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Abstract
This paper uses Stein’s method and the characterization of beta binomial random variable to determine a non-uniform

bound for the distance between the beta binomial cumulative distribution function with parameters ne N, « >0 and >0

and the binomial cumulative distribution function with parameters N and ﬁ . Some numerical examples are given to illustrate

the obtained result.
Keywords: beta binomial cumulative distribution function, binomial approximation, characterization of the beta binomial

random variable, non-uniform bound, Stein’s method

1. Introduction
Let X be the binomial random variable with parameters ne N and p € (0,1). Its probability mass function is as

follows:
b(x):(ij p*q" ™, xe{0,...,n}- (1.1)

where g=1-p and E(X)=np and Var(X)=npq are its mean and variance, respectively. It is well-known that if the
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probability of success in the binomial distribution is a random variable and has a beta distribution with parameters « >0 and
£ >0, then a new resulting distribution is referred to as the beta binomial distribution with parameters N, o and g3. Let Y

be the beta binomial distribution with parameters N, < and . and its probability mass function is of the form

_(n)B(a+y,f+n-Yy) 1.2
bb(y)—(y] Bl 5) ,yed{0,....n}, (1.2)

where B is the complete beta function and 1 = (Z”Taﬁ and 0-2 = % are the mean and variance of Y, respectively.
a+p+l)(a+p

Some useful applications of this distribution can be found in field such as animal teratology experiments in Gupta and Naradajah
(2004), statistical process control in Sant’Anna and Caten (2012), inferential statistics in Salem and Abu El Azm (2013) and

balancing revenues and repair costs in Ding, Rusmevichientong, and Topaloglu (2014).

For limiting distribution, it follows from (1.2) that if ¢, f — oo in such a way a_‘f—ﬂ tends to a constant, then the

beta binomial distribution with parameters N, « and B converges to a binomial distribution with parameters N, and ﬁ In

this case, Teerapabolarn (2008) used Stein’s method and the binomial w-function to give a uniform bound on binomial

approximation to the beta binomial distribution as follows:

Al ndl (n=Dn 1.3)
da(Y X)=@=p™ =" o D

for every subset A of {0,...,n}, where dA(Y,X):|P(Y e A)-P(X eA)| is the distance between the beta binomial

distribution with parameters N, « and A and the binomial distribution with parameters N and 2. For

a+p

A:Cxo ={0,..., %}, % €{0,...,n}, the result in (1.3) becomes

N+ N+ -1
dCxo (Y. X)<@-p '—q l)%- (1.4

where dCxo (Y, X ) = |P(Y <Xp)—P(X < x0)| is the distance between the beta binomial cumulative distribution function with

parameters N, « and B and the binomial cumulative distribution function with parameters N and aL at Xg.

+6
We observe that the bound in (1.4) is uniform in x, €{0,...,n}, that is, it does not change along X, e{0,...,n}. So,
it may be inappropriate for measuring the accuracy of the approximation. In this paper, we are interested to determine a non-
uniform bound with respect to the bounds in (1.4) by using Stein’s method and the characterization of beta binomial random

variable, which are described and determined in Sections 2 and 3, respectively. In Section 4, some numerical examples provided

to illustrate the obtained result, and the conclusion of this study is presented in the last Section.
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2. Method

Stein’s method and the characterization of beta binomial random variable are both tools which can be used to obtain the

desired result.
2.1 Stein’s method for binomial distribution

Stein (1972) proposed a powerful method for normal approximation, which is called Stein’s method. In 1986, he also
applied this method to binomial approximation (Stein, 1986). Following Barbour, Holst, and Janson (1992), Stein’s equation for

binomial distribution with parameters ne N and 0 < p=1-q <1, for given h, is of the form

h(x) =B, p (h) = (n—x) pf (x +1) —axf (x) , @1
where B, ,(h) = Zn: h(k)[nj p¥q"* and f and h are bounded real valued functions defined on {0,...,n}. For Ac{0,...,n},
k=0

let hy :{0,...,n} — R be defined by

1 if xeA,
0 if xg A

ha (%) ={ 22)

Following Barbour et al. (1992), let f, :NU{0} — R satisfy (2.1), where f,(0)= f,(1) and f,(x)= fo(n) for x=n.

Therefore, the solution f, of (2.1) can be expressed as

Bn,p(hAmcxfl)_Bn,p(hA)Bn,p(hCX,l) (2-3)

X[”J pan—x+1 ,
X

where C, ; ={0,...,x—1}. Similarly, for A={x,} and A:CX0 when X, €{0,...,n} and by setting hx0

fa(X) =

= h{Xo}‘ thus the

solutions f and f. are as follows:
X0 Cxo

= To

_BnaMolhplecy) ey oy

X(:) pan—x+1
(24)

Bn,p (g )Bn,p I-he, )

M) x_n—x+1
{1

o (0=

if x> X,

and

plts )t ) e

X(nj pan—x+1
X (2.5)

B p (e, VB, p (-1, )

X[”J pan—x+1
X

chO (x)=

if X>X,.
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Let AfXO (x) = fx0 (x +1)— fX0 (x) and Afoo (x) = fCXO (x +1) — fCXO (x) . It is seen that Afxo (x) =0 and

Afe. (X)=0 for x=0,n. Thus, for x e{l,..,n—1} and by (2.4), we obtain
X

Byphg) [ Baplhe,)  Byplhe, ;) .
(“] x| (”—X); + qu if X <X,
p7q -
X
Aty (%) _ ] Bup(h) [Enplhe) | Brplhe, )] o X= %,
(nj x| (=X)p xq
pTq -
X
By o) [ By pll-he,)  Bapl-he, ;)] .
[n] XX (n—><)p)< - Xq * if x> X
p7q -
X
[njpxoqn—xo le[n]pkqn—k Z[ ]pkqn—k
al _ i\ Iy if x<x
n - (n-x)p Xq 0r
X
n x-1 T
[n)pxoqn—xo > [n]pkqn—k Z(n]pkqn—k 2.6)
_J\% kexea\K k=o\K if x=x
(nj X n—x (n—x)p Xq 0
p~q
[njpxoqn—xg Z [njpkqn—k i(ankqn—k_
X0 k=x+1 k _ k=x k |f X > X
M x nx (n-x)p xq 0
(e

By (2.5), we also obtain

Bn,p<1hcxo)[Bn,p(hcx)_Bn,mhc“)} it < x
[:]pan—x =70

(—)p Xq
By plhc,) [Bn,p(l—hcx)  Bplhe )

Afe, (%)
[nj — | —0p X } if x> X,
L JPa

0 k=0 k=0 i
- if X<xg
N y n-x (n—x)p Xq !
(e
_ 2.7)
X (n) : n n‘n
) O(j]qun i 3 [k]pkqn k Z[k]pkqn—k
1= k=x+1 k=x H
- if x> x,.
n _ (n—x)p xq 0
ijan X

The following lemmas present some necessarily properties of Afxo and Afcxo , which are used to prove the main

result.
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Lemma 2.1. Let X e{l,...,n—1} and x;, ={1,...,n}, then the following inequalities hold:

0 if x5=x,
A ()] D e (28)
0T <0 if xp#X
and
Ao () >0 |_f X < Xg, 29)
X0 <0 if x>X,.
Proof.  Firstly, we have to show that (2.8) holds. For X = X, it follows from (2.6) that
Af, (x)>0. (2.10)
For Xy # X, we have to show Afxo x)<0 when X5 > X and X < X as follows. From (2.6), for X5 > X,
[ ] n-Xo ( jpkan f[nj pkqn—k
A, (X) _ k =i
n n-—x X
Jp o (n-x)p g
X
[ n J D"
- X0 {_XZ[ J K 4n- k+1+z(n x)[ J kHign- k:|
( jpx+lqn x+l(n X) k=0
X
Let é]_(x)__XZ( ] k n— k+1+Z(n X)[ J k+l n-k then
e —k+1)(n+1 TRADM=X) (N+1) s niageot
f(X) —_ X(n— knk+1 1, N+1—(k-+1)
' kz:(:) +1 k kz(:) n+1 k1P 9
x(n—k+1)(n+1 _ X k(n—x)(n+1 -
_ z ( )( ]pkqn iy ( )( ]pkqnﬂk
o Nh+1 k o N+l Lk
n+1
. ( ‘ jpk n+1-k
=I§T[—x(n+l)+kn]
<0.
Thus for Xy > X,
Af,, (X) <0. (2.11)

For Xg <X,
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( n j pxoqn—xo i (nj pkqn—k i[nj pkqn—k
Afxo(x) _ Xo k(K _k=x k

[n an—x (n—x)p Xq

X

I
;
)

n—xo

jp“q
0
q

n
{Z X(EJ pKgn et Z(n x)( j kilgn- k:|
[ px+1 n— x+1(n_x) k=x+1 k=x

Let §z(x)= Zn: X(:j K yn—k+1 z(n X)[ J k+1qn—k, then

k=x+1

&(X) = Zn: M(n+l} pkqn—k+l_zn: (k+1)(n—x)(n+1] plHign (kD)

Koy n+l K n+1 k+1
n+l n+l
x(n-k+1)(n+1 _ k(n—x)(n+1 _
=y Xnok+D) x(n—k+1) iy (n—x) pkgmik
k=x+1 n+1 k K=x+1 n+1 k
N+1) ¢ ok
n+l ( k Jp q” '
= -~ D-k
kg;rl ) [x(n+1)—kn]
<0.
Thus for Xy <X,
Af (X) <O, (212)
Following (2.11) and (2.12), when Xy # X, ityields
Af, (x) <O (2.13)

Hence, from (2.10) and (2.13), the inequalities in (2.8) hold.

Next, we shall show that (2.9) holds. For Xq > X, it follows from (2.7) that

> (thjq”* )
Afoo(X) __ =X ] {Z ( ] K n—k+1 Z(n X)( J k+1 n- k}
X( j x+1 n- x+1(n X) k=0
Zn: UJ plg" ) (”:j pkgnet
_ j=Xp+1 Z
[ ]px+lqn x+l(n_x) k=0 n+1

> 0.

[x(n+1)—kn]

(2.14)
For Xg <X, by (2.7), we obtain
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el gl

Afcx (x) _ k=0 k=x+1 _ k=x
’ (ZJ pan—x (n—x)p Xq

f}(n] plg"!

ji=o\J
X(;j px+1qn—x+l(n _ X)

TR n+1 .
Z[.)qun J - [ jpkqn k+1
_ J=O J z k
n X+1n—x+1 k=x+1 n+1
x| (P aT T (n-x)

{ Zn: X(:j pkqn—k+1_zn:(n_x)(:\] pk+1qn—k:|

k=x+1 k=x

[X(n+1)—kn]

X
<0. (2.15)

Hence, from (2.14) and (2.15), the inequalities in (2.9) hold.

Lemma 2.2. For x, e{l,...,.n—1}, Afoo is an increasing function in x e{L,..., X}

Proof. Let A2 fo (X)=Afc (x+1)—Afe (x). We shall show that A2 fo (x)>0 for xe{l,..., Xy —1. It follows from
X0 X0 X0 X0

(2.7) that
n n coo | xH X n
A, (0 _ i ) kco\K koK
( n jpxﬂqn—x—l (n-x-1)p (x+1)q
X+1
n n ] X (n X—1 n
Z (jplq” J Z(k] pkqn—k Z(kj pkqn—k
_ i=xH J k=0 _ k=0
I’l] pan—x (n—x) p Xq
X

SN o n+1
) plqnl ( Jkn—k-%—l
_ ,-XZOHEJ ¢k P

(X+1)(X21J px+2qn—x(n —X—l) k=0
Zn: (nj qun—J (n"'lJ pkqn—k+1
. X

:X"ﬂ J > K T [x(n+D)-kn]
X[Xj px+1qn—x+l(n _ X) k=0 n+

—l [(x+1)(n+1)—kn]
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. ign-i
golJrl[J]p | %(n'klj pkqn—k+l‘:(x+1)(n+1)_knj|

[ jpx-%—an X(n—X)(n+l k=0 k n-x-1

n n . .
|plg™!
i%ﬂ(J le(anlj kit (k+1)[x(n+l) kn}
[jp“q” *(n—x)(n+1) k-0 X

. jn-i
igo:ﬂ[jjp | {Xif(n*'lj pkqn—k+l[(x+1)(n+l)_kn}

[U P2 (n-x)(n+1) i K e
_ZX: n+1) k+1 pk+lqn+l—(k+1)|:X(n+1)_kn:|
k+1)n+1-k X

; i
i%+1[jjp | {Xz%(n"'l] pkqn—k+1|:(x+1)(n+1)_kn:|

[ jp**zq" X(n—x)(n+1) n-x-1

_XZ” n+1 pkqnﬂ_k{x(nu)—(k—l)n‘
n+2-k

k=0

k=0

X

L
(——

1o

j=xg+L J XZH-[n+1J pkqn_k+1{_x(n+l)—kn+n+1:|
( jpx+2qn X(n_x)(n+1) k=0 n-x-1
_[x(n+1)—kn+n}5

n+2-k X

> 0.
Therefore Af X) is an increasing functionin X e{l,..., Xo }.
e ™) 0

Lemma 2.3. Let X e{l,...,n}, then we have the following inequalities hold:

sup|Afc0 (x)| <4
X

and

L LI T (B A B R
sup‘AfCXO(x)‘Smin{l pol-p -9 }
X

X4~ (n+1)pg

where X5 €{1,...,n}.

Proof. We shall show that the inequality (2.17) holds. Teerapabolarn and Wongkasem (2011) showed that

103

(2.16)

(2.17)
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_ AN an+l gn+l
Af,, (%) < min I-p =p-a"{ (2.18)
%0q  (n+1)pq

From (2.6), we have

L) wnk SN konk
> . P > (P
Af (X) = k=xt +k=0 .
(n=x)p Xq

Substituting X by X in the proof of AfXO (xo) detailed in Teerapabolarn and Wongkasem (2011), we also obtain

I LU T 1 S (B
Af, () <mind =P =P —a | (2.19)
Xq (n+1)pq
In order to prove that gyp Af (x)‘ < min{ﬂ,w}, it suffices to show ‘Afc (X)‘ < min{ill_pﬂﬂ_qnﬂ} for
« X %o (n+1)p X Xod (n+)p
every X €{l,...,n—1}, because Afoo (x)=0 as x=0,n. For 1< x < x,, we have
0 < Af% (x) (by (2.9))
< Afcxo (%) (by Lemma 2.2)
X
= zAfk(Xo)
k=0
=Afo(x0)+~--+AfX0(xo)
< Af (%) (by (2.8))
l_ pn 1_ pn+1_qn+l
<min , . (by(2.18)
Xd  (n+1)pq
which gives
n n+l n+l
[afe,, (9] < min 1=p 1=p -q [ (2.20)
0 %4 (n+1)pq

For x, <X<n-1, we obtain
0 <—Afg, (¥ (by (2.9))

S S A= S AR+ Y AR ()

k=0 k=xp+1 k=xp+1

- —i Af (X) + A g (X) 4+ Af, (X)
k=0

=—Afe (X)+Af (%) -+ Af, (X)

<Af(X)  (by(2.8)and (2.9))
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< min{l— p" 1- p”“—q””} (by (2.19))
xq (n+Ypq

n n+l n+1
smin{l_p Gl }

X0 ' (n+1)pg
which gives
n n+l n+l
‘Afc (x)‘gmin I-p I-p"-q | 2.21)
o Xd  (n+1)pq

Hence, by (2.20) and (2.21), the inequality (2.17) holds.

2.2 The characterization of beta binomial random variable
For the characterization associated with the beta binomial random variable Yy, by applying Lemma 3.1 in Cacoullos

and Papathanasiou (1989), the covariance of Y and fo (Y) can be expressed as
X0

n y
Cov [Y, fe,, (Y)J =2, {Afcm ()2 (u—k)bb(k) | (222)
y=0 k=0
where £/ = anTaﬂ'

y
2. (u=k)bb(k)

Lemma 2.4. Let ¢(y) = ¥=2

OB y =0,..., n, be the characterization associated with the beta binomial random

variable Y, then we have the following.

_ (n=y)(a+y)
o(Y)="—rF5"" ¥y=0..n, (2.23)
and
COV|:Y, fe, (Y)} - E[Af% W)%(Z”)} (2.24)
Proof. We shall show that ¢(y) = %(Z”) by mathematical induction as follows. It can be seen that ¢(0) = 1 = (Q—“ﬁ and
1
2, (4-k)bb (k) (n-1)(a+1)
(1) =0 @ = For 2<m<n, let
m
2. (u=k)bb(k) . .
@(m) =*=2 o = (nfrz)i?m) , we have to show that g(m+1) = —(n_(m%?(m ) | Since
m+1
> (u—k)bb(k)
o(Mm+1) = k=0
bb(m+1)

5" (4~ k)bb(k
bb(m) kZ:;,)(ﬂ )bb(k)

“bb(m+1)  bb(m)

+u—(m+1)
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m
2 (u=k)bb(k)

m+21)(n -m-1 = _ (n-m)(a+m)
-+ )(aiﬂﬁ Ly p (1) (by gy = )
(n (m+1))(a+(m+1))
a+pf

thus by mathematical induction, (2.23) is obtained.

Substituting (2.23) into (2.22), it becomes

Cov(Y, fe, (V) = zn: [Af% (y)%bb(y)}

= E[ af, (N e |,
this yields (2.24).
3. Results
The main point of this study is to determine a non-uniform bound for the distance between the binomial and beta

binomial cumulative distribution functions, d. (Y, X) & X, €{0,...,n}. The following theorem presents this desired result.
X

Theorem3.1. Let p= and Xp €40, ..., n}, then we have the following.
(1-9")(n-1)q i
o if X,=0,
de (Y. X) < wp ) (2.25)
inlpt p" g™ | (n-Dnp
mm{T, (n+1)p }mﬁﬂ if 1<x,<n.

Proof. Using the same arguments detailed as in the proof of Theorem 2.1 in Teerapabolarn (2008), it follows that

de, (Y. X) < E[,uAfCXO W)J— E[pYAfCXO W)}—COV[Y, fe, W)J‘

£ (u-pVafe, ()] -E[ afc, W)%] (by (2.24))

e[ oy - 00 g, )

-Y Y
<[ u—py -0 Jafe )

_ (Y-n)Y
= E[e=) Af%(v)‘

—E[ et |ate, )]

1-q" [ (n-Y)Y P
= E[ v J if x,=0,

; 1_pn 1_pn+1_qn+1 (n-Y)Y 7 :
mln{m, "0 }E[ i J if 1<x,<n.

(by Lemma 2.3)
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Because E[ Y)Y ] _ ot (Dnaf e have

(-
a+f a+f  (a+B)(a+p+l)’

1-q"  (n-Dnap
dCXO (Y, X) < np (a+B)(a+p+l)

. 1—pn 1_pn+1_qn+1 (-Dnap .
mm{m' 0 (@ Mg T 1SX<n.

if X, =0,

Hence, the inequality (2.25) is obtained.

n n+l_ n+l
Remark. Since £ =P =4~
np (n+1) pg

d ) 1- pn l_pn+1_qn+l 1_pn+l_qn+1 h 1 the b din Th 31i
an < when X, €4l,..., Ny, the bouna in eorem 5.1 1S
MIN\ Seq ~(eDpg [ = (0 Dpg o &t }

better than that mentioned in (1.4).

4. Numerical Examples
Teerapabolarn (2008) suggested the result in (1.4) to give a good approximation when % and % are small. So, we

provide two examples to illustrate the result in Theorem 3.1 by setting parameters n, ¢ and /3 to satisfy this suggestion.

Example 4.1. Let n=30, =10 and S =500, then the numerical result in Theorem 3.1 is of the form

0.024922 if X, =0,
de,, (Y X) <) 0.025195 if %, =1

o.oiisss if X,=2,...,30.

It is better than the numerical result in (1.4),

dCxo (Y,X) =0.025195, x, =0,1,...,30.
Example 4.2. Let n =50, & =100 and £ =1000, then the numerical result in Theorem 3.1 is of the form

0.040114 if x, =0,
<40.043294 if x,=1,2,3,4,

0.2%295 if X, =5,...,50.

de, (Y, X

It is better than the numerical result in (1.4),

dCXO (Y,X)=0.043294, x, =0,1,...,50.

n o

The two examples are indicated that the result in Theorem 3.1 gives a good approximation when B and B are small,
especially, when % is small. Furthermore, these examples point out that the bound in Theorem 3.1 is better than that shown in

(1.4).
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5. Conclusions

The bound in this study, non-uniform bound, was determined by using Stein’s method and the characterization of beta

binomial random variable. It is appropriate to approximate the distance between the beta binomial cumulative distribution

function with parameters n, ¢« >0 and g0 and the binomial cumulative distribution function with parameters N and

o

a+pf’

because it changes along X, €{0,...,n}. In addition, by theoretical and numerical comparison, the result in this study is better

than that mentioned in (1.4), and it gives a good binomial approximation when D and £ are small.
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