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Abstract

The vehicle routing problem with backhauls and time windows (VRPBTW) aims to find a feasible vehicle route that
minimizes the total traveling distance while imposing capacity, backhaul, and time-window constraints. We present an enhanced
artificial bee colony algorithm (EABCA), which is a meta-heuristic, to solve this problem. Three strategies - a forbidden list, the
sequential search for onlookers, and the combination of 1-move intra-route exchange and A-interchange technique - are
introduced for EABCA. The proposed method was tested on a set of benchmark instances. The computational results show that
the EABCA can produce better solutions than the basic ABCA, and it discovered many new best-known solutions.
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1. Introduction

The vehicle routing problem with backhaul and time
window (VRPBTW) is extended from the vehicle routing
problem with backhaul (VRPB) by adding a specified service
time window for each customer. There are three main
constraint categories for VRPBTW model, namely capacity
constraints, backhaul constraints and time window constraints.
For the capacity constraints, the number of customers serviced
by a vehicle is restricted by the capacity of the vehicle. For the
backhaul constraints, the vehicles serve all demands of the
linehual customers and the same vehicles also pick up
demands from the backhaul customers. In addition, the
backhaul customers cannot be served before linehaul
customers. For the time window constraints, the vehicle
arrival time at each customer must not exceed the upper bound
of the customer’s time window. In general, the VRPBTW is a
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class of the NP-hard combinatorial optimization problems,
which is too difficult to solve exactly within a reasonable
time. Consequently, there are many heuristic methods
proposed to get a near optimal solution for this problem.

An increasing number of the publications on
heuristic approaches for vehicle routing problem have been
developed for the past two decades. However, only few
studies have been devoted to the VRPBTW. A brief review of
these studies is divided into two parts based on the types of
the proposed methods, namely non-meta-heuristic methods
and meta-heuristic methods.

A few non-meta-heuristic methods were proposed to
solve VRPBTW. Thangiah et al. (1996) presented a push
forward insert heuristic (PFIH). This algorithm applied an
insertion heuristic for route construction and improved
solution by A-interchange and 2-opt* exchange procedures to
solve VRPBTW problems. The algorithm was tested on
benchmark instances of Gélinas et al. (1995). Although the
solutions of PFIH were within 2.5% of the optimum on
average, PFIH almost always gave worse results than average
for large-sized problems. Ropke and Pisinger (2006) trans-
formed the VRPBTW into the VRPB by ordering the routes
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according to time window constraints and then used a
neighbor search algorithm to solve the problem. Although the
unified heuristic could improve the best-known solution for
many instances and decrease the necessary number of
vehicles, the computational time increases considerably with
the problem size. Worawattawechai et al. (2016a) presented a
nearest urgent candidate heuristic (NUC) for the VRPBTW.
This algorithm starts by sorting the customers according to the
urgency of delivery before adding into the route by
considering their closeness while a candidate list technique is
used to enforce the urgency order. Although NUC heuristic
performed better than the PFIH, it underperformed the
existing algorithm for the large-sized problems. In general,
non-meta-heuristic methods can achieve good optimization
results quickly while it is relatively simple and easy to apply
to the problems. However, the efficacy of these methods
decreases when the problem size becomes large.

There are more studies that focused on meta-
heuristic methods for VRPBTW. Potvin et al. (1996b)
described a genetic algorithm (GA) coupled with a greedy
insertion heuristic to find a good insertion order of the
customers. The results showed that GA solutions were within
1% of the optimum on average by using benchmark instances
of Gélinas et al. (1995). However, it was very expensive in
terms of computational resources, and it was frequently prone
to premature converging. Cho and Wang (2005) presented a
meta-heuristic which is based on an acceptable threshold
combined with modified nearest neighbor and exchange
procedures for solving the VRPBTW. Although this method
could decrease the computational time, it underperformed
compared with the GA proposed by Potvin et al. (1996b).
Kiiciikoglu and Oztiirk (2014) introduced a differential
evolution algorithm (DEA) for VRPBTW and applied it for a
catering firm.DEA was tested with several benchmark
problems. The results showed that this algorithm could obtain
some new best-known solutions. Since DEA was originally
designed for continuous problems, it is hard to find a good
encoding procedure to adapt DEA to integer problems like
VRPBTW. Later, Kiigiikoglu and Oztiirk (2015) proposed an
advanced hybrid meta-heuristic algorithm (HMA), which
combined tabu search algorithm and simulated annealing
algorithm to obtain more effective solutions for the
VRPBTW. The results indicated that the HMA performed
better than the DEA. However, one of the disadvantages of the
hybrid algorithm was that it took a lot of computational time.
Worawattawechai et al. (2016b) proposed the nearest
neighbor with roulette wheel selection method (NNRW) as an
initial solution algorithm for the cuckoo search (CS)
algorithm. The result reported that the CS algorithm could
produce better solutions than the best-known solutions for the
majority of small- and medium-sized instances. However, it
did not perform as well for large problems.

Artificial bee colony algorithm (ABCA) is another
meta-heauristic method that has been applied to VRP. It was
first introduced by Karaboga (2005). It is firstly applied to the
capacitated vehicle routing problems (CVRP) by Szeto et al.
(2011) with some enhancements. The results show that the
enhanced version of ABCA outperformed the original one,
and it could produce good solutions when compared with the
existing heuristics. Alzagebah et al. (2016) presented the
modified artificial bee colony for the vehicle routing problems
with time windows (VRPTW). In this study, the list of

abandoned solutions was used to generate new solutions. The
results showed that the modified ABCA obtained good results
when compared with the best-known results. An improved
artificial bee colony algorithm for a real case in Dalian was
introduced by Yu et al. (2016). In this version of ABCA, three
strategies were applied, namely an adaptive strategy, a
crossover operation, and a mutation operation. The results
showed that some of solutions were better than the best-
known solution when tested on benchmark problems of
Solomon (1987) for VRPTW.

There are many reasons that motivate the authors to
use ABCA to solve VRPBTW in this paper. Firstly, ABCA
was successfully applied to VRP and VRPTW as described in
the above paragraph. Secondly, ABCA is a meta-heuristic,
which means the exploring area of the solution space is larger
than non-meta-heuristics (PFIH, unified heuristic, NUC
heuristic). Thus, it can achieve good optimization results,
especially in the large-sized problem. Thirdly, ABCA is a
population-based heuristic which starts with a number of
initial solutions. Therefore, it can explore more in the solution
space and get more chance to obtain the better solutions than a
non-population-based heuristic (e.g. HMA). Moreover, a
population-based heuristic can be enhanced with parallel
computing or distributed computing. Finally, ABCA can
prevent the search from premature convergence problem
which is the weakness of other population-based heuristics
(e.g. GA and DEA). This is because, in the scout bee stage,
the stalled solutions are removed from the population and a
new random - generated solution is added to the population.
This process also amplifies global search capability.

There are a few studies (Tuntitippawan & Asawa
rungsaengkul 2016a, 2016b) that apply ABCA for solving
VRPBTW. Tuntitippawan and Asawarungsaengkul (2016a)
applied ABCA to small and medium problems and Tuntitip
pawan and Asawarungsaengkul (2016b) applied ABCA to
small, medium, and large problems. However, the computa-
tional results showed that it still underperformed compared
with the existing heuristics in many instances, especially in
the large-scale problems. It is necessary to extend the
exploration on the solution space or, equivalently, to expand
the capability of the neighborhood search. Therefore, we
introduce the enhanced artificial bee colony algorithm
(EABCA) by applying a forbidden list strategy to prevent
duplicated initial solutions (which initially extends the
exploration on the solution space), the sequential search
strategy for onlookers to explore the neighborhood near the
high-quality food source, and the intra-route and inter-route
exchange combination strategy to obtain the better solutions.
Moreover, the parametrization is studied in this paper.

2. Enhanced Artificial Bee Colony Algorithm for
VRPBTW

2.1 The general concept of an artificial bee colony

The artificial bee colony is inspired by the
intelligent finding food sources behavior of the honey bees
around the hives proposed by Karaboga (2005). A colony of
the bees consists of three types of bees: employed bees,
onlookers and scouts. The employed bees search for available
nectar sources and share this information with the onlookers
via a waggle dance at the dancing area. The onlookers select
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the food sources by evaluating quality of nectar sources from
the waggle dance to be further explored. When the quality of
food sources is not improved within a time limit, the
employed bees abandon the food source and turn into scout
bees to find new food sources.

The ABCA starts by generating a number of nectar
sources (initial solutions) and assigning an employed bee to
each food source. Each employed bee explores new food
source near its original food source (neighborhood search) and
measures the nectar amounts (fitness value). If the new source
has more nectar, it will replace the old one. Then the
employed bees return to the hive with the information of the
updated food sources, which is shared with the onlookers by
the waggle dance. Each onlooker selects a food source with a
probability that depends on the nectar amounts (the roulette
wheel method). In particular, a food source with higher nectar
amounts has a higher probability to be selected by an onlooker
than ones with lower nectar amounts. Then each onlooker
finds a new food source around the selected food sources
(neighborhood search) and evaluates the amount of nectar.
The employed bee will abandon its old food source and go to
the new one if it has more nectar. In the case that the quality
of food source is not improved within a time limit, the
employed bee will also abandon the old food source and
become a scout bee that searches for the new food source by
randomly generating a new solution. After the scout bee finds
a new food source, it becomes an employed bee again. This
process will repeat until a stopping criterion is reached.

2.2 Main steps

The steps of the EABCA for solving the VRPBTW
model can be described as follows:

Stepl  Generate a set of initial solutions (food
sources) by the nearest neighbor with roulette wheel selection
method. The forbidden list strategy is also applied in this
process. (Details in Section 2.3) Then assign each food source
to each employed bee.

Step2  Evaluate the fitness of each solution and
record the global best solution.

Step 3 Apply the neighborhood search on each
food source. An employed bee abandons its old food source if
a new one with better fitness is found. Otherwise, increment
the time limit counter of the food source.

Step 4  For each onlooker, select a food source by
using the fitness-based roulette wheel selection method and
improve the food source by the neighborhood search. If the
onlooker bee finds a new neighbor solution with better fitness,
the employed bee associated with the food source abandons its
old food source and goes to the new one.

Step5  Update the global best solution if a solu-
tion has better fitness than the current best one.

Step 6  Check the time limit counter of each food
source. If it reaches the predetermined number, the food
source is replaced by a new randomly generated solution.

Step 7 If the number of iterations reaches the
maximum, then the algorithm finishes. Otherwise, go back to
Step 3.

2.3 Initial solution construction

Kiigiikoglu and Oztiirk (2015) proposed an
improved nearest neighbor heuristic for constructing an initial
solution for VRPBTW. They computed the closeness of

customer i to customer j by using pToximityU-, which is
defined as: proximity; = ac;; + B hU‘ + yvy where ¢,
B, ¥ denote weight parameters such that « + 8 +y =1,

a=0 f=0 y=0; C; denotes the traveling time from
customer { to customer I8 hU denotes the idle time before
servicing customer j after customer i; and v7;; denotes the

urgency of delivery to customer j after customer i expressed
as the time remaining until the vehicle’s last possible service
start for customer j. Then the closeness of customers i and j,

denoted by cggggngggij, is defined as the reciprocal of
proximity;;-

This paper adopts the above definition of closeness
and uses it in the construction of the initial solutions. Each
initial solution is constructed by the nearest neighbor with
roulette wheel selection method proposed by Worawatta
wechai et al. (2016b). An initial solution construction always
starts a tour with the depot, and then finds the next customer
by spinning the roulette wheel. If the next customer violates
the constraints, we spin the roulette wheel again to find a new
one. If we cannot find the next customer without violating
constraints, we end this tour and begin a new tour. This
process is repeated until all customers are served.

Using the roulette wheel method alone can cause
duplicate initial solutions, which hinders the exploration space
down the road. In EABCA, the forbidden list strategy is
applied to prevent this problem. Initially, the forbidden list is
empty. Subsequently, after a new feasible initial solution is
obtained, the solution will be checked with the forbidden list.
If the solution is not in the list, then it is added to the
forbidden list. Otherwise, the solution will be abandoned. The
process is repeated until the number of solutions in the
forbidden list reaches the specified number of initial solutions.

2.4 Fitness function

In this paper, we compute the Euclidean distance
between customer i and customer j using the following

formula (Kohl et al., 1997, 1999):

{10({'{1&—1}}2+B’1‘—}’;)2)J
10

CU' =

where (x;,y;) is the coordinate of customer i and (x;,y;) is
the coordinate of customer j. The traveling time between two

customers is assumed to be the same as the distance between
them.

The fitness value (f) of a solution is a reciprocal of
the total distance traveled by all vehicles in the solution.
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2.5 Neighborhood search

The local search in the ABCA proposed by Tuntitip
pawan and Asawarungsaengkul (2016b) only uses the A-
interchange, which is an inter-route operator that considers
two routes at once. To extend the search ability, the EABCA
can either randomly apply A-interchange or 1-move intra-route
exchange, which work on a single route, for its neighborhood
search. Since the 1-move operator improves the solution by
deleting a customer and then inserting it into the same route, it
helps rearranging the customer in the route. The experimental
parameter testing discussed in Section 3.1 indicates that this
setting gives better solution than using A-interchange alone
(Figure 5). The details of both types of operator are explained
below.

The 1-move intra-route exchange is a practical
operator for the traveling salesman problem. We adapt this
operator to improve each route in the vehicle routing solution
by removing one customer from a route and insert it back to
the same route in a different position. An example of the 1-
move intra-route exchange is given in Figure 1.

iy

Figure 1. An example of the 1-move intra-route exchange.

l:‘ Depot
O Linehauls
O Backhauls

A-interchange is a generalization of a relocation
operator for the vehicle routing problem proposed by Osman
(1993). The idea is to exchange a subset of customers of size x
with a subset of customers of size y from a different route,
which can be represented by the operator (x, y) where x and y
are nonnegative integers not bigger than A. In this paper, we
use A = 4. For examples, one possible operator is (1, 0) which
means moving one customer in the one route to another route
as shown in Figure 2. Another possible operator is (2, 1)
which means exchanging two customers in the one route with
one customer in another route as shown in Figure 3.

oTp o
Y

Figure 2. An example of the operation (1, 0).

Figure 3. An example of the operation (2, 1).

l:l Depot
o Linehauls
O Backhauls

l:l Depot
O Linehauls
O Backhauls

2.6 Fitness-based roulette wheel selection method

The fitness-based roulette wheel selection method is
applied in the food source selection process. In this method,
each onlooker selects a food source to explore according to
the probability that depends on the nectar amount (or fitness
value). After selecting a food source, each onlooker finds a
new food source around the selected food source and
evaluates the amount of nectar.

In the original version, if there are many onlooker
bees selecting the same food source, each onlooker
individually searches for a new food source and the old food
source is replaced by the best of those new food sources. In
our enhanced version, if there are many onlooker bees
selecting the same food source, they will be queued up for
searching a new food source. The search can only be
performed by one onlooker bee at the time. If the previous
onlooker bee finds a new better food source, the next onlooker
bee will start from the newly found food source and look for a
better one. Otherwise, the next onlooker bee will start from
the same food source as the previous one. In this way,
algorithm will be given opportunities to be further explored in
good regions of the solution.

3. Data Tests and Computational Results

The EABCA was programmed in Microsoft Visual
C# 2010 Express and executed on a 2.4 GHz Intel i7 Duo with
8 GB memory. We tested the algorithm on a set of benchmark
instances developed by Gélinas et al. (1995) for VRPBTW.

3.1 Parameter setting

A small study on parametrization of our algorithm is
carried out and shown in this section. The crucial parameters

(a, 5. Y, X) are varied and their solutions are compared
using a randomly selected large problem with 10% backhauls.

The parameters , §, and ¥ are the proportion
weights for traveling time, idle time, and urgency of delivery
respectively when ¢+ +y =1, a =0, =0,y = 0.
Therefore, we analyzed the ratio of these parameters instead
of individual value analysis. The relationship of the fitness
and some ratios of ¢, 5, ¥ parameters is shown in Figure 4.

The experiment indicated that the performance of this
algorithm is better when ¢ parameter is weighted more than

the others, and it can produce the best solution when
a: B: y=04:0.3:0.3. Thus, these parameters are set
asa = 0.4, f = 0.3, y = 0.3 in this paper.

The relationship between the fitness value and
parameter A is shown in Figure 5. The smaller A is, the more
difficult it is for EABCA to obtain better solution since the
number of customers to be exchanged between routes is
limited. Thus, the value of parameter A = 4 is set in this paper.
Moreover, the comparison of A-interchange with and without
1-move intra-route is also shown in this figure. The
experiment indicated that the A-interchange with 1-move intra-
route can produce better solution when compared with the A-
interchange without 1-move intra-route. Thus, the 1-move
intra-route can help improve the algorithm performance.
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Both number of employed bees and the number of
onlooker bees are set to be 50, which is recommended by
Karaboga and Basturk (2008) for good performance of ABC.
For the other parameters, we set them as follows:
the limit time = 20, and maximum number of iterations =

00.

N

3.2 Computational results

Tables 1-3 compare the results of EABCA with the
original ABCA (Tuntitippawan & Asawarungsaengkul,
2016b), HMA (Kiigiikoglu & Oztiirk, 2015), and DEA
(Kiigiikoglu & Oztiirk, 2014). In addition, the EABCA
solutions are compared with the best-known solutions that are
collected from many papers, namely Kiigiikoglu and Oztiirk
(2014), (2015), Potvin et al. (1996b), Ropke and Pisinger
(2006), Thangiah et al. (1996), Tuntitippawan and Asawarung
saengkul (2016b), Worawattawechai et al. (2016a), (2016b).
The NV column represents the number of vehicles used in the
solution. The best distance of the proposed algorithm from 10
independent runs is shown in the Best Distance column. The
%Gap_BKS column denotes the gap percentage between the
considered solution and the best-known solution. A negative
number in this column means the considered algorithm
obtained a new best-known solution. Specifically, the
%Gap_BKS is computed by the formula:

%Gap_BKS — (the considered solution )—(the best known solution) %100-

the best known solution

Table 1.  Computational results of the EABCA in VRPBTW with 25 customers.
0,
E § B5 BKS EABCA ABCA®  HMA® DEA' %Gap_BKS
= < E=S
e = 5 . Best . . . P
a o O »  Distance Distance NV  Distance Distance Distance EABCA ABCA® HMA¢® DEA
R101 10 643.4° 643.4° 643.4 9 643.4 643.4 643.4 0.00% 0.00% 0.00% 0.00%
30 711.1° 717.0° 721.8 10 721.8 721.8 721.8 0.67% 0.67% 0.67% 0.67%
50 674.5° 676.8f 676.8 10 676.8 676.8 676.8 0.00% 0.00% 0.00% 0.00%
R102 10 563.5° 563.5¢ 563.5 7 563.5 563.5 565.3 0.00% 0.00% 0.00% 0.32%
30 622.3° 628.1° 628.1 9 628.1 628.1 629.0 0.00% 0.00% 0.00% 0.14%
50 584.4° 584.4¢ 584.4 8 584.4 584.4 585.3 0.00% 0.00% 0.00% 0.15%
R103 10 476.6° 476.6° 476.6 5 476.6 478.8 489.0 0.00% 0.00% 0.46% 2.13%
30 507.0° 507.0° 507.0 7 507.0 507.0 510.9 0.00% 0.00% 0.00% 0.77%
50  475.6° 483.0° 483.0 6 483.0 483.0 495.0 0.00% 0.00% 0.00% 2.48%
R104 10  452.5° 452 .5¢ 4525 5 453.8 453.8 459.1 0.00% 0.29% 0.29% 1.46%
30 467.6° 468.5° 468.5 6 468.5 468.5 469.6 0.00% 0.00% 0.00% 0.23%
50 446.8° 446.8° 446.8 5 446.8 446.8 458.7 0.00% 0.00% 0.00% 2.66%
R105 10 565.1° 565.1° 565.1 7 565.1 565.1 565.1 0.00% 0.00% 0.00% 0.00%
30 6235° 623.5¢ 623.5 8 628.0 623.5 630.2 0.00% 0.72% 0.00% 1.07%
50 591.1° 591.1¢ 591.1 8 591.1 592.1 598.5 0.00% 0.00% 0.17% 1.25%

2 Obtained from Potvin et al. (1996b)
® Obtained from Thangiah et al. (1996)
¢ Obtained from Kiigiikoglu and Oztiirk (2015)

¢ Obtained from Worawattawechai et al (2016a)
¢ Obtained from Tuntitippawan and Asawarungsaengkul (2016)
f Obtained from Kiigiikoglu and Oztiirk (2014)
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Table 2. Computational results of the EABCA in VRPBTW with 50 customers.

0,
E S EB§ BKS EABCA ABCA®  HMA® DEA' #Gap_BKS
s - =5
e I 52 . Best . . . ;
o o Oon Distance Distance NV Distance Distance Distance EABCA ABCA® HMA® DEA
R101 10 1122.3° 1133.3% 1133.3 15 1134.0 1135.8 1138.3 0.00% 0.06% 0.22%  0.44%
30 1191.5° 1191.6¢ 11916 16 1191.6 1191.6 1245.8 0.00% 0.00% 0.00%  4.55%
50 1168.6° 1183.9% 1183.9 16 1183.9 1183.9 1183.9 0.00% 0.00% 0.00%  0.00%
R102 10 974.7° 976.5° 976.5 12 976.5 976.8 978.7 0.00% 0.00% 0.03%  0.23%
30 1024.8° 1024.8° 1054.6 14 1054.6 1046.0 1046.0 2.91% 2.91% 207% 2.07%
50 1057.2° 1059.72 1059.7 14 1059.7 1061.6 1153.0 0.00% 0.00% 0.18%  8.80%
R103 10 811.4° 815.5° 812.3 9 821.6 815.5 831.1 -0.39% 0.75% 0.00% 1.91%
30 882.8° 887.1° 886.2 11 887.1 889.3 895.1 -0.10%  0.00% 0.25%  0.90%
50 882.1° 885.1° 883.0 11 885.1 887.7 887.7 -0.24%  0.00% 0.29%  0.29%
R104 10 - 687.7° 685.9 7 - 687.7 688.7 -0.26% - 0.00%  0.15%
30 - 736.8° 734.8 8 - 736.8 731.7 -0.27% - 0.00%  0.12%
50 733.6° 734.59 733.6 8 739.3 738.2 742.2 -0.12% 0.65% 0.50%  1.05%
R105 10  970.6° 972.8 976.2 11 985.2 978.5 972.8 0.35% 1.27% 0.59%  0.00%
30 1007.5° 1024.7¢ 1019.9 12 1024.7 1026.7 1030.0 -0.47% 0.00% 0.20%  0.52%
50  993.4° 993.4¢ 9934 11 9934 996.2 1022.2 0.00% 0.00% 0.28%  2.90%
& Obtained from Potvin et al. (1996b) ¢ Obtained from Tuntitippawan and Asawarungsaengkul (2016)
® Obtained from Thangiah et al. (1996) f Obtained from Kiigiikoglu and Oztiirk (2014)
¢ Obtained from Kiigiikoglu and Oztiirk (2015) 9 Obtained from Worawattawechai et al. (2016b)

d Obtained from Worawattawechai et al. (2016a)

Table 3. Computational results of the EABCA in VRPBTW with 100 customers.

0,
E § ®5 BKS EABCA ABCA®  HMA® DEA' #0Gap_BKS
2 < E=z
g I 25 . Best . . . f
a m Oon Distance Distance NV Distance Distance Distance EABCA ABCA® HMA® DEA
R101 10 1767.9° 1811.6 1809.1 24 1818.6 1811.6 1811.6 -0.14%  0.39% 0.00% 0.00%
30 1877.6°  1885.2¢ 1885.0 24 1904.5 1891.1 1925.9 -0.01%  1.02% 0.31% 2.16%
50 1895.1° 1905.92 1921.2 25 1928.2 1911.2 1930.2 0.80% 1.17% 0.28% 1.27%
R102 10 1600.5°  1623.7° 16208 20 1640.7 1623.7 1649.8 -0.18%  1.05% 0.00% 1.61%
30 1639.2¢ 1705.6° 1693.4 21 1717.3 1724.0 1758.2 -0.72% 0.69% 1.08% 3.08%
50 1721.3° 1746.0° 1738.7 21 1752.2 1759.8 1777.1 -0.42% 0.36% 0.79% 1.78%
R103 10 - 1346.9° 1355.2 17 - 1346.9 1356.3 0.62% - 0.00% 0.70%
30 - 1385.9° 14086 17 - 1385.9 1389.2 1.64% - 0.00% 0.24%
50 - 1456.5" 1463.7 18 - 1465.0 1465.0 0.49% - 0.58% 0.58%
R104 10 - 1084.2" 1119.6 13 - 1093.4 1105.4 3.27% - 0.85% 1.96%
30 - 1136.6° 1148.6 14 - 1136.6 1146.5 1.06% - 0.00% 0.87%
50 - 1187.7¢ 1207.4 14 - 1189.6 1199.6 1.66% - 0.16% 1.00%
R105 10 - 1516.0° 1514.3 18 - 1516.0 1527.7 -0.11% - 0.00% 0.77%
30 - 1581.5¢ 15945 17 - 1581.5 1582.6 0.82% - 0.00% 0.07%
50 - 1604.1° 1607.2 18 - 1604.1 1608.6 0.19% - 0.00% 0.28%
& Obtained from Potvin et al. (1996b) ¢ Obtained from Tuntitippawan and Asawarungsaengkul (2016)
® Obtained from Thangiah et al. (1996) f Obtained from Kiigiikoglu and Oztiirk (2014)
¢ Obtained from Kiigiikoglu and Oztiirk (2015) 9 Obtained from Worawattawechai et al. (2016b)

4 Obtained from Worawattawechai et al. (2016a) " Obtained from Ropke and Pisinger (2006)

Tables 1-3 show the comparisons for small-, e When compared with the original ABC, the EABCA
medium-, and large-sized problems respectively. The results obtained 34 equivalent or better solutions out of 34
obtained from the comparison can be summarized as follows. problems presented in the ABCA paper (100%).
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e When compared with the HMA, the EABCA
obtained 36 equivalent or better solutions out of 45
problems presented in the HMA paper (80%).

e When compared with the DEA, the EABCA
obtained 38 equivalent or better solutions out of 45
problems presented in the DEA paper (84%).

The results show that the EABCA is superior to
ABCA in terms of solution quality, and it is competitive with
the other heuristics in the literature.

To evaluate the efficiency of EABCA, the
comparison between the best-known solutions in the literature
and the solutions obtained from the proposed heuristic in this
paper is also shown in %Gap_BKS column of Tables 1-3. The
results obtained from the comparison can be summarized as
follows.

e  For small problems with 25 customers in Table 1,
the EABCA obtained 14 solutions that were equiva-
lent to the best-known solutions out of 15 instances.
In other words, the EABCA solutions for all
benchmark instances were equivalent to the best-
known solutions except for only one from the R101
problem with 30% backhauls.

e  For medium problems with 50 customers in Table 2,
the EABCA obtained 13 solutions that were equiva-
lent to or better than the best-known solutions out of
15 instances. Moreover, the proposed algorithm
could find 7 new best-known solutions. In general,
the EABCA outperformed the existing algorithms in
medium problem set.

e  For large problems with 100 customers in Table 3,
most of the EABCA solutions were not as good as
the best-known solutions except for 6 cases where
the new best-known solutions were obtained,
namely the R101 problem with 10% and 30%
backhauls, all problems in the R102, and the R105
problem with 10% backhauls.

Summarily, the EABCA outperformed the existing
algorithms in terms of solution quality in many problems as it
obtained 33 equivalent or new best-known solutions out of 45
instances (73.33%) while others did not perform as well
(ABCA 58.82%, HMA 53.33%, and DEA 13.33%). More-
over, our algorithm found the optimal solutions for some
instances. The average computational time of EABCA for 25,
50, and 100 customers are 15.16, 87.64, and 275.47 (seconds)
respectively. The gap of the total distance between the best-
known solutions and the proposed solutions are within 0.5%
of the best-known solutions (0.06% for 25 nodes, 0.12% for
50 nodes and 0.48% for 100 nodes). It is computed by the
formula:

(the summation of all EABC solution)~(the summation of all bast known solution)
%Gaptotal = x100.

the summation of all best known solution

3.3 Result discussion

When comparing the results of enhanced version of
ABCA with the original one proposed by Tuntitippawan and
Asawarungsaengkul (2016b), the EABCA was superior to the
original ABCA in terms of solution quality. We speculated
that the forbidden list strategy in generating process, the
sequential search strategy for onlooker bees, and the intra-

route and inter-route exchange combination strategy for the
local search in the EABCA indeed helped extend the
exploration on the solution space to obtain the better solutions.
Note that although the sequential search of onlookers
increases the chance of finding great solutions, it also leads to
larger computational time. Further study is needed to analyze
the tradeoffs and compare the computational time with the
original ABCA.

When comparing the results of EABCA with the
other methods in terms of solution quality, we found that the
performance of our algorithm is better than the HMA and
DEA for small- and medium-sized problems while com-
parable with the HMA and the DEA in the large-sized
problems. We speculated that there are four main reasons
EABCA contributes the successful results. First, the EABCA
is a population-based heuristic which starts with a number of
unduplicated initial solutions. Therefore, it can explore more
in the solution space and get more chance to obtain the better
solutions. Second, the EABCA applied the combination of
intra-route and inter-route exchange as the neighborhood
search. Hence, this strategy can extend the regions of the
search space to increase the chance for finding a better
solution. Third, the high-quality solutions are used more often
than the low-quality ones to produce an improved solution in
the onlooker bee stage. Thus, the regions of the search space
are searched in shorter time and in detail. Fourth, the stalled
solutions are removed from the population and a new solution
from random generating is added to the population in the
scout bee stage. This process provides global search ability
and prevents the search from premature convergence problem.

4. Conclusions

In this study, we present the enhanced artificial bee
colony algorithm (EABCA) to solve the VRPBTW problem.
Three strategies are proposed in EABCA, which are a
forbidden list, the sequential search for onlookers, and the
combination of 1-move intra-route exchange and A-inter-
change technique. The computational results show that
EABCA was superior to original ABCA proposed by
Tuntitippawan and Asawarungsaengkul (2016b), and it was
competitive with the other heuristics in terms of solution
quality. Moreover, EABCA solutions were compared with the
best-known solutions in the literature. Results show that
EABCA obtained 33 equivalent or new best-known solutions
out of 45 problems (73.33%). In general, when compared with
existing algorithms, EABCA gave better performance in
medium-sized problems and comparable performance in
small-sized problem. Thus, the EABCA can be applied
effectively to small- and medium-sized problems.
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