

การศึกษาพฤติกรรมการกระเจาความหนาแน่นมวลรวมสภาพแท้และการกระเจาความด้านท่านการแท่งทะลุของคิน เนื่องจากการทดลองเบี่ยงเบียนผลจากน้ำหนักกดทับล้อยาง และจำนวนเที่ยววิ่งของล้อยาง การทดลองทำในห้องปฏิบัติการ ใช้กระเบนขนาดความกว้าง 80 cm ยาว 250 cm สูง 60 cm คินที่ใช้ทดลอง เป็นดินร่วน น้ำหนักกดทับล้อยาง 200, 240, 280 และ 320 kg ความชื้น 10%(d.b.) และ 16%(d.b.) จำนวนเที่ยวที่ล้อยางวิ่งผ่าน 1, 6 และ 12 เที่ยว วัดแรงในแนวราบ แรงในแนวตั้ง และโน้มเนต ด้วย Octagonal Ring Transducer

ภายหลังการวิ่งผ่านของล้อยางบนผิวดินด้วยความเร็ว 0.2 m/s ที่จำนวนเที่ยววิ่ง 1, 6 และ 12 เที่ยว พบว่า ความหนาแน่นมวลรวมสภาพแท้ของคินที่มากที่สุดขณะมีความชื้น 10% (d.b.) น้ำหนักกดทับล้อยาง 200 kg มีค่าเท่ากับ 1.32, 1.46 และ 1.54 g/cm³ ตามลำดับ และน้ำหนักกดทับล้อยาง 320 kg มีค่าเท่ากับ 1.53, 1.60 และ 1.65 g/cm³ ตามลำดับ สำหรับผลการทดลองของคินความชื้น 16% (d.b.) น้ำหนักกดทับล้อยาง 200 kg พบว่า ค่าความหนาแน่นมวลรวมสภาพแท้ของคินที่มากที่สุดมีค่าเท่ากับ 1.49, 1.66 และ 1.68 g/cm³ ตามลำดับ และน้ำหนักกดทับล้อยาง 320 kg มีค่าเท่ากับ 1.58, 1.73 และ 1.79 g/cm³ ตามลำดับ ค่าความหนาแน่นมวลรวมสภาพแท้ของคินเพิ่มขึ้นตามจำนวนเที่ยววิ่ง น้ำหนักกดทับล้อยางที่เพิ่มขึ้น และค่าความชื้นดินที่เพิ่มขึ้น

ผลของค่าความด้านท่านการแท่งทะลุของคินที่มากที่สุดที่ปริมาณความชื้น 10 % (d.b.) น้ำหนักกดทับล้อยาง 200 kg มีค่า 0.52, 1.05 และ 1.91 MPa ตามลำดับ และน้ำหนักกดทับล้อยาง 320 kg มีค่าเท่ากับ 0.55, 1.75 และ 2.20 MPa ตามลำดับ สำหรับความด้านท่านการแท่งทะลุของคินที่ความชื้น 16% (d.b.) น้ำหนักกดทับล้อยาง 200 kg มีค่าเท่ากับ 0.43, 0.72 และ 0.80 MPa ตามลำดับ และน้ำหนักกดทับล้อยาง 320 kg มีค่า 0.50, 1.01 และ 1.20 MPa ตามลำดับ

To study the effect of the load, the load frequency and the soil moisture on the behaviour of dry bulk density and the penetration resistance distribution. The experiment was conducted in a laboratory with a loam – soil bin and the pneumatic tyre. The treatment condition involved the soil moisture content of about 10% (d.b.) and 16%(d.b.) , the number of pass of 1, 6 and 12 and the applied load of 200, 240, 280 and 320 kg. The vertical force, the horizontal force and the moment were measured by using the octagonal ring transducer.

After tyre ran over the soil surface for 1, 6 and 12 times, the maximum dry bulk density with the load of 200 kg was about 1.32, 1.46 and 1.54 g/cm³ respectively at 10% (d.b.) moisture content. Also, the maximum dry bulk density with the load of 320 kg was 1.53, 1.60 and 1.65 g/cm³ respectively at the same moisture content. At the soil moisture content of 16% (d.b.) , the maximum dry bulk density with the load of 200 kg was 1.49, 1.66 and 1.68 g/cm³ respectively where as the maximum dry bulk density with the load of 320 kg was 1.58, 1.73 and 1.79 g/cm³ respectively. The results showed that the dry bulk density of soil increased with the number of pass along with the applied load and soil moisture content also increased. The results also showed that the cone penetration resistance was increasing when the number of pass and applied load were increased but the cone penetration resistance was decreased when the soil moisture content was increased from 10% (d.b.) to 16% (d.b.).