second termis attrg€tiv ' I d is.| erpretec tation of bonding. Morse

potential has be | 0 delir i IBn Marious types of materials

ommonly used in molecular

dynamics simulations, in che

LRI T
interaction: (e i,

engineering. They describe multi-body

— Ulne |
- Flp/pre

n
(o]
N
o
Ry
Q
=
=
w
D
©
QO 4
—
)
>
=
o
w
QO
>
o
— |
>
D
=
—
OR
-
Q
=4
o
3
O
—
o
-
Q
D
w
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Tersoff potential [6],[15] for a class of covalent system reads as

= f.(r;)(Ae™M"i — Be %), (2.19)

where f. is the cutoff function. If the local bond-order is ignored, so that B = 24 =

const.,, and 1y = 24,, then pe yfegto the Morse model.

yétomic interactions, but also the

multi-body interactigpe=Bg ' oﬁirical Bond Order (REBO)

potential [6],[16% , | r f geaunt for different types of

chemical bonds tigiee ' iafobd Elel[t s of the carbon, as well in

dipotential:

L Metallic system

% ().

(2.20)

ﬂuﬂ'mamwmnﬁ
QW’]Mﬂ‘itMﬂJW\’Jﬂﬂ’mﬂ



CHAPTER 1lI

SPRING-MASS MODEL

3.1 Description of the Model

Using the c : ‘ 'fa ‘the general structure of potential
energy function, and t ) J )ﬁ ecules in CHAPTER I, we are
ready to investigate% moqs rep@stem of atomic interaction

Ol | -

namely the modw -

-
-

ot
(]
rom Eq. (2.14), written as the sum of kinetic energy and potential

¢

AUEINYNINGINT .
AN A ngnay

o 1
V= zzK(Ali)Z, (3.2)
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where

—

3.4)

J is the numbertd

b
= .177_%.7

is the velocity of atom ]

ﬂﬂﬂ'mmliﬂmﬂi

i isthe d|sp|acement length of spring 1

I I a From Eq. ( ;1 mcrce on atom nin ;;L anj Z axis can be wrltten

as
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QRGBS INRINEIAY

That is,
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m

Z{ (I ~75] - 1) =) 5 g (a—x/s)}- (3.10)

|7‘ —7‘/3| Xn

1=

In a similar manner, E .8) and Eq. (3.9) can be written as

aaaaaaaaa

Ay e} mmwmm“ -
ammnmﬁ‘imwmé’

9= 77 dt’ (3.15)
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Then the RK4 method for this problem is given by the following

equations:

g= got= (dg1 + 2dg; + 2dg; + dg,), (3.16)

f= “i ! /% +dfy), (3.17)

where

d 4—a(0+

ﬂuﬂqwam@wﬂwnﬁ

N AININURIINNGY

coordinate of atoms in all axis. Next, a selected atom is relocated from equilibrium.
Hamiltonian is then calculated. The force is computed in two ways; one is through Eq.

(3.10-3.12) by formula method, and the other is through Eq. (3.13) by numerical method.
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We divide the force by mass to obtain the acceleration. After that, we use the RK4 to
solve the integral form to take the velocity, and finally the new position. Hamiltonian is
calculated and these new positions are stored to the new configuration in the next time

step. (Fig. 3.2)

Stop

e CoWpute by
galutta 4™ order

THHRIINYIAY

T=T+dT

Fig. 3.2 Flow chart of the spring model
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3.2 Case Study on Simple Cubic Crystal

The model observes the system of simple cubic 3x3x3. The description

of the system is set as shown in the table:

Mass of aW .

The number ofesPrin

M
Spring’ CO”S %

Equiliogi® ‘fa 'or;

PN
Differentg 'IIL 4‘ \\
ko f Jf o (D 17\\\\

Run time l o r[:p: m\ \

A
2 v
¥ f E ;
- s

/.. 2

Initial configuratig ""n;,;-:

> (1.0,1.0,1.0) to (1.1,1.1,1.1).

ANy
- -

mrm NENIN B’tﬂﬁ

The model calculated the motion of atoms in the system and the

Ham|lton|an at each time step. In Iculatlon the torceﬂlng on the atoms bauon

analyt|ca denve denvagwe 0 |ton|an Th|s was labeled as the -formula

method. The other was to obtain the derivative numerically. This was labeled as the H-
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numerical method. The results obtained with these two methods were compared with

the initial Hamiltonian (Hy) as shown in Fig. 3.3.

2975E'02 7 eceooce HO

== = H--formula method
2.974E-02 - )

e H--numerical method
2.973E-02 -

2.972E-02

2.971E-02

Hamiltonian

2.970E-02
2.969E-0

2.968E-0

2.967E-02. ; : e = ; ; ; .
1400 1600 1800 2000

' it “of the &y ‘ g azfthod is found to be
constant \AQ me.-mezanwhite-the-value-that catcutated by -the -Aumerical method is
slightly incréeSes Witk : .; close to Hy. The
differences ar[v the 8" decimal poimt, which s very small. 43 ce, we could verify the

conservation of H?\Ilt nian of the system andﬁwtn‘y that the model can simulate this

”ﬂu“mmmw g1n73

V|brat|on of Atom No.13

qRIaN AU INYIRY

formula method and the numerical method. The relation of position in X, Y and Z axis

with time are shown respectively in the Fig. 3.4-3.6
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115 dt=0.01; dr =1E-8

11

1.05
2 :
z
© i
x 1 2‘4
c
£ ¥ i
S 095 7% by
g° =t
[a
0.9 —
0.85 - % Formulamethod
S - -+ - Numerical method
0.8 - y r - : T ! - N -"-.lh i T T 1
04 90 80 08, \4°00%, 14684 1600 1800 2000
‘ l ¥ s .‘"5 \ .
igh 3:4. Position o /,_ oXQ, iM Ay axis
& ! ;:‘- \
The Pos iffon of the=atom-ne arics ‘a@und the equilibrium state that
J' s d 3 .
shows the vibration o the atom-in-the sys e value of position of atom no.13 in
each axis versus time ajf.:‘_?";,.. i»"_-*; 2/ue until the run time is about 700.

This mean@ L iho this t@act value in limited

run time. E I}tep is needed for

decreasing diﬂ"ﬁﬁnt me"ﬂsmulatlon usage.
ﬂUEJ’JVlEJVI‘MMﬂi

a»mmnmummmaﬂ
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11

1.05

0.95

Position in Y axis

0.9

0.85

0.8

115

11

tion in Z axis
|_\

o
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dt=0.01; dr=1E-8

"‘.;0000000“"..

$

-

0 .S
2 S—
oo o

© S48 oo

4

+>nNRERERS

eSS

LT

NUmerical method

: B¢ -+« « Formula method

4 o

400 Ve80® S0 Hodo 00% 1480

Time

Fig. 3.6 Position of atom no.13 in Z axis
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.“,i.:.:.\?uw .
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1800 2000

Numerical methw
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CHAPTER IV

SIMULATION ON POINT DEFECT FOR FCC STRUCTURE
4.1 Simulation of Point Defect with ALINE
In CHAPTER | is |gértinat the model can accurately provide
the results from calcul : M n order to simulate of the atom
vibration in a simple 1 theastill =S| 5 itations in crystal system and
T — - _
particularly in tew of si -—ulati =

op and verify the code,
same concept was
implemented. The 4L Jraim, is st y fhsimulating point defects in

research to study the

' | ; S0P Iteract e Numerical Experiments) is a
three-dimensional “interdttive Jmalecuian ics "‘-._I“o. designed to simulate
dynamics of the defe sin ,':‘f‘f‘f"f'_.’. E."' Thisl program couples a molecular

dynamics code to a GrapJni ns on a UNIX-X11 Window System

platform w ﬁmhe ‘

ALINE provides an effective and user-friendly framework | auinetical experiments, in

ol I
jpara end the
Jll
ﬁthis program is suitable for the problem of ifﬂe
olecular

thro | a pair-wise Lennard Jones (LJ) potentlal ora many body EAM potentlal

q W Qfﬁ ) M‘WM ‘EM #1188

expressed as a sum over all the pairs I — j, withi,j = 1, ..., N,

stﬁ} rd Linux releases.

which the mai system visualized in

various ways. stin this study.
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1
Ep = 52 Wy (7)), (4.1)

where 1; = |7‘i (t) — 7}(1:)' is the distance between particles [ and J located at

r;(t) and T}(t) er
considerably the dynamicS«@fhe.Sys %aut-oﬁ T, is introduced and the
cell method used forGRmPY * e interatofiefOicesa®The functional form of the LJ
potential used is mo i S, =

nce of simulations without affecting

r<r,
W; 4.2

>,
Where V;j (1. i i S whiie A € ) WeRresents the unperturbed L

potential, the s |

(4.3)
where Ejj and 0j; the=.ener ind le \‘._‘ sCales, respectively, of the
interaction potential b weohifhe =_;_,|._\ f articl@. The corresponding potential
minimum is Vij = _ijf 1. f";: @le, parameter €;; and 0y may be

related to those of

different d Edl ' rticle ty, g to@

particles [ aNdjeasEnmis—ing st two terms on the

Al
right-hand sideZgf Eq e the potential and its
z |
first derivative,l- ntinuous at the cut-off 7 =17,. lItis to noticed that Eq. (4.2)
represents a potet‘auh functional form dn‘fe”from that of the original LJ potential,

AUBINENIngINg

the beginning of the run in order to rserve the or|g|nal lues of the potential m|

) AN TUIMIINLINY

default assigned the rescaled values € = 1,0 = 1, and 7‘/0‘ = 2.5, while the

equilibrium lattice constant @ is computed by minimizing the interaction energy with the
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neighbors. This does not create big problems because it is expected that if g is of the
order of unity, also the lattice constant a will be of the same order of magnitude. For

time scale, in ALINE used time step, dt = 0.01.

e basis of the structure was not

specified. While this Gew ~ ; : : € length and time scale of the

med to have the value
ndition. Four cases of
simulations were . ‘ ' “‘,_ Ofes of these systems were
initially contai f2008 afors. (o) 650419 M0Matoms and (d) 31250
atoms. In each, £y, St AN < istem was assumed to be
missing when the si ) vas dhi ; Ahe'n vacancies (2-, 3, 4-, and 5-
atoms) were obs " .. ‘ i "ol ' . Whiththe periodic boundary, the
different number of at®ms n,;;g [ j in turn identified the defect

‘iac

density in the actual material_

42 Box-@ tip |
i averagely occupied

ot - |
by one atom, itﬂ%s necessa r of atom @tained in a given small
volume, subsyster?and then to divide it by the volume. It should be noted that if the

ﬂﬁﬁlﬁ NUNINBINT

of atoms then might be I st. It was therefore necessary to choose the

Wﬁ HnI ey

transitions since 1964 [18],[19],[
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Since ALINE produced the output which described the positions of atoms
at the different time step, by specifying the subsystem as described in Fig. 4.1, it was

then possible to count the number of atoms contained in each subsystem.

HAHEINYNINYANS.....

mfothlon regarding the number oiubsystems containing the same number of atoms

q WIS IRIIng ey

number of such subsystems, the average atomic volume V,,, was calculated as
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ZleBB

2i fi

V, = (4.4)

' f# was the total number of subsystems and

}ye whole system.

i¢ Volume with=h ivisions

It should be no

Y. fin; was the total nu

4.4 Variation of A

ransformed to ‘dat’ files,
containing the model was used and
the average ato y to identify the suitable
size of subsystem yfich $a ‘l . Jation of the average atomic

er of subsystems ) but

still sensitive to t , e O (0 \ A oving in and out of the
subsystems. | izofl th&, Coliptind' obtained with different
number of subsystgfms (@ ; f:éf_‘: ,é,‘ e umb of @iVisions in each axis ) were

obtained and the relatgll avg ”; ,, ! = ereNg@lculated as shown in Fig. 4.2-

‘iac

JJ?JW'

")Fr ingvery case resulted in

the very S”E

subsystems in

4.5

=
8 tual volumes of the
either contain only one

Wy

ﬁse ca ey ouﬂ
|

l This condition highly distorts and under esti

volume. On the o‘emd with the very low @lufiber of 14, the subsystems became

FUNINENINENT.

case. Itwas tempting to assumed tﬁt the value of M 4 ﬁx:lated with such pe

QRIRNNAUANT3 aGE

initial atoms of (a) 2000, (b) 6750, (c) 16000 and (d) 31250 were respectively associated

atom or not at ed the average atomic

601

with the arrangement of 2 structure sets; (a) 10x10x10, (b) 15x15x15, (c) 20x20x20 and
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(d) 25x25x25. As a result, in each case, the value of Mg that was a common
denominator to such arrangement should be avoided. This was because it gave the

subsystems that coincided with the crystalline arrangements and, therefore, might lead

to the bias results. This assessment‘ifnfrmed as shown by graphs for the systems

with no defects in Fig. 4.2-4.5 \\ d
ne sin ﬂect the different values were

For th&

chosen for M4 in m sysl'.1 wnm of 2000, Ny was 3. The

system with the with the total atoms of

16000, , Mg w. e system with the total

atoms of 31250

160 - \
800 atoms
140 -
a.>
E 120 -
>
=)
> 100 -
L
5 &0 -
<
L 60
o g
z 4 ir#-
i _ (Ep after initiation)
| lT-
0 'fb T u| T T 1

1 20 4 70

ﬂNU’JTI]EIVI’iWEI’]ﬂ‘i

2 Variation of Average A’[C?IC Volumes with Number of subsystems (Tl )

QW’] ANNTIINENAY
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160 -
(b) 6750 atoms
140 - ,
o - V\\
€ 120 - \
= \
© \
=100
=
£ e
S ; .
< »
o - -
% - =
5 S ==No Defect
Z AN = = Single Vacancy
step after initiation)
100 120
Fig. 4.3 Variatigh of vefoe AtoficVllme N nBehor subsystems (114 );
160 -
c) 16000 atoms
140 -
Qo
£ 120
=
>
%)
£
=
<
:‘%’, 60 -
O No Defect

AU INBNINTTHT-
qrIsensafum Ingmay

Fig. 4.4 Variation of Average Atomic Volumes with Number of subsystems (Tld),

(c) system with initial 16000 atoms.
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160 -
(d) 31250 atoms
140 - -
[ VA L
€ 120 =
>
=)
> 100 -
2
5§ s
< -
% 60 - , — 7 7 -
o — ' S = No Defect
z M = ; = = Single Vacancy
20 |- 2 ‘\ ' step after initiation )
0 Lt® \\\ |
4 \ 100 120
Fig. 4.5 Varig b offf 2l O b8 subsystems (Tld):

4.5 Transients of Si

With the valyess w,m
I}F
simulated. % ta in thesimulation and those

described, their transients were

complex movemenisy—the—ehange—in—the—averageai Qiine was chosen to

represent the ﬁs. .qlg 46.
ﬂNU’JVI&IVI’iWU’]ﬂﬁ

ammnmnmmmaﬂ



38

140 - e 0 Defect
® 2000 atoms, nd=3
. A 6750 atoms, nd=7
135 - 4 16000 atoms, nd=11
‘ B 31250 atoms, nd=15
o NV e e e m ul E B S E N EENERTEN
g e o o . f | ® 4 4 6 4 4 o+ o+ o
S 125 - \ /
o A A é LA A }?A A4
5 120 — S —_—
<
()
2 115 A A A A
)
>
<
110 - ®
105 -
100 - Y &7 B . _ A% N ' ' '
0.0E+00 1.9F+04ff 004 3 GEtpad 5.0E-404,6.0E%04 7.0E+04 8.0E+04 9.0E+04

vl
i r _u_p = |
Y | 'r. i ‘-_ y 1
¥y | ) - \ .

Fig. 4.6 Changen A.v age A «, ",Ef per Ti \'-. dug to single vacancy defect

of system with iniifal 2QQelaten

i 675€ 6008 atoms and 31250 atoms.

e J"ﬂ s :
It was cleg Lﬁf‘m Q0 and 6750 initial atoms that the
average at@ _ @o the space left by

the missingb ( the average atomic

volume then Wﬁ; ng atﬁ were expanding to fill
L]

1
b

such space. |t e total initial atom was

increage id e expanding w ly_caused by the repulsion between
at the | ight p€rigd IdSuBoe tWr thelstiiel i$ﬁeot3 that

retérﬂwé éxpahding proces‘s.

as observed that the process was slower as

¢ o LY
, r ntgof i ciesiBe . ‘ |

q : For the systems with multiple vacancy defects, the different numbers o
vacancies were studied in system of 2000 atoms, which their vacancies atoms were 2-,

3-, 4-, and 5- atoms. The transients of these systems were observed by choosing g =
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3, and the change in the average atomic volume over time of single vacancy showed in

Fig. 4.7 to compare with multiple vacancies those were shown in Fig. 4.8-4.11.

122 -

120 -

e N0 Defect
118

== = ]-Vacancies
116
114
112
110

108 -

Average Atomic Volume

WA/ 2 WA\

JE+Q4 8.0E+04 1.0E+05

104 -

102 -
0.0E+00 0E$04. Prvadis)

Fig. 4.7 Change in AveragetAtomie-Volun ‘ es due to single vacancy defect in

L

T)ster average atomic

Oms.

volume was d .

. ot
AUINENINYINS
RIAINTUNRINYIAY
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122

120
e N0 Defect

118

- e = D.\/acancies
116

114

110 Vo mmaat o - --——---—-

108 -

Average Atomic Volume

106

104 -

102 -
0.0E+00

i

8.0E+04

Fig. 4.8 Chang ' r@ Atori i"': E ‘ < e[V D 2-vacancies defect in

T
f ¥ "-" F
f vsiem Wi -i.
\;:1"‘-"
v_-'nl‘ i,
Fa
F gt gt

e o
P

LT

Fig. 4.9 Change in Average Atomic Volume over Times due to 3-vacancies defect in

system with initial 2000 atoms.
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122

120

118 e N0 Defect

116 = = = 4-\/acancies
114
112
110

108

Average Atomic Volume

106

104 -

102 -
0.0E+00

L

8.0E+04

Fig. 4.10 Chanﬂ 0 4-vacancies defect in

n Agera

e No Defect

116 .’a -V acancies

’JVIEWI’?TWEI’Iﬂﬁ

Fig. 4.11 Change in average atomic volume over times due to 5-vacancies defect in

system with initial 2000 atoms.



CHAPTER V

CONCLUSION AND SUGGESTION

5.1 Conclusion

The dissertation*as stddi ‘K nomena of the point defect transient

dynamics in si , ) ' , ulation in MD simulation
- : | 1 3 ..
method, and t his model showed the

conservation of ton thé vibration of' d Melmover the run time 2000.

While |t was observed=i ..: oFal that the crystalline medium would
expand and eventual the actual time needed for the
process a .1_ he actual size of the defect i0“analysed. Even though

the similar La defect size and the

Lt

time needed fomt nsien . The "f ct of the defect density

and/or the size ft e system to be simulated Were also of concern and required further

&l ANENINEING....

the crystalline structure affects the ﬁnsrent process. F her study in this reg

RIANAINA MININY
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5.2 Suggestions

1. The study should be conducted in other different phenomena of
point defect, such as self-interstitials, or substitutional. Moreover, there should be

extending results to other crystal s

2. ential energy function that can

model, both of two-body

’ .
fi“"' ;'L

Fa

ﬂuEJ’J?/IEWﬁWEI’]ﬂi
RIINTU UM INYIAY
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Appendix A
Program A1: Spring-Mass model; Force calculation by formula method.
#include <stdlib.h>
#include <stdio.h> \"/
#include <math.h> ' \ é

o;‘é.

#include <time.h>

I */

#define L

#define K
#define MS
#define T
#define NDIM
#define NDIM3 2700

!l

;‘- \..,f.\ ’ S ge in x,y,z)
//ND

#define NDIM33 8 OO,I’ Y: / *3 (SPHfs ing sio age in x,y,z)

#define D 3 . /; Jf:- 5‘
#define RT 5000 e T E—

- :“ﬂtg=
C o A 5§

double fX[NDH¥I3]

I_M], vy[NDIM3], vz[NDIM3], x[NDIM3],
double x_0[ NDIMB?ﬂNDIMS] z 0[ NDIM

L ummmw g1n73

function :: m2ijkl

q W’Jﬂﬁ NINMIINIRE

int ii,jj,kk,ll;

.a. 3], az[NDIM3],

vx[ND V] l\l IM3],  z[NDIM3];

kk=mm/(ndd*ndd*3);
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ji=(mm-kk*ndd*ndd*3)/(3*ndd);
ii=(mm-kk*ndd*ndd*3-jj*ndd*3)/3;
ll=mm-kk*ndd*ndd*3-j*ndd*3-ii*3;

mi=ii;

mi=ll;

}
/*
/*

{
int N;

N=a+b*ndd+c*n

return N;
}
I function :: g _u_
I* Convert 1D in foratlice 1c */
void n2ijk(inkj intge Lﬁ'-ﬁﬁ%‘?
CA
int i, jjj, kkk;

kkk=nn/(ndd*ndl
jjj=(nn- kkk*ndd*n@

ﬂwwamw g1n73
qmmnmum'mmaﬂ

function :: xleft
/* find 1D index for the lattice connected to the left side of the spring */

double xleft(int nright,int nleft)
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{
if(nleft!=nright+(D-1))
return x[nleft];

else

p——\\ | /7R
Wy

double yleft(nt nrighkigkaieRy——,

D-"

if(nleft!=nright+
return y[nl
else
return -(D*15]
: /
J
double zleft(int nri : ;
{ JaEhid = r
if(nleft!=nright+(D*D*(D-1)) s ,.;
return z@f];
else e

return -(D™=2z

f@t/ o xright

ﬁummmw g1n73

x[nright];

‘W] ANNIAMIINYINY

double yright(int nright)

{
return y[nright];
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}
/* function :: zright */
double zright(int nright)
{
return z[nright];
}
J
e
/*Calculate the magnj # " F o i ' ,_- X direction */
double coeff_x(dogb ' ), ¢ -y, adouble za, double zb)
{ . . .
double Fnx
Frnx=-K*(1-(LA&qrt(p ))))*(xa-xb)
return Fnx i
}
/x
double coeff_y(doublefa, d r:;’_'_ﬁ, ble Y, double za, double zb)
{ —_—
double Fny; i '
Fry=-K*(1-U/ (SQelpoMRa=Xt 2 e O D e PO (a2 . 4(ya—yb);
return Fny; £ ' '-

o | —

} Hi‘ I'

fu?‘n :coeff zh

ﬁﬁﬂ?ﬁﬁfﬂ?ﬁﬂﬁzﬂﬁ
QWIIZW NTNAMIINEIa Y

[* function e_k */

/* Calculate the kinetic energy of a lattice */
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double e_k(double vxx, double vyy, double vzz) {

return 0.5*MS*(vxX*vxx+vyy*vyy+vzz*vzz);

}
/* function e_p */
/* Calculate the potentigi nonigl : */

{
double Hm,EKk,

int i, nd3;
int — mii, mjj, mkk,
int i, jj, kk;
int nl, nr;
nd3=nd*n

Ek=0.0;
Al

for(i=0; i<nAd3? =
Ek=Ek+e_k(vay[i],v2[i]);

nd3=nd3*3;

ﬂummmwmnﬁ

| nd,&mii,&mjj,&mkk,&mll);

RIRINTUNAIINY1A Y

yr=yright(nr);
zr=zright(nr);
n2ijk(nr,nd,&ii, &jj,&kk);
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if(mll==0) {
ii=ii-1;
if(ii<0) ii=nd-1;

}else if(mll==1) {

=i

if(jj<0) jj=nd-1;
} else {

Kk=kk-1; é""‘" .

f(kk<0) Kk=ndl-1 i
} P
nl=ijk2n(ii,jj,
xI=xleft(nr,nl);
yl=yleft(nr,ni ,‘
zl=zleft(nr,nl); ¢,
Ep=Ep-+e_p(xlxr, f‘v ,
}
Hm=Ek+Ep;

;;;;;;;

return Hm;

}
/*

void calc_a(dolile
=
double Mm, double *a_yy, double *a_zz

int m, n, nd, mii, mJ‘n mll, ii, jj, Kk, n_r, n_l;

nﬂ TJ‘EJ’JVIEWI’?TWEI’mi

—O m<nd*nd*nd*3; m++){

RIRINTUNAINGNY

n2ijk(n_r,nd, &ii,&jj,&KKk);
switch(m%3) {

case 0 :
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if(ii == 0) ii=nd;
n_I=ijk2n(ii-1,jj,kk,nd);

/] x-direction

cz=coeff_z(
yright(n_n#rig AR | < 4
zright(n_r),zrighi¢as -fi,

f z[n_Asf z[n

break; ™ “ Ny
e

case 1: H;‘

0 == 0) =t gy

ﬂﬂ”ﬁ]?’ﬂ&l“ﬂ’iw g1n73

—Coeﬁ x(xright(n_r) xnght

RIRINIMNA TN

f_x[n_r]=f_x[n_r]+cx;

f x[n_I]=f_x[n_I]-cx;

/I y-direction
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cy=coeff_y(xright(n_r),xright(n_l),
yright(n_r),yleft(n_r,n_l),
zright(n_r),zright(n_l));

fyln_rl=f_y[n_rl+cy;
£ yIn_I1=F yIn_I}- Cy&\‘

cz=coeff_z( xr|

N—.‘

//

cx=coeff_x(xright{n_r

yright(n_r),yrigh

// y—/rec on

cy=coeff y r),xright(n_l),

ﬂﬂﬂ‘lﬂlﬂﬂiw gIn

y[n rl=f_y[n_r]+cy;

RYSINIUURITINYIG Y

cz=coeff_z(xright(n_r),xright(n_I),
yright(n_r),yright(n_l),
zright(n_r),zleft(n_r,n_));



55

f_z[n_rl=f_z[n_r]+cz;
f z[n_I]=f_z[n_I]-cz
break;
}

*(a_xx+n)=f_x[n]/

*(a_yy+n) fW.

*(a_zz+n)=f z

v - f

inti, j, k, I, m, mii, mjj, MKk, @ ',’;:’F‘F,‘

int i, ji, kk, d_n, d_a, runtimejsss

float d_x, d.yed 7

char filename g

K ‘ i
double time;// check running time; in ms. (divide CLOCK_PER@C to getin sec.)

runtime=RT;

”ﬂummmﬁwmni

n2u nd &i,&j,&K);

RGN TUURITINYIA Y

z[n]=k*1.0;
vx[n]=0.0;

float t,dt, hOs 1Lk

vy[n]=0.0;
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vz[n]=0.0;
}

printf("Displaced atom no. : ");

scanf("%d",&d_a);

§Wéﬁ

printf("filename : — el
E

scanf("%s" filen 7 ,

FILE *spring;

spring=fopen i

forintf(spring,"Displac , o401 $fe " , " _n],z[d_n]);
| v ' !

x[d_n]=x[d_n]+rd_n;

;;;;;;;

y[d_n]=y[d_n]+rd_n;

z[d n]= z[daj

d_x=x[d_n];"
d_y=y[d_n];
d_z=z[d_n];

ﬂ ummumw g1n73

/ H on/c Potential

RIGINIUARIINYIA Y

hO=ham(nd);
[printf("h0 = %f \n\n",h0);
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//system("pause");

forintf(spring,"n0= %20.10f\n\n",h0);

dt=T;

t=0; ///
fprintf(spring,"time h0-n & /
nprint=0;

dof __i—-—"'

for(n=0; n<nd’_*
fx[n]=0.0;
fy[n]=0.0; s
fz[n]=0.0;
x_o[n}=x{r
y_0ln]=y[n]; o '
z_0[n]=z[n];
}

calc_a(fx,fy,fz,ax,ay,@

d‘*

dx[0][n]= v} ot
dvy[O][n]=aNd]*dt;

vy[n

AuiIngnngng
ARIAMNTUINININY

fy[n]=0.0;

for(n=0;
dvx[O][

fz[n]=0.0;
xX[n]=x_0[n]+dx[0][n]/2.0;
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y[n]=y_O[n]+dy[0][n]/2.0;
z[n]=z_0[n]+dz[0][n]/2.0;
}

calc_a(fx,fy,fz,ax,ay,az);

for(n=0; n<nd*nd*nd; n++ \\‘V///
dvx[1]n]=ax[n]dt; /
ax[1][n]-= (vx[n]@
dvy[11in]=aylnl:di ),
oy 1TnI= (v InlsguTppe Drd

dvz[1][n]=az[n] dj

}
for(n=0; n<
fx[n]=0.0;
fy[n]=0.0;
fz[n]=0.0; _ :
x[n]=x_0[n]+dx[1](#1/2. A ’ffﬁ&

yln]=y_O[n]+dy[1] [n]/2} 2 ,..1
z[n]=z @rd
} ~a

calc_a(fx,fyfz

|
for(n=0; n<ndigfd*nd; n++){

dvx[2][n]=ax nWt

ﬁﬂﬂ“’ﬁ“ﬂ&lﬂﬁw g1n73

[n (vy[n]+dvy[1][n]/2.0) *dk

ARIALNIA M INY 1

for(n=0; n<nd*nd*nd; n++){ //4th step of rk
fx[n]=0.0;
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fy[n]=0.0;
fz[n]=0.0;
x[n]=x_0[n]+dx[2][n];
y[n]=y_O[n]+dy[2][n];
z[n]=z_0[n]+dz[2][n];

Iy

2z

} N\
calc_a(fx,fy,fz,axé

for(n=0: n<ndW’

dvy[3][n]

dy[31[n]=(vy[n

dvz[3][n] a5 @
dzi3n=(vzighfovz] ot B
} Vi EXE

-

r !!?" ,
/I Update the velodfiies glid the JOSIONSH;

P/ St -
i
J "“

for(n=0; n<nd*nd*n@® n+ )l adada
vx[n]=vx[n]+(dvx[0]

_} %7' []+dlvx[3][n])/6.0;
][n

vy[n]=vytag+(d

VZ[n]:V‘ "'“""""""'-"""‘""'Ei"-'""""“‘“""‘-‘"'f S O,
..l'!-. ; ',-i

-
|-

><[n]=x_0[n]_Mix[0][n]+2.o*dx n]+2.0"dx [n]+dx[3][n])@;
=y_0[n]+( d‘OErZ .0*dy[1][n]+2.0*dy[ +dy n])/6.0:

ﬂﬂﬂﬂﬁﬂﬂﬁ“ﬂ N3
ammmmum'mma 4

forintf(spring,"%15.5f %15.5f %15.5A\n" x[d_n],y[d_n],z[d_n]);
}

nprint=nprint+1;
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if(nprint==100){

fprintf(spring,"%5.2f %15.10f %15.10f",t,h0,hn);
forintf(spring,"%15.5f %15.5f %15.5A\n",x[d_n],y[d_n],z[d_n]);
nprint=0;
}

t=t+dft;

twhile (t<runtime);

time=clock();

#include <stdlib.n>
#include <stdio.h>

#include <math.h>

r
#include <t@1>
/* . AANICTANIT END AT T SVSTLCR/

A

#define L
LN |
/[for Harmonic Ment/a/
#defineK 1.0 " //force c
#deﬂ dr 0.00000001 /ldifferential tep
I weflnl :azﬂ n ﬁm u//m@/:l 3’ﬂgq‘/a ﬂ
#define NDIM33 81000 /INDIM33 = NDIM3*3 (spring storage in x,y,z)
#defineD 3 /llattice size (for SC : A*A*A)

#define RT 2000 /lrun time
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r* INITIAL DATA :: SPRING, POSITION, VELOCITY */

double fx[NDIM3], fy[NDIM3], fz[NDIM3], ax[NDIM3], ay[NDIM3], az[NDIM3],
vx[NDIM3], vy[NDIM3], vz[NDIM3], xINDIM3],  y[NDIM3],  z[NDIM3],
rx[NDIM3], ry[NDIM3],

double x_O[NDIM3],

/*
/*

{
int ii,jj,kk, I
kk=mm/(ndd*

*mi=ii;
“mi=ij;
*mk=kk;

*mi=ll;

A
L

7 i!

Conv@ &ndex for lattice to 1D d 2X

ﬂﬂ”ﬂ?ﬂ&lﬂﬁw 4NT

/* ‘-t |‘ unction :: ijk2n

qﬁﬁmﬁmummmaﬂ

[* Convert 1D index for lattice to 3D index */
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void n2ijk(int nn, int ndd, int *ni, int *nj, int *nk)
{

kkk=nn/(ndd*ndd); ‘
jjji=(nn-kkk*ndd*ndd)/ndd: \\ ’ //
iiknn—kkk*ndd*ndd%&\ ' ?
*ni=iii;

“nj=iji /‘ '

*nk=kkk;

/*

/ find 1D index fafhe gt & A X o
double xleft(inthrightifit nlg
{ ,
if(nlefti=nright+(D-1)§

return x[nleft]; #
else

return -(D*L-x[nleft]);

}

/* ~ wfActon T vlef
double yleft(l‘ hifi

{ iy

if(nleft!= nrlght+

wmwﬂmwmni

ret n (D*L-y[nleft]);

qmaﬂmmummmaﬂ

double zleft(int nright,int nleft

if(nleft!=nright+(D*D*(D-1)))
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return z[nleft];
else

return -(D*L-z[nleft]);

} ‘

[* function ' / af */

double xright(int nright & /
return x[nright]; ._i—-""

}

/*

double yright(ig
{

return y[nri

}
/* . It

/* ct a
=
double e_k(dOLvax, double vyy, double vzz) {

return 0.5*MS*( vx‘v +VYY*VYYy+VZZFVZZ);

ﬂummmﬁwmni

*

Calculate the potential ?ergy by Harmon/c Potential

ARISINIAUUMTING A

pow((ya-yb),2
pow((za-zb),2))-L,2);
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/* function :: hamiltonian */

double ham(int nd)

{

double Hm,EK,Ep,xI, yl, zI, xr, yr, zr

int i, nd3; ~ \‘Vy//

it mii, mjj, mkk, mil; R é

int i, ji, kk;

int nl, nr;

nd3=nd*nd*nd;
Ek=0.0;
for(i=0; i<nd3; i+

Ek=Ek+e_k(

nd3=nd3*3;

Ep=0.0;

for(i=0; i<nd3; i++) {
mZ2ijkl(i,nd,&mii,&mijj, &mk

nr=ijk2n( mw:s”

xr=xright

yr=yright(n
zr=zright(nr); i |J
n2ijk(nr,nd,&ii &JJ‘k

'fEWEJ’JVIEWﬁW g1n73

) ii=nd-1;

ARIRNTalNMINgd

if(jj<0) jj=nd-1
}else {

Kk=kk-1;



65

if(kk<0) kk=nd-1;

}
ni=ijk2n(ii,jj,kk,nd);

xl=xleft(nr,nl);

yl=yleft(nr,nl); \ /
zl=zleft(nr,nl); * /
Ep=Ep+e_p(x| xr@ /

) / .

Hm=EK+Ep;

return Hm;

}

void coeff(do
{

double hh, hnewx, hal
int n;
for(n=0;n<D*D*D;n++

rx[n]=x[n];

ry[n]=y[n];

rz[n]zz[nQ
}

hh=ham(D);

;;;;;;;

for(n=0;n<D*D*D; w+

ﬂ*‘ummmwmni

-(hnewx-hh)/dr;

mmmmum'mmaﬂ

hnewy=ham(D
fny[n]=-(hnewy-hh)/dr;

y[nl=ry[n];
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z[n]=z[n]+dr;
hnewz=ham(D);

fnz[n]=-(hnewz-hh)/dr;

zIn]=rz[n];
}

}
/*

nd=D;

)
Y/

/*

/

.ﬂﬂﬂfﬂlﬂiﬂ INYINT

|nt|| kk d_n, d_a, runtime;

Qﬁimﬁﬂ‘im UN1AINYIAY

char filename[20];

double time; // check running time; in ms. (divide CLOCK_PER_SEC to get in sec.)
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runtime=RT;

nd=D;

for(n=0; n<nd*nd*nd; n++)

e \\W///

y[n]=j*1.0;
z[n]=k*1.0;

vx[n]=0.0;
vy[n]=0.0;
vz[n]=0.0;
}
printf("Displac ‘
scanf("%d",&d '
printf("displaced ="
scanf("%f" &rd_ay¥
printf("filename : ");

;;;;;;;

scanf("%s" filename);

FILE *sprin(es =

spring=fope

d_n=d_a;

futingningans
IR TN ING 1Y

z[d_n]=z[d_n]+rd_n;
d_x=x[d_n];

d_y=y[d_n];
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d_z=z[d_n];
forintf(spring,"to %f %f %fA\n\n",x[d_n],y[d_n],z[d_n]);

/l Harmonic Potential

fprintf(spring,":: Harmonic P y//
forintf(spring,"time ste /
hO=ham(nd); ‘

E

-.=B-n
forintf(spring,"h0=_9 ;

;;;;;;;

y_O[n]=Yfnie
z_0[n]=z :l! ’

\ i|i‘

coeff(fx,fy,fz);

ﬁummlmw g1n73

d O] ]=ax[n]*dt;

QRIAINTUNNING 1Y

dy[0][n]=vy[n]*dt;
dvz[0][n]=az[n]*dt;
dz[0][n]=vz[n]*dt;
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}

for(n=0; n<nd*nd*nd; n++){ //2nd step of rk
fx[n]=0.0;
fy[n]=0.0;

s—\/%
N2 =

yln]=y_0O[n]+dy[

2In)=2_ 0[]+ dz{Qlipkae——,

coeff(fx,fy,fiz);

calc_a(fx,fy,fz

, &
2.0t u"
WG

-

dvz[1][n]=az[n]*dt

;;;;;;;

dz[1][n]=(vz[n]+dvz[O] i

} A 2 '
for(n=0; h..- ...............................
fx[n]= OCL

fy[n]=0.0; i|i‘
fz[n]=0.0;

ﬂummmwmni

—z _0[n]+dz[1][n]/2.0;

RIBINTUNRINYIA Y

calc_a(fx,fy,fz,ax,ay,az);
for(n=0; n<nd*nd*nd; n++){

dvx[2][n]=ax[n]*dt;
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dx[2][n]=(vx[n]+dvx[1][n]/2.0)*dt;
dvy[2][n]=ay[n]*dt;
dy[2][n]=(vy[n]+dvy[1][n]/2.0)*dt;
dvz[2][n]=az[n]*dt;

dz[2][n]=(vz[n]+dvz[1][n “’////

x[n]=0.0; 4.-——;*'/’

fy[n]=0.0;

——

fz[n]=0.0;

}

,,,,,,,,,

dx[3][n]=tgx[n

dvy[3][r}=ayialsa

dy[3][n]=tv "’5

dvzl3]in]=aslg1dt:

=(vz n]‘j g] n])*dt;

ﬂdu HANAUNINYINT

ARTBNTI N8

vz[n]=vz[n]+(dvz[0][n]+2.0*dvz[1][n]+2.0*dvz[2][n]+dvz[3][n])/6.0;

x[N]=x_0[n]+(dx[0][n]+2.0*dx[1][n]+2.0*dx[2][n]+dx[3][n])/6.0;
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y[n]=y_O[n]+(dy[0][n]+2.0*dy[1][n]+2.0*dy[2][n]+dy[3][n])/6.0;

z[n]=z_0[n]+(dz[0][n]+2.0*dz[1][n]+2.0*dz[2][n]+dz[3][n])/6.0;
}
hn=ham(nd);

if(t==0){
fprintf(spring,"%5.2f
forintf(spring,"%1
}
nprintznprint+_1_}',,-f" -
if(nprint==1000){. >

nprint=0;

}

t=t+dt;
jwhile (t<runtime); #

time=clock(); ‘ .‘,’: FJ;&

fprintf(spring,"time usage }.,q RS fé?;"a

system("pa uej
Q

}

ﬂUEl’JVIEWI’iWEI’m‘i

Program A3: Box-Counting model.

R ANNINUNIININY

#include <math.h>
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#define MXI 500
#define MXJ 500
#define MXK 500
#define MXC 10000

zmn=0.0;

ﬂuﬁﬁﬁfwﬁwﬂwni

printf("run no. of dIVISIOﬂS in file :

R aé“ﬁ?ﬁfﬁi%um'mmaﬂ

rfile=fopen(filenamer,"a+");
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ofile=fopen(filenameo,"a+");

do {
fscanf(ifile,"%d%lf%If%If%\n",&n,&x,&y,&z);

mn -"'1;,"'

zmx zmx+0.001*dz;

ﬂuﬁmwﬂ YINT

forintf(rfile,"%10d %10 41f %10.41f %10.41f %10.41f %10.41f %10.4If
%10. 4If\n"
' mmw HRAINYAY
mn)*(ymx-ym
x=(xmx-xmn)/ndiv;

dy=(ymx-ymn)/ndiv;
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dz=(zmx-zmn)/ndiv;
fprintf(rfile,"dx dy dz\n");
fprintf(rfile,"%10.4If %10.4If %10.4If

%10.41A\n",dx,dy,dz di 7 ndiv*ndiv*ndiv);

(]
\ LLIKC 1.

=0; i<ndiv; i++)

ﬂuﬂﬁwuwﬁwﬂwni

count[box[i][jI[k]]= Count[box ]+1

vspec_avg=0.0;

MR NN

or(i=0; i<MXC; i++)
if((count[i]>0) && (i>0)) {
fprintf(rfile,"%5d %10d %10.4If\n",i,count[i],dx*dy*dz/i);
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total_count=total_count+count[i];
vspec_avg=vspec_avg-+dx*dy*dz/i*count[i];

}

vspec_avg=vspec_a O
forintf(rfile,’ %
fﬁ

ount;
%/}yt ,vspec_avg);

;;;;;;;

ﬂ‘NEJ’JVIEWI’iWEI’]ﬂ‘i
RIAINTUURITINYIA Y
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Appendix B

Procedure to run ALINE program

1. Download program from http:/cpc.cs.qub.ac.uk/

Expaw

xvf

in GUI (Graphical User

Il dowiement, gr and select ‘Make a new

_‘ J ‘
cbnfig rr-"-- '“ own ' Fig. B2.

Inputs ,?'} ‘# (

wwmnﬁ

Create the defect by pull down menu ‘Specimen’ and select

amaﬂﬁﬁmwﬁﬂmaﬂ

- CRACK SIZE;
-  CRACK ANGLE;

Then click ‘ON/OFF’ and ‘CONFIRM’.


http://cpc.cs.qub.ac.uk/�

I

" houndary :

[kt:23, £=0,230000 Al &

I =T
R | o

I =I=0

M=23600 atoms HEa
Mx=50 Nu=21 Nz=16 ‘
Crystal Tupe 1 s e 0
I Materials Types | 11
E/N= -6,736716 =
U/N= -6.738143 e
K/b= 0,001427 410
T1 0,000951
T = 0,000851 fimi=
min.Max=-7,170,-1 807 Radius

1
|1
Update steps

‘r'l 2

U=Potential Eneray

E

A FILTER'BN/DFF M8

Mine= [ =135

Width = |3

- COLOR OMA0FF

Min = | -13.5 ‘ A

Width = | 3

SCAN

| |
CRYSTAL TYPE ﬂu

“ feoe [110] [-11?[001]

T(e=0) |D.000 | _ﬂ ﬂ

APPLY

cglood B0k "‘:'
[ ]

"1 I . _-'

SEE

i i alilr

Mz _T

8 CamCeL |

8
T

Fig. B2 Initial condition builder window appearing at the starting of the program.
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- CRACK

- OMAOFF

CRACK CENTER
o

¥l 4

z

CRACK SIZE
Size 1

| to create defects.
Size 2

Theta | D

COMNFIRM

CAMCEL

CEMERALASETT
= animai'ﬁ

Wait

v 4

HEANYNINgINg

i
recod g1 output files.

TRVRELTEREY

Close
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9. Setting time to record the coordinate of each atom at the pull down menu
‘Output’ and select ‘ANIMATION’ as shown in Fig. B4.

10.  Atthe main GUI, click ‘RUN’.

11.  For moreinformat\ ﬁ)ference no. [10].

AUINENINYINS
RIAINTUNRIINYIAY
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