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Abstract 
 
An analysis is carried out to examine the stagnation point flow of a nanofluid over a stretching surface through a 

porous medium in the presence of radiation and dissipation. The Buongiorno nanofluid model is incorporated in this study. The 

arising set of governing partial differential equations (PDE’ s) of the flow is transformed into coupled non-linear ordinary 

differentials equations (ODE’ s)  with the help of appropriate similarity transformations and then solved numerically using 

boundary value problem default solver in MATLAB bvp4c package. To reveal the effects of the controlling parameters on the 

velocity, temperature, species concentration, the friction factor coefficient, the rate of heat and mass transfer coefficients are 

presented in graphical and tabular forms.  It is found that the surface temperature in motivated with rising values of thermal 

radiation and thermophoresis parameters.  From this we concluded that for heat enhancement processes thermal radiation and 

thermophoresis are very useful. 
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1. Introduction 
 

The point of which the local velocity of a fluid is 

zero is generally referred as stagnation -  point flow.  It has 

various practical applications in aerospace and aeronautical 

engineering such as a jet engine, heat controlling process and 

performance of solar thermal collectors etc.  The study of 

stagnation-point flow was originated by Hiemenz (1911). The 

stagnation-point flow on stretching surface arises in plenty of 

practical applications in engineering as well as industry, for 

example cooling of nuclear reactors, electronic devices, 

polymer extrusion and drawing of plastic sheets etc.  The 

analysis of stagnation-point flow over a stretching/ shrinking 

sheet with surface heat flux was studied by Suali, Nik Long, 

and Ishak (2012) .  Generally, nanoparticles are made up of 

metal, metal oxide, carbide, and nitride and even immiscible 

nanoscale liquid droplets.  The initial effort for the nanofluid

 
was done by Choi (1995). Later Buongiorno (2006) presented 

convective transport in nanofluids and concluded that the 

thermal conductivity of nanofluids is very high compared to 

the base fluids.  Khanafer, Vafai, and Lightstone ( 2003) 

studied the enhancement of heat transfer in a two-dimensional 

enclosure utilizing nanofluids.  They developed a model to 

analyze the heat transfer performance of nanofluids in an en-

closure taking into account the solid particle dispersion. Very 

recently, investigators (Gopinath, 2016; Khan et al. , 2016, 

2017a, 2017b; Kiran Kumar, & Varma, 2017a, 2017b; Pal & 

Gopinath, 2017a, 2017b; Sheikholeslami, 2017a, 2017b) 

analyzed the mechanisms of thermophoresis and Brownian 

motion by considering the Buongiorno nanofluid model with 

different geometries.  Also, researchers Sheikhole slami et al. 

( 2017a, 2017b, 2017c, 2017d)  studied the flow problems by 

taking different types of water - based nanoparticles. 

The thought of stagnation-point flow of a nanofluid 

is comprehensive.  Accordingly, Ishak, Jafar, Nazar, and Pop 

(2009)  and Mahapatra and Gupta (2002)  investigated the 

hydromagnetic stagnation-point flow over a stretching sur-

face.  Ibrahim, Shankar, and Nandeppanavar (2013)  analysed 

the magnetic field effect on stagnation point flow in nanofluid
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near the stretching surface.  Bachok, Ishak, and Pop (2011) 

examined stagnation point nanofluid flow over a stret-

ching/ shrinking sheet by assuming the stretching/ shrinking 

velocity and the ambient fluid velocity change linearly with 

the distance from the stagnation point.  Alsaedi, Awais and 

Hayat (2012)  studied the influence of heat generation/ 

absorption on the stagnation-point nanofluid flow of over a 

linear stretching sheet. Mansur, Ishak, and Pop (2015) studied 

hydrodynamic stagnation point nanofluid flow over a 

permeable stretching/shrinking surface and found that raising 

the Brownian motion parameter and the thermophoresis 

parameter reduces the rate of heat transfer at the surface. 

Hady, Mohamed, and Ahmed (2014) analysed the stagnation - 

point nanofluid flow over a stretching sheet in the presence of 

magnetic field and porous media.  Bachok, Ishak, and Pop 

(2012) examined the boundary layer stagnation-point flow of 

a water - based nanofluid past an exponentially stret-

ching/ shrinking surface in its own plane.  A theoretical 

investigation was carried out to scrutinize the effects of 

volume fraction of nanoparticles, suction/ injection, and 

convective heat and mass transfer effects on magneto-

hydrodynamic stagnation - point flow of water-based nano-

fluids by Mabood, Pochai, and Shateyi, ( 2016) .  The mixed 

convection magnetohydrodynamic slip flow near a stagnation-

point region over a non-linear stretching sheet with prescribed 

surface heat flux was illustrated by Shen, Wang, and Chen 

(2015). 

The effects of variable fluid viscosity and thermal 

radiation on stagnation point flow over a stretching surface in 

a porous medium was reported by Mukhopadhyay (2013) and 

be concluded that the fluid temperature at a point of the 

surface is found to decrease with increasing thermal radiation. 

The flow of a Maxwell nanofluid with slip boundary con-

ditions over a permeable stretching surface with radiation and 

dissipation has been considered by Nagendramma, Kiran 

Kumar, Durga Prasad, and Leelaratnam (2016) .  Mabood, 

Shateyi, and Rashidi (2016)  analysed the hydromgnetic 

stagnation - point flow of a water - based nanofluid with 

radiation, dissipation and destructive chemical reaction 

effects. Magnetohydrodynamic effects on the convection flow 

of nanoparticles particles, namely, copper and alumina near a 

stagnation region past a vertical plate with viscous dissipation 

was examined by Mustafa, Javed, and Majeed (2015). Ul Haq, 

Nadeem, Khan, and Akbar (2015)  considered the hydro-

magnetic stagnation point flow of a radiative nanofluid passed 

over a stretching surface. Hafizi, Yasin, Ishak, and Pop (2015) 

studied the magnetohydrodynamic stagnation-point slip flow 

over a permeable stretching/shrinking sheet in the presence of 

dissipation and Joule heating.  

Motivated by the above-mentioned works, the aim 

of the present study is to investigate the influence of viscous 

dissipation and thermal radiation on hydromagnetic 

stagnation-point flow of a nanofluid over a stretching sheet in 

a porous medium.  The formulation of the problem is made 

through Buongiorno’ s model, which involves the aspects of 

Brownian motion and thermophoresis.  The resulting set of 

governing equations has been solved numerically using 

MATLAB boundary value problem default solver bvp4c 

package. The results on velocity, temperature and nanoparticle 

concentration as well as the friction factor coefficient, the rate 

of heat and mass transfer coefficients are discussed and 

presented through graphs.  Further, the results are compared
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with exact solutions, which are reported by (Mahapatra, & Gupta, 2002). 

2. Formulation of the Problem 

We consider a steady laminar, viscous incom-pressible, two dimensional boundary layer stagnation-point flow of an 

electrically conducting nanofluid flow over a permeable stretching surface embedded in a porous medium coinciding with the 

plane y = 0 through fixed stagnation point at x = 0 as exposed in Figure 1. We assumed the Buongiorno’s model, which involves 

the aspects of Brownian motion and thermophoresis. It is assumed that the surface temperature and nanoparticle concentration 

are Tw and Cw,
 
respectively.  U x bx   is the free stream velocity  and the plate is stretched with the velocity  wu x cx ,

 
 

where b and c are positive constants. It is also assumed that 0v is the constant mass flux with
0 0v  for injection and  

0 0v   for 

suction. T
 and C

are the ambient temperature and concentration, respectively. We choose the coordinate system such that the 

x -axis is along stretching sheet and the y -axis is perpendicular to the stretching sheet. The flow is subjected to constant 

magnetic field of strength 
0B B which is assumed to be applied normal to the flow direction. It is assumed that the induced 

magnetic field is neglected due to small magnetic Reynolds. Also, the joule heating is neglected. 

 

Figure 1. Physical model and co-ordinate system. 

The basic equations for the steady flow of a nanofluid in the presence of magnetic field, porosity, viscous dissipation, 

thermal radiation, Brownian motion and thermophoresis are given by   
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where  ,V u v  is the nanofluid velocity vector, P is the pressure of the nanofluid, B is the magnetic induction intensity and J is 

the electrical current density. 

Under the above assumptions the governing equations (1)-(4) take the following forms 
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Here u and v  are the velocity components along x  and y  axes respectively.  is the kinematic viscosity of the 

fluid, T is the temperature of the fluid, is the thermal diffusivity, 
f  is the density. 

pc is the effective heat capacity of 

nanoparticle, 
f  is the density of the base fluid, rq is the radiative heat flux,    

p f
c c   , is the proportion of effective 

heat capacity of the nanoparticle material to the effective heat capacity of the base fluid,  fc  denotes specific heat of the fluid, 

and pc denotes particle at constant pressure, respectively.
 BD

 
is the Brownian diffusion coefficient, 

TD is the thermophoresis 

diffusion coefficient and C is  the nanoparticle volume friction of. 

Using Roseland approximations of radiation 
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where
*k is the mean absorption coefficient, *   is Stephan Boltzman constant and 

4T is the  linear temperature function and is 

expanded by using Taylor’s series expansion in terms of T
as  
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In view of Equations (9) and (10), the Equation (7) can be written as 
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The appropriate boundary conditions are 

 0 :t  0,u v  ,T T C C
  

0 :t 
0v v ,  wu u x  , ,wT T

wC C at 0y  ,                              (12) 

 ,u U x ,T T C C as y   

Here 0   represents the stretching sheet and 0  for shrinking sheet. 

3. Method of Solution 

 Introduce the following self-similarity variables as (Bachok et al. (2011)) 
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Let   be a stream function that satisfies the Equation (5) such that  

 u y    and v x   . Thus, we have 

 ( ),u c x f  ( ),v c f                              (14) 

Using the above similarity variables in Equations (6)-(8), we get 
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The associated dimensionless boundary conditions are given by 
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where 0S  for suction and 0S  for injection, Pr is the Prandtl number, M is the magneticfield parameter, K is the porosity 

parameter is, A is the velocity ratio parameter , Le is the Lewis number is, Nb and Nt are  the Brownian motion and 

thermophoresis parameters, respectively,  Ec is the Eckert number and R is the thermal radiation parameter, defined as  
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 The physical quantities of interest are the friction factor coefficient ( )fC , and the local Nusselt number ( )xNu , and the 

reduced Sherwood number ( )xSh , and are defined as  

2
,

( ) ( )

w w
f x

w w

xq
C Nu

u x k T T



 
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

,
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                          (20) 

where w is the skin friction along the plate and wq is the heat flux from the plate, which are defined as 
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In view of Equation (13), we get 

1/2 1/2Re (0), Re (0)x f x xC f Nu     ,  1/2 'Re 0x xSh  
                         

(22) 

The local Reynolds number
 
is defined as Re ( ) /x wu x x  . 

4. Numerical Procedure 

In this section, we present a numerical procedure of the above boundary value problem. In general, a boundary value 

problem (BVP) consists of a set of ordinary differential equations (ODE’s), some boundary conditions, and guesses that depend 

on which solution is desired. 

The procedure for the present problem is 
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Subject to the boundary conditions (0)f S , (0)f   , (0) 1  , (0) 1  , (0)f A  , (0) 0  , (0) 0  . 

We can choose the guess in the following form (Ascher,  Mattheij, Russell, 1995) 

 ( ) wu x u x ,   

0( )v x v ,  

 ( ) ( )wT x T x , 

( ) ( )wC x C x , 

 ( )u x U x
 

( ) ( )T x T x , 
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( ) ( )C x C x . 

 To solve this problem with bvp4c in Matlab, we provide functions that evaluate the differential equations and the 

residual in the boundary conditions. These functions must return column vectors with components of f corresponding to the 

original variables as  

(1)f f , (2)f f  , (3)f f  , (4)f  , (5)f  , (6)f  and (7)f  . These functions can be coded in MATLAB as  

function dydx = exlode(x,f) 

dydx = [-((f(1)*f(3))-(f(2)^2)+((M+1/K)*(A-f(2)))+A^2) 

-((Pr/(1+(4*R/3)))*((f(1)*f(5))+(Nt*f(5)^2)+(Nb*f(5)*f(7))+(Ec*(f(3)^2)))) 

-((Le*f(1)*f(7))+(Nt/Nb)*(-((Pr/(1+(4*R/3)))*((f(1)*f(5))+ 

(Nt*f(5)^2)+(Nb*f(5)*f(7))+(Ec*(f(3)^2))))))]; 

function res = exlbc(fa,fb) 

res = [fa(1)-S 

       fa(2)-𝜆 

       fa(4)-1 

       fa(6)-1 

       fb(2)-A 

       fb(4) 

       fb(6)]; 

The guess is supplied to bvp4c in the form of a structure. Whereas the name solinit will be used in this problem, we can 

call it anything we like. But, it must contain two fields that must be called x and f. A guess for a mesh that reveals the behaviour 

of the solution is provided as the vector solinit.x. A guess for the solution at these mesh points is provided as the array solinit.y, 

with each column solinit.f (:, i) approximating the solution at the point solinit.x(i). It is not difficult to form a guess structure, but 

a helper function bvpinit makes it easy in the most common circumstances. It creates the structure when given the mesh and a 

guess for the solution in the form of a constant vector or the name of a function for evaluating the guess.   

The guess structure is then developed with bvpint by 

solinit = bvpinit(linspace(0, 1, infinity), @exlinit);

The boundary value problem has now been defined by means of functions for evaluating the differential equations and 

the boundary conditions and a structure providing a guess for the solution. When default values are used, that is all needed to 

solve the problem with bvp4c: 

sol = bvp4c(@shootode,@shootbc,solinit); 
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The output of bvp4c is a structure called here sol. 

The mesh determined by the code is returned as sol.x and the 

numerical solution approximated at these mesh points is 

returned as f=sol.y. As with the guess, sol.f (:, i) approximates 

the solution at the point sol.x(i). 

5. Results and Discussion 

The obtained coupled non-linear ordinary 

differential Equations (ODE’s) (15)-(17) with corresponding 

boundary conditions (18) are numerically solved using bvp4c 

with Matlab package. The above mentioned numerical method 

is carried out for different values of flow factors to discuss the 

effects on velocity, temperature and nanoparticle concen-

tration fields. The obtained results are shown in Figures 2–12. 

The friction factor coefficient the Nusselt number and 

Sherwood number are derived and presented in tabular form. 

Table1 shows the correctness of the method used and verified 

with the prevailing results and they are found to be very good 

agreement with Mahapatra and Gupta (2002).  In the 

calculations the parametric values are selected   as 0.1Nb  , 

0.1R  , 1Pr  , K 0.5 , 0.5S  , 0.2A  , 0.1Nt  , 1Le  , 

0.5  , 1M  , 0.2Ec  . 

Figure 2 shows the influence of suction/injection 

parameter ( )S   on ( )f  . It is evident that the thickness of the 

momentum boundary layer decreases as S increases. This 

happens due to this fact that applying suction leads to draw 

the amount of fluid particles into the wall and subsequently 

the velocity boundary layer decreases. The effect of magnetic 

field parameter (M) on ( )f  is exposed in Figure 3. It can be 

seen that the existence of magnetic field sets in a resistive 

force called Lorentz force, which is a retarding force on the

 velocity field; consequently, the velocity is reduced. Figure 4 

depicts the variation of nanoparticle concentration profiles for 

various values of Brownian motion parameter (Nb).  It is 

noticed that as Nb increases, the thickness of the nanoparticle 

concentration boundary layer is decreased. Furthermore, the 

boundary layer thickness decreases in the liquid film with 

increasing values of Nb. Figure 5 illustrates the influence of 

thermophoresis parameter (Nt) on ( )  . It is clear that as the 

thermophoresis affect increases, a movement of nanoparticles 

from the hot surface to cold ambient fluid occurs, and thus the 

temperature of the fluid increases within the thermal boundary 

layer. This results in the development of thermal boundary 

layer thickness. 
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Figure 2. Velocity profiles for various values of S. 
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Figure 3. Velocity profiles for various values of M. 
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Figure 4. Concentration profiles for various values of Nb. 
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Figure 5. Temparature profiles for various values of Nt. 

 

The effect of radiation parameter (R) on ( )   is 

shown in Figure 6. It can be observed that increasing the 

values of R enhances the fluid temperature. Physically, 

increasing the values of R corresponds to an increased 

dominance of conduction over absorption radiation, thus 

increasing the temperature profiles. Also, increasing R 

produces a significant increase in the thermal boundary layer. 

In fact, the radiation parameter decreases the fluid 

temperature. This is because as the radiation parameter 

increases, the mean Rosseland absorption co-efficient k* 

decreases. Hence, the thermal radiation factor is better suitable 

for cooling process. The effect of permeability of the porous 

medium parameter (K) on fluid velocity field is shown in 

Figure 7. As K increases the fluid velocity increases along the
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          Figure 6.   Temparature profiles for various values of R. 
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Figure 7.   Velocity profiles for various values of K. 

 

boundary layer, which is expected since when the holes of 

porous medium become larger, the resistivity of the medium 

may be abandoned and hence thickness of the hydromagnetic 

boundary layer increases. Figures 8 and 9 display the 

graphical representation of velocity and temperature 

distributions for different values of velocity ratio parameter 

(A). From Figure 8, it is seen that the free stream velocity 

exceeds the stretching surface velocity; the flow velocity 

increases the momentum boundary layer thickness and 

decreases with increase in A.  Moreover, when the free stream 

velocity is less than the stretching velocity, the flow field 

velocity decreases and the boundary layer thickness also 

decreases. When 1A   , the flow has a boundary layer 

structure and thickness of the boundary layer decreases as
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Figure 8. Velocity profiles for various values of A. 
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Figure 9. Temparature profiles for various values of A. 

 
 

increase in A. Further, for 1A   , the flow has a reversed 

boundary layer structure, for this case also we observe the 

depreciation in the boundary layer thickness. But the opposite 

phenomenon is noticed on temperature profiles (Figure 9).  

The impact of stretching/shrinking parameter ( )  

on ( )f  is plotted in Figure 10. It is clear that when   

increases, then the velocity distribution diminishes. 

Physically, this phenomena can be described for various fixed 

values of stretching sheet; an increment in   depicts an 

increment in straining motion near to the stagnation region, 

which suggests an increment on external stream and this tends 

to lead the thinning of boundary layer. The opposite trend is 

observed for shrinking parameter  0  , that is,  it reduces
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Figure 10.   Velocity profiles for various values of  . 

 

the hydromagnetic boundary layer thickness. Further, we 

conclude that the changes occurring for a shrinking 

sheet  0   are more pronounced than those of a stretching 

sheet  0  . 

Figure 11 presents the temperature profiles for 

various values of Eckert number ( )Ec . Physically, Ec  is the 

ratio of the kinetic energy of the flow to the boundary layer 

enthalpy difference. The influence of Ec on flow field is to 

enhance the energy, yielding a better fluid temperature. For 

this reason, the temperature increases. Also, higher viscous 

dissipative heat causes a rise in the thermal boundary layer. 

Figure 12 illustrates the graphical comparison of the present 

results with the results of (Mahapatra & Gupta, 2002).  

Tables 1 and 2 present the numerical values of the 

friction factor coefficient (0)f  and reduced local Nusselt 

number (0) for different values of A and Pr in the case of 

0M  , K  , 0R   and 0Ec  , 0S  , 0Nt  , 0Nb  , 

1  .  The results are in good agreement with the existing 

result in Mahapatra and Gupta (2002). 
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Figure 11. Temparature profiles for various values of Ec. 
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Figure 12. Graphical comparison of the present study with (Maha 

patra & Gupta, 2002). 

 
Table 1. Comparison of skin-friction coefficient (0)f   for different 

values of A. 

 

A (Mahapatra & Gupta, 2002) Present Study 

   

0.01 - -0.998404 

0.1 -0.9694 -0.969436 

0.2 -0.9181 -0.918113 

0.5 -0.6673 -0.667264 

2 2.0175 2.017503 

3 4.7293 4.729282 
   

 
Table 2. Comparison of local Nusselt number (0) , for different 

values of Pr and A. 

 

Pr A (Mahapatra & Gupta, 2002) Present Study 

    

1 0.1 0.603 0.602158 

1 0.2 0.625 0.624469 
1 0.5 0.692 0.692449 

1.5 0.1 0.777 0.776801 

1.5 0.2 0.797 0.797122 
1.5 0.5 0.863 0.864794 

    

 

From Table 3, we found that an increase in M boosts 

the skin friction coefficient. As expected, the skin friction 

increases as the magnetic field strength values increase. 

Physically, the purpose of a magnetic field perpendicular to 

the fluid flow produces a drag force which tends to retard the 

fluid flow velocity, thus increasing the skin friction 

coefficient. But the reverse trend is observed on Nusselt 

number and Sherwood number. Then again the skin friction 

decreases with an increase in porosity parameter, but no effect 

of R and Ec on skin friction coefficient is seen. The Nusselt 

number increases with an increase in K, whereas it decreases 

with an increase in M, R and Ec. Finally, it is found that the 

rate of mass transfer coefficient increases with the increasing 

values of K, R and Ec, but the opposite trend is observed with 

an increase in M. 

Table 3. Numerical values of skin friction coefficient, Nusselt 

number and Sherwood number for various values of 

, , andM R K Ec  with Pr 1, 0.2, 0.1,S Nt Nb     

0.5, 0.2, 0.5.A Le     

M R K Ec (0)f 
 

(0)  (0)
 

       

1.0 0.5 0.5 0.1 0.616179 0.471543 0.278771 

2.0    0.688410 0.464857 0.278537 
3.0    0.753486 0.459383 0.278578 

0.5 0.2   0.576514 0.451579 0.299848 

 0.4   0.576514 0.404045 0.342304 
 0.6   0.576514 0.369481 0.373523 

  0.1  1.039083 0.364164 0.349250 

  0.2  0.783926 0.374010 0.352971 
  0.3  0.676929 0.379397 0.355614 

   0.2 0.576514 0.380592 0.363729 

   0.4 0.576514 0.370798 0.373153 
       

 

 

6. Concluding Remarks 

The effect of viscous dissipation and thermal 

radiation on hydromagnetic stagnation point flow of a 

nanofluid through porous medium over a stretching surface 

with suction is investigated. The obtained similarity ordinary 
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differential equations (ODE’s) are solved by using Matlab 

bvp4c package. Based on the present study, the following 

conclusions are made. 

1. The skin friction coefficient on the wall surface 

decreases with rising values of porosity parameter. 

2. The heat transfer rate at the surface depreciated for 

higher values of radiation parameter and Eckert 

number. 

3. The magnitude of mass transfer coefficient increases 

with radiation parameter and Eckert number. 

4. The velocity profiles are suppressed by increasing 

values of suction. 

5. An increase in velocity ratio parameter enhances the 

velocity boundary layer thickness. 

6. The thermal radiation and thermophoresis para-

meters effectively enhance the surface temperature. 
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