

กริชเพชร กลัດเนียม 2549: การศึกษาพฤติกรรมการกระจายความหนาแน่นมวลรวม
สภาพแห้งของดินและความต้านทานการแห้งทะลุดินอัดแน่นภายใต้การรีบผ่านของดิน
ของผักในของจากความดันลมยางที่แตกต่างกัน ปริญญาวิศวกรรมศาสตรมหาบัณฑิต
(วิศวกรรมเกษตร) สาขาวิศวกรรมเกษตร ภาควิชาชีววิศวกรรมเกษตร ประธานกรรมการ
ที่ปรึกษา: รองศาสตราจารย์ ชัยญา นิยมภา, D.Agr. 366 หน้า
ISBN 974 - 16 - 1083 - 1

การศึกษาพฤติกรรมการกระจายความหนาแน่นมวลรวมสภาพแห้งของดินและความต้านทานการแห้งทะลุดินภายหลังการรีบผ่านของส้อยางบนผ้าดิน ผลเนื่องจากความดันลมยางที่แตกต่างกัน การทดสอบทำในกระบวนการดังนี้ ระยะ 80 cm ยาว 250 cm สูง 60 cm ทดสอบภายใต้เงื่อนไขความชื้น 10 % (d.b.) และ 16 % (d.b.) จำนวนเที่ยววิ่งของส้อยางรีบผ่านบนผ้าดิน 1 5 10 และ 15 เที่ยววิ่ง โดยใช้ความเร็วในการเคลื่อนที่ของส้อยาง 0.20 m/s น้ำหนักกดทับ 200 kg ส้อยางขนาด 5.00 - 10 in และความดันลมยางที่ใช้ในการทดสอบ 1.1 bar(1.12 kgf/cm²) 1.5 bar(1.52 kgf/cm²) 1.9 bar(1.93 kgf/cm²) และ 2.3 bar(2.34 kgf/cm²) วัดแรงในแนวราบ แรงในตั้ง ที่กระทำกับส้อยางด้วย Octagonal ring transducer ความหนาแน่นมวลรวมสภาพแห้งก่อนการทดสอบ 1.21 g/cm³ นอกจากนี้ศึกษาการอัดตัวของดินที่มีผลต่อการเจริญเติบโตของต้นข้าวโพด โดยทำการทดสอบในกระบวนการ ขนาดกว้าง 60 cm ยาว 148 cm สูง 48 cm จำนวน 3 กระยะ เงื่อนไขไม่นบดอัดดินและบดอัดดินจำนวน 15 เที่ยววิ่ง ความดันลมยาง 1.1 bar(1.12 kgf/cm²) และ 2.3 bar(2.34 kgf/cm²) จากการศึกษาพบว่าส้อยางที่มีความดันลมยาง 2.3 bar(2.34 kgf/cm²) วิ่งผ่านบนผ้าดินจำนวนเที่ยววิ่ง บดอัด 1 5 10 และ 15 เที่ยววิ่ง ความชื้นดิน 10 % (d.b.) เส้นชั้นความหนาแน่นมวลรวมสภาพแห้งของดินค่าสูงสุดบริเวณใต้ผ้าดินที่ส้อยางวิ่งผ่านมีค่าเท่ากับ 1.50 1.65 1.65 และ 1.70 g/cm³ ตามลำดับ และเส้นชั้นความต้านทานการแห้งทะลุดินค่าสูงสุดบริเวณใต้ผ้าดินที่ส้อยางวิ่งผ่านมีค่าเท่ากับ 0.45 1.00 1.40 และ 2.00 MPa ตามลำดับ ที่ความชื้นดิน 16 % (d.b.) เส้นชั้นความหนาแน่นมวลรวมสภาพแห้งของดินค่าสูงสุดบริเวณใต้ผ้าดินที่ส้อยางวิ่งผ่านมีค่าเท่ากับ 1.70 1.80 1.80 และ 1.85 g/cm³ ตามลำดับ และเส้นชั้นความต้านทานการแห้งทะลุดินค่าสูงสุดบริเวณใต้ผ้าดินที่ส้อยางวิ่งผ่านมีค่าเท่ากับ 0.40 1.20 1.60 และ 2.00 MPa ตามลำดับ แสดงให้เห็นว่าความดันลมยาง 2.3 bar(2.34 kgf/cm²) ปริมาณความชื้นดิน 16 % (d.b.) เป็นสภาวะที่เกิดการอัดแน่นของดินได้มากกว่าที่ความชื้นดิน 10 % (d.b.) และจากการศึกษาการบดอัดของดินที่มีผลต่อการเจริญเติบโตของต้นข้าวโพดพบว่า ภายหลังการบดอัดจำนวน 15 เที่ยววิ่งที่ระดับความดันลมยางที่ 2.3 bar(2.34 kgf/cm²) เปรียบเทียบกับสภาพดินไม่ถูกบดอัดพบว่า กระบวนการที่ไม่ได้รับการบดอัดมีลักษณะของรากต้นข้าวโพดเลี้ยงสัตว์ทึบดิน และที่ความดันลมยาง 2.3 bar(2.34 kgf/cm²) จะมีลักษณะของรากบานออก(Pan cake root)เพียงเล็กน้อย การเจริญเติบโตของข้าวโพดแสดงโดย ความสูงต้น จำนวนใน น้ำหนักรากแห้ง และความยาวราก ค่าสัมประสิทธิ์ของความแปรผันของค่าความสูงต้น จำนวนใน ความยาวราก มีค่าน้อยกว่ามีกระบวนการที่ไม่ได้รับการบดอัดเมื่อเปรียบเทียบกับกระบวนการที่ได้รับการบดอัด แสดงถึงการบดอัดมีผลต่อการเจริญเติบโตของต้นข้าวโพด

ข้าวโพด

ลายมือชื่อนิสิต

ลายมือชื่อประธานกรรมการ

Kritpech Kladniam 2006: Study of the Behaviours of Dry Bulk Density and Penetration Resistance Distributions on Soil Compacted under Running of a Pneumatic Tyre at Different Inflation Pressures. Master of Engineering (Agricultural Engineering), Major Field : Agricultural Engineering, Department of Agricultural Engineering. Thesis Advisor:Associate Professor Tanya Niyamapa, D.Agr. 366 pages. ISBN 974 – 16 – 1083 - 1

The behaviours of dry bulk density and penetration resistance distributions of compacted soil was studied after running of pneumatic tyre at different inflation pressures. The experiments were conducted in the laboratory in the soil bin as width 80 cm length 250 cm depth 60 cm. The treatment conditions involved under soil moisture content of 10% (d.b.) and 16 % (d.b.) load applied 200 kg, number of passes 1 5 10 and 15 tire size 5.00-10 in. as inflation pressure 1.1 bar(1.12 kgf/cm²) 1.5 bar(1.52 kgf/cm²) 1.9 bar (1.93kgf/cm²) and 2.3 bar(2.34 kgf/cm²). The horizontal force and vertical force were measured by using the octagonal ring transducer with instrumentation system. The precompacted soil was at an initial dry bulk density 1.21 g/cm³. The study on maize growth as effect of soil compaction was done in three soil bins as width 60 cm length 148 cm and depth 48 cm , with nontraffic condition and compacted soil at 15 passes of tire inflation pressures of 1.1 bar(1.12 kgf/cm²) and 2.3 bar(2.34 kgf/cm²)were done. From the study , it was found that the tire inflation pressure 2.3 bar(2.34 kgf/cm²) ran over the soil surface at 1 5 10 and 15 passes at 10 %(d.b.)soil moisture content. The contour lines of maximum dry bulk density under tire surface were 1.50 1.65 1.65 and 1.70 g/cm³ , respectively. Maximum cone penetration resistance contour lines under running of the pneumatic tyre on soil surface was about 0.45 1.00 1.40 and 2.00 MPa , respectively. At moisture content of 16 %(d.b.). maximum dry bulk density contour lines under running of the pneumatic tyre on soil surface was about 1.70 1.80 1.80 and 1.85 g/cm³ , respectively. Maximum cone penetration resistance of contour lines under running of pneumatic tyre on soil surface was about 0.40 1.20 1.60 and 2.00 MPa , respectively. As the tyre inflation pressure 2.3 bar(2.34 kgf/cm²), the soil 16 % (d.b.) moisture content was compacted more than at 10% (d.b.) moisture content. The effects of soil compaction on the growth of maize were also studied. As the results, it was found the traffic 15 passes as inflation pressure 2.3 bar(2.34 kgf/cm²) to compare with condition of noncompacted soil. The characteristic of roots penetrated in the vertical direction in the soil and showed the characteristic of pan cake root at inflation pressure of 2.3 bar(2.34 kgf/cm²). Maize growth was indicated by height , number of leaves , dry root weight and root length. Coefficient of variation of height , number of leaves and root length showed smaller value for noncompacted soil when compared with compacted soil in soil bin to exhibit the effect of compacted soil to maize growth.

Kritpech Kladniam

Student's signature

Tanya Niyamapa

Thesis Advisor's signature

23 / 3 / 2006