

Songklanakarin J. Sci. Technol. 41 (2), 471-482, Mar. - Apr. 2019

Review Article

On fuzzy quasi-prime ideals in near left almost rings

Pairote Yiarayong

Department of Mathematics, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Mueang, Phitsanulok, 65000 Thailand

Received: 16 March 2017; Revised: 20 October 2017; Accepted: 12 December 2017

Abstract

In this investigation we studied fuzzy quasi-prime, weakly fuzzy quasi-prime, fuzzy completely prime and weakly fuzzy completely prime ideals in nLA-rings. Some characterizations of fuzzy quasi-prime and weakly fuzzy quasi-prime ideals were obtained. Moreover, we investigated relationships between fuzzy completely prime (weakly fuzzy completely prime) and fuzzy quasi-prime (weakly fuzzy quasi-prime) ideals in nLA-rings.

Keywords: nLA-ring, fuzzy quasi-prime, fuzzy completely prime, weakly fuzzy quasi-prime, weakly fuzzy completely prime

1. Introduction

Let *N* be a non-empty set. A fuzzy subset of *N* is, by definition, an arbitrary mapping $f: N \rightarrow [0,1]$, where [0,1]is the usual interval of real numbers. In 1965, Zadeh (Zadeh, 1965) introduced the concept of fuzzy subset. Abou-Zaid (Abou Zaid, 1991) introduced the notion of a fuzzy subnearring, and studied fuzzy left (right) ideals of a near-ring, and gave some properties of fuzzy prime ideals of a near-ring. Birkenmeier and Heatherly (Birkenmeier & Heatherly, 1990) showed that 3-prime (3-semiprime) ideals in an LSD or RSD near-ring are also completely prime (completely semi-prime). In (Birkenmeier & Heatherly, 1989), these authors proved that 3-prime ideals in a medial near-ring are also completely prime.

*Corresponding author

Yusuf in (Yusuf, 2006) introduced the concept of a left almost ring (LA-ring). A non-empty set R with two binary operations "+" and "•" is called a left almost ring, if (R,+) is an LA-group, (R,\cdot) is an LA-semigroup and distributing "•" over "+" holds. Further in (Shah, Ali, & Rehman, 2011a) Shah and Rehman generalize the notion of a commutative semigroup rings into LA-rings, and also generalized the notion of an LA-ring into a near left almost ring. A near left almost ring N is a LA-group under "+", an LA-semigroup under "•" and has left distributive property of "•" over "+". Shah *et al.* (2011b) asserted that a commutative ring $(R,+,\cdot)$ we can always generate an LA-ring (R,\oplus,\cdot) by de-fining, for $a, b \in R, a \oplus b = b - a$ and $a \cdot b$ as in the ring. In 2017, the authors introduced the concept of fuzzy subsets in nLA-rings.

In this study we followed the lines adopted in (Abou Zaid, 1991; Shah *et al.*, 2011) and established the notion of

Email address: pairote0027@hotmail.com

fuzzy subsets of nLA-rings. Specifically, we characterize the fuzzy quasi-prime, fuzzy completely prime and weakly fuzzy quasi-prime ideals in nLA-rings. Moreover, we investigated relationships between fuzzy completely prime and weakly fuzzy quasi-prime ideals in nLA-rings.

2. Preliminaries

This section lists some basic definitions and concepts of nLA-rings that are also used with fuzzy subsets in this article. They are as follows:

Definition 2.1 (Kazim & Naseeruddin, 1978) A groupoid *S* is called a left almost semigroup (simply an LA-semigroup) if it satisfies the left invertive law: (ab)c = (cb)a, for all $a, b, c \in S$.

Example 2.2 (Mushtaq & Yusuf, 1978) Define a mapping $Z \times Z \rightarrow Z$ by $a \cdot b = b - a$, for all $a, b \in Z$ where "—" is a usual subtraction of integers. Then (Z, \cdot) is an LA-semigroup.

Definition 2.3 (Mushtaq & Kamran, 1996) An LA-semigroup (G, +) is called a left almost group (simply an LA-group), if there exists left identity $0 \in G$ (that is 0 + a = a, for all $a \in G$), and for all $a \in G$ there exists $-a \in G$ such that a + (-a) = 0 = -a + a.

Definition 2.4 (Shah *et al.*, 2011b) Let (N, +) be an LAgroup. Then N is said to be a near left almost ring (or simply an nLA-ring), if there exists a mapping $N \times N \mapsto N$ (the image of (x, y) is denoted by xy) satisfying the following conditions;

1.
$$x(y+z) = xy + xz;$$

2. $(xy)z = (zy)x$, for all $x, y, z \in N$

Example 2.5 (Shah *et al.*, 2011b) Let $(F, +, \cdot)$ be a field. Then (F, \oplus, \cdot) is an nLA-ring on defining the binary operations as: for $x, y \in F, x \oplus y = y - x$ and

$$x \cdot y = \begin{cases} 0 & ; x = 0 \text{ or } y = 0 \\ yx^{-1} & ; \text{otherwise.} \end{cases}$$

Let N be an nLA-ring. If S is a non-empty subset of N and S is itself an nLA-ring under the binary operation induced by N, then S is called an nLA-subring of N (Shah et al., 2011b). An LA-subring I of N is called a left ideal of N if $NI \subseteq I$ and I is called a right ideal of N if for all $m, n \in N$ and $i \in I$ such that $(i+m)n-mn \in I$ and I is called an ideal of N if I is both a left and a right ideal of N (Shah et al., 2011b). A left ideal P of an nLA-ring N is said to be quasi-prime ideal of N if and only if $AB \subseteq P$ implies either $A \subseteq P$ or $B \subseteq P$ for any left ideals A, B of N and left ideal P is called weakly quasi-prime if $\{0\} \neq AB \subseteq P$ implies either $A \subseteq P$ or $B \subseteq P$ for any left ideals A, B of N. A left ideal P is called completely quasi-prime if $a, b \in N, ab \in P$ implies either $a \in P$ or $b \in P$ and left ideal P is called weakly completely quasi-prime if $a, b \in N, 0 \neq ab \in P$ implies either $a \in P$ or $b \in P$. It can be easily seen that a completely quasi-prime (weakly completely quasi-prime) ideal of an nLA-ring with left identity N is quasi-prime (weakly quasi-prime).

A function f from N to the unit interval [0,1] is a fuzzy subset of N (Zadeh, 1965). A nLA-ring N itself is a fuzzy subset of N such that N(x) = 1, for all $x \in N$, denoted also by N. Let f and g be two fuzzy subsets of N(Yairayong, 2017). Then the inclusion relation $f \subseteq g$ is defined $f(x) \le g(x)$, for all $x \in N$. $f \cap g$ and $f \cup g$ are fuzzy subsets of N defined by

$$(f \cap g)(x) = \min\{f(x), g(x)\}, (f \cup g)(x) = \max\{f(x), g(x)\}$$

for all $x \in N$. More generally, if $\{f_{\alpha} : \alpha \in \beta\}$ is a family of fuzzy subsets of N, then $\bigcap_{\alpha \in \beta} f_{\alpha}$ and $\bigcup_{\alpha \in \beta} f_{\alpha}$ are defined as follows:

$$\left(\bigcap_{\alpha\in\beta}f_{\alpha}\right)(x) = \bigcap_{\alpha\in\beta}f_{\alpha}(x) = \inf\left\{f_{\alpha}(x):\alpha\in\beta\right\},$$
$$\left(\bigcup_{\alpha\in\beta}f_{\alpha}\right)(x) = \bigcup_{\alpha\in\beta}f_{\alpha}(x) = \sup\left\{f_{\alpha}(x):\alpha\in\beta\right\}$$

and will be the intersection and union of the family $\{f_{\alpha} : \alpha \in \beta\}$ of fuzzy subset of N (Yairayong, 2017). The product $f \circ g$ (Yairayong, 2017) is defined as follows;

$$(f \circ g)(x) = \begin{cases} \bigcup_{x=yz} \min\{f(y), g(z)\} & ; \exists y, z \in N, \text{such that } x = yz \\ 0 & ; \text{otherwise} \end{cases}$$

A fuzzy subset f of N is called a fuzzy nLA-subring of N if $f(x-y) \ge \min\{f(x), f(y)\}$ and $f(xy) \ge \min\{f(x), f(y)\}$, for all $x, y \in N$ (Yairayong, 2017). A fuzzy nLA-subring f of an nLA-ring N is called a fuzzy left ideal of N if $f(xy) \ge f(y)$ for all $x, y \in N$. A fuzzy right ideal of N is a fuzzy nLA-subring f of N such that $f((x+y)z-yz) \ge f(x)$, for all $x, y, z \in N$. A fuzzy ideal of N is a fuzzy nLA-subring f of N such that $f(xy) \ge f(y)$ and $f((x+y)z-yz) \ge f(x)$, for all $x, y, z \in N$ (Yairayong, 2017).

Lemma 2.6 (Yairayong, 2017) Let N be an nLA-ring. If f, g, h are fuzzy subsets of N, then $(f \circ g) \circ h = (h \circ g) \circ f$.

Lemma 2.7 (Yairayong, 2017) For any fuzzy subsets f, g, h and k of an nLA-ring with left identity N, the following statements are true.

f ∘ (g ∘ h) = g ∘ (f ∘ h).
 (f ∘ g) ∘ (h ∘ k) = (k ∘ h) ∘ (g ∘ f).
 (f ∘ g) ∘ (h ∘ k) = (f ∘ h) ∘ (g ∘ k).
 N ∘ N = N.

Lemma 2.8 (Yairayong, 2017) Let f be a fuzzy subset of an nLA-ring N. Then the following properties hold.

- 1. $f(0) \ge f(x)$ for all $x \in N$.
- 2. *f* is a fuzzy nLA-subring of *N* if and only if $f \circ f \subseteq f$ and $f(x-y) \ge \min\{f(x), f(y)\}$ for all $x, y \in N$.
- 3. *f* is a fuzzy left ideal of N if and only if $N \circ f \subseteq f$.

Lemma 2.9 (Yairayong, 2017) Let I be a non empty subset of an nLA-ring $N, t \in (0,1]$ and let tf_I be a fuzzy set of N such that

mai

 $tf_I(x) = \begin{cases} t & ; x \in I \\ 0 & ; \text{otherwise.} \end{cases}$

Then the following properties hold.

- 1. *I* is an nLA-subring of *N* if and only if tf_I is a fuzzy nLA-subring of *N*.
- 2. *I* is a left ideal (right ideal, ideal) of *N* if and only if tf_I is a fuzzy left ideal (fuzzy right ideal, fuzzy ideal) of *N*.

Definition 2.10 Let N be an nLA-ring, $x \in N$ and $t \in (0,1]$. A fuzzy point X_t of N is defined by the rule that

 $x_t(y) = \begin{cases} t & ; x = y \\ 0 & ; \text{otherwise.} \end{cases}$

It is accepted that X_t is a mapping from N into [0,1] then a fuzzy point of N is a fuzzy subset of N. For any fuzzy subset f of N, we also denote $x_t \subseteq f$ by $x_t \in f$ in sequel. Clearly, $tf_x = x_t$.

Lemma 2.11 Let A, B be any non empty subset of an nLA-ring N. Then for any $t \in (0,1]$ the following statements are true.

1.
$$tf_A \circ tf_B = tf_{AB}$$

2. $tf_A = \bigcup_{a \in A} a_i$.

Proof. Straightforward.

3. Fuzzy quasi-prime ideals of nLA-rings

The following theorems seem to play important roles in the study fuzzy completely prime and fuzzy quasi-prime ideals in nLA-rings; they will be used frequently, and normally we shall make no reference to these definitions.

Definition 3.1 A fuzzy subset f of an nLA-ring of N is called fuzzy completely prime if $max\{f(x), f(y)\} \ge f(x-y)$ and $max\{f(x), f(y)\} \ge f(xy)$, where $x, y \in N$.

Example 3.2 Let $N = \{0, e, a\}$ be a set with two binary operations as follows:

+	0	е	а
0	0	е	а
е	а	0	е
а	е	а	0
	0	е	а
	0 0	<i>e</i> 0	<i>a</i> 0
0 e	0 0 0	е 0 е	a 0 a

By Definition 2.4, N is an nLA-ring. We define a fuzzy subset $f: N \rightarrow [0,1]$ by f(x) = 0, for all $x \in N$. By Definition 3.1, f is a fuzzy completely prime ideal of N.

Theorem 3.3 Let N be an nLA-ring. Then f is a fuzzy nLA-subring of N if and only if 1-f is fuzzy completely prime of N.

Proof. (\Rightarrow) Clearly, $f(xy) \ge min\{f(x), f(y)\}$ and $f(x-y) \ge min\{f(x), f(y)\}$, for all $x, y \in N$. Then $1-f(xy) \le 1-min\{f(x), f(y)\}$ and $1-f(x-y) \le 1-min\{f(x), f(y)\}$, for all $x, y \in N$. If $f(x) \le f(y)$, then $1-f(x) \ge 1-f(y)$. Consider

$$\max\{1 - f(x), 1 - f(y)\} = 1 - f(x)$$

$$\ge 1 - f(xy)$$

and

$$\max\{1 - f(x), 1 - f(y)\} = 1 - f(x)$$

$$\ge 1 - f(x - y).$$

By Definition 3.1, 1 - f is fuzzy completely prime subset of N. If f(x) > f(y), then

$$\max\{1 - f(x), 1 - f(y)\} = 1 - f(y)$$

$$\ge 1 - f(xy)$$

and

$$\max\{1 - f(x), 1 - f(y)\} = 1 - f(y)$$

$$\geq 1 - f(x - y).$$

Hence 1 - f is fuzzy completely prime subset of N.

 $(\Leftarrow) \text{ Assume that } 1-f \text{ is fuzzy completely prime ideal of } N. \text{ Then } max\{1-f(x),1-f(y)\} \ge 1-f(x-y) \text{ and } max\{1-f(x),1-f(y)\} \ge 1-f(xy) \text{ for all } x, y \in N. \text{ Clearly, } 1-max\{1-f(x),1-f(y)\} \le 1-(1-f(x-y)) = f(x-y) \text{ and } 1-max\{1-f(x),1-f(y)\} \le 1-(1-f(xy)) = f(xy), \text{ for all } x, y \in N. \text{ If } 1-f(x) \le 1-f(y), \text{ then } f(x) = 1-(1-f(x)) \ge 1-(1-f(y)) = f(y). \text{ For all } x, y \in N, f(xy) \ge 1-max\{1-f(x),1-f(y)\} = min\{f(x),f(y)\}$

and

$$f(x-y) \geq 1 - max \{1 - f(x), 1 - f(y)\}$$
$$= min \{f(x), f(y)\}$$

If 1-f(x) > 1-f(y), then f(x)=1-(1-f(x)) < 1-(1-f(y)) = f(y). This implies that

$$f(xy) \geq 1 - max\{1 - f(x), 1 - f(y)\}$$
$$= min\{f(x), f(y)\}$$

and

$$f(x-y) \ge 1 - max\{1 - f(x), 1 - f(y)\}$$

= $min\{f(x), f(y)\}$

for all $x, y \in N$. Consequently f is a fuzzy nLA-subring of N.

Definition 3.4 A fuzzy subset f of an nLA-ring of N is called weakly fuzzy completely prime if for each $x, y \in N$ with $xy \neq 0$, it holds that $max\{f(x), f(y)\} \ge f(x-y)$ and $max\{f(x), f(y)\} \ge f(xy)$.

Remark. If f is a fuzzy completely prime subset of N, then f is a weakly fuzzy completely prime subset of N.

Example 3.5 Let $N = \{0, e, a, b, c, d\}$ be a set with two binary operations as follows:

+	0	е	а	b	С	d	
0	0	е	а	b	С	d	
е	d	0	e	а	b	с	
а	с	d	0	е	а	b	
b	b	с	d	0	е	а	
с	а	b	с	d	0	е	
d	е	а	b	с	d	0	
	0	е	а	b	С	d	
	0	<i>e</i> 0	<i>a</i> 0	<i>b</i> 0	<i>c</i> 0	<i>d</i> 0	
0 e	0 0 0	е 0 е	a 0 a	b 0 b	с 0 с	d 0 d	
0 e a	0 0 0 0	е 0 е а	a 0 a c	b 0 b 0	с 0 с а	d 0 d c	
0 e a b	0 0 0 0 0	e 0 e a b	a 0 a c 0	b 0 b 0 b	с 0 с а 0	d 0 d c b	
0 e a b c	0 0 0 0 0 0	e 0 e a b c	a 0 a c 0 a	b 0 b 0 b 0	c 0 c a 0 c	d 0 d c b a	

By Definition 2.4, N is an nLA-ring. We define a fuzzy subset $f: N \rightarrow [0,1]$ by

$$f(x) = \begin{cases} 1 & ; x = 0 \\ 0 & ; \text{otherwise.} \end{cases}$$

It is easy to see that f is a weakly fuzzy completely prime subset of N. But f is not a fuzzy completely prime subset of N, since $max\{f(c), f(b)\} = max\{0, 0\} = 0$, while $f(c \cdot b) = f(0) = 1$.

Corollary 3.6 Let f be a fuzzy left ideal of an nLA-ring N. Then f is fuzzy completely prime (weakly fuzzy completely prime) subset of N if and only if $max\{f(x), f(y)\} = f(xy)$ and $max\{f(x), f(y)\} \ge f(x-y)$, for all $x, y \in N(xy \ne 0)$.

Proof. Obvious.

Theorem 3.7 If f_i are fuzzy completely prime (weakly fuzzy completely prime) ideals of an nLA-ring N, then $\bigcup_{i \in I} f_i$ is fuzzy completely prime (weakly fuzzy completely prime) subset of N.

Proof. For all $i \in I$ and $x, y \in N$, $f_i(x-y) \le max\{f_i(x), f_i(y)\}$, for all $i \in I$. Clearly, $f_i(x-y) \le max\{\bigcup_{i \in I} f_i(x), \bigcup_{i \in I} f_i(y)\}$. Therefore $\bigcup_{i \in I} f_i(x), \bigcup_{i \in I} f_i(x), \bigcup_{i \in I} f_i(x) \le max\{\bigcup_{i \in I} f_i(x), \bigcup_{i \in I} f_i(y)\}$. Similarly, $\bigcup_{i \in I} f_i(xy) \le max\{\bigcup_{i \in I} f_i(x), \bigcup_{i \in I} f_i(y)\}$. Consequently $\bigcup_{i \in I} f_i$ is a fuzzy completely prime subset of N.

Theorem 3.8 Let *P* be a left ideal of an nLA-ring *N*. Then *P* is a completely prime (weakly completely prime) ideal of *N* if and only if tf_P is a fuzzy completely prime (weakly fuzzy completely prime) subset of *N*.

476

477

Proof. (\Rightarrow) By Lemma 2.11, tf_p is a fuzzy left ideal of N. Let $x, y \in N$. If $xy \notin P$, then $tf_p(xy) = 0 \le max\{tf_p(x), tf_p(y)\}$. If $xy \in P$, then $x \in P$ or $y \in P$. Thus $tf_p(x) = t$ or $tf_p(y) = t$. Thus $tf_p(xy) = t = max\{tf_p(x), tf_p(y)\}$. Therefore f_p is a fuzzy completely prime subset of N.

(\Leftarrow) Let $x, y \in N$ such that $xy \in P$. Then $tf_p(xy) = t$. Since tf_p is a fuzzy completely prime ideal of N, we have $tf_p(xy) \le max\{tf_p(x), tf_p(y)\}$. Clearly, $tf_p(x) = t$ or $tf_p(y) = 1$. Thus $x \in P$ or $y \in P$. Therefore P is a completely prime ideal of N.

Definition 3.9 Let N be an nLA-ring and $t \in (0,1]$. A fuzzy left ideal f of N is said to be a fuzzy quasi-prime if $tg_A \circ tg_B \subseteq f$ implies $tg_A \subseteq f$ or $tg_B \subseteq f$ and for the left ideals A and B in N.

Example 3.10 Let $N = \{0, e, a, b, c\}$ be a set with two binary operations as follows:

+	0	е	а	b	С	
0	0	е	а	b	С	
е	е	0	е	а	b	
а	а	е	0	е	а	
b	b	а	е	0	е	
С	с	b	а	е	0	
•	0	е	а	b	с	
	0 0	<i>e</i> 0	<i>a</i> 0	<i>b</i> 0	<i>с</i> 0	
0 e	0 0 0	е 0 е	a 0 a	b 0 b	с 0 с	
0 e a	0 0 0 0	е 0 е с	a 0 a e	b 0 b c	с 0 с а	
0 e a b	0 0 0 0 0	е 0 е с а	a 0 a e c	b 0 b c e	с 0 с а b	
0 e a b c	0 0 0 0 0	e 0 e c a c	a 0 a e c b	b 0 b c e a	c 0 c a b e	

By Definition 2.4, N is an nLA-ring. We define a fuzzy subset $f: N \rightarrow [0,1]$ by f(x)=0, for all $x \in N$. By Definition 3.9, f is a fuzzy quasi-prime ideal of N.

Example 3.11 Let $N = \{0, e, a, b, c, d, x, y\}$ be a set with two binary operations as follows:

+	0	е	а	b	С	d	x	у
0	0	е	а	b	С	d	x	у
е	а	0	b	е	x	С	у	d
а	е	b	0	а	d	у	С	x
b	b	а	е	0	у	x	d	С
С	с	d	x	у	0	е	а	b
d	x	С	у	d	а	0	b	е
x	d	у	С	x	е	b	0	а
у	у	x	d	с	b	а	е	0

•	0	е	а	b	С	d	x	у
0	0	0	0	0	0	0	0	0
е	0	С	С	0	0	с	с	0
а	0	С	С	0	0	С	С	0
b	0	0	0	0	0	0	0	0
С	0	b	b	0	0	b	b	0
d	0	у	у	0	0	у	у	0
х	0	у	у	0	0	у	у	0
у	0	b	b	0	0	b	b	0

By Definition 2.4, N is an nLA-ring. We define a fuzzy subset $f: N \rightarrow [0,1]$ by

$$f(x) = \begin{cases} 1 & ; x \in \{0\} \\ 0.9 & ; x \in \{c\} \\ 0 & ; otherwise. \end{cases}$$

By Theorem 3.3, 1-f is a fuzzy completely prime subset of N. But 1-f is not a fuzzy quasi-prime ideal of N, since $1-f(e \cdot e) = 1-f(c) = 1-0.9 = 0.1$ while 1-f(e) = 1-0=1.

Definition 3.12 Let N be an nLA-ring and $t \in (0,1]$. A fuzzy left ideal f of N is said to be a weakly fuzzy quasi-prime if $tg_0 \neq tg_A \circ tg_B \subseteq f$ implies $tg_A \subseteq f$ or $tg_B \subseteq f$ and for the left ideals A and B in N.

Remark. If f is a fuzzy quasi-prime ideal of N, then f is a weakly fuzzy quasi-prime ideal of N.

Theorem 3.13 Let g be a fuzzy left ideal of an nLA-ring with left identity N. Then the following conditions are equivalent:

- 1. g is a fuzzy quasi-prime ideal of N.
- 2. For any $x, y \in N$ and $t \in (0,1]$ if $x_t \circ (N \circ y_t) \subseteq g$, then $x_t \in g$ or $y_t \in g$.
- 3. For any $x, y \in N$ and $t \in (0,1]$ if $tf_x \circ tf_y \subseteq g$, then $x_t \in g$ or $y_t \in g$.
- 4. If A and B are left ideals of N such that $tf_A \circ tf_B \subseteq g$, then $tf_A \subseteq g$ or $tf_B \subseteq g$.

Proof. $(1 \Rightarrow 2)$ Let $x, y \in N$ and $t \in (0,1]$ such that $x_t \circ (N \circ y_t) \subseteq g$. By Lemma 2.6, 2.7 and 2.11, it follows that

$$\begin{aligned} tf_{(xe)N} \circ tf_{(ye)N} &= (tf_{(xe)} \circ N) \circ (tf_{ye} \circ N) \\ &= ((tf_x \circ tf_e) \circ (tf_y \circ tf_e)) \circ (N \circ N) \\ &= ((tf_e \circ tf_e) \circ (tf_y \circ tf_x)) \circ (N \circ N) \\ &= (tf_{ee} \circ (tf_y \circ tf_x)) \circ (N \circ N) \\ &= N \circ (tf_x \circ tf_x) \\ &= x_t \circ (N \circ y_t) \\ &\subseteq g. \end{aligned}$$

Thus by hypothesis, it follows that $x_t = tf_x = tf_{(ee)x} = tf_{(xe)e} \subseteq tf_{(xe)N} \subseteq g$ or $y_t = tf_y = tf_{(ee)y} = tf_{(ye)e} \subseteq tf_{(ye)N} \subseteq g$. Consequently $x_t \in g$ or $y_t \in g$.

$$(2 \Rightarrow 3)$$
 Let $x, y \in N, t \in (0,1]$ such that $f_x \circ f_y \subseteq g$. By Lemmas 2.7 and 2.8,

$$\begin{array}{rcl} x_t \circ (N \circ y_t) & \subseteq & tf_x \circ (N \circ tf_y) \\ & \subseteq & N \circ g \\ & \subseteq & g. \end{array}$$

Thus, by hypothesis $x_t \in g$ or $y_t \in g$.

 $(3 \Longrightarrow 4)$ Let A and B be two left ideals of N. Then, by Lemma 2.9, we get tf_A and tf_B are fuzzy left ideals of N. Suppose that $tf_A \circ tf_B \subseteq g$ and $tf_B \not\subset g$. Then there exists $y \in B$ such that $y_t \notin g$. For any $x \in A$ by Lemma 2.11,

$$\begin{split} tf_x \circ tf_y &= tf_{xy} \\ &= tf_A \circ tf_B \\ &\subseteq g. \end{split}$$

Since $y_t \notin g$, we have $tf_x \subseteq g$. Clearly, $x_t \in g$. By Lemma 2.11, $tf_A = \bigcup_{x \in A} x_t \subseteq g$.

 $(4 \Rightarrow 1)$ Obvious.

Corollary 3.14 Let g be a fuzzy left ideal of an nLA-ring with left identity N. Then the following conditions are equivalent:

1. g is a weakly fuzzy quasi-prime ideal of N.

2. For any $x, y \in N$ and $t \in (0,1]$ if $0, \neq x, \circ (N \circ y) \subseteq g$, then $x, \in g$ or $y, \in g$.

3. For any $x, y \in N$ and $t \in (0,1]$ if $0_t \neq tf_x \circ tf_y \subseteq g$, then $x_t \in g$ or $y_t \in g$.

4. If A and B are left ideals of N such that $0_t \neq tf_A \circ tf_B \subseteq g$, then $tf_A \subseteq g$ or $tf_B \subseteq g$.

Proof. Similar to the proof of Theorem 3.13.

Corollary 3.15 Let g be a fuzzy left ideal of an nLA-ring with left identity N. Then the following statements are equivalent:

1. g is a fuzzy quasi-prime (weakly fuzzy quasi-prime) ideal of N.

2. For any
$$x, y \in N$$
 and $t \in (0,1]$ if $x_t \circ y_t \in g(0, \neq x_t \circ y_t \in g)$, then $x_t \in g$ or $y_t \in g$.

Proof. Straightforward by Theorem 3.13.

Example 3.16 Let $N = \{0, e, a, b, c, d, x, y\}$ be a set with two binary operations as follows:

+	0	е	а	b	d	5	x	у
0	0	е	а	b	С	d	6	у
е	а	0	b	е	x	С	у	d
а	е	b	0	а	d	у	С	x
b	b	а	е	0	у	x	d	С
с	с	d	x	у	0	е	а	b
d	x	С	у	d	а	0	b	е
x	d	у	С	x	е	b	0	а
у	у	x	d	С	b	а	е	0

•	0	е	а	b	С	d	х	у
0	0	0	0	0	0	0	0	0
е	0	С	С	0	0	С	С	0
а	0	С	С	0	0	С	С	0
b	0	0	0	0	0	0	0	0
С	0	b	b	0	0	b	b	0
d	0	у	у	0	0	у	у	0
x	0	у	у	0	0	у	у	0
у	0	b	b	0	0	b	b	0
	1							

By Definition 2.4, N is an nLA-ring. We define a fuzzy subset $f: N \rightarrow [0,1]$ by

	1	; $x \in \{0\}$
$f(x) = \langle$	0.5	; $x \in \{c\}$
	0	; otherwise.

By Definition 3.12, f is a weakly fuzzy quasi-prime ideal of N. But f is not a fuzzy quasi-prime ideal of N, since $d_1 \circ b_1 \in f$ while $d_1 \notin f$ and $b_1 \notin f$.

Theorem 3.17 If f is a fuzzy quasi-prime ideal of an nLA-ring with left identity N, then $inf\{f(a^2(Nb^2))\} = max\{f(a^2), f(b^2)\}$ for all $a, b \in N$.

Proof. Suppose that $\inf \{f(a^2(Nb^2))\} \neq \max\{f(a^2), f(b^2)\}$. Since f is fuzzy left ideal of N, we have $f(a^2(rb^2)) \ge f(rb^2) \ge f(b^2)$ and $f(a^2(rb^2)) = f((rb^2)a^2) \ge f(a^2)$, for all $r \in N$. Clearly, $\inf \{f(a^2(Nb^2))\} > \max\{f(a^2), f(b^2)\}$. Let $\inf \{f(a^2(Nb^2))\} = t$. By Lemma 2. 9, $tg_{(a^2e)N}$ and $tg_{(b^2e)N}$ are two fuzzy left ideals of N. If $tg_{(a^2e)N} \circ tg_{(b^2e)N}(x) = t$, then $t = \bigcup_{x=yz} \min\{tg_{(a^2e)N}(y), tg_{(b^2e)N}(z)\}$. Then there exist $u \in (a^2e)N$ and $v \in (b^2e)N$ such that uv = x. Clearly,

 $u = (a^2 e)m, v = (b^2 e)n$ for some $m, n \in N$. Consider

f(x) = f(uv)= $f(((a^2e)m)((b^2e)n))$ = $f((nm)((b^2e)(a^2e)))$ $\geq f((b^2e)(a^2e))$ = $f((b^2a^2)(ee))$ $\geq inf \{f(a^2(Nb^2))\}$ = t.

Thus $tg_{(a^2e)N} \circ tg_{(b^2e)N} \subseteq f$. By Definition 3.9, $tg_{(a^2e)N} \subseteq f$ or $tg_{(b^2e)N} \subseteq f$. This implies that $tg_{(a^2e)N}(a^2) = tg_{(a^2e)N}((a^2e)e) = t$ or $tg_{(b^2e)N}(b^2) = tg_{(b^2e)N}((b^2e)e) = t$. But from $t \le max\{f(a^2), f(b^2)\} < inf\{f(a^2(Nb^2))\} = t$. This is a contradiction. Hence $inf\{f(a^2(Nb^2))\} = max\{f(a^2), f(b^2)\}, \text{ where } a, b \in N.$

Theorem 3.18 If f is a fuzzy quasi-prime ideal of an nLA-ring with left identity N, then $max\{f(x), f(y)\} \ge f(xy)$, where $x, y \in N$.

Proof. Let $x, y \in N$. If $f(xy) > max \{ f(x), f(y) \}$, then there exists $t \in (0, 1)$ such that

 $f(xy) > t > max \{ f(x), f(y) \}$. By Lemma 2.7,

$$\begin{aligned} x_t \circ (N \circ y_t) &= N \circ (x_t \circ y_t) \\ &\subseteq N \circ f \end{aligned}$$

for all $x, y \in N$. By Theorem 3.13, $x_t \in P$ or $y_t \in P$. This is a contradiction. Consequently $max\{f(x), f(y)\} \ge P(xy)$, where $x, y \in N$.

Theorem 3.19 Let f be a fuzzy left ideal of an nLA-ring with left identity N. Then f is a fuzzy quasi-prime (weakly fuzzy quasi-prime) ideal of N if and only if f is a fuzzy completely prime (weakly fuzzy completely prime) subset of N. Proof. Straightforward by Theorem 3.18.

4. Conclusions

Many new classes of nLA-rings have been discovered recently. All these have attracted detailed investigations of these newly discovered classes. This article investigated the fuzzy quasi-prime, weakly fuzzy quasi-prime, fuzzy completely prime and weakly fuzzy completely prime ideals in nLA-rings. Some characterizations of fuzzy quasi-prime and weakly fuzzy quasi-prime ideals were obtained. Moreover, we investigated the relationships between fuzzy completely prime and fuzzy quasi-prime ideals in an nLA-ring. Finally, we obtained necessary and sufficient conditions for a fuzzy completely prime subset to be a fuzzy quasi-prime ideal in an nLA-ring.

References

- Abou Zaid, S. (1991). On fuzzy subnear-rings and ideals. *Fuz*zy Sets and Systems, 44, 139-146. doi:10.1016/0165-0114(91)90039-S
- Birkenmeier, G., & Heatherly, H. (1989). Medial near-rings. Monatshefte für Mathematik, 107, 89-110. doi:10.10 07/BF01300916

- Birkenmeier, G., & Heatherly, H. (1990). Left self distributive near-rings. *Journal of the Australian Mathematical Society*, 49, 273-296. doi:10.1017/S1446788700030 55X
- Gulistan, M., Yaqoob, N., & Shahzad, M. (2015). A note on H_v -LA-semigroups. U.P.B. Scientific Bulletin-Series A, 77(3), 93-106.
- Kazim, M. A., & Naseeruddin, M. (1978). On almost semigroups. *The Aligarh Bulletin of Mathematics*, 2, 1-7.
- Mushtaq, Q., & Kamran, M. S. (1996). On left almost groups. *Proceedings of the Pakistan Academy of Sciences 33* (1-2), 53–55.
- Mushtaq, Q., & Khan, M. (2009). M-systems in LA-semigroups. Southeast Asian Bulletin of Mathematics, 33(2), 321-327.
- Mushtaq, Q., & Yusuf, S. M. (1978). On LA-semigroups. The Aligarh Bulletin of Mathematics, 8, 65-70.
- Shah, T., Ali, G., & Rehman, F. (2011a). Direct sum of ideals in a generalized LA-ring. *International Mathematical Forum*, 6(22), 1095-1101.
- Shah, T., Rehman, F., & Raees, M. (2011b). On near left almost rings. *International Mathematical Forum*, 6 (23), 1103-1111.

- Yaqoob, N. (2013). Interval-valued intuitionistic fuzzy ideals of regular LA-semigroups. *Thai Journal of Mathematics*, 11(3), 683-695.
- Yaqoob, N, Chinram, R., Ghareeb, A., & Aslam, M. (2013). Left almost semigroups characterized by their inter-val valued fuzzy ideals. *Afrika Matematika*, 24(2) 231-245. doi:10.1007/s13370-011-0055-5
- Yiarayong, P. (2017). On fuzzy sets in non-associative near rings. Journal of Thai Interdisciplinary Research, 12(3), 54-60. doi:10.14456/jtir.2017.21
- Yaqoob, N., Corsini, P., & Yousafzai, F. (2013). On intraregular left almost semihypergroups with pure left identity. *Journal of Mathematics*, 1-10. doi:10.1155/ 2013/510790
- Yousafzai, F., Yaqoob, N., & Hila, K. (2012). On fuzzy (2,2)regular ordered Γ-AG**-groupoids. U.P.B Scientific Bulletin, Series A, 74(2), 87-104.
- Yusuf, S. M. (2006). On left almost ring. Proceedings of 7th International Pure Mathematics Conference.
- Zadeh, L. A. (1965). Fuzzy sets. *Information and control*, 8, 338-353. doi:10.1016/S0019-9958(65)90241-X