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Abstract 
 
The purpose of this research is to apply the three-dimensional differential transform method to estimate solutions to the 

equation of motion for vibration in a membrane with certain types of boundary conditions. The analytical solutions without 

external force or damping under specific initial and boundary conditions are presented. We found by comparison that the 

analytical solution and the estimated solution are in good agreement, in case there is no damping or external forces. Furthermore, 

the differential transform method can be used to find approximate solutions taking into account both external forces and 

damping. This cannot be achieved via an analytical solution. 
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1. Introduction 
 

Many researchers have attempted to understand 

various phenomena occurring in nature by applying know-

ledge from different fields, such as mechanical engineering, 

electrical engineering, industrial engineering, energy, and 

medicine. Most of these problems have been studied by 

employing some form of mathematical modeling, often with 

ordinary differential equations (ODE) or partial differential 

equations (PDE). These problems require sufficiently accurate 

solutions, either analytical or approximate. The differential 

transform method (DTM) is among the most effective 

mathematical methods for finding solutions to these 

differential equations (Hatami, Ganji, & Sheikholeslami, 

2017). 

The differential transform method (DTM) is based 

on high-order Taylor series expansions. This method is a 

powerful tool for solving linear and non-linear ordinary 

differential equations (Arikoglu, & Ozkol, 2006; Ayaz, 2004; 

Catal, 2008) and for solving two-and three-dimensional partial 

differential equations in both linear and non-linear problems. 

DTM can be used to solve differential equations subject to

 
initial and boundary conditions, having both linear and non-

linear terms, and within an acceptable error range.  

The two-dimensional differential transform method 

(2D-DTM) has been used to find the solutions of both linear 

PDEs (Ayaz, 2003; Chen & Ho, 1999; Othman, & Mahdy, 

2010; Yang, Liu, & Bai, 2006) and nonlinear PDEs (Biazar & 

Eslami, 2010; Biazar, Eslami, & Islam, 2012; Bildik, 

Konuralp, Bek, & Kucukarslan, 2006; Kangalgil & Ayaz, 

2009). 

Additionally, the three-dimensional differential 

transform method (3D-DTM) has been applied to find the 

solutions of linear and non-linear PDEs (Bagheri & 

Manafianheris, 2012; Saravanan & Magesh, 2013). It is noted 

that the differential transform method can be used to solve 

multidimensional PDEs, such as the Westervelt equation 

(Jafari, Sadeghi, & Biswas, 2012), heat-like and wave-like 

equations (Tabaei, Celuk, & Tabaei, 2012), and fuzzy partial 

differential equations (Mirzaee & Yari, 2015), as well as 

linear and nonlinear systems of PDEs (Ayaz, 2004; Zedan & 

AliAlghamdi, 2012). 

Many researchers sought to use non-linear PDEs 

with various transform methods, as follows. The Fitzhuah 

Nangumo (FN) equation is a mathematical model for solving 

scientific and engineering problems by using q-HATM and 

the fractional reduced differential transform method 

(FRDTM), which is based on DTM (Kumar, Singh, & 

Baleanu, 2017). 
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The numerical solutions to non-linear fractional 

dynamical model of interpersonal and romantic relationships 

were found by applying q-homotopy analysis via the Sumudu 

transform method (q-HASTM) (Singh, Kumar, Qurashi, & 

Baleanu, 2017). 

Jeffery-Hamel flow with non-parallel walls, which 

is represented by a non-linear PDE and occurs in fluid 

dynamics and other scientific applications, is solved by using 

an efficient hybrid computational technique, the homotopy 

analysis transform method (HATM) (Singh, Rashidi, Sushila, 

& Kumar, 2017). 

The homotopy perturbation Sumudu transform 

method (HPSTM) and homotopy analysis Sumuda transform 

method (HASTM) are more convenient than the homotopy 

perturbation method (HPM) and the homotopy analysis 

method (HAM), since they produce a comparative analytical 

study for a system of time fractional non-linear differential 

equations (Choi, Kumar, Singh, & Swroop, 2016). 

Further examples of the application of PDEs by 

Laplace transform method to various problem include Case I-

application of drum head vibration solution by separation of 

variables, and Case II and III-applications to signal 

transmission and to chemical communication in insects. All 

three cases have been implemented as simulations in 

MATLAB software (Ojwando, 2016). 

A modified He-Laplace method (MHLM) is applied 

to solve space and time nonlinear fractional differential-

difference equations (NFDDEs) (Prakash, Kothandapan, & 

Bharathi, 2016). 

In our previous work, we studied the suspended 

vibrating string equation using 2D –DTM. It was found that 

DTM can be applied to various problems of the suspended 

string equation. 

In this current report, we study further the vibration 

equation in three dimensions of the motion of a membrane 

using the 3D-DTM. The oscillation of a membrane-like plate 

is determined by the tension when there is insignificant 

resistance to bending. The differential transform method was 

applied to find solutions of the motion equation of a 

membrane with an external force and a damping term. We 

compare the results with an analytical solution. We show in 

detail the derivation of the transformed formula in DTM, 

which is of the nth power form (to be shown in theorem 3.6). 

The obtained formula helps simplify the use of DTM in 

solving non-linear PDEs. It is noted that the formula requires 

heavy computation to find complete solutions, mainly due to 

the fact that the formula is in a recursive form. 

 

1.1 The equation of motion of a membrane 
 

The equation of motion for the forced transverse 

vibration of a membrane, after (Rao, 2011) is as follows: 

 
2 2 2

2 2 2
( , , ) ( , ) ,

w w w
P f x y t x y

x y t


   
   

   
                (1) 

 

where
 

( , , )f x y t is the pressure acting in the z direction 

(external force), P  is the intensity of tension at a point, equal 

to product of tensile stress and thickness of the membrane, 

and ( , )x y  is the mass per unit area. We assume that 

( , , ) 0f x y t  ,
 

1,P   and ( , ) 1.x y  Then Equation (1) leads 

to: 

 
2 2 2

2 2 2
.

w w w

x y t

  
 

  
                                                  

(2) 

 

The initial conditions of (2) after (Rao, 2011) are: 

 

  

( , ,0) sin sin , 0 , 0 ,

( , ,0) 0, 0 , 0 ,

x y
w x y x a y b

a b

w
x y x a y b

t

 
    


    



 

 

and we set 1a  and 1b  . Therefore, the boundary con-

ditions of the equation of motion of a membrane are given by: 

 

( ,0, ) 0, 0 1,

(0, , ) 0, 0 1,

( ,1, ) 0, 0 1,

(1, , ) 0, 0 1, .

w x t x

w y t y

w x t x

w y t y t

  

  

  

   

                                (3) 

 
 

1.2 An analytical solution  
 

The following is the derivation of the analytical 

solution to the problem (2). Considering the initial 

conditions ( , ,0) sin sinw x y x y   and ( , ,0) 0,
w

x y
t





 the 

boundary conditions are shown in (3). The general solution 

can be derived by separation of variables: 

   

 
( , , ) ( ) ( ) ( ),w x y t X x Y y T t                                     (4) 

 
Subject to the eigenvalue, 

2 2,  and
2 , (2) implies 

 

2( ) ( ) ( )
,

( ) ( ) ( )

X x Y y T t

X x Y y T t


  
     

 

2( ) ( )
,

( ) ( )

X x Y y

X x Y y


 
    

 

and

  

2 2( ) ( )
,

( ) ( )

X x Y y

X x Y y
 

 
   

 
 

2( )
,

( )

X x

X x



 

 
 

then 
 
 

2( ) ( ) 0,X x X x  
 

 

2 2( )
,

( )

Y y

Y y
 


   

  

assume 
2 2 2 ,     2 2( ) ( ) ( ) 0,Y y Y y       



718 K. Mansilp & J. Kasemsuwan / Songklanakarin J. Sci. Technol. 41 (4), 716-726, 2019 

then
  

2( ) ( ) 0,Y y Y y     

 

and 

 

2( )
,

( )

T t

T t



  

 

then 
2( ) ( ) 0,T t T t    

 
2( ) ( ) 0,X x X x                        (5) 

 
2( ) ( ) 0Y y Y y   ,                                (6) 

 
2( ) ( ) 0.T t T t                            (7) 

 

We obtain a solution of (5) as 1 2( ) cos sin ,X x C x C x    

where 1C and 2C are arbitrary constants. Subject to the 

boundary conditions (0) 0X  , we have 1 0.C 
 

Then 

2( ) sinX x C x  full step the boundary condition (1) 0.X   

Let 2 0C  give ;m m I   , we have that 

 

( ) sinm mX x C m x .                      (8) 

 

We obtain a solution of (6) as 3 4( ) cos sinY y C x C y   . 

According to boundary conditions (0) 0Y  , we have 3 0.C   

Then
 
the boundary conditions ( ) 0Y y  . 

 

Letting 4 0C   gives ;n n I   , then we see that: 

 

( ) sin .n nY y C n y                   (9) 

 

From  

2 2 2

2 2

,

.m n

  

 

 

 
 

 

We obtain a solution of (7) as
  

 

( ) cos sinmn mn mnT t A t B t   . 

 

Then
 

2 2 2 2( ) cos sinmn mn mnT t A m n t B m n t     .     (10)
 

 

According to (8), (9) and (10)  

                      

 

 

2 2

2 2

( , , ) ( ) ( ) ( ),

sin sin cos

sin sin sin ,

mn

mn m n

mn m n

W x y t X x Y y T t

A C C m x n y m n t

B C C m x n y m n t

  

  



 

 

   (11) 

 

where
 

mn mn m nF A C C , mn mn m nH B C C and for all ,m n I  

 

By using superposition of solutions in (11)  

 

 

1 1

2 2

1 1

2 2

( , , ) ( , , ),

sin sin cos ,

sin sin sin .

mn

m n

mn

m n

mn

w x y t w x y t

F m x n y m n t

H m x n y m n t

  

  

 

 

 

 



 

 



    (12) 

 
According to the initial condition ( , ,0) sin sinw x y x y   

and ( , ,0) 0.
w

x y
t





 By using Fourier series, we have 

 

1 ; 1 1,

0; ,

2 .

mn

mn

F m and n

H m n I

 

  

 



 

 

Substituting 11 1F  , 0mnH 
 
and 2 

 
in (12), we 

obtain the analytical solution: 

 

( , , ) sin sin cos 2 .w x y t x y t                 (13) 

 

In the case of problem (2) with a damping term  

 
2 2 2

2 2 2
.

w w w w

t x y t

   
  

   
 

 

By similar calculations, we obtain the solution of 
, ( )m nT t as 

 

2 2

2
, , ,

1 4 1 4
( ) ( cos sin )

2 2

t

m n m n m nT t e A t B t
 


 

  .   (14) 

 

We can see that on substituting 2 

 

to (14), 21 4  

becomes a complex number. Therefore ( )T t  are not solvable. 

 

2. Three-Dimensional Differential Transform  

    Method 
 

The basic definitions and fundamental operations of 

differential transform are defined below. 

 
Definition 2.1 The three-dimensional differential transform of 

function ( , , )w x y t is defined as:

 
 

(0,0,0)

1 ( , , )
( , , )

! ! !

k h m

k h m

w x y t
W k h m

k h m x y t

 


  
  

 

0, 0 0.k h and m    
     

Definition 2.2 The inverse three-dimensional differential 

transform of sequence  
, , 0

( , , )
k h m

W k h m



is defined as: 

 

0 0 0

( , , ) ( , , ) .k h m

k h m

w x y t W k h m x y t
  

  

                 (14)
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3. The Fundamental Operations of Three-Dimensional Differential Transform Method  
 

From Table 1 theorem 3.1-3.5 shown in (Yang, Liu, & Bai, 2006). The following is the derivation of theorem 3.6: If 

1 2 1( , , ) ( , , ) ( , , )... ( , , ) ( , , )n nv x y t w x y t w x y t w x y t w x y t then, 

 

1 1 1 3 13 32 2 2

1 2 1 2 1 2 2 1 2 1 2 10 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 2 2 1 2 1 2 1

1 1 2 1 2 1 2 1 1

( , , ) ...

( , , ) ( , , )...

( , , ) ( , ,

n n n

n n n n n n

mk h m k h mk hk h m

k k h h m m k k h h m m

n n n n n n n n n n

V k h m

W k h m W k k h h m m

W k k h h m m W k k h h

  

                

        



  

    

        

1).nm m 

 

 

For : , : ; , : , : ; ,n nV I W I n I v w n I x           and
 

, , 0,1,2,3,...k h m   

 

By definition of the three-dimensional differential transform: 

 

(0,0,0)

1 ( , , )
( , , ) ,

! ! !

k h m

k h m

v x y t
V k h m

k h m x y t

  
  

   
 

 

we obtain 1 2 1( , , ) ( , , ) ( , , )... ( , , ) ( , , )n nv x y t w x y t w x y t w x y t w x y t  

 
 

Table 1. The fundamental operations of DTM. 

 

The fundamental operations of three-dimensional differential transform method 

Original function Transformed form 

  

2

2

( , , )
3.1 ( , , ) ( , , )

w x y t
v x y t a x y t

x





 

0 0 0

( , , ) ( 2)( 1)

( , , ) ( 2, , ).

k h m

i j r

V k h m k i k i

A i j r W k i h j m r

  

    

   


 

2

2

( , , )
3.2 ( , , ) ( , , )

w x y t
v x y t b x y t

y





 

0 0 0

( , , ) ( 2)( 1)

( , , ) ( , 2, ).

k h m

i j r

V k h m h i h i

B i j r U k i h j m r

  

    

   



 
2

2

( , , )
3.3 ( , , ) ( , , )

w x y t
v x y t c x y t

t





 

0 0 0

( , , ) ( 2)( 1)

( , , ) ( , , , 2).

k h m

i j r

V k h m m i m i

C i j r W k i h j m r

  

    

   



 

( , , )
3.4 ( , , ) ( , , )

w x y t
v x y t d x y t

t





 0 0 0

( , , ) ( 1) ( , , )

( , , ) ( , 1, ).

k h m

i j r

V k h m h i D i j r

D i j r W k i h j m r

  

  

   



 

3.5 ( , , ) n l sv x y t x y t

 

( , , ) ( , , ) (( ) ( ) ( ),

1 , 1 , 1 ,
( ) ( ) ( )

0 , 0 , 0 ,

V k h m k n h l m s k n h l m s where

k n h l m s
k n h l m p

k n h l m s

   

  

       

    
       

      

3.6 ( , , ) ( , , ) ( , , )nv x y t p x y t w x y t

 

1 1 1 3 13 32 2 2

1 2 1 2 1 2 2 1 2 1 2 10 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 2 2 1 2 1 2 1

1 1 2 1 2 1 2 1 1

( , , ) ...

( , , ) ( , , )...

( , , ) ( , ,

n n n

n n n n n n

mk h m k h mk hk h m

k k h h m m k k h h m m

n n n n n n n n n n

V k h m

W k h m W k k h h m m

W k k h h m m W k k h h

  

                

        



  

    

       

1).nm m 
 

33.7 ( , , ) ( , , ) ( , , )v x y t q x y t w x y t

 

2 2 2

2 1 2 1 2 1

1 1 1 1

0 0 0 0 0 0

2 2 1 2 1 2 1 3 2 2 2

( , , )

( , , ) ( , , ).

( , , )
k h mk h m

k k h h m m

W k h m

W k k h h m m W k k

V

h h m m

k h m
     

     



   

 

 

Then by using definition (13), we have: 
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1 1 1

1 1 1

1 1

1 2 1

(0,0,0)

0 0 0 1 1 1 1 1 1

1
( , , ) ( , , ) ( , , )... ( , , ) ( , , )

! ! !

1 ! ! !

! ! ! ( )!( )! ( )!( )! ( )!( )!
n n n

n n n

n n

k h m

n nk h m

k h m

k h m n n n n n n

k h m

k h

V k h m w x y t w x y t w x y t w x y t
k h m x y t

k h m

k h m k k k h h h m m m

x y t

  

  

 

 



        

 

 
  

   


  



  

  

1

1 1 1

1 1 1

1 2

1

(0,0,0)

( , , ) ( , , )...

( , , ) ( , , )

n

n n n

n n n

m

k k h h m m

n nk k h h m m

w x y t w x y t

w x y t w x y t
x y t



  

  

    

   








   

 

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

0 0 0

1 2 1

1 1 1 (0,0,0)

1 1 1

1
( , , ) ( , , )... ( , , )

( )!( )!( )!

1

( )!( )!( )!

n n n

n n n

n n n

n n n

n n n

k h m

k h m

k h m

nk h m

n n n

k k h h m m

nk k h h m m

n n n

w x y t w x y t w x y t
k h m x y t

w
k k h h m m x y t

  

  

  

  

  

  

 



  

    

  

  



 
 

   



     

  

(0,0,0)

( , , )x y t
 
 
 

 

1 1 1

1 2 1 2 1 2

2 2 2

2 2 2

0 0 0 0 0 0

1 2 2

2 2 2 (0,0,0)

1 2 1 2 1 2

1
( , , ) ( , , )... ( , , )

( )!( )!( )!

1

( )!( )!( )!

n n n

n n n n n n

n n n

n n n

k h mk h m

k k h h m m

k h m

nk h m

n n n

n n n n n n

w x y t w x y t w x y t
k h m x y t

k k h h m m

  

     

  

  

     

 



  

     



 
 

   




  




     

1 2 1 2 1 2

1 2 1 2 1 2

(0,0,0 )

1 1 1

1 1 1

1

1 1 1 (0,0,0)

( , , )

1
( , , )

( )!( )!( )!

n n n n n n

n n n n n n

n n n

n n n

k k h h m m

nk k h h m m

k k h h m m

nk k h h m m

n n n

w x y t
x y t

w x y t
k k h h m m x y t

     

     

  

  

    

  

    

  

  




   

 
 

      

 

1 2 1 2 1 2

1 2 3 1 2 3 1 2 3

2 2 2

2 2 2

0 0 0 0 0 0 0 0 0

1 2 3

3 3 3 (0,0,0)

2

1
( , , ) ( , , )... ( , , )

( )!( )!( )!

1

(

n n n n n n

n n n n n n n n n

n n n

n n n

k k h h m mk h m

k k k h h h m m m

k h m

nk h m

n n n

n n

w x y t w x y t w x y t
k h m x y t

k k

     

        

  

  

        

 



  





 
 

   



        

2 3 2 3 2 3

2 3 2 3 2 3

1 2 1 2 1 2

1 2

3 2 3 2 3

2

(0,0,0)

1 2 1 2 1 2

)!( )!( )!

( , , )

1

( )!( )!( )!

n n n n n n

n n n n n n

n n n n n n

n n

n n n n

k k h h m m

nk k h h m m

n n n n n n

k k h h m m

k k

h h m m

w x y t
x y t

k k h h m m

x y

     

     

     

 

    

    

  

     

    






 


 
   




  



  1 2 1 2

1 1 1

1 1 1

1

(0,0,0)

1 1 1

1 1 1

1 1 1 (0,0,0)

( , , )

1
( , , ) ,

(1 )!(1 )!(1 )!

n n n n

n n n

n n n

nh h m m

k h m

nk h m

n n n

w x y t
t

w x y t
k h m x y t

   

  

  

 

    

  

  




 

 
 

      

 

 
1 2 1 2 1 2

1 2 3 1 2 3 1 2 3

3 13 34 4 4

3 2 3 2 3 2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 2 2 1 2 1 2 1

1 1 2 1

( , , ) ...

( , , ) ( , , )...

( ,

n n n n n n

n n n n n n n n n

k k h h m mk h m

k k k h h h m m m

k h mk h m

k k h h m m

n n n n

V k h m

W k h m W k k h h m m

W k k h

     

                

     

   



  



        

 

2 1 2 1 1 1
, ) ( , , ).n n n n n n nh m m W k k h h m m
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since 1 2 1( , , ) ( , , ) ( , , )... ( , , ) ( , , )n nv x y t w x y t w x y t w x y t w x y t  then, 

 

1 1 1 3 13 32 2 2

1 2 1 2 1 2 2 1 2 1 2 10 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 2 2 1 2 1 2 1

1 1 2 1 2 1 2 1 1

( , , ) ...

( , , ) ( , , )...

( , , ) ( , ,

n n n

n n n n n n

mk h m k h mk hk h m

k k h h m m k k h h m m

n n n n n n n n n n

V k h m

W k h m W k k h h m m

W k k h h m m W k k h h

  

                

        



  

    

        

1).nm m 

 

 

4. Application  
 

In this section, we apply the three-dimensional differential transform method to the vibration of a membrane. We 

demonstrate four examples of the problem under different conditions. The conditions are (i) without damping term, (ii) with 

damping term, (iii) with external force, and (iv) with damping term and external force. The initial and boundary conditions are 

defined as follows. 

 

Example 4.1 Consider the equation of the motion for the vibration of a membrane 

 
2 2 2

2 2 2
,

w w w

t x y

  
 

  
                                       (15) 

 

with the initial and boundary conditions, 

 

( , ,0) sin sin , 0 1, 0 1,

( , ,0) 0, 0 1, 0 1,

x y
w x y x y

a b

w
x y x y

t

 
    


    



,

( ,0, ) 0, 0 1,

(0, , ) 0, 0 1,

( ,1, ) 0, 0 1,

(1, , ) 0, 0 1, .

w x t x

w y t y

w x t x

w y t y t

  

  

  

   

                            (16) 

 

Comparing (15) to the general terms of PDEs in Table 1, we have: 

( , , ) ( , . ) ( , , ) 1.a x y t b x y t c x y t    

 

Then for all 0, 0i j  and 0,r   we have 

 

( , , ) ( , , ) ( , , ) ( , , ).A i j r B i j r C i j r i j r    

 

The following Kronecker symbols can be used: 

 

1; 0
( , , ) ( ) ( ) ( ) ( , ) ( ) ( ).

0; ,

x y t
x y t x y t x y x y

otherwise
      

  
  


 

 

By applying DTM and Kronecker symbols to the given equation of motion for the vibration of a membrane, we have 

 



0 0 0

0 0 0

1
( , , 2)

( 2)( 1) (0,0,0)

( 2)( 1) ( , , ) ( 2, , )

( 2)( 1) ( , , ) ( , 2, ) ,

1
( 2)( 1)( 2)( 1) ( 2, , ) ( , 2, ),

( 2)( 1)

k h m

i j r

k h m

i j r

W k h m
m m

k i k i A i j r W k i h j m r

h i h i B i j r U k i h j m r

k k h h W k h m W k h m
m m



  

  

 
 


        


        

     
 




          

 

that is 

 ( , , 2) ( 2)( 1)( 2)( 1) ( 2, , ) ( , 2, ) /

( 2)( 1)( 2)( 1).

W k h m k k h h W k h m W k h m

m m m m

       

   
                                    (17) 
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Comparing the coefficients of Taylor’s series for sine with the series in definition (14) 

 
2 4 6 8 10 12

3 5 7 9 112 4 6 8 10 12
sin( )sin( ) ...

2! 4! 6! 8! 10! 12!
x y xt x t x t x t x t x t

     
          

 

0 0 2

0 0

3 2

2 2

( , ,0) (0,0,0) (1,1,0) (2,1,0)

(3,1,0) ... (0,1,0) (1,2,0)

(2,2,0) ...

k h

k h

W k h x y W x y W xy W x y

W x y W xy W xy

W x y

 

 

  

   

 


                                        (18) 

 

Then, we have 

 

0 0,1,2,... 0,2,4,6,...

( )
( , ,0) 1,5,9,... 1,3,5,7,...

( )!

( )
3,7,11,.. 1,3,5,7,...

( )!

k h

k h

if k and h

k h
U k h if k and h

k h

k h
if k and h

k h












 
 

  


 
  



 ,                        (19) 

 

and from the initial condition (16) 

 

( , ,1) 0, , 0,1,2,3,...W k h k h  ,                      (20) 

 

and from the boundary condition (16), we have 

 

( ,0, ) 0, , 0,1,2,3,...,

(0, , ) 0, , 0,1,2,3,...,

( ,1, ) 0, , 0,1,2,3,...,

(1, , ) 0, , 0,1,2,3,...,

W k m k m

W h m h m

W k m k m

W h m h m

 

 

 

 

                                                  (21) 

 

for each , ,k h m substituting(19)-(21), and by recursion relation in (17), we obtain the coefficients ( , , )W k h m  for the series 

solution. 

 

That is 
2 4 2 6 4 8 6 4 3 6 2 31 1

.)
1

( , , ..
1

6 90 6 6
xy t xy t xy t xyu x x y t x yy t            

 

Comparing to (14), we cannot apply separation of variables to find the analytical solution to the problem with damping 

in equation (22). In the following example, we apply the DTM to find an approximate solution to the problem. 

 

Example 4.2 Consider the equation of motion for the vibration of a membrane with damping term. 

 
2 2 2

2 2 2
,

w w w w

t x y t

   
  

                                                (22) 

 

comparing (22) to general terms of PDEs in table 1, we have 

 

( , , ) ( , . ) ( , , ) 1, ( , , ) 1.a x y t b x y t c x y t d x y t      

 

Then for all 0, 0i j  and 0,r   we have 

 

( , , ) ( , , ) ( , , ) ( , , ), ( , , ) ( , , ).A i j r B i j r C i j r i j r D i j r i j r       
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By applying DTM and Kronecker symbols to the given equation of motion for the vibration of a membrane, we have: 

 





( , , 2) ( 2)( 1)( 2)( 1) ( 2, , ) ( , 2, )

( 1) ( , 1, ) / ( 2)( 1).

W k h m k k h h W k h m W k h m

h W k h m m m

       

    
                                    (23) 

 

For each , ,k h m substituting(19)-(21) and by recursion in (23), we obtain the coefficients ( , , )W k h m  for the series solution. 

 

That is 
2 2 6 4 4 2 3 6 4 3 6 2 5 8 4 55 5 5 5 1 1

( , , ) ...
2 6 12 36 48 144

w x y t t x t x t x t x t x t x              

 

Example 4.3 Consider the equation of motion for the vibration of a membrane with external force. 
 

2 2 2
3

2 2 2
.

w w w
w

t x y

  
  

                                 (24) 

 

Comparing (24) to general terms of PDEs in table 1, we have: 

 

( , , ) ( , . ) ( , , ) 1, ( , , ) 1.a x y t b x y t c x y t q x y t      

 

Then for all 0, 0i j  and 0,r   we have: 

 

( , , ) ( , , ) ( , , ) ( , , ), ( , , ) ( , , ).A i j r B i j r C i j r i j r Q i j r i j r       

 

By applying DTM and Kronecker symbols to the given equation of motion for the vibration of a membrane, we have 

 





2 2 2

2 1 2 1 2 1

1 1 1 1

0 0 0 0 0 0

2 2 1 2 1 2 1 3 2 2 2

( , , 2) ( 2)( 1)( 2)( 1) ( 2, , ) ( , 2, )

( 2)( 1).

( , , )

( , , ) ( , , ) /

k h mk h m

k k h h m m

W

W k h m

W k k h h m m

h h

W k

k m k k h h W k m W k

k h h

m

m

h

m mm

     

   

      





 

                     (25) 

 

For each , ,k h m substituting (19)-(21) and by recursion relation in (25), we obtain the coefficients ( , , )W k h m  for the series 

solution. 

 

That is: 

8 8 10
2 4 2 6 4 6 4 3 6 2 3 .

1 1 1 1
( 3( ))

6 30 6 1 6
( , , )

6 6
..

8 3
w xy t xy t xy ty t xyx x y t x y

  
            

 
 

Example 4.4 Consider the equation of the motion for the vibration of a membrane with external force and damping term.  
 

2 2 2
3

2 2 2
.

w w w w
w

t x y t

   
   

   
  

                               (26) 

 

Comparing (26) to general terms of PDEs in table 1, we have 

 

( , , ) ( , . ) ( , , ) 1, ( , , ) ( , , ) 1.a x y t b x y t c x y t d x y t q x y t       

 

Then for all 0, 0i j  and 0,r   we have 

 

( , , ) ( , , ) ( , , ) ( , , ), ( , , ) ( , , ) ( , , ).A i j r B i j r C i j r i j r D i j r Q i j r i j r        

 

By applying DTM and Kronecker symbols to the given equation of motion for the vibration of a membrane, we have: 
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2 2 2

2 1 2 1 2 1

1 1 1 1 2 2 1 2 1 2 1

0 0 0 0 0 0

3 2 2 2

( , , )

.

( , , 2) ( 2)( 1)( 2 2

( , , )

( ,

)( 1) ( , , ) ( , 2, )

( 1) ( , 1, )

( 2), ) / ( 1)

k h mk h m

k k h h m m

W k h m

kW

W k k h h m m

W k k

k

h

k h m k h h W h m W k h m

h W k h

mh m

m

m m

     



      





  



 

  

 

                                  (27)

 

 

For each , ,k h m substituting (19)-(21) and by recursion in (27), we obtain the coefficients ( , , )W k h m  for the series solution. 

 

That is: 

6 4

2 2 4 4 6 6 4 2 3 6 4 33 2
1 1 1 1 1

1 ./ 6 ( ( ) ( 2 ))
2 30 12 12 36

( , , ) ..w t x t x t x t xx xy tt                 

 
5. Results and Discussion 

 

Next, we will assess the results from examples 4.1 

to– 4.4. In Figure 1, at the initial time, the approximate 

solution (dashed blue lines) obtained from DTM in Example 

4.1 is close to the analytical solution (solid orange line) 

calculated from equation (13). As time progresses the results 

continue to stay close to each other.  

The graphical results of the approximate solution 

from DTM of the vibration of a vibrating membrane with a 

damping term (Example 4.2) are shown in Figure 2. We found 

that the amplitude of vibration is less than that without a 

damping term, as shown in Table 2. 

The exact solution, approximate solution with a 

damping term and error for the vibration of membrane are 

shown in Table 2.  
 

 
 
Figure 1. Graphical comparison between the amplitude of the 

analytical solution and the approximate solution from 

DTM of the vibration of a membrane. 
 

 
 

Figure 2. Graphical result of the amplitude of the approximate 
solution from DTM of the vibration of a membrane with a 

damping term. 

The graphical results of the approximate solution 

from DTM of the vibration of a membrane with external force 

(Example 4.3) are shown in Figure 3. We found that the 

amplitude of vibration is less than that of the vibrating 

membrane without external force, as shown by the results in 

Table 3. 

The graphical results of the approximate solution 

from DTM of the vibration a membrane with a damping term 

and external force (Example 4.4) are shown in Figure 4. We 

found that the amplitude of vibration is less than that of the 

vibrating membrane without a damping term and external 

force as shown by the results in Table 3. 

The approximate solution for the vibration of a 

membrane with external force, with external force and a 

damping term, and error for the vibration of a membrane are 

shown in Table. 
 

 
 

Figure 3. Graphical result of the amplitude of the approximate 

solution from DTM of the vibration of a membrane with 
an external force. 

 

 
 

Figure 4. Graphical result of the amplitude of the approximate 

solution from DTM of the vibration of a membrane with a 

damping term and external force. 
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Table 2. Data Value at 0.5x  , 0.5y  . 

 

 

Table 3. Data Value at 0.5x  , 0.5y  . 

 

 
6. Conclusions 

 

We found that the analytical solutions and 

approximate solutions are very similar in case of a problem 

with no damping or external force. In the case with damping 

and external force, analytical solutions are not available. 

Therefore, DTM was used to find approximate solutions. The 

obtained results show that the addition of a damping term, or 

addition of external force to the equation of motion of the 

membrane, can reduction the amplitude of membrane 

vibrations. 
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