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CHAPTER I

INTRODUCTION

Let H be a Banach space of holomorphic functions on an open subset X of

Cn. Let ϕ : X → X be a holomorphic function. A composition operator Cϕ is

defined by Cϕ(f) = f ◦ϕ for any function f ∈ H such that f ◦ϕ ∈ H. It has been

extensively studied in various settings, in particular, on the Hardy, Bergman and

Bloch spaces on the unit disk of the complex plane. In 2003, Carswell, MacCluer

and Schuster [1] characterized boundedness of composition operators on the Segal-

Bargmann space

HL2(Cn, 1
2π
e−
|z|2
2 ) =

{
F ∈ H(Cn)

∣∣∣ ∫
Cn
|F (z)|2 1

2π
e−
|z|2
2 dz <∞

}
,

where H(Cn) denotes the set of all holomorphic functions on Cn. They established

that Cϕ is bounded if and only if ϕ(z) = Az+B, where A is an n×n matrix with

‖A‖ ≤ 1 and B is an n× 1 vector such that 〈Aζ,B〉 = 0 whenever |Aζ| = |ζ|.

In 2006, Ueki [4] considered a weighted composition operator on the Segal-

Bargmann space defined by

uCϕ(f) = u · (f ◦ ϕ),

where u is an entire function. He characterized boundedness and compactness of

the weighted composition operator on the Segal-Bargmann space. His results are

written in term of a certain integral transform

Bϕ(|u|2)(w) =
1

2π

∫
C
|u(z)|2|e

〈ϕ(z),w〉
2 |2e−

|w|2
2 e−

|z|2
2 dz.
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He obtained that

uCϕ is bounded if and only if Bϕ(|u|2) ∈ L∞(C).

Our objective of this work is to generalize Ueki’s work to a space HL2(C, e−ψ)

where ψ is a real-valued smooth function on C such that ∆ψ is a positive constant.

Note that ∆(|z|2/2) = 2 > 0, so such a space is a generalization of the standard

Segal-Bargmann space HL2(C, 1
2π
e−|z|

2/2).



CHAPTER II

PRELIMINARIES

In this chapter, we first review the definition of holomorphic function space

including its general properties that can be found in [3].

Let U be a non-empty open set in C. LetH(U) denote the space of holomorphic

(or complex analytic) functions on U. Let α be a continuous, strictly positive

function on U.

Definition 2.1. Let HL2(U, α) denote the space of L2 holomorphic functions

with respect to the weight α, that is,

HL2(U, α) =
{
F ∈ H(U)

∣∣∣ ∫
U

|F (z)|2 α(z) dA(z) <∞
}
,

where dA(z) denotes 2-dimensional Lebesgue measure on C ∼= R2. It is equipped

with the inner product

〈f, g〉 =

∫
U

f(z)g(z)α(z) dA(z).

Theorem 2.2. The space HL2(U, α) is a closed subspace of L2(U, α), and there-

fore a Hilbert space.

In fact, the pointwise evaluation is a continuous map from HL2(U, α) to C.

That is, for each w ∈ U, the map that takes a function f ∈ HL2(U, α) to the

number f(w) is a bounded linear functional onHL2(U, α). By the Riesz’s theorem,

this linear functional can be represented uniquely as an inner product with some

Kw ∈ HL2(U, α). That is,

f(w) = 〈f,Kw〉 =

∫
U

f(z)Kw(z)α(z) dA(z).
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Define K(z, w) = Kw(z) for any z, w ∈ U. We call K the reproducing kernel

for the space HL2(U, α). Denote by kw the normalized kernel function, that is,

kw(z) = Kw(z)
‖Kw‖ .

Theorem 2.3. Let {ej} be a countable orthonormal basis for HL2(U, α). Then

for all z, w ∈ U ∑
j

∣∣∣ej(z)ej(w)
∣∣∣ <∞

and

K(z, w) =
∑
j

ej(z)ej(w).

Definition 2.4. A Segal-Bargmann space is a space HL2(C, µt), where

µt(z) =
1

πt
e−|z|

2/t

for any t > 0.

Moreover, this space has {
zn√
n!tn

}∞
n=0

as an orthonormal basis. By Theorem 2.3, the reproducing kernel for the space

HL2(C, µt) is given by

K(z, w) = e〈z,w〉/t,

where 〈·, ·〉 is the standard inner product on C.

Definition 2.5. Holomorphic function spaces HL2(U, α) and HL2(U, β) are said

to be holomorphically equivalent spaces if there exists a nowhere-zero holomorphic

function φ on U such that

β(z) =
α(z)

|φ(z)|2
for all z ∈ U.
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Proposition 2.6. Let HL2(U, α) and HL2(U, β) be holomorphically equivalent

spaces and φ defined as above. Let Λ : HL2(U, α) → HL2(U, β) be defined by

Λ(f) = φf. Then Λ is unitary.

Proof. It is obvious that Λ is linear. Let g ∈ HL2(U, β). Then g/φ is holomorphic.

Since ∫
U

|g(w)|2

|φ(w)|2
α(w) dA(w) =

∫
U

|g(w)|2 β(w) dA(w) <∞,

we obtain g/φ ∈ HL2(U, α). Thus Λ is surjective. Then for any f ∈ HL2(U, α),∫
U

|f(w)|2 α(w) dA(w) =

∫
U

|f(w)|2|φ(w)|2 α(w)

|φ(w)|2
dA(w)

=

∫
U

|Λf(w)|2 β(w) dA(w).

That is, ‖f‖α = ‖Λf‖β, i.e. Λ preserves norm. Hence, Λ is unitary.

Theorem 2.7. LetHL2(U, α) andHL2(U, β) be holomorphically equivalent spaces.

Let Kα and Kβ be their respective reproducing kernels. Then for each z ∈ U,

Kβ(z, w) = φ(z)φ(w)Kα(z, w).

Moreover, we get that

|Kβ(z, w)| = |φ(z)||φ(w)||Kα(z, w)|.

Proof. Let {ej}∞j=0 be an orthonormal basis for HL2(U, α). Since any unitary map

preserves an orthonormal basis, {φej}∞j=0 is an orthonormal basis for HL2(U, β).

Then, by Theorem 2.3,

Kβ(z, w) =
∞∑
j=0

φ(z)ej(z)φ(w)ej(w)

= φ(z)φ(w)
∞∑
j=0

ej(z)ej(w)

= φ(z)φ(w)Kα(z, w).
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The next goal is to introduce a particular space of L2 holomorphic functions

that we are going to give attention throughout. Before that, let us recall some

facts from complex analysis.

Definition 2.8. Let z = x+ iy ∈ C and f(z) be a complexed-valued function in

an open set U such that fxx and fyy exist at every point of U. Then the Laplacian

of f is defined by

∆f = fxx + fyy.

In the (z, z)-coordinate, the Laplacian is given by the formula

∆f =
4∂2

∂z∂z
f.

If f is continuous and ∆f = 0 at every point of an open set U, then f is said to

be harmonic on U.

In this work we look at a space which is a generalization of the standard Segal-

Bargmann space. Let ψ be a real-valued smooth function on C such that ∆ψ = c

where c is a positive constant. Consider the holomorphic L2-space HL2(C, e−ψ)

equipped with the norm

‖f‖2ψ =

∫
C
|f(z)|2 e−ψ(z) dA(z).

Note that ∆(|z|2/t) = 4/t > 0, so such a space is a generalization of the

standard Segal-Bargmann space HL2(C, µt).

Theorem 2.9. Let U be an open simply connected set in C and α, β strictly pos-

itive smooth functions on U. Then HL2(U, α) and HL2(U, β) are holomorphically

equivalent spaces if and only if ∆ logα(z) = ∆ log β(z).

Proof. See Proposition 5 in [2].
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Corollary 2.10. Let ψ a real-valued smooth function on C satisfying ∆ψ = c > 0.

Then HL2(C, e−ψ) and HL2(C, µ4/c) are holomorphically equivalent.

Proof. Since

∆ log e−ψ(z) = −c

and

∆ log µ4/c = ∆ log
c

4π
e−c

|z|2
4 = ∆(log

c

4π
+ log e−c

|z|2
4 ) = −c,

By Theorem 2.9, we see that HL2(C, e−ψ) and HL2(C, µ4/c) are holomorphically

equivalent as desired.

Lemma 2.11. Let ψ be a real-valued smooth function on C satisfying ∆ψ = c > 0.

Then there exists a constant M > 0 such that for any f ∈ HL2(C, e−ψ),

|f(0)|2 ≤M eψ(0)
∫
D(0,1)

|f(w)|2e−ψ(w)dA(w).

Proof. See Lemma 8 in [2].



CHAPTER III

BOUNDEDNESS OF

WEIGHTED COMPOSITION OPERATOR

Definition 3.1. Let ϕ and u be entire functions on C. The weighted composition

operator uCϕ is defined by

uCϕ(f) = u · (f ◦ ϕ)

for an entire function f. In particular, if u = 1, then we call it the composition

operator and denote it by Cϕ.

Throughout this work, let ψ be a real-valued smooth function on C satisfying

∆ψ = c > 0. In this chapter, we generalize the idea of S. Ueki (see [4]) to prove

the boundedness of the weighted composition operator uCϕ on HL2(C, e−ψ). Our

result will be expressed in terms of the integral transform

Bϕ(|u|2)(w) =

∫
C
|u(z)|2 exp

(
− c

4
|ϕ(z)− w|2 + ψ(ϕ(z))− ψ(z)

)
dA(z).

However we need several lemmas to reach our result.

Lemma 3.2. There exists a constant M > 0 such that for any f ∈ HL2(C, e−ψ),

|f(z)|2 ≤Meψ(z)
∫
D(z,1)

|f(w)|2e−ψ(w)dA(w).

Proof. Let z ∈ C and gz(w) = z + w. Then ∆ψ = c = ∆(ψ ◦ gz). Let f ∈
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HL2(C, e−ψ) and h = f ◦ gz. Then h ∈ HL2(C, e−ψ◦gz) and by Lemma 2.11,

|f(z)|2 = |f ◦ gz(0)|2 = |h(0)|2

≤Meψ◦gz(0)
∫
D(0,1)

|h(w)|2 e−ψ◦gz(w) dA(w)

= Meψ(z)
∫
D(0,1)

|f ◦ gz(w)|2 e−ψ◦gz(w) dA(w)

= Meψ(z)
∫
D(0,1)

|f(z + w)|2 e−ψ(z+w) dA(w)

= Meψ(z)
∫
D(z,1)

|f(w)|2 e−ψ(w) dA(w)

Lemma 3.3. For HL2(C, e−ψ), we have

|Ke−ψ(z, w)| = c

4π
exp

[1

2

(
− c

4
|z − w|2 + ψ(z) + ψ(w)

)]
.

Moreover,

‖Kw‖ψ =
( c

4π

)1/2
e
ψ(w)

2 and |kw(z)| =
( c

4π

)1/2
exp

[1

2

(
− c

4
|z − w|2 + ψ(z)

)]
.

Proof. According to Corollary 2.10, HL2(C, e−ψ) and HL2(C, µ4/c) are holomor-

phically equivalent, so there exists a nowhere-zero holomorphic function φ on C

such that

e−ψ(z) =
µ4/c(z)

|φ(z)|2
.

Then

|φ(z)|2 =
µ4/c(z)

e−ψ(z)
=

c
4π
e−c

|z|2
4

e−ψ(z)
.

We have

|φ(z)| =
√
µ4/c(z)

e−ψ(z)
=
( c

4π

)1/2
exp

[1

2

(
− c |z|

2

4
+ ψ(z)

)]
. (3.1)

Suppose that the reproducing kernels for HL2(C, e−ψ) and HL2(C, µ4/c) are

Ke−ψ , Kµ4/c , respectively. By the property of holomorphic equivalence and the
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equation (3.1), it follows that

|Ke−ψ(z, w)|

= |φ(z)||φ(w)||Kµ4/c(z, w)|

=
c

4π
exp

[1

2

(
− c |z|

2

4
+ ψ(z)− c |w|

2

4
+ ψ(w)

)]
|Kµ4/c(z, w)|

=
c

4π
exp

[1

2

(
− c |z|

2

4
+ ψ(z)− c |w|

2

4
+ ψ(w)

)]∣∣∣ exp[〈z, w〉c/4]
∣∣∣

=
c

4π
exp

[1

2

(
− c |z|

2

4
+ ψ(z)− c |w|

2

4
+ ψ(w)

)]
exp[Re〈z, w〉c/4]

=
c

4π
exp

[1

2

(
− c

4
(|z|2 + |w|2 − 2Re〈z, w〉) + ψ(z) + ψ(w)

)]
=

c

4π
exp

[1

2

(
− c

4
|z − w|2 + ψ(z) + ψ(w)

)]
.

For simplicity, we write K(z, w) = Ke−ψ(z, w). Then

K(w,w) = 〈Kw, Kw〉ψ = ‖Kw‖2ψ

which implies that K(w,w) is nonnegative. Hence

|K(w,w)| = ‖Kw‖2ψ.

Thus

‖Kw‖2ψ =
c

4π
eψ(w)

‖Kw‖ψ =
( c

4π

)1/2
e
ψ(w)

2 .

Moreover,

|kw(z)| = |Kw(z)|
‖Kw‖ψ

=
|K(z, w)|
‖Kw‖ψ

=
( c

4π

)1/2
exp

[1

2

(
− c

4
|z − w|2 + ψ(z)

)]
.
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Lemma 3.4. Define a positive measure µ by

µ(E) =

∫
ϕ−1(E)

|u(z)|2e−ψ(z) dA(z),

where E is a Borel subset of C. Then∫
D(w,1)

eψ(z)dµ(z) ≤ 4π

c
e
c
4 Bϕ(|u|2)(w)

for all w ∈ C.

Proof. For each z ∈ D(w, 1), by Lemma 3.3, we have

|kw(z)|2 =
c

4π
exp

[
− c

4
|z − w|2 + ψ(z)

]
.

Since |z − w| < 1, we obtain an inequality

|kw(z)|2 ≥ c

4π
exp

[
− c

4
+ ψ(z)

]
.

Hence

c

4π
e−

c
4

∫
D(w,1)

eψ(z) dµ(z) ≤
∫
D(w,1)

|kw(z)|2d µ(z) ≤
∫
C
|kw(z)|2 dµ(z).

By the definitions of measure µ and the integral operator Bϕ(|u|2), we see that∫
C
|kw(z)|2 dµ(z) =

∫
ϕ−1(C)

|u(z)|2|kw ◦ ϕ(z)|2 e−ψ(z) dA(z)

≤
∫
C
|u(z)|2|kw ◦ ϕ(z)|2 e−ψ(z) dA(z)

= Bϕ(|u|2)(w).

Thus, we obtain the desired inequality:∫
D(w,1)

eψ(z) dµ(z) ≤ 4π

c
e
c
4 Bϕ(|u|2)(w).
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Theorem 3.5. Let ϕ and u be entire functions on C. Then uCϕ is a bounded

linear operator on HL2(C, e−ψ) if and only if Bϕ(|u|2) ∈ L∞(C).

Proof. First, suppose that uCϕ is bounded on HL2(C, e−ψ). Then

‖uCϕ(kw)‖2ψ ≤ L‖kw‖2ψ = L

for some constant L > 0 and for all w ∈ C. On the other hand,

‖uCϕ(kw)‖2ψ =

∫
C
|u(z)|2|kw(ϕ(z))|2e−ψ(z) dA(z)

=

∫
C
|u(z)|2 exp

(
− c

4
|ϕ(z)− w|2 + ψ(ϕ(z))

)
e−ψ(z) dA(z)

=

∫
C
|u(z)|2 exp

(
− c

4
|ϕ(z)− w|2 + ψ(ϕ(z))− ψ(z)

)
dA(z)

= Bϕ(|u|2)(w).

Thus, Bϕ(|u|2)(w) ≤ L for all w ∈ C. This implies that Bϕ(|u|2) ∈ L∞(C).

Conversely, by the definition of measure µ, we obtain

‖uCϕf‖2ψ =

∫
C
|u(z)|2|f(ϕ(z))|2e−ψ(z) dA(z) =

∫
C
|f(z)|2 dµ(z).

It follows from Lemma 3.2 that

‖uCϕf‖2ψ =

∫
C
|f(z)|2 dµ(z)

≤
∫
C
M eψ(z)

∫
D(z,1)

|f(w)|2e−ψ(w) dA(w) dµ(z)

= M

∫
C

∫
C
eψ(z) χD(z,1)(w) |f(w)|2e−ψ(w) dA(w) dµ(z)

where χD(z,1) is the characteristic function ofD(z, 1). Since χD(z,1)(w) = χD(w,1)(z),
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we have

‖uCϕf‖2ψ ≤M

∫
C

∫
C
eψ(z) χD(z,1)(w) |f(w)|2e−ψ(w) dA(w) dµ(z)

= M

∫
C

∫
C
eψ(z) χD(w,1)(z) |f(w)|2e−ψ(w) dA(w) dµ(z)

= M

∫
C

∫
C
eψ(z) χD(w,1)(z) |f(w)|2e−ψ(w) dµ(z) dA(w) (3.2)

= M

∫
C
|f(w)|2e−ψ(w)

[∫
C
χD(w,1)(z) eψ(z) dµ(z)

]
dA(w)

= M

∫
C
|f(w)|2e−ψ(w)

[∫
D(w,1)

eψ(z) dµ(z)

]
dA(w)

≤M

∫
C
|f(w)|2e−ψ(w)

[
4π

c
e
c
4Bϕ(|u|2)(w)

]
dA(w) (3.3)

=
4πM

c
e
c
4

∫
C
|f(w)|2e−ψ(w)Bϕ(|u|2)(w) dA(w)

≤ 4πM

c
e
c
4 ‖Bϕ(|u|2)‖∞

∫
C
|f(w)|2 e−ψ(w) dA(w) (3.4)

≤ 4πM

c
e
c
4 ‖Bϕ(|u|2)‖∞ ‖f‖2ψ.

Using Fubini’s theorem allows one to interchange order of the integration in (3.2).

We also use Lemma 3.4 in (3.3). Moreover, (3.4) follows from Bϕ(|u|2) ∈ L∞(C).

Hence uCϕ is a bounded linear operator on HL2(C, e−ψ).

In case ϕ(z) = z the operator uCϕ reduces to the multiplication operator, Mu.

We obtain the following corollary:

Corollary 3.6. Let u be an entire function on C. Then Mu is a bounded linear

operator on HL2(C, e−ψ), if and only if Bz(|u|2) ∈ L∞(C), where

Bz(|u|2)(w) =

∫
C
|u(w)|2 e−

c
4
|z−w|2 dA(z).
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