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Abstract 
 
The vehicle routing problem with backhauls and time windows (VRPBTW) aims to find a feasible vehicle route that 

minimizes the total traveling distance while imposing capacity, backhaul, and time-window constraints. We present an enhanced 

artificial bee colony algorithm (EABCA), which is a meta-heuristic, to solve this problem. Three strategies - a forbidden list, the 

sequential search for onlookers, and the combination of 1-move intra-route exchange and λ-interchange technique - are 

introduced for EABCA. The proposed method was tested on a set of benchmark instances. The computational results show that 

the EABCA can produce better solutions than the basic ABCA, and it discovered many new best-known solutions. 
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1. Introduction 
 

The vehicle routing problem with backhaul and time 

window (VRPBTW) is extended from the vehicle routing 

problem with backhaul (VRPB) by adding a specified service 

time window for each customer. There are three main 

constraint categories for VRPBTW model, namely capacity 

constraints, backhaul constraints and time window constraints. 

For the capacity constraints, the number of customers serviced 

by a vehicle is restricted by the capacity of the vehicle. For the 

backhaul constraints, the vehicles serve all demands of the 

linehual customers and the same vehicles also pick up 

demands from the backhaul customers. In addition, the 

backhaul customers cannot be served before linehaul 

customers. For the time window constraints, the vehicle 

arrival time at each customer must not exceed the upper bound 

of the customer’s time window. In general, the VRPBTW is a

 
class of the NP-hard combinatorial optimization problems, 

which is too difficult to solve exactly within a reasonable 

time. Consequently, there are many heuristic methods 

proposed to get a near optimal solution for this problem. 

An increasing number of the publications on 

heuristic approaches for vehicle routing problem have been 

developed for the past two decades. However, only few 

studies have been devoted to the VRPBTW. A brief review of 

these studies is divided into two parts based on the types of 

the proposed methods, namely non-meta-heuristic methods 

and meta-heuristic methods. 

A few non-meta-heuristic methods were proposed to 

solve VRPBTW. Thangiah et al. (1996) presented a push 

forward insert heuristic (PFIH). This algorithm applied an 

insertion heuristic for route construction and improved 

solution by λ-interchange and 2-opt* exchange procedures to 

solve VRPBTW problems. The algorithm was tested on 

benchmark instances of Gélinas et al. (1995). Although the 

solutions of PFIH were within 2.5% of the optimum on 

average, PFIH almost always gave worse results than average 

for large-sized problems. Ropke and Pisinger (2006) trans-

formed the VRPBTW into the VRPB by ordering the routes 
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according to time window constraints and then used a 

neighbor search algorithm to solve the problem. Although the 

unified heuristic could improve the best-known solution for 

many instances and decrease the necessary number of 

vehicles, the computational time increases considerably with 

the problem size. Worawattawechai et al. (2016a) presented a 

nearest urgent candidate heuristic (NUC) for the VRPBTW. 

This algorithm starts by sorting the customers according to the 

urgency of delivery before adding into the route by 

considering their closeness while a candidate list technique is 

used to enforce the urgency order. Although NUC heuristic 

performed better than the PFIH, it underperformed the 

existing algorithm for the large-sized problems. In general, 

non-meta-heuristic methods can achieve good optimization 

results quickly while it is relatively simple and easy to apply 

to the problems. However, the efficacy of these methods 

decreases when the problem size becomes large. 

There are more studies that focused on meta-

heuristic methods for VRPBTW. Potvin et al. (1996b) 

described a genetic algorithm (GA) coupled with a greedy 

insertion heuristic to find a good insertion order of the 

customers. The results showed that GA solutions were within 

1% of the optimum on average by using benchmark instances 

of Gélinas et al. (1995). However, it was very expensive in 

terms of computational resources, and it was frequently prone 

to premature converging. Cho and Wang (2005) presented a 

meta-heuristic which is based on an acceptable threshold 

combined with modified nearest neighbor and exchange 

procedures for solving the VRPBTW. Although this method 

could decrease the computational time, it underperformed 

compared with the GA proposed by Potvin et al. (1996b). 

Küçükoğlu and Öztürk (2014) introduced a differential 

evolution algorithm (DEA) for VRPBTW and applied it for a 

catering firm.DEA was tested with several benchmark 

problems. The results showed that this algorithm could obtain 

some new best-known solutions. Since DEA was originally 

designed for continuous problems, it is hard to find a good 

encoding procedure to adapt DEA to integer problems like 

VRPBTW. Later, Küçükoğlu and Öztürk (2015) proposed an 

advanced hybrid meta-heuristic algorithm (HMA), which 

combined tabu search algorithm and simulated annealing 

algorithm to obtain more effective solutions for the 

VRPBTW. The results indicated that the HMA performed 

better than the DEA. However, one of the disadvantages of the 

hybrid algorithm was that it took a lot of computational time. 

Worawattawechai et al. (2016b) proposed the nearest 

neighbor with roulette wheel selection method (NNRW) as an 

initial solution algorithm for the cuckoo search (CS) 

algorithm. The result reported that the CS algorithm could 

produce better solutions than the best-known solutions for the 

majority of small- and medium-sized instances. However, it 

did not perform as well for large problems. 

Artificial bee colony algorithm (ABCA) is another 

meta-heauristic method that has been applied to VRP. It was 

first introduced by Karaboga (2005). It is firstly applied to the 

capacitated vehicle routing problems (CVRP) by Szeto et al. 

(2011) with some enhancements. The results show that the 

enhanced version of ABCA outperformed the original one, 

and it could produce good solutions when compared with the 

existing heuristics. Alzaqebah et al. (2016) presented the 

modified artificial bee colony for the vehicle routing problems 

with time windows (VRPTW). In this study, the list of 

abandoned solutions was used to generate new solutions. The 

results showed that the modified ABCA obtained good results 

when compared with the best-known results. An improved 

artificial bee colony algorithm for a real case in Dalian was 

introduced by Yu et al. (2016). In this version of ABCA, three 

strategies were applied, namely an adaptive strategy, a 

crossover operation, and a mutation operation. The results 

showed that some of solutions were better than the best-

known solution when tested on benchmark problems of 

Solomon (1987) for VRPTW. 

There are many reasons that motivate the authors to 

use ABCA to solve VRPBTW in this paper. Firstly, ABCA 

was successfully applied to VRP and VRPTW as described in 

the above paragraph. Secondly, ABCA is a meta-heuristic, 

which means the exploring area of the solution space is larger 

than non-meta-heuristics (PFIH, unified heuristic, NUC 

heuristic). Thus, it can achieve good optimization results, 

especially in the large-sized problem. Thirdly, ABCA is a 

population-based heuristic which starts with a number of 

initial solutions. Therefore, it can explore more in the solution 

space and get more chance to obtain the better solutions than a 

non-population-based heuristic (e.g. HMA). Moreover, a 

population-based heuristic can be enhanced with parallel 

computing or distributed computing. Finally, ABCA can 

prevent the search from premature convergence problem 

which is the weakness of other population-based heuristics 

(e.g. GA and DEA). This is because, in the scout bee stage, 

the stalled solutions are removed from the population and a 

new random - generated solution is added to the population. 

This process also amplifies global search capability. 

There are a few studies (Tuntitippawan & Asawa 

rungsaengkul 2016a, 2016b) that apply ABCA for solving 

VRPBTW. Tuntitippawan and Asawarungsaengkul (2016a) 

applied ABCA to small and medium problems and Tuntitip 

pawan and Asawarungsaengkul (2016b) applied ABCA to 

small, medium, and large problems. However, the computa-

tional results showed that it still underperformed compared 

with the existing heuristics in many instances, especially in 

the large-scale problems. It is necessary to extend the 

exploration on the solution space or, equivalently, to expand 

the capability of the neighborhood search. Therefore, we 

introduce the enhanced artificial bee colony algorithm 

(EABCA) by applying a forbidden list strategy to prevent 

duplicated initial solutions (which initially extends the 

exploration on the solution space), the sequential search 

strategy for onlookers to explore the neighborhood near the 

high-quality food source, and the intra-route and inter-route 

exchange combination strategy to obtain the better solutions. 

Moreover, the parametrization is studied in this paper. 

 

2. Enhanced Artificial Bee Colony Algorithm for  

    VRPBTW 
 

2.1 The general concept of an artificial bee colony 
 

The artificial bee colony is inspired by the 

intelligent finding food sources behavior of the honey bees 

around the hives proposed by Karaboga (2005). A colony of 

the bees consists of three types of bees: employed bees, 

onlookers and scouts. The employed bees search for available 

nectar sources and share this information with the onlookers 

via a waggle dance at the dancing area. The onlookers select 
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the food sources by evaluating quality of nectar sources from 

the waggle dance to be further explored. When the quality of 

food sources is not improved within a time limit, the 

employed bees abandon the food source and turn into scout 

bees to find new food sources.  

The ABCA starts by generating a number of nectar 

sources (initial solutions) and assigning an employed bee to 

each food source. Each employed bee explores new food 

source near its original food source (neighborhood search) and 

measures the nectar amounts (fitness value). If the new source 

has more nectar, it will replace the old one.  Then the 

employed bees return to the hive with the information of the 

updated food sources, which is shared with the onlookers by 

the waggle dance. Each onlooker selects a food source with a 

probability that depends on the nectar amounts (the roulette 

wheel method). In particular, a food source with higher nectar 

amounts has a higher probability to be selected by an onlooker 

than ones with lower nectar amounts. Then each onlooker 

finds a new food source around the selected food sources 

(neighborhood search) and evaluates the amount of nectar. 

The employed bee will abandon its old food source and go to 

the new one if it has more nectar. In the case that the quality 

of food source is not improved within a time limit, the 

employed bee will also abandon the old food source and 

become a scout bee that searches for the new food source by 

randomly generating a new solution. After the scout bee finds 

a new food source, it becomes an employed bee again. This 

process will repeat until a stopping criterion is reached. 

 

2.2 Main steps 
 

The steps of the EABCA for solving the VRPBTW 

model can be described as follows: 

Step 1 Generate a set of initial solutions (food 

sources) by the nearest neighbor with roulette wheel selection 

method. The forbidden list strategy is also applied in this 

process. (Details in Section 2.3) Then assign each food source 

to each employed bee. 

Step 2 Evaluate the fitness of each solution and 

record the global best solution. 

Step 3 Apply the neighborhood search on each 

food source. An employed bee abandons its old food source if 

a new one with better fitness is found. Otherwise, increment 

the time limit counter of the food source. 

Step 4 For each onlooker, select a food source by 

using the fitness-based roulette wheel selection method and 

improve the food source by the neighborhood search. If the 

onlooker bee finds a new neighbor solution with better fitness, 

the employed bee associated with the food source abandons its 

old food source and goes to the new one. 

Step 5 Update the global best solution if a solu-

tion has better fitness than the current best one. 

Step 6 Check the time limit counter of each food 

source. If it reaches the predetermined number, the food 

source is replaced by a new randomly generated solution. 

Step 7 If the number of iterations reaches the 

maximum, then the algorithm finishes. Otherwise, go back to 

Step 3. 

  

 

 

 

2.3 Initial solution construction 
 

Küçükoğlu and Öztürk (2015) proposed an 

improved nearest neighbor heuristic for constructing an initial 

solution for VRPBTW. They computed the closeness of 

customer  to customer  by using , which is 

defined as: , where  , 

,  denote weight parameters such that  ,  

, , ;  denotes the traveling time from 

customer  to customer ;  denotes the idle time before 

servicing customer  after customer ; and  denotes the 

urgency of delivery to customer  after customer  expressed 

as the time remaining until the vehicle’s last possible service 

start for customer . Then the closeness of customers  and , 

denoted by , is defined as the reciprocal of 

.  

This paper adopts the above definition of closeness 

and uses it in the construction of the initial solutions. Each 

initial solution is constructed by the nearest neighbor with 

roulette wheel selection method proposed by Worawatta 

wechai et al. (2016b). An initial solution construction always 

starts a tour with the depot, and then finds the next customer 

by spinning the roulette wheel. If the next customer violates 

the constraints, we spin the roulette wheel again to find a new 

one. If we cannot find the next customer without violating 

constraints, we end this tour and begin a new tour. This 

process is repeated until all customers are served. 

Using the roulette wheel method alone can cause 

duplicate initial solutions, which hinders the exploration space 

down the road. In EABCA, the forbidden list strategy is 

applied to prevent this problem. Initially, the forbidden list is 

empty. Subsequently, after a new feasible initial solution is 

obtained, the solution will be checked with the forbidden list. 

If the solution is not in the list, then it is added to the 

forbidden list. Otherwise, the solution will be abandoned. The 

process is repeated until the number of solutions in the 

forbidden list reaches the specified number of initial solutions. 

 

2.4 Fitness function 
 

In this paper, we compute the Euclidean distance 

between customer  and customer  using the following 

formula (Kohl et al., 1997, 1999): 

  

  
 

where  is the coordinate of customer  and  is 

the coordinate of customer . The traveling time between two 

customers is assumed to be the same as the distance between 

them. 

The fitness value ( ) of a solution is a reciprocal of 

the total distance traveled by all vehicles in the solution. 
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2.5 Neighborhood search 
 

The local search in the ABCA proposed by Tuntitip 

pawan and Asawarungsaengkul (2016b) only uses the λ-

interchange, which is an inter-route operator that considers 

two routes at once. To extend the search ability, the EABCA 

can either randomly apply λ-interchange or 1-move intra-route 

exchange, which work on a single route, for its neighborhood 

search. Since the 1-move operator improves the solution by 

deleting a customer and then inserting it into the same route, it 

helps rearranging the customer in the route. The experimental 

parameter testing discussed in Section 3.1 indicates that this 

setting gives better solution than using λ-interchange alone 

(Figure 5). The details of both types of operator are explained 

below. 

The 1-move intra-route exchange is a practical 

operator for the traveling salesman problem. We adapt this 

operator to improve each route in the vehicle routing solution 

by removing one customer from a route and insert it back to 

the same route in a different position. An example of the 1-

move intra-route exchange is given in Figure 1. 
 

     
 

Figure 1. An example of the 1-move intra-route exchange. 

 

λ-interchange is a generalization of a relocation 

operator for the vehicle routing problem proposed by Osman 

(1993). The idea is to exchange a subset of customers of size x 

with a subset of customers of size y from a different route, 

which can be represented by the operator (x, y) where x and y 

are nonnegative integers not bigger than λ. In this paper, we 

use λ = 4. For examples, one possible operator is (1, 0) which 

means moving one customer in the one route to another route 

as shown in Figure 2. Another possible operator is (2, 1) 

which means exchanging two customers in the one route with 

one customer in another route as shown in Figure 3. 
 

    
 

Figure 2. An example of the operation (1, 0). 

 

    
 

Figure 3. An example of the operation (2, 1). 

 

2.6 Fitness-based roulette wheel selection method 
 

The fitness-based roulette wheel selection method is 

applied in the food source selection process. In this method, 

each onlooker selects a food source to explore according to 

the probability that depends on the nectar amount (or fitness 

value).  After selecting a food source, each onlooker finds a 

new food source around the selected food source and 

evaluates the amount of nectar.  

In the original version, if there are many onlooker 

bees selecting the same food source, each onlooker 

individually searches for a new food source and the old food 

source is replaced by the best of those new food sources. In 

our enhanced version, if there are many onlooker bees 

selecting the same food source, they will be queued up for 

searching a new food source. The search can only be 

performed by one onlooker bee at the time. If the previous 

onlooker bee finds a new better food source, the next onlooker 

bee will start from the newly found food source and look for a 

better one. Otherwise, the next onlooker bee will start from 

the same food source as the previous one. In this way, 

algorithm will be given opportunities to be further explored in 

good regions of the solution. 

 

3. Data Tests and Computational Results 
 

The EABCA was programmed in Microsoft Visual 

C# 2010 Express and executed on a 2.4 GHz Intel i7 Duo with 

8 GB memory. We tested the algorithm on a set of benchmark 

instances developed by Gélinas et al. (1995) for VRPBTW. 

 

3.1 Parameter setting 
 

A small study on parametrization of our algorithm is 

carried out and shown in this section. The crucial parameters 

( , , , ) are varied and their solutions are compared 

using a randomly selected large problem with 10% backhauls. 

The parameters , , and   are the proportion 

weights for traveling time, idle time, and urgency of delivery 

respectively when ,  , , .  

Therefore, we analyzed the ratio of these parameters instead 

of individual value analysis. The relationship of the fitness 

and some ratios of , ,   parameters is shown in Figure 4. 

The experiment indicated that the performance of this 

algorithm is better when  parameter is weighted more than 

the others, and it can produce the best solution when 

. Thus, these parameters are set 

as , ,  in this paper. 

The relationship between the fitness value and 

parameter λ is shown in Figure 5. The smaller λ is, the more 

difficult it is for EABCA to obtain better solution since the 

number of customers to be exchanged between routes is 

limited. Thus, the value of parameter λ = 4 is set in this paper. 

Moreover, the comparison of λ-interchange with and without 

1-move intra-route is also shown in this figure. The 

experiment indicated that the λ-interchange with 1-move intra-

route can produce better solution when compared with the λ-

interchange without 1-move intra-route. Thus, the 1-move 

intra-route can help improve the algorithm performance. 
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Figure 4. The relationship between the fitness value and the ratio of 

parameters , , and . 

 

 
 

Figure 5. The relationship between the fitness value and parameter 

λ, and comparison λ-interchange between with and without 

1-move intra-route. 

 

Both number of employed bees and the number of 

onlooker bees are set to be 50, which is recommended by 

Karaboga and Basturk (2008) for good performance of ABC. 

For the other parameters, we set them as follows: 

, and maximum number of iterations = 

200. 

 

3.2 Computational results 
 

Tables 1-3 compare the results of EABCA with the 

original ABCA (Tuntitippawan & Asawarungsaengkul, 

2016b), HMA (Küçükoğlu & Öztürk, 2015), and DEA 

(Küçükoğlu & Öztürk, 2014). In addition, the EABCA 

solutions are compared with the best-known solutions that are 

collected from many papers, namely Küçükoğlu and Öztürk 

(2014), (2015), Potvin et al. (1996b), Ropke and Pisinger 

(2006), Thangiah et al. (1996), Tuntitippawan and Asawarung 

saengkul (2016b), Worawattawechai et al. (2016a), (2016b). 

The NV column represents the number of vehicles used in the 

solution. The best distance of the proposed algorithm from 10 

independent runs is shown in the Best Distance column. The 

%Gap_BKS column denotes the gap percentage between the 

considered solution and the best-known solution. A negative 

number in this column means the considered algorithm 

obtained a new best-known solution. Specifically, the 

%Gap_BKS is computed by the formula:  

 

%Gap_BKS = . 

 

 

Table 1. Computational results of the EABCA in VRPBTW with 25 customers. 
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BKS  EABCA  ABCA e  HMA c  DEA f  
%Gap_BKS 

 

Distance  
Best 

Distance 
NV  Distance  Distance  Distance  EABCA ABCA e HMA c DEA f 

                  

R101 10 643.4c 643.4a  643.4 9  643.4  643.4  643.4  0.00% 0.00% 0.00% 0.00% 

 30 711.1c 717.0b  721.8 10  721.8  721.8  721.8  0.67% 0.67% 0.67% 0.67% 
 50 

 

674.5c 676.8f  676.8 10  676.8  676.8  676.8  0.00% 0.00% 0.00% 0.00% 

R102 10 563.5c 563.5c  563.5 7  563.5  563.5  565.3  0.00% 0.00% 0.00% 0.32% 
 30 622.3c 628.1c  628.1 9  628.1  628.1  629.0  0.00% 0.00% 0.00% 0.14% 

 50 

 

584.4c 584.4c  584.4 8  584.4  584.4  585.3  0.00% 0.00% 0.00% 0.15% 

R103 10 476.6c 476.6e  476.6 5  476.6  478.8  489.0  0.00% 0.00% 0.46% 2.13% 

 30 507.0c 507.0c  507.0 7  507.0  507.0  510.9  0.00% 0.00% 0.00% 0.77% 

 50 
 

475.6c 483.0c  483.0 6  483.0  483.0  495.0  0.00% 0.00% 0.00% 2.48% 

R104 10 452.5c 452.5d  452.5 5  453.8  453.8  459.1  0.00% 0.29% 0.29% 1.46% 

 30 467.6c 468.5c  468.5 6  468.5  468.5  469.6  0.00% 0.00% 0.00% 0.23% 
 50 

 

446.8c 446.8c  446.8 5  446.8  446.8  458.7  0.00% 0.00% 0.00% 2.66% 

R105 10 565.1c 565.1a  565.1 7  565.1  565.1  565.1  0.00% 0.00% 0.00% 0.00% 
 30 623.5c 623.5c  623.5 8  628.0  623.5  630.2  0.00% 0.72% 0.00% 1.07% 

 50 

 

591.1c 591.1d  591.1 8  591.1  592.1  598.5  0.00% 0.00% 0.17% 1.25% 

 

a   Obtained from Potvin et al. (1996b)  d  Obtained from Worawattawechai et al (2016a) 
b  Obtained from Thangiah et al. (1996)  e  Obtained from Tuntitippawan and Asawarungsaengkul (2016) 
c  Obtained from Küçükoğlu and Öztürk (2015) f  Obtained from  Küçükoğlu and Öztürk (2014) 
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Table 2. Computational results of the EABCA in VRPBTW with 50 customers. 
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BKS  EABCA  ABCA e  HMA c  DEA f  
%Gap_BKS 

 

Distance  
Best 

Distance 
NV  Distance  Distance  Distance  EABCA ABCA e HMA c DEA f 

                  

R101 10 1122.3c 1133.3g  1133.3 15  1134.0  1135.8  1138.3  0.00% 0.06% 0.22% 0.44% 

 30 1191.5c 1191.6c  1191.6 16  1191.6  1191.6  1245.8  0.00% 0.00% 0.00% 4.55% 

 50 
 

1168.6c 1183.9a  1183.9 16  1183.9  1183.9  1183.9  0.00% 0.00% 0.00% 0.00% 

R102 10 974.7c 976.5e  976.5 12  976.5  976.8  978.7  0.00% 0.00% 0.03% 0.23% 

 30 1024.8c 1024.8b  1054.6 14  1054.6  1046.0  1046.0  2.91% 2.91% 2.07% 2.07% 
 50 

 

1057.2c 1059.7a  1059.7 14  1059.7  1061.6  1153.0  0.00% 0.00% 0.18% 8.80% 

R103 10 811.4c 815.5c  812.3 9  821.6  815.5  831.1  -0.39% 0.75% 0.00% 1.91% 
 30 882.8c 887.1e  886.2 11  887.1  889.3  895.1  -0.10% 0.00% 0.25% 0.90% 

 50 

 

882.1c 885.1e  883.0 11  885.1  887.7  887.7  -0.24% 0.00% 0.29% 0.29% 

R104 10 - 687.7c  685.9 7  -  687.7  688.7  -0.26% - 0.00% 0.15% 

 30 - 736.8c  734.8 8  -  736.8  737.7  -0.27% - 0.00% 0.12% 

 50 
 

733.6c 734.5g  733.6 8  739.3  738.2  742.2  -0.12% 0.65% 0.50% 1.05% 

R105 10 970.6c 972.8f  976.2 11  985.2  978.5  972.8  0.35% 1.27% 0.59% 0.00% 

 30 1007.5c 1024.7e  1019.9 12  1024.7  1026.7  1030.0  -0.47% 0.00% 0.20% 0.52% 
 50 

 

993.4c 993.4e  993.4 11  993.4  996.2  1022.2  0.00% 0.00% 0.28% 2.90% 

 

a   Obtained from Potvin et al. (1996b)  e  Obtained from Tuntitippawan and Asawarungsaengkul (2016) 
b  Obtained from Thangiah et al. (1996)   f  Obtained from  Küçükoğlu and Öztürk (2014) 
c  Obtained from Küçükoğlu and Öztürk (2015) g  Obtained from Worawattawechai et al. (2016b) 
d  Obtained from Worawattawechai et al. (2016a) 

 

Table 3. Computational results of the EABCA in VRPBTW with 100 customers. 
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Distance  
Best 

Distance 
NV  Distance  Distance  Distance  EABCA ABCA e HMA c DEA f 

                  

R101 10 1767.9c 1811.6f  1809.1 24  1818.6  1811.6  1811.6  -0.14% 0.39% 0.00% 0.00% 
 30 1877.6c 1885.2d  1885.0 24  1904.5  1891.1  1925.9  -0.01% 1.02% 0.31% 2.16% 

 50 

 

1895.1c 1905.9a  1921.2 25  1928.2  1911.2  1930.2  0.80% 1.17% 0.28% 1.27% 

R102 10 1600.5c 1623.7c  1620.8 20  1640.7  1623.7  1649.8  -0.18% 1.05% 0.00% 1.61% 

 30 1639.2c 1705.6g  1693.4 21  1717.3  1724.0  1758.2  -0.72% 0.69% 1.08% 3.08% 

 50 
 

1721.3c 1746.0b  1738.7 21  1752.2  1759.8  1777.1  -0.42% 0.36% 0.79% 1.78% 

R103 10 - 1346.9c  1355.2 17  -  1346.9  1356.3  0.62% - 0.00% 0.70% 

 30 - 1385.9c  1408.6 17  -  1385.9  1389.2  1.64% - 0.00% 0.24% 
 50 

 

- 1456.5h  1463.7 18  -  1465.0  1465.0  0.49% - 0.58% 0.58% 

R104 10 - 1084.2h  1119.6 13  -  1093.4  1105.4  3.27% - 0.85% 1.96% 
 30 - 1136.6c  1148.6 14  -  1136.6  1146.5  1.06% - 0.00% 0.87% 

 50 

 

- 1187.7d  1207.4 14  -  1189.6  1199.6  1.66% - 0.16% 1.00% 

R105 10 - 1516.0c  1514.3 18  -  1516.0  1527.7  -0.11% - 0.00% 0.77% 

 30 - 1581.5c  1594.5 17  -  1581.5  1582.6  0.82% - 0.00% 0.07% 

 50 
 

- 1604.1c  1607.2 18  -  1604.1  1608.6  0.19% - 0.00% 0.28% 

 

a   Obtained from Potvin et al. (1996b)  e  Obtained from Tuntitippawan and Asawarungsaengkul (2016) 
b  Obtained from Thangiah et al. (1996)  f  Obtained from  Küçükoğlu and Öztürk (2014) 
c  Obtained from Küçükoğlu and Öztürk (2015) g  Obtained from Worawattawechai et al. (2016b) 
d  Obtained from Worawattawechai et al. (2016a) h  Obtained from Ropke and Pisinger (2006) 

 
Tables 1-3 show the comparisons for small-, 

medium-, and large-sized problems respectively. The results 

obtained from the comparison can be summarized as follows.  

 When compared with the original ABC, the EABCA 

obtained 34 equivalent or better solutions out of 34 

problems presented in the ABCA paper (100%).  
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 When compared with the HMA, the EABCA 

obtained 36 equivalent or better solutions out of 45 

problems presented in the HMA paper (80%). 

 When compared with the DEA, the EABCA 

obtained 38 equivalent or better solutions out of 45 

problems presented in the DEA paper (84%). 

The results show that the EABCA is superior to 

ABCA in terms of solution quality, and it is competitive with 

the other heuristics in the literature. 

To evaluate the efficiency of EABCA, the 

comparison between the best-known solutions in the literature 

and the solutions obtained from the proposed heuristic in this 

paper is also shown in %Gap_BKS column of Tables 1-3. The 

results obtained from the comparison can be summarized as 

follows. 

 For small problems with 25 customers in Table 1, 

the EABCA obtained 14 solutions that were equiva-

lent to the best-known solutions out of 15 instances. 

In other words, the EABCA solutions for all 

benchmark instances were equivalent to the best-

known solutions except for only one from the R101 

problem with 30% backhauls. 

 For medium problems with 50 customers in Table 2, 

the EABCA obtained 13 solutions that were equiva-

lent to or better than the best-known solutions out of 

15 instances. Moreover, the proposed algorithm 

could find 7 new best-known solutions. In general, 

the EABCA outperformed the existing algorithms in 

medium problem set. 

 For large problems with 100 customers in Table 3, 

most of the EABCA solutions were not as good as 

the best-known solutions except for 6 cases where 

the new best-known solutions were obtained, 

namely the R101 problem with 10% and 30% 

backhauls, all problems in the R102, and the R105 

problem with 10% backhauls. 

Summarily, the EABCA outperformed the existing 

algorithms in terms of solution quality in many problems as it 

obtained 33 equivalent or new best-known solutions out of 45 

instances (73.33%) while others did not perform as well 

(ABCA 58.82%, HMA 53.33%, and DEA 13.33%). More-

over, our algorithm found the optimal solutions for some 

instances. The average computational time of EABCA for 25, 

50, and 100 customers are 15.16, 87.64, and 275.47 (seconds) 

respectively. The gap of the total distance between the best-

known solutions and the proposed solutions are within 0.5% 

of the best-known solutions (0.06% for 25 nodes, 0.12% for 

50 nodes and 0.48% for 100 nodes). It is computed by the 

formula: 

 

%Gaptotal = .  

 

3.3 Result discussion 
  

When comparing the results of enhanced version of 

ABCA with the original one proposed by Tuntitippawan and 

Asawarungsaengkul (2016b), the EABCA was superior to the 

original ABCA in terms of solution quality. We speculated 

that the forbidden list strategy in generating process, the 

sequential search strategy for onlooker bees, and the intra-

route and inter-route exchange combination strategy for the 

local search in the EABCA indeed helped extend the 

exploration on the solution space to obtain the better solutions. 

Note that although the sequential search of onlookers 

increases the chance of finding great solutions, it also leads to 

larger computational time. Further study is needed to analyze 

the tradeoffs and compare the computational time with the 

original ABCA. 

When comparing the results of EABCA with the 

other methods in terms of solution quality, we found that the 

performance of our algorithm is better than the HMA and 

DEA for small- and medium-sized problems while com-

parable with the HMA and the DEA in the large-sized 

problems. We speculated that there are four main reasons 

EABCA contributes the successful results. First, the EABCA 

is a population-based heuristic which starts with a number of 

unduplicated initial solutions. Therefore, it can explore more 

in the solution space and get more chance to obtain the better 

solutions. Second, the EABCA applied the combination of 

intra-route and inter-route exchange as the neighborhood 

search. Hence, this strategy can extend the regions of the 

search space to increase the chance for finding a better 

solution. Third, the high-quality solutions are used more often 

than the low-quality ones to produce an improved solution in 

the onlooker bee stage. Thus, the regions of the search space 

are searched in shorter time and in detail. Fourth, the stalled 

solutions are removed from the population and a new solution 

from random generating is added to the population in the 

scout bee stage. This process provides global search ability 

and prevents the search from premature convergence problem. 

 

4. Conclusions 
 

In this study, we present the enhanced artificial bee 

colony algorithm (EABCA) to solve the VRPBTW problem. 

Three strategies are proposed in EABCA, which are a 

forbidden list, the sequential search for onlookers, and the 

combination of 1-move intra-route exchange and λ-inter-

change technique. The computational results show that 

EABCA was superior to original ABCA proposed by 

Tuntitippawan and Asawarungsaengkul (2016b), and it was 

competitive with the other heuristics in terms of solution 

quality. Moreover, EABCA solutions were compared with the 

best-known solutions in the literature. Results show that 

EABCA obtained 33 equivalent or new best-known solutions 

out of 45 problems (73.33%). In general, when compared with 

existing algorithms, EABCA gave better performance in 

medium-sized problems and comparable performance in 

small-sized problem. Thus, the EABCA can be applied 

effectively to small- and medium-sized problems. 
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