
Songklanakarin J. Sci. Technol. 

41 (3), 587-598, May – Jun. 2019 

 

 

 

Original Article 
 

 

Application of continuous and discrete optimal control  

to feeding of farm animals 
 

Sathaporn Puengpo1, Elvin James Moore1,2*, and Chanakarn Kiataramkul1 ,2 

 
1 Department of Mathematics, Faculty of Applied Science, 

King Mongkut's University of Technology North Bangkok, Bang Sue, Bangkok, 10800 Thailand 

 
2 Centre of Excellence in Mathematics,  

Commission on Higher Education, Ratchathewi, Bangkok, 10400 Thailand 

 
Received: 26 September 2017; Revised: 13 December 2017; Accepted: 16 January 2018 

 
 

Abstract 
 
An important problem in farm management is to feed animals in an optimal manner to achieve maximum food 

production subject to constraints. In this paper, we use optimal control to develop optimal feeding policies for sheep, swine, and 

shrimp.  We derive optimal control policies by three different methods: 1) continuous optimal control, 2) hybrid continuous 

optimal control with discretized feeding policy, and 3) discrete optimal control with discretized feeding policy. For sheep, the 

aim is to optimally feed pregnant sheep from gestation to birth of lamb to achieve a desired weight of lamb at the time of birth of 

the lamb. For swine and shrimp the aim is to achieve a desired weight at the time of sale. Data for animal growth from the Thai 

government and Thai Agricultural Research Stations was used to develop the models. Numerical solutions from the three optimal 

control methods were obtained and compared. 
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1. Introduction 
 

In this paper, we use optimal control models to find 

optimal methods for three animal feeding problems. In the 

first problem, we consider optimal methods for feeding sheep 

during pregnancy to produce new-born lambs of an optimal 

weight (Gatford et al., 2008; Kiataramkul, Wake, Ben-Tal & 

Lenbury, 2011; Puengpo, Kiataramkul & Moore, 2016). In the 

second problem, we consider optimal control methods for 

feeding swine in their post-weaning period to attain the most 

profitable weight at time of sale (Kiataramkul & Matkhao, 

2015; Puengpo et al., 2016; Thailand Ministry of Agriculture 

and Cooperatives, 2014). In the third problem, we consider 

optimal control methods for feeding shrimp to attain the most 

profitable weight at time of sale which occurs after 120 days 

(Thailand Ministry of Agriculture and Cooperatives, 2013). 

 
In this paper, we compared three different methods 

of formulating and solving the optimal control problem for the 

minimum cost of feeding sheep, swine, and shrimp. In the first 

formulation, we assumed that the feeding is a continuous 

process and the control is also a continuous variable. In this 

case, the standard continuous optimal control formalism, 

based on the Pontryagin maximum principle (Lenhart & 

Workman, 2007; Luenberger, 1979; Pontryagin, Boltyanskii, 

Gamkrelize, & Mishchenko, 1962), can be used to solve the 

optimal feeding problem. However, a continuous feeding 

policy is often not a practical policy for a farmer to follow. A 

farmer will usually feed a given constant amount of food in a 

given period of time, for example during a week or a month. 

Therefore, in the second and third formulations, we 

assumed that the feeding policy is a discrete policy. In the 

second formulation, which we call a hybrid method, we 

assumed that the total feeding period is divided into 

subintervals and the control must have a constant value over 

each subinterval. However, we assumed that the state and co-

state equations for the model are continuous ordinary 
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differential equations. In this formulation, we can use the 

continuous optimal control formulation and the Pontryagin 

maximum principle. In the third formulation, we considered a 

fully discrete optimal control problem (Lenhart & Workman, 

2007; Luenberger, 1979) in which the control is discrete and 

the state and co-state equations are difference equations. 

The paper is organized as follows. In section 2, we 

summarize the theory for the continuous, hybrid, and discrete 

formulations of the optimal control problems and the methods 

of solution. In section 3, we describe the three optimal control 

models for the sheep feeding problem for the growth rate of 

pregnant sheep as a function of age and food intake modeled 

by the logistic equation (Giordano, Fox, & Horton, 2014) and 

the Michaelis-Menten relationship (Murray, 2007). In section 

4, we repeat the discussion in section 3 for the swine feeding 

problem for growth rate as a function of age and food intake 

modeled first by the logistic equation and then by the 

Gompertz equation (Zeide, 1993) and a Michaelis-Menten 

relationship. In section 5, we repeat the discussion in section 3 

for the shrimp feeding problem for growth rate as a function 

of age and food intake modeled by the Gompertz equation and 

the Michaelis-Menten relationship. In section 6, we show and 

compare the results of numerical calculations for the three 

optimal control models for the sheep, swine and shrimp 

feeding problems. For each animal, we use real data in the 

numerical calculations. Finally, in section 7, we give con-

clusions. 

Results for the optimal feeding policy for the 

continuous model were published previously by one of the 

authors (C.K) and her collaborators for the logistic growth 

model for sheep (Kiataramkul et al., 2011) and for the logistic 

and Gompertz growth models for swine (Kiataramkul & 

Matkhao, 2015). Preliminary results for the continuous and 

hybrid models for sheep and swine feeding were also reported 

previously by the current authors (Puengpo et al., 2016). 

However, we briefly summarize these results in this paper as 

we wish to compare the results from the continuous, hybrid, 

and discrete models for feeding sheep, swine, and shrimp. 

 

 

2. Optimal Control 
 

2.1 Continuous optimal control, Pontryagin maximum principle (Lenhart & Workman, 2007; Luenberger,  

      1979; Pontryagin et al., 1962) 
 

We consider optimal control problems of the form: 

 

Minimize 
0

[ ] ( , ( ), ( )) ,
T

J u g t x t u t dt  
 

subject to  (t, ( ), ( )),
dx

f x t u t
dt

                                                                                                                             (1) 

  

where T is a fixed time, 1 2( , ,..., ) ,T

nx x x x  and with boundary conditions of either (0)jx and ( )jx T  having given 

values or having free values. The Pontryagin maximum principle introduces Hamiltonian ( , , , )H t x u and costate variables 

( )t  defined as the solution of co-state differential equations given by 

 

1

( , , , ) ( , , ) ( , , ),
n

j j

j

H t x u g t x u f t x u 


 
 

 

, 1,2,...
j

d H
j

dt x

 
  


                                  (2) 

 

with boundary conditions: ( )T  is free if (T) Tx x   is fixed and ( ) 0T   if ( )x T  is free.  In the applications in this paper, we 

assumed no upper or lower bounds on the values of the control variables and we are attempting to minimize the Hamiltonian with 

respect to the control variables.  In this case, we can find the minimum of the Hamiltonian from the condition  0
H

u






 and check 

that the second derivative 
2

2
0

H

u






 at the optimal control 
*( )u t . Using the Pontryagin maximum principle for the Hamiltonian 

to find a value for the control 
*( )u t , we can numerically solve the boundary value problem for the state and co-state  equations 

with the 4bvp c program in MATLAB. 



 S. Puengpo et al. / Songklanakarin J. Sci. Technol. 41 (3), 587-598, 2019 589 

2.2 Hybrid optimal control 
 

Minimize 
0

[ ] ( , ( ), ( )) ,
T

J u g t x t u t dt  
 

subject to

  

(t, ( ), ( )),
dx

f x t u t
dt

                                                 (3) 

 

where the interval [0, ]T  is assumed to be divided into N subintervals of length T
h

N
 and (t)u is assumed to be constant over 

each subinterval. For this kind of control problem, the Pontryagin maximum principle can be used because the state and co-state 

equations are still ordinary differential equations, but with the extra boundary conditions that the state and co-state variables must 

be continuous at the ends of each subinterval. 

As for the continuous case, we can numerically solve the boundary value problem for the state and co-state equations 

with the 4bvp c  program in MATLAB. 

 

2.3 Discrete optimal control 
 

We consider discrete optimal control problems of the form (Lenhart & Workman, 2007; Luenberger, 1979): 

 

 Minimize 
1

0

[ ] ( , ( ), (t)),
T

k

J u g t x t u





 

  

subject to (t 1) ( , ( ), ( ))x f t x t u t  .                                                                                                                            (4) 

 

The Pontryagin maximum principle for the discrete-time model is defined as follows (Lenhart & Workman, 2007; Luenberger, 

1979): 

We define the Hamiltonian as 

 

1

( ) ( , ( ), ( )) ( 1) ( , ( ), ( ))
n

j j

j

H t g t x t u t t f t x t u t


    

 

for 0,1,2,..., 1,t T   and then the necessary conditions on the state and co-state variables are the difference equations: 

 

( 1) ( , ( ), (t)),x t f t x t u 
                   

(5) 

 

( , ( ), ( 1), ( ))
( ) , 1,2,...,

( )
j

j

H t x t t u t
t k t

x t




 
 


                 

(6)
 

 

for ( ), 0,1,2,..., 1u t k T  , and with boundary conditions: ( )T  is free if (T) Tx x   is fixed and ( ) 0T   if ( )x T  is 

free. We can also check the second-derivative condition to distinguish between optimal controls 
*( )u t  that maximize and those 

that minimize the objective functional since 

2

2
0

H

u





 at 

*( )u t  implies maximization and   
2

2
0

H

u






 at 
*( )u t  implies 

minimization. 
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3. Sheep Feeding 
 

3.1 Continuous and hybrid model 
 

The model of fetal growth is based on experimental data of sheep singleton pregnancies for 72 days after the 

differentiated fetus is formed (Gatford et al., 2008; Kiataramkul et al., 2011). As stated in Kiataramkul et al. (2011), the optimal 

control problem is:   

 

Minimize       
0

[ ] ( ) ,
T

J u u t dt   

         

subject to

        

0

0

1 ,

.

dx rxu x

ydt u L
K

y L

dy
u y

dt





 
 
  

    

 

                                                                     
(7)

 

The definitions of the variables and parameters in the model and for the parameter values used in the numerical 

calculations in section 6 are given in Table 1.  The parameter values in Table 1 were obtained by Kiataramkul et al. (2011) as 

best fits for the data on the fetal growth rate of sheep published in Gatford et al. (2008). Kiataramkul et al. tested a straight-line 

function, a logistic growth function, a Gompertz growth function, and an exponential function as fits to the Gatford et al. data. 

They found that the logistic function with the parameter values in Table 1 gave the best fit of the four functions tested. Further 

details can be found in Kiataramkul et al. (2011).  
 

Table 1. Sheep Feeding (data from Gatford et al., 2008; Kiataramkul et al., 2011). 
 

Parameters Description Values 

   

x(t)
 

Fetal weight of lamb at time t kg 

u(t)
 

Food given to pregnant sheep at time t kg.day-1 

y(t) Cumulative food intake at time t kg 

x(0)  Initial fetal weight of lamb 0.2 kg 

T Time of birth of lamb 72 days 

x(T) Weight of lamb at birth 5.5 kg 

r > 0 Average growth rate 0.07 day-1 

β > 0 α
 

Discount factor for extent that cumulative food intake is influenced by the past 0.12 day-1 

α > 0  Factor indicating degree to which ultimate weight of lamb is determined by food given 0.1 kg
 

K0

 
Capacity for weight of lamb 7 kg

 

L, L0

 
Positive constants which are determined from data 0.09 kg. day-1, 10 kg.

 

   

 

In the model in equation (7), it is assumed that the growth rate is given by the logistic-type equation 

0

0 0

( )
( ) rt

x K
x t

x K x e


 
 and the Michaelis-Menten relationship u

u L
 (Murray, 2001). 

The Hamiltonian and co-state equations can be computed from equation (1) (Kiataramkul et al., 2011). The boundary 

values on the state variables x(t) and y(t)  and the two co-state variables λ1(t ) and λ2(t ) are x(0)=0.2 kg, x(72) = 5.5 kg, y(0)=0, 

y(72) free, λ1(72)  free, and λ2(72)=0. 

For the hybrid model, the formulation is similar except that the control is discrete and the condition that the state and 

co-state variables are continuous functions of t must be imposed at each point of discontinuity in u.  
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3.2 Discrete model 
 

The equivalent discrete optimal control problem to the continuous problem in (7) is as follows: 

  

 Minimize 
1

0

[ ] ( ),
T

t

J u u t




  

 subject to 

0

0

( ) ( ) ( )
( 1) ( ) 1 ,

( )( )

( )

hrx t u t x t
x t x t

y tu t L
K

y t L



 
 
    

    

                                              (8) 

   

( 1) ( ) ( ( ) ( )).y t y t h u t y t     

 

The Hamiltonian function and co-state equations are defined as: 

  
1

1 2

0

( , , , ) ( ) ( 1) ( 1) ( 1) ( 1),
T

t

H t x u u t t x t t y t  




         

1 1

0

0

( ) 2 ( )
( ) ( 1) 1 1 ,

( )( )

( )

hru t x t
t t

y tu t L
K

y t L

 


  
  
     

      

                                               (9) 

2

0
2 1 2

2

0 0

0

( ) ( )
( ) ( 1) 1 (1 ),

( )
( ( ) )( ( ) )

( )

hr L u t x t
t t h

y t
K u t L y t L

y t L


  



 
 
 

     
          

 

with boundary conditions (0) 0.2x  kg, (72) 0.2x  kg, (0) 0y  and with y(72), 
1(0),

1(72),  
2 (0)  free. We solve for 

optimal 
*u  from: 

1 2

0

0

( ) ( )
1 ( 1) 1 ( 1) 0

( )( )

( )

H hrLx t x t
t h t

y tu u t L
K

y t L

 


 
 
       

     

                                           (10) 

 

to obtain the optimal control as: 

 

* 1

2
0

0

( )
( ) 1 .

( )1

( )

hrLx x t
u t L

y th
K

y t L





 
 
    

    

               (11) 

 

As usual, we can check that *( )u t  minimizes the Hamiltonian by checking that 
2

2
0.

H

u





 After substituting the optimal *u  into 

the state and co-state difference equations, we solve the system of difference equations by an iterative process until convergence 

occurs. 
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4. Swine Feeding  
 

The definitions of the variables and parameters and for the values of parameters used in the numerical calculations in 

section 6 are given in Table 2. The parameter values in Table 2 were obtained by Kiataramkul & Matkhao (2015) as best fits the 

data on the growth rate of swine obtained from the Thailand Ministry of Agriculture and Cooperatives (2014). Kiataramkul & 

Matkhao tested a straight-line function, a logistic growth function, a Gompertz growth function, and an exponential function that 

fit the Ministry of Agriculture and Cooperatives data. They found that the Gompertz function with the parameter values in Table 

2 gave the best fit of the four functions tested. However, they decided to test both the Gompertz and logistic growth functions to 

compare the optimal controls. Further details can be found in Kiataramkul & Matkhao (2015). 

 
Table 2. Swine Feeding (data from Thailand Ministry of Agriculture and Cooperatives [2014]). 

 

Parameters Description Values 

   

x(t) Weight of swine at time t kg 

u(t) Food given to swine at time t kg.day-1 

x(0) Initial weight of swine at weaning 6.5 kg 

T Time for sale of swine after weaning 140 days 

x(T) Desired weight of swine at sale 100 kg 

r > 0 Average growth rate (Gompertz) 0.01191 day-1 

(Logistic) 0.03275 day-1 

β > 0 α
 

Discount factor for extent that cumulative intake is influenced by the past 0.7129 kg-1.day 

α > 0
 

Factor indicating degree to which   ultimate weight is determined by food given 0.8497 kg-1.day 

K Capacity of swine weight (Gompertz) 188.6 kg. 

(Logistic) 113.4 kg. 
   

 

4.1 Continuous and hybrid logistic growth models 
 

Minimize  

0

[u] ,

T

J udt 
 

 

subject to 1 ,
1

dx rx u x

dt u K





 
  

  

                 (12) 

 

In this model, it is assumed that the growth rate of the swine is given by the logistic growth function 1
x

rx
K

 
 

 

 and 

the Michaelis-Menten relationship .
1

u

u




 For the swine model in (12), the Hamiltonian and co-state equations are:  

 

 

 
2

*

( , , , ) 1 ,
1

2
1 ,

1

1 1 0,
1

1 1

,

x u
H t x u u rx

K u

d x u
r

dt K u

H x
rx

u K u

x
rx

K
u


 



 









 



 
   

 

 
   

 

  
    

   

 
   

 


                (13) 

 

The boundary conditions on the state equations are (0) 6.5x  kg and (140) 100x  kg, and the initial and final values for the 

co-state variable are free values. We checked that 
*u  gives minimum of H  from the second derivative 

2

2
0

H

u





. 
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For the hybrid model, the formulation is similar except that the control is discrete and the condition that the state and 

co-state variables are continuous functions of t must be imposed at each point of discontinuity in u. 

 

4.2 Discrete logistic growth model 
 

The discrete model and the corresponding Hamiltonian, co-state equation, boundary conditions, and optimal u for the 

optimal swine feeding problem in subsection 4.1 are as follows: 

 

Minimize 
139

0

[ ] ,
t

J u u


  

 

subject to 
( ) ( )

( 1) ( ) ( ) 1 ,
1 ( )

x t u t
x t x t hrx t

K u t





 
    

 
 

 

 

 
2

*

( ) ( )
( , , , ) ( ) ( ) 1 ,

1 ( )

( ) 2 ( )
( ) ( 1) 1 ,

1 ( )

( )
1 ( 1) ( ) 1 0,

1 ( )

( )
1 1

,

x t u t
H t x u u t hrx t

K u t

hr u t x t K
t t

K u t

H x t
t hrx t

u K u t

x t
hrx

K
u


 




 












 
   

 

  
     

  
     

   

 
   

 


 
 

with boundary conditions (0) 6.5x   kg, (140) 100x  kg and with (0) , (140)  having free values. 

 

4.3 Continuous Gompertz growth model 
 

 

140

0

2

*

minimize   [ ] ,

subject to  log ,
1

log 1 ,
1

1 log 0,
1

( ) log 1

( ) ,

J u udt

dx K u
r x

dt x u

d u k
r

dt u x

H K
rx

u x u

K
rx t

x
u t





 








 





 
  

 

  
   

   

  
   

   

 





 

 

with boundary conditions (0) 6.5x  kg, (140) 100x  kg and with (0) , (140)  having free values. 

 

4.4 Discrete Gompertz growth model 
 

The discrete model and the corresponding Hamiltonian, co-state equation, boundary conditions, and optimal u are as 

follows: 
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139

0

minimize  [ ] ,

( )
subject to  ( 1) ( ) ( ) log ,

( ) 1 ( )

( )
( , , , ) ( ) ( 1) ( ) ( ) log ( ) ,

( ) 1 ( )

( )
( ) ( 1) 1 log 1

1 ( ) ( )

t

J u u

K u t
x t x t hrx t x

x t u t

K u t
H t x u u t t x t hrx t x t

x t u t

u t K
t t hr

u t x t






 




 







 
    

 

  
     

  

  
     

   



 
2

*

,

1 ( 1) ( ) log ( ) 0,
( ) 1 ( )

( ) log 1
( )

( ) .

H K
t hrx t x t

u x t u t

K
rx t

x t
u t






 





 
    

  

 



             (14)

 
  

The boundary conditions are again (0) 6.5x  kg and (140) 100x  kg, and with (0) , (140)  having free values. 

 

5.  Shrimp Feeding 
 

For the shrimp model, we assumed that growth rate, as a function of age and food intake, can be modeled by the 

Gompertz equation and the Michaelis-Menten relationship. The mathematical forms of the optimal control problems for the 

shrimp feeding are then the same as for the continuous and hybrid Gompertz growth models for swine feeding in section 4.1 and 

for the discrete Gompertz growth model for swine feeding in section 4.2. The definitions of the variables and parameters and the 

values of the parameters used in the numerical calculations in section 6 are given in Table 3. The parameter values were obtained 

by the present authors as the best fits to the data on the growth rate of Vannamei shrimp obtained from the Thailand Ministry of 

Agriculture and Cooperatives (2013). It was found that the Gompertz growth function with the parameter values in Table 3 gave 

the best fit. 
 

Table 3. Shrimp Feeding (data from Thailand Ministry of Agriculture and Cooperatives [2013]). 

 

Parameters Description Values 

   

x(t)
 

Weight of shrimp at time t g 

u(t)
 

Food given at time t g.day-1 

x(0) Initial weight of shrimp 0.01 g 

T Time of sale of shrimp 120 days 

x(T) Desired weight of shrimp at sale 19 g 

r > 0 Average growth rate 0.03117 day-1 

β > 0 α
 

Discount factor for extent that cumulative intake is influenced by the past 1.183 g-1.day 

α > 0
 

Factor indicating degree to which   ultimate weight is determined by food given 0.6765 g-1.day 

K Capacity of animal weight 21.13 g
 

   

 
 

6. Numerical Results 
 

We give numerical results for the three optimal 

control methods for the sheep, swine, and shrimp feeding 

problems using real data for sheep obtained from Gatford et 

al. (2008) and Kiataramkul et al. (2011) and real data for 

swine and shrimp obtained from the Thailand Ministry of 

Agriculture and Cooperatives (2013, 2014). We used the 

Matlab program bvp4c to find the optimal control for the 

continuous and hybrid models and we wrote Matlab computer 

programs to solve the discrete control problems. 

6.1 Sheep feeding 
 

For pregnant sheep, our target was to use 

experimental data to find the optimal feeding policies to 

produce new-born lambs of an optimal weight. The data used 

to compute the optimal control policies are shown in Table 1. 

For pregnant sheep, we found that the total amounts of food 

required over 72 days were 127.1 kg for continuous, 127.03 

kg for hybrid, and 131.23 kg for discrete models. These 

results showed that the optimal value for the total food would 

not appreciably change by replacing a continuous feeding 
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policy by a discrete policy if the growth rates could be 

modeled by a differential equation. However, the optimal 

value for the total food estimated from a difference equation 

approximation to the differential equation growth equation 

was larger than from the differential equation. 

For continuous control, the results showed that we 

should slightly increase the amount of food from 1.72 kg per 

day given on the first day to a maximum of 1.82 kg per day at 

day 65 and then decrease the food to approximately 1.71 kg 

per day on day 72 (Figure 1). 

 

 
 

Figure 1. Continuous pregnant sheep feeding. 

 

For the hybrid control (Figure 2), the total feeding 

time was divided into 9 intervals. In this strategy of feeding, 

the same amount of food was given for a total of 8 days and 

then changed for the next 8 days. A comparison of the 

continuous and hybrid feeding strategies showed that they 

follow a qualitatively similar pattern, but with differences in 

detail. 

 

 
 

Figure 2. Hybrid pregnant sheep feeding. 

 

For the discrete optimization results, the optimal 

feeding pattern was qualitatively similar to the continuous and 

hybrid patterns, but with a lower amount of food given on the 

first day of 1.1 kg per day and then rising to a maximum of 3 

kg per day at day 68 (Figure 3). In Figure 3, the discrete 

feeding intervals were assumed to be one day. 

 
 

Figure 3. Discrete pregnant sheep feeding. 

 

6.2 Swine feeding 
 

For post-weaned pigs, the target was to minimize 

the feed to get a specified optimal weight at the day of sale. 

For swine, we considered two different growth rates: logistic 

and Gompertz. In each case, we used real data from the 

Thailand Ministry of Agriculture and Cooperatives (2014) 

(Table 1 of Kiataramkul & Matkhao 2015).  The values of the 

parameters used are shown in Table 2. The results for the 

logistic and Gompertz models for the three different optimal 

control methods are shown in Figures 4, 5, 6, 7, 8, and 9. We 

found that, for each model, the continuous, hybrid, and 

discrete models gave similar amounts of total food required, 

but with some differences in detail, with the logistic model 

giving a total of 81.54 kg and the Gompertz model giving a 

total of 76.4 kg. 

For continuous swine feeding in the Gompertz 

model, the results showed that we should increase the amount 

of food in a monotonic manner (Figure 4). However, in 

practice the value of the control is approximately constant 

during the feeding period. 

 

 
 

Figure 4. Continuous swine feeding – Gompertz. 

 

For the hybrid control, the total feeding time was 

divided into four intervals (Figure 5). In this strategy, the 

same amount of food was given for 35 days and then changed 
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for the next 35 days. A comparison of the continuous control 

and hybrid control shows that the hybrid control gives a step-

wise reduction in optimal feeding in the second half of the 

feeding period, whereas the continuous control is a 

monotonically increasing function. However, in practice the 

value of the hybrid control is approximately constant during 

the feeding period. 

For the discrete swine feeding results in the 

Gompertz model, the optimal feeding strategy is qualitatively 

similar to the continuous case (Figure 6). The results in Figure 

6 were obtained by assuming that the discrete time steps were 

one day.  

A comparison of the continuous results for the 

Gompertz model in Figure 4 with the continuous results for 

the logistic model in Figure 7 showed that the main difference 

is that the logistic feeding decreases at the end of the feeding 

period, whereas the Gompertz feeding is monotonically 

increasing. 

Comparing the hybrid results for the Gompertz 

model in Figure 5 with the hybrid results for the logistic 

model in Figure 8, we see that the feeding patterns are 

qualitatively similar, but with some differences in detail. 

Comparing the discrete results for the Gompertz 

model in Figure 6 with the results for the logistic model in 

Figure 9, we see that the feeding patterns are qualitatively 

similar, but with a higher feeding rate in the logistic model 

than in the Gompertz model. In Figure 9, the discrete feeding 

intervals were assumed to be one day. 
 

 
 

Figure 5. Hybrid swine feeding– Gompertz. 
 

 
 

Figure 6. Discrete swine feeding– Gompertz.  

 
 

Figure 7. Continuous swine feeding– Logistic. 

 

 
 

Figure 8. Hybrid swine feeding– Logistic. 

 

 
 

Figure 9. Discrete swine feeding– Logistic. 

 
6.3 Shrimp feeding 

 

For post-larvae shrimp, the target was to minimize 

the feed to get a specified optimal weight of shrimp on the day 

of sale. The values of the parameters used are shown in Table 

3. For Vannamei-shrimp, we considered the three types of 

optimal control, i.e. continuous, hybrid, and discrete, and 

found that the total feeds for continuous, hybrid, and discrete 
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were 26.7 g, 25.37 g, and 25.83 g, respectively. The optimal 

control policies for the continuous, hybrid, and discrete 

models are shown in Figures 10-12. 

The results for the continuous feeding in Figure 10 

show that, except for the slight dip at the start, there is a 

monotonic increase in the feeding rate in this Gompertz 

growth model. This pattern is qualitatively similar to the 

results in the Gompertz swine feeding model (Figure 4). 

However, there was a much bigger change in feeding rates for 

the shrimp model than the swine feeding model. 
 

 
 

Figure 10. Continuous shrimp feeding. 
 

 
 

Figure 11. Hybrid shrimp feeding. 
 

 
 

Figure 12. Discrete shrimp feeding. 

The results for the hybrid and discrete shrimp 

feeding demonstrated that the feeding patterns were 

qualitatively similar to the continuous results with some 

differences in detail (Figures 11 and 12). In Figure 12, the 

discrete feeding intervals were assumed to be one day. 

 

6. Discussion and Conclusions 
 

We have used optimal control theory to find optimal 

feeding policies for pregnant sheep, post-weaned swine, and 

post-larvae period shrimp. Our objective for all animals was to 

minimize the total feed during a specified time. We have used 

three different optimal control methods: continuous, hybrid, 

and discrete. For each animal, we first considered a con-

tinuous feeding policy. However, a continuous feeding policy 

is not a practical policy for a farmer to follow. A farmer will 

usually feed a given constant amount in a period of time, for 

example during a week or a month. In the hybrid feeding 

strategy, we divided the feeding period into subintervals and 

assumed that the feed was constant over each subinterval. 

However, we assumed that the growth rate of an animal could 

be modeled by a continuous differential equation. For both the 

continuous and the hybrid models, the continuous form of the 

Pontryagin maximum principle could be used. However, for 

the hybrid case, extra boundary conditions of weight and co-

state variable values that were continuous at the boundary of 

each sub-interval were required. 

We developed computer programs in Matlab for 

each model. For both continuous and hybrid cases, we used 

the Matlab boundary value problem solver bvp4c to compute 

the optimal controls. 

For the discrete-time optimal control case, we 

assumed that the feeding was constant over subintervals of the 

total period and also assumed difference equations for the 

growth rates. In this case, we used a discrete-time version of 

the Pontryagin maximum principle. We again wrote programs 

in Matlab to solve the systems of equations. 

Our numerical results showed that the optimal 

feeding policies for the continuous and hybrid models were 

approximately the same and that the discrete results were also 

not appreciably different. Therefore, the results showed that 

the discrete feeding policies discussed in this paper can be 

used instead of a continuous feeding policy with very similar 

total feeding costs. We believe that optimal control can be a 

useful practical method to determine reasonable optimal 

feeding policies for animals. 
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