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Abstract 
 
We propose smoothing spline (SS) and penalized spline (PS) methods in a class of nonparametric regression methods 

for estimating the unknown functions in a conditional heteroscedastic nonlinear autoregressive (CHNLAR) model. The 

CHNLAR model consists of a trend and heteroscedastic functions in terms of past data at lag 1. The SS and PS methods were 

tested in estimating the unknown functions used to transform data so that it fits the trend and the heteroscedastic functions. In a 

simulation study, time series data were generated and hypothesis testing of the bias was used to check the accuracy.  The SS and 

PS methods exhibit a good power estimation in most cases of generated data. As real data, gold price was modeled by using SS 

and PS methods in the CHNLAR model. The results show that the SS method performed better than the PS method.  
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1. Introduction 
 

Currently the economic growth is of interest to 

developing countries. These data are mostly stored in the form 

of time series data, whether it is daily, monthly, quarterly, or 

yearly; typical examples are unemployment rate, economic 

growth rate, gold price, and currency exchange rates. These 

indicators are sensitive with rapid fluctuations caused by 

external factors, such as natural disasters, wars, and 

epidemics, that are not controllable or predictable. Because of 

such perturbations, it is difficult to make accurate economic 

forecasts.  

Heteroscedasticity or volatility means that an 

economic time series data displays quick changes in its time-

trace. A heteroscedastic model is useful to study for 

estimating or forecasting time series data, and this is the right 

approach to take when the time series has clear evidence of 

changing mean and variance. 

 
There are several methods to model heteroscedastic 

time series, such as the autoregressive conditional hetero-

scedastic model (ARCH) by Engle (1982), who was the first 

to introduce the ARCH model. The mean-corrected asset 

return is serially uncorrelated, but heteroscedastically changes 

over time. Ghosh, Pual and Prajneshu (2010) applied zero 

conditional mean residual series to identify time varying 

volatility in a data set, by using a mixture periodic ARCH 

model. Bollerslev (1986) extended the model type to 

Generalized ARCH (GARCH), and assumed that the mean 

equation can be adequatedly described by an ARMA model.  

Pual, Ghosh and Prajneshu (2009) carried used autoregressive 

intergrated moving average (ARIMA) and GARCH model for 

modeling and forecasting. Peng and Yao (2003) showed that 

the conditional maximum quasilikelihood estimator suffers 

from complex limit distributions and slow convergence rates 

in an ARCH and GARCH model with heavy-tailed errors. The 

nonlinear autoregressive (NLAR) model developed from the 

nonlinear regressive model was introduced by Jones (1978). 

Gouri´eroux Monfort (1992); Masry and Tjøstheim (1995) 

have proposed conditional heteroscedastic nonlinear auto-

regressive (CHNLAR) models for financial time series. For 

simplicity, a single timestep lag in the CHNLAR model was 
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studied to model the foreign exchange rates (Bossaerts, 

H¨ardle, & Hafner, 1996).  

The parametric and nonparametric methods are the 

alternatives when estimating the regression between two sets 

of variables that consist of a vector of predictors and a 

response variable. A parametric regression model requires the 

user giving the form of the underlying regression function. 

The selection of a parametric model depends much on the 

problem and may be too restrictive in some applications. To 

overcome these difficulties, one may remove the restriction 

that the regression function belongs to a parametric family. 

This approach leads to so-called nonparametric regression. 

Typically, the nonparametric regression methods are 

based on a smoothing technique. A smoother is an operator 

that summarizes the trend of a response variable as a function 

of one or more predictor variables. The single predictor case is 

called scatterplot smoothing, and can be used to enhance the 

visual appearance of the scatterplot of response versus 

predictor variable. There are many smoothing techniques, e.g., 

smoothing splines (Green & Silverman, 1994; Wahba, 1990), 

and penalized splines (Ruppert, Wand, & Carroll, 2003). 

These smoothing techniques are generally based on the 

assumption of homoscedastic variance, which may not be 

suitable when the data involve high volatility.  

For these various reasons, we are interested in 

extending the NLAR model to a CHNLAR model, for 

approximating heteroscedastic values by adjusting the past 

value. The smoothing spline and penalized spline methods are 

applied to estimate the trend and the heteroscedastic values in 

both simulated and real data. 

 

2. CHNLAR Model 
 

Some nonlinear time series models focus on various 

volatility forms, such as ARCH model, GARCH model, 

threshold autoregressive model, and nonparametric auto-

regressive model. The nonparametric autoregressive condi-

tional heteroscedastic (NARCH) model (Fan & Yao, 2003) 

adopted the nonparametric and nonlinear time series model 

and is called a conditional heteroscedastic nonlinear autore-

gressive (CHNLAR) model. It can be written as  

 

   1 1,..., ,..., ,t t t p t t p ty y y y y        
 

and ( )  is a function called the nonparametric autoregressive 

(NAR) model or  the nonlinear autoregressive (NLAR) model.    
In this current study, we employ the first-order 

conditional heteroscedastic nonlinear autoregressive (CHN 

LAR) model  

 

   1 1 ,    t t t ty y y  2,3, , ,t n            (1) 
 

 

where , 2,3, ,ty t n  are observed  and depend on  

1, 2,3, , ty t n  with lag 1,  1 ty  is the trend function 

of CHNLAR model,  1 ty  is the heteroscedastic function 

of CHNLAR model, and , t
 2,3, , ,t n  denotes a 

random variable in the error term, with mean zero and 

variance one. 

3. Nonparametric Regression Method 
 

The popular nonparametric regression methods 

include smoothing splines and penalized splines. The concept 

of these methods is to interpolate the data in most suitable 

form of the fitting function with a smoothing parameter.  

In this section we study the following nonlinear 

autoregressive (NLAR) model.  

The NLAR model is written as 

 

 1 ,  t t ty y 2,3, , ,t n                 (2) 

 

where , 2,3, ,ty t n  are observed  dependent variables, 

1, 2,3, , ty t n  are the past values with lag 1 ,  1 ty  is 

the trend function of nonlinear autoregressive model, and , t
 

2,3, ,t n  denote the random values with mean zero and 

variance one in the error terms. 

 
3.1 Smoothing spline (SS) method 

 
The smoothing spline was studied by Wahba (1990) 

and the smoothing spline is a natural polynomial spline 
     
K

S  that depends on the smoothing parameter   :  

 

           
22

1

,

bn
K m

t t t t

t a

S y x x dx    


       (3) 

 

where K  is the number  of knots in the trend  function with 

domain  , ,a b  superscript ( m ) indicates the m th derivative 

of   , tx  
ty  is the dependent variable, and   tx  is the 

trend  function that is a nonparametric regression function of 

independent variables.  

Green and Silverman (1994) emphasized 2m  

case as so-called natural cubic spline to fit the nonparametric 

regression function by minimizing 
 

          
2 2

1

.

bn
K

t t t t

t a

S y x x dx    


      (4)       

 

In this case, we propose the NLAR model via 

smoothing spline method, and the natural cubic spline can be 

written as 
 

         
2 2

1 1

2

.

bn
K

t t t t

t a

S y y y dy     



     (5) 

 

The natural cubic spline has given value and second 

derivative at each knot 
ty  namely these are 

 

   1 , ty  

 

   1 , 


ty 2,3, , ,t n  
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Let   be the vector  1 1, , n 



 and let   be the vector 

 1 1, , n 



. 

 

 The natural cubic spline then depends on the two 

matrices Q  and R  with 

 

   

1

1

1 1 1

1 2 2

1 1 1

2 2 3

1

3

1

1 1 3 ,

0 0

0

0

0 0

0 0 n n n

h

h h h

h h h
=

h

h



  

  





   

 
 
  
  
 
 
 
 
 
 

Q
 

 

where 
1t t th y y   , for 2, , 1 t n , and Q  is an 

   1 3  n n  matrix. 

 R   is a symmetric    3 3  n n  matrix  

 

 

 

 

 
   

2 3 3

3 3 4

2 1

3 3 .

1 1
0

3 6

1 1
0

6 3

1
0 0

3
n n

n n

h h h

h h h
=

h h 

  

 
 

 
 
 
 
 
 

 
 

R

 

The matrix K  is defined by 

    

 1 .=  
K QR Q                       (6) 

 

The vectors   and   specify a natural cubic spline   ty  

if and only if the condition 

  

 =
Q R                                                    (7) 

 

is satisfied. If (7) is satisfied the roughness penalty will satisfy 

  

   
2

1

b

t t

a

y dy  


   R K                  (8) 

 

To illustrate, in the matrix form introduced by Green & 

Silverman (1994)  

 

      
2

1

2

,
n

t t

t

RSS y y






     y y     (9) 

 

where  2 , , ny y


y  with 
ty  corresponding value to 

1ty 
 and 

     1 1, , .ny y 


                               (10) 

 

The roughness penalty term

 

2
 

equals 
K    in (8) to 

obtain  

  

  S        
   y y K     

                  

   2 ,    I K y y y             (11) 

 

Since K  is non-negative definite, the matrix I K  is 

strictly positive definite.  It therefore follows that ( 11)  has a 

unique minimum, and the smoothing spline estimator is  

 

  
1

ˆ , 


 I K y                               (12) 

 
 

where I  denotes the n -dimensional identity matrix. 

 

3.2 Penalized spline (PS) method 
 

 Penalized spline smoother is estimated using the 

truncated power function (Ruppert & Carroll, 2000), and the 

penalized spline model is written as 

  

 

   
1

2 1

0 1

, 1,2, , ,
m K

mj

t j t k t k

j k

x x x t n   




 

       

                                                                                             (13) 

 

where j  and k denote regression coefficients in the 

truncated power function. 

 The natural cubic spline with 2m   is called the 

low-rank thin-plate spline and it tends to have very good 

numerical properties.  The low-rank thin-plate spline 

representation of  .  is 

 

 
3

0 1

1

, , 1,2, , ,
K

t t k t k

k

x x x t n    


       

                                         (14) 
 

where  0 1 1, , , , K   


  is the vector of regression 

coefficients, and 
1 2 K      are fixed knots. 

 In this case, we focus on the NLAR model based on 

penalized spline method, then the natural cubic spline can be 

written as 

 

 
3

1 0 1 1 1

1

, , 2,3, , .
K

t t k t k

k

y y y t n      



      (15) 

 
To avoid overfitting, we minimize 

   

 

  
2

1

1

1
,

n

t t

t

y y








   D                         (16) 
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where   is the smoothing parameter and D  is a known 

positive semi-definite penalty matrix.  The thin-plate spline 

penalty matrix is 

 

 2 2 2

2

,
K

K K

 



 
  
 

0 0

0
D


               (17) 

 

where the  ,l k th entry of   is 
3

l k   and penalizes only 

the coefficient of 
3

1t ky   . 

 Just as with the linear model, we can generalize 

penalized spline in general linear mixed model ( Brumback, 

Ruppert, & Wand, 1999) as 

  

 ,K  y Y Z                  (18) 

 

where  2 , , ny y


y , Y  be the matrix with the 1t  th 

row  11,t ty Y , 
KZ  is the matrix with the t  th row 

     
3 3

1 1 1 1 2 1, , , , , , ,Kt t t K Ky y     
 

     Z   , 

and   is  20,N I .  Consider the vector   as fixed 

parameters and the vector   as a set of random parameters 

with   0E   and   2cov  .  This class of penalized 

spline smoothers   ˆ . may also be expressed as 

   

  
1

3ˆ ,


  C C C D C y                 (19)  

 

where 

 

 
2 2 23

1 1 1 1 2 1 2
1

2

1 , ,
K

t t k k K
t n

K K K

y y 
 

   
 



 
     
    

0 0

0
C D

 

                                                                              (20) 

 

and 
2 2

     is a smoothing parameter. 

 

4. Proposed Trend and Heteroscedastic Estimators  
  

 The trend  1ty 
 and heteroscedasticity  2

1ty 
 

can also be considered in CHNLAR model. As an initial step, 

we start by estimating the trend  1ty 
 using the concept of 

NLAR model written as 

  

 
 1 ,t t ty y    2,3, , ,t n                         (21) 

 

where  1t t ty   .  Next, we obtain  1
ˆ

ty 
 from 

smoothing spline ( SS)  and penalized spline ( PS)  where the 

residuals can be estimated as 

 

 ˆ
t   1

ˆ
t ty y                                       (22) 

  
2

ˆ
t    

2

1
ˆ .t ty 

                                       (23) 

 

We transform  
 1

1 exp ,
2

t

t

h y
y 



 
  

 

 and take log with 

residuals in (23) 

 

 2ˆlog t    2

1
ˆlog ,t th y                                 (24) 

 
2 2ˆ ˆlog logt tE        2 2

1
ˆ ˆlog log .t t th y E 

    
     (25)  

 

If we require 
t̂  to be normally distributed with mean zero 

and variance one, then 2ˆlog 1.2704tE     
in (25) and hence 

we can apply it in SS and PS to obtain 

  

 2ˆlog 1.2704t      2

1
ˆlog 1.2704t th y         (26)  

 

 
ty   1t th y                                   (27) 

 
where 2ˆlog 1.2704t ty    and 2ˆlog 1.2704t t   . Next, 

we get a smooth estimate  1
ˆ

th y   from SS and PS by using 

(27) and update the heteroscedastic estimate to 

 

  1
ˆ

ty 
    1

ˆ
exp .

2

th y 
  
 
  

                (28) 

 

At the second stage of estimation we update the trend estimate 

by using the following model 

      

  
ty    

 1

1

ˆ
ˆexp

2

t

t t

h y
y 



  
  

  

                      (29) 

   

 

 1
ˆ

exp
2

t

t

h y
y


  
 
  

  
 1

1

ˆ
ˆexp

2

t

t t

h y
y 



  
  
  

           (30)

 

     

  

ty   1
ˆ

t tg y                                    (31) 

 
where  

  1
ˆ

exp
2

t

t t

h y
y y


  

  
  

, 

 

and 

  
 

 1

1 1

ˆ
exp

2

t

t t

h y
g y y

 

  
  

  

 on (30). If  1
ˆ

tg y 
 is 

obtained by SS and PS, the second stage estimate of  1ty   

is given by 
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  1
ˆ

ty 
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 1

1

ˆ
ˆexp .

2

t

t

h y
g y





  
 
  

                    (32) 

Finally, the estimates of  1ty   and  1ty   converge to 

 1
ˆ

ty   and  1
ˆ

ty  . 

 

5. Simulation Study 
 

 The simulation study to assess the performances of 

smoothing spline (SS) method and penalized spline (PS) was 

divided into two parts. The first part is to study in CHNLAR 

model 

 

   1 1 ,t t t ty y y     2,3, , ,t n            (33) 

 

where  1ty   and  1ty   are generated following 

  

  1ty 
  10.1 ,ty 

 

 

  1ty 
  1exp 0.05 ,ty   

 

where 
1y Normal(0,1). In Figure 1, we present 

ty  in 

CHNLAR model at sample sizes n = 50, 100, 200, and 300. 

The error process 
t , 2,3, ,t n  in (33) is assumed to 

follow the normal distribution with mean zero and variance 

one.  

 

 
 

Figure 1. The time series data in CHNLAR model. 

 

 In the second part, to estimate  1
ˆ

ty 
 and 

 1
ˆ

ty 
, we compute the bias and the Mean Square Error 

(MSE) of  .  and  .  by 
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 We simulated data with the sample sizes n  =  50, 

100, 200, and 300, and repeated the data generation and model 

fitting 500 times. 

 Table 1 presents the average MSE of SS and PS 

methods for all sample sizes. The average MSE of  .  and 

 .  decreased with sample size. For  . , the average MSE 

of PS is less than with SS, but the average MSE of PS was 

larger than with SS for  . . 

 Tables 2 and 3 show various Monte Carlo (MC) 

summary statistics of the estimates obtained by the SS and PS 

methods. The third and the fourth columns of these tables 

represent the MC sample mean and standard deviation of 

biases. The sample means of the lower and upper bounds of 

95% confidence interval are given in the next two columns. 

The last two columns of these tables list the t-statistic, and p-

value for hypothesis testing (
0 :H  bias   0 versus 

1 :H  bias 

  0). If the p-value is less than 0.05, we reject the null 

hypothesis (
0H ) that there is difference between the observed 

values and the fitted values. If the p-value is larger than 0.05, 

we conclude that we have an unbiased estimator. Based on the 

p-values, we can claim the following. From Tables 2 and 3, 

the SS and PS methods provide asymptotically unbiased 

estimates of  .  and  . . However  .  did not get an 

asymptotically unbiased estimate when the sample sizes was 

200  200n 
 
with the SS method. 

 Histograms of the biases of all parameter estimates 

are presented in Figures 2-5. It is apparent that for the 

distribution of  .  the biases appear to be normally distri-

buted for all sample sizes. 
 

 

Table 1. The average MSE of SS and PS methods with different 
sample sizes (500 replications). 

 

 SS method PS method 

sample size  .   .   .   .  

     

n = 50 0.300 0.0251 0.0249 0.1427 
n = 100 0.0105 0.0114 0.0095 0.0622 

n = 200 0.0054 0.0061 0.0033 0.0193 

n = 300 0.00372 0.00413 0.0020 0.0100 
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Table 2. The simulation of smoothing spline method for different sample sizes (500 replications). 

 

bias sample size mean s.d. lci uci t-stat p-value 

bias  n = 50 6.507 157.106 -7.296 20.3116 0.9261 0.3548 

 n = 100 -1.172 23.367 -3.225 0.881 -1.1216 0.2626 

 n = 200 -0.2977 10.2154 -1.1953 0.5998 -0.6517 0.5149 

 n = 300 3.5053 49.927 -0.8815 7.8921 1.5699 0.1171 

bias  n = 50 -0.0114 0.1577 -0.025 0.0024 -1.6176 0.1064 

 n = 100 0.0020 0.1072 -0.0073 0.0114 0.4283 0.6686 
 n = 200 -0.0074 0.0776 -0.0142 -0.0005 -2.1335 0.0333* 

 n = 300 0.00184 0.0644 -0.0038 0.0075 0.6412 0.5217 
        

 

* indicates significance at 5% level 

 

 
Table 3. The simulation of penalized spline method for different sample sizes (500 replications). 

 

bias sample size mean s.d. lci uci t-stat p-value 

bias  n = 50 -4.734 79.833 -11.749 2.279 -1.326 0.1854 

 n = 100 1.485 47.561 -2.693 5.664 0.698 0.485 

 n = 200 0.0454 32.9606 -2.8506 2.9415 0.0308 0.9754 

 n = 300 -0.5388 10.4931 -1.4608 0.3831 -1.1483 0.2514 

bias  n = 50 0.00429 0.172 -0.010 0.019 0.556 0.578 

 n = 100 -0.0001 0.1120 -0.009 0.009 -0.026 0.9792 

 n = 200 -0.0018 0.0790 -0.0087 0.0051 -0.5170 0.6054 

 n = 300 0.0035 0.0617 -0.0018 0.0090 1.3005 0.194 
        

 
 

 
 

Figure 2. Histogram of bias in  .  with smoothing spline method. 

 

 
 

Figure 3. Histogram of bias in  .  with smoothing spline method. 
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Figure 4. Histogram of bias in  .  with penalized  spline method. 

 

 
 

Figure 5. Histogram of bias in  .  with penalized  spline method. 

 

6. Applications for Real Data 
  

 In this section, we will consider the application of 

CHNLAR model using the smoothing spline (SS) and 

penalized spline (PS) methods that we developed in the 

previous chapter. As a real data set, we use the monthly gold 

price (US Dollars per Troy Ounce) from January, 1984 to 

December 2013, which consists of 360 records and is shown 

in Figure 6. These data were obtained from http://www.index 

mundi.com.  

 
 

Figure 6. The monthly gold prices from January, 1984 to December, 

2013. 

 

The modeling steps were as follows. 

At first, we considered the CHNLAR model following 

 

   1 1 ,t t t ty y y     2,3, ,360,t         (34) 

 

where 
t ’s are independently and identically distributed with 

mean  zero  and variance one. In this case, we let 
ty  denote 

the gold price of month t , where 1t   represents January of 

1984 and 360t   represents December of 2013. 

 Then we fitted the CHNLAR model to obtain the 

trend function,  .
 
and the heteroscedastic function,  . . 

We got  1
ˆ

ty 
,  1

ˆ
ty 

, 2,3, ,360t   using SS and PS 

methods.  

Let  1
ˆ

ty 
 and  1

ˆ
ty 

 denote the converged 

estimates of  .  and  .  ,and let 

 

 

 
1

1

ˆ
ˆ ,

ˆ

t t

t

t

y y

y











  2,3, ,360,t                (35) 

 

denote the standardized residuals based on the converged 

values of  1
ˆ

ty 
 and  1

ˆ
ty 

. 

 Finally, we obtain estimated values of 
2

ˆ ˆ, , ny y  

using the estimated trend and heteroscedastic based on the 

CHNLAR model: 

 

   1 1
ˆˆ ˆ ˆ ,t t t ty y y     2,3, ,360,t       (36) 

 

where the forecast trend  1
ˆ

ty 
 and the forecast 

heteroscedastic  1
ˆ

ty 
 from SS and PS methods are 

presented on Figure 7 and 8.  



820 A. Araveeporn  / Songklanakarin J. Sci. Technol. 41 (4), 813-821, 2019  

0 50 150 250 350

50
0

10
00

15
00

Trend of SS

Month

m
u

0 50 150 250 350

10
20

30
40

50
60

Heteroscedastic of SS

Month

si
gm

a

 
Figure  7. Forecasting trend and heterocsedasticity by smoothing 

spline (SS) method. 
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Figure  8. Forecasting trend and heterocsedasticity by penalized 

spline (PS) method. 

 
The  fitted values from February, 1984 to 

December, 2013 of the SS and PS methods are shown in  

Figure 9 and also MSE, mean, and standard deviation of  .  

and  .  are shown in Table 4. From Table 4, the MSE of PS 

is larger than that of SS, but the  .  show the slightly 

different values. 

 
Table 4. The mean (standard deviation) and Mean Square Error 

(MSE) of smoothing spline (SS) and penalized spline (PS) 

methods. 

 

Estimator SS method PS method 
   

 .  
564.4387 

(396.7862) 

564.4463 

(396.755) 

 .  16.92417 
(15.54389 

20.4015 
(19.66588) 

MSE 5.653 8.372 
   

 
Figure  9. The gold prices with line plot of fitted values by smoothing 

spline (SS) and penalized spline (PS) methods. 

 

 

7. Conclusions 
 

 In this study, we used nonparametric regression 

methods such as the smoothing spline method and the 

penalized spline method to estimate a smooth unknown trend 

and heteroscedasticity in an CHNLAR model.  Through a 

Monte Carlo simulation study, we evaluated the performance 

of the smoothing spline methods and showed that the trend 

estimator (  . ) and heteroscedasticity estimator (  . )work 

reasonably well for most data of all sample sizes, except in 

one case ( 200n  ) where the heteroscedasticity estimator had 

a bias.  The point volatility estimators approach their 

corresponding true values as the sample size increases. 

 In a Monte Carlo study, we showed that the trend 

estimator of penalized spline works well for all small sample 

sizes, when the smoothing parameter is high enough, 

indicating that small sample sizes allow reliable interpolation 

by these models. 

 In an application to actual data, we were also 

interested in comparing the power of estimating values, 

assessed by considering the Mean Square Error ( MSE) .  The 

MSEs with smoothing spline were smaller than with penalized 

spline.  However, we consider the mean of the trend and 

heteroscedastic estimator, and we can see that the means of 

trend with smoothing spline method were slightly different 

from the penalized spline method but the variance and MSE of 

smoothing spline method is smaller than with penalized spline 

method. It can be concluded that the forecasting performance 

of CHNLAR depends on heteroscedasticity.    

 In future work, we intend to study higher order lags 

in trend and heteroscedasticity of the CHNALR model. 
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