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Abstract 
 

In this study, we propose the zero-inflated negative binomial-Erlang distribution for modeling the number of highly 

pathogenic avian influenza H5N1 outbreaks that were reported at the subdistrict level in Thailand. We provide the probability 

mass function, mean, variance, skewness, and kurtosis for the zero-inflated negative binomial-Erlang distribution. In addition, 

this distribution provides a better fit compared to the zero-inflated Poisson and the conventional zero-inflated negative binomial 

distributions. In Thailand, a highly pathogenic avian influenza virus of the H5N1 subtype was first confirmed in humans in 2004. 

The epidemic has only caused sporadic outbreaks in Thailand during the second epidemic wave, particularly in the central and 

northern regions. The zero-inflated Poisson distribution can be used efficiently in epidemiologic count data with an excess 

number of zeros. However, when the data exhibit overdispersion, an alternative to the zero-inflated Poisson distribution may be 

considered such as the zero-inflated negative binomial-Erlang distribution. 
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1. Introduction 
 

The Poisson distribution plays a central role in count 

data analysis. For example, when a reliable manufacturing 

process is in control, the number of defects on an item should 

be Poisson distributed (Shewhart & Wilks, 2005). However, 

many count data often exhibit overdispersion where variance 

is greater than the mean (Rainer, 2008). Greenwood and Yule 

(1920) proposed the negative binomial (NB) distribution 

which is a mixture of Poisson distributions around the mean 

distributed as a gamma distribution. The NB distribution is of-

ten employed to analyze overdipersed data (Rainer, 2008). 

 In addition, the NB distribution can be mixed with 

other distributions to be an alternative distribution of overdis-

persed data. It has been shown that the mixed negative bino-

mial distribution provided a better fit to count data compared 

to the NB distribution, such as the negative binomial-Pareto 

 

(Meng et al., 1999), the negative binomial-inverse Gaussian 

(Gomez et al., 2008), the negative binomial-Lindley distribu-

tion (Zamani & Ismail, 2010), and the negative binomial-beta 

exponential distribution (Pudprommarat & Bodhisuwan, 20 

12).   

Another mixed NB distribution is the negative bino-

mial-Erlang (NB-EL) distribution, which was presented by 

Kongrod et al. (2014). This distribution was obtained by 

mixing the distribution of NB ( , ),r p  where exp( )p    and 

  is an Erlang (EL) distribution. The NB-EL distribution pro-

vides a better fit than the Poisson and the NB distributions and 

represents the alternative distribution for overdispersed data. 

Furthermore, the fit improves as the number of zeros increase 

for some real data sets (Kongrod et al., 2014).  

Count data with excess zeros, is frequently des-

cribed by the zero-inflated (ZI) distribution. The ZI distribu-

tion is a mixture model that may also be referred to as a type 

of finite mixture model. The ZI distribution is used when one 

has a theory for why there are so many zeros (Hilbe, 2014). 

The ZI distribution has been extensively used in many fields, 

e.g., Lambert (1992) proposed the zero-inflated Poisson (ZIP) 

regression model with an application of defects in 
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manufacturing. The ZIP distribution is assumed to be a mix-

ture between a Poisson distribution and a distribution to a 

point mass of zero. Greene (1994) proposed the zero-inflated 

negative binomial (ZINB) distribution which is assumed to be 

a mixture between a negative binomial distribution and a dis-

tribution to a point mass of zero. The ZINB distribution was 

applied to fit the number of derogatory reports to a credit 

reporting agency for a group of credit card applicants.  

In this paper, we propose the zero-inflated negative 

binomial-Erlang (ZINB-EL) distribution, which is assumed to 

be distributed as a mixture of a point mass at zero and the NB-

EL distribution. Some statistical properties such as mean, va-

riance, skewness, and kurtosis will be derived. The parameters 

of the ZINB-EL distribution are estimated by the maximum 

likelihood estimation (MLE). The usefulness of the ZINB-EL 

distribution is that it can be an alternative distribution for des-

cribing the distribution of the number of reported outbreaks 

per subdistrict in Thailand, which is an example of count data. 

Clinical signs and symptoms caused by the avian 

influenza virus, commonly described as bird flu, resulted in 

great economic losses (WHO, 2014). The avian influenza pan-

demic caused thousands of illnesses, hundreds of fatalities, 

and it was a threat to global health. The highly pathogenic 

avian influenza is an example of important diseases whose 

emergence can, in part, be attributed to rapid changes in poul-

try farming conditions.  

H5N1 was first reported in Guangdong Province, 

China in 1996 (Xu et al., 1999). The spread of H5N1 virus as-

sumed global dimensions. The outbreak began in 2003, predo-

minantly affecting poultry farms in many Southeast Asian 

countries such as Cambodia, Indonesia, Lao, Thailand, and 

Vietnam (Gilbert et al., 2007). The H5N1 outbreaks in Thai-

land were detected in the second epidemic wave from July 

2004 to May 2005 (Gilbert et al., 2006). Data on the outbreaks 

of H5N1 in Thailand have been collected since January 2004 

by the Department of Livestock Development, Thailand. The 

outbreaks of H5N1 virus infection resulted in a high number 

of affected animals, losses in domestic and international trade 

of poultry products, and socioeconomic impacts on the 

livelihoods of farmers and public health (Tiensin et al., 2009). 

A common feature of the ecological data sets is their 

tendency to contain many zero values. Zero-inflation is often 

the result of a large number of true observed zeros caused by 

the real ecological effect of interest. However, the term can 

also be applied to data sets with excess zeros caused by false 

observations of zeros because of sampling or observer errors 

in the course of data collection (Martin et al., 2005). A variety 

of mechanisms may generate excess zeros relative to 

otherwise standard distributions of count data, e.g., Poisson 

and NB distributions (Heilbron, 1994). 

The number of H5N1 outbreaks reported in each 

subdistrict during the second epidemic wave from July 3, 

2004 to May 5, 2005 in Thailand was likely to be structurally 

zero-inflated. The subdistricts where no outbreaks were de-

tected could indeed be the subdistricts where no outbreaks 

occurred (true zero), but it could also be the subdistricts where 

at least one outbreak occurred, but none were reported (false 

zero) (Vergne et al., 2014).   

In our application study, we compared the per-

formance of the proposed distribution with ZIP and ZINB 

distributions. We use the log-likelihood, the Akaike Informa-

tion Criterion (AIC) (Akaike, 1974), the Bayesian Information 

Criterion (BIC) (Schwarz, 1978), and P-values of the K-S test 

for the goodness of fit for model selection. 

 

2. Materials and Methods 
 

 In this study, the ZINB-EL distribution is a mixture 

between a point mass at zero and NB-EL distribution. The 

parameters of the ZINB-EL distribution were estimated by 

using numerical optimization with the optim function in stats 

package of R language (R Core Team, 2015). We used the 

criteria of the log-likelihood, AIC, and BIC to evaluate 

goodness of fit. The real data set is applied to compare the 

efficiencies of fitting distributions based on the goodness of fit 

test, the Kolmogorov-Smirnov (K-S) from the dgof package 

(Arnold & Emerson, 2011) in the R language. 

 

3. Zero-inflated Distributions 
 

The ZI distribution is a mixture between a point 

mass at zero and any other count distribution supported on 

non-negative integers.  

Let X  be distributed as the ZI, then the probability 

mass function (pmf) of X is 
 

(1 ) ( ; ), 0
( )

(1 ) ( ; ), 1,2,3, ,

g x x
h x

g x x

   
 

   

                                (1) 

 

where   is a zero-inflation parameter (0 1)  , and 

( ; )g x   is the pmf of X  with a vector of parameter, 

 1 2, , , n      (Johnson et al., 1992). 

The ZIP distribution is a class of models for count 

data with excess zeros, described in Lambert (1992). The ZIP 

distribution is assumed to be distributed as a mixture of a 

Poisson distribution and a distribution to a point mass at zero, 

with mixing probability   (Hall, 2000). 

Let X  be a ZIP random variable with parameters 

  and , denoted as ~ ( , )X ZIP   , the pmf of X is 

 

(1 )exp( ), 0

( ) exp( )
(1 ) , 1,2,3, ,

!

x

x

g x
x

x

   


   
  



 

 

where  0   and 0 1.  

 

The mean and variance of the ZIP distribution are 

respectively, 

( ) (1 )E X     and 2( ) (1 )( ).Var X      
 

Count data are also often overdispersed. Conse-

quently, other possible distributions such as the ZINB distri-

bution may be more appropriate than the ZIP distribution. The 

ZINB distribution was discussed by Greene (1994). The ZINB 

distribution is a mixture distribution assigning a mass of   to 

extra zeroes and mass 1  to an NB distribution (Yang, 

2006). Note that the NB distribution can also arise as a mix-

ture of Poisson distributions around the mean distributed as a 

gamma distribution with scale parameter (1 )p

p

 and shape 

parameter .r  
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Let X  be a ZINB random variable with parameters ,  r , and .p  It is denoted as X ZINB ( , , ),r p   and its pmf is 

 

(1 ) , 0

( ) 1
(1 ) (1 ) , 1,2,3, ,

r

r x

p x

g x r x
p p x

x

   


   
    

 

 

where 0 1 , 0r  , and 0 1p  .’ 

 

The mean and variance of the ZINB distribution are respectively, 

 

(1 )(1 )
( )

r p
E X

p

 


  

and   
2

2

(1 )(1 ) (1 )
( ) (1 ) .

r p p
Var X r

p p

    
   

 

 

 

4. Results and Discussion 
 

4.1 Zero-inflated negative binomial-Erlang distribution 
 

We propose the ZINB-EL distribution for count data with excess zeros to describe the number of reported outbreaks 

per subdistrict in Thailand. 

 

Definition 1: 

 

 Let X  have a NB distribution with parameters 0r   and exp( )p   , where   is distributed as EL distribution with 

positive parameters c and k , then X  is said to follow the NB-EL distribution with parameters r, c, and k (Kongrod et al., 

2014). The pmf of X  is given by  

 

0

1
( ) ( 1) , 0,1,2, ,

k
x

j

j

r x x c
g x x

x j c r j

      
       

      
  

0

1
( ) ( 1) , 0,1,2, ,

k
x

j

j

r x x c
g x x

x j c r j

      
       

      
                                                 (2) 

where r, c, and k > 0. 

 

Let X  be a random variable of the NB-EL distribution with pmf ( )g x  
defined as in (2) and ( )h x in (1) is a pmf of the 

ZI distribution. Then ( )f x  is a pmf of ZINB-EL distribution with the parameters r, c, k, and ω. 

 

0

(1 ) , 0

( )
1

(1 ) ( 1) , 1,2,3, ,

k

k
x

j

j

c
x

c r
f x

r x x c
x

x j c r j

  
    

 
 

      
               



                                 (3) 

 

The ZINB-EL pmf plots with some specified parameter values of r, c, k, and ω
 
are provided in Figure 1.  

 

 

Theorem 1: 

 

  If  ~ ( , , , )X ZINB EL r c k  , then some characteristics of X  are as follows 

 

(i) The mean and variance of X are respectively, 

( ) (1 ) 1 ,
1

k
c

E X r
c

  
       

                                                                                        (4)

 

                                                
( ) (1 ) ( 1) (2 1)

2 1

k k
c c

Var X r r r r
c c

    
               

      

                                     
2

(1 ) 1 .
1

k
c

r
c

   
          

                                                                                  (5) 
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Figure 1. The ZINB-EL pmf plots on some specified values of parameters , ,r c k  and  . 

 

 

(ii) The skewness and kurtosis of X  are respectively, 

                

 2( ) (1 ) ( 1) ( 2) 3( 1)
3 2

k k
c c

Skewness X r r r r
c c

    
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                                               2 2(3 3 1)
1

k
c
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2 23 (1 ) 1
1

k
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r
c
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                                       ( 1) (2 1)
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      

    

                                
 

3
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k
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Proof. Let X  have a NB distribution with parameters 0r   and exp( )p   , where   is distributed as EL distribution. As in 

the ZINB moments, can be treating   as an EL random variable. Then taking |X   as ZINB we have 
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so to find          we just need to find 

                                                            
(e 1) e 1,E E         

 

                                                         
      

(1) 1,M   

                 

                                                              

1
1,

1
1

k

c

 
 
 

 

 

                                                                               1,
1

k
c

c

 
  

 
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                                                            ( ) (1 ) 1 ,
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where ( )M X
 is the moment generating function of the Erlang distribution. Higher order moments just require 

2(e ) (2),E M


   

etc. Therefore, it is possible to show that variance, skewness, and kurtosis of X  can be written in the form of 

Eq. (5), Eq. (6), and Eq. (7), respectively.  

 

 

4.2 Maximum likelihood estimation 

 

We present the MLE method for estimating parameters of the ZINB-EL distribution. If ~ ( , , , )X ZINB EL r c k  , 

then the likelihood function of parameters r, c, k, and ω, respectively, is 
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and the associated log-likelihood function is expressed as 
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By differentiating the log-likelihood function of the ZINB-EL, the partial derivatives of the log-likelihood function 

with respect to r, c, k, and ω, respectively, are 
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where                      is the digamma function 

 

In this case the derivative equations cannot be solved analytically. The MLE solution of ˆˆ ˆ, ,r c k  and ̂  can be 

obtained by solving the resulting equations simultaneously using optim function in R language (R Core Team, 2015). 

 

4.3 Application 
 

We illustrated ZIP, ZINB and ZINB-EL distributions by application to a real data set. The data set is the number of 

reported outbreaks per subdistrict in Thailand from July 3, 2004 to May 5, 2005 (Vergne, 2014). This data set contains 89.42% 

zeros. The mean and variance are 0.2274 and 0.7783, respectively. The index of dispersion is 3.423 which indicates a high 

percentage of zeros and the variance is greater than the mean.  

We used the optim function to estimate the parameters to describe the assumed distributions (i.e. ZIP, ZINB, ZINB-

EL). Using those parameters we can conduct the K-S test for the discrete goodness of fit test from the dgof package (Arnold & 

Emerson, 2011) in the R language to estimate whether this real data set is from the same distribution as the assumed distribution 

and compare the efficiencies of fitting the distributions. 

The log-likelihood values, AIC, BIC, and the P-values of K-S test are summarized in Table 1. For illustration, Figure 2 

reveals that the proposed distribution is more appropriate to fit the data than the ZIP and ZINB distributions. The expected 

frequencies of the ZINB-EL distribution are close to the observed frequencies, the values of K-S test of ZINB-EL distribution is 

smaller than the values of the K-S test of ZIP and ZINB distributions.  

 

5. Conclusions 
 

In this paper, we considered the distribution for count data with excess zeros, which is called the ZINB-EL distribution. 

The ZINB-EL distribution is a mixture of a point mass at zero and NB-EL distribution. We have derived some properties of the 

ZINB-EL distribution, including mean, variance, skewness, and kurtosis. Moreover, we derived the parameter estimator of 

ZINB-EL distribution by using the MLE method. We have compared efficiencies of fitting distributions based on the goodness of 

fit test and some information criteria. The usefulness of the ZINB-EL distribution is illustrated by the number of H5N1 outbreaks 

reported in each subdistrict during the second epidemic wave from July 3, 2004 to May 5, 2005 in Thailand. Finally, the results 

of this study show that the ZINB-EL distribution provides a better fit compared to the ZIP and ZINB distributions. Obviously, the 

ZINB-EL distribution is an alternative distribution to the other.  
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     Table 1.     Observed and expected frequencies for the number of reported outbreaks per subdistrict  

                       in Thailand from July 3rd 2004 to May 5th 2005. 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

Figure 2.      Comparison of observed and expected frequencies of the number of reported outbreaks per subdistrict in Thailand from July 3rd 2004     

to May 5th 2005. 

 

Number of  
outbreaks 

Number of  
subdistricts 

Expected value by fitting distribution 

ZIP ZINB ZINB-EL 

     

0 6587 6586.87 6587.13 6587.03 

1 410 279.70 500.41 414.21 
2 161 250.19 178.53 165.91 

3 87 149.20 64.01 80.72 

4 46 66.73 23.00 44.47 
5 26 23.88 8.28 26.72 

6 21 7.12 2.98 17.13 

7 8 1.82 1.08 11.54 
8 4 0.41 0.39 8.08 

9 6 0.08 0.14 5.85 

10+ 10 0.01 0.05 4.35 
     

    

Estimated parameters ̂ = 1.789 r̂ =0.971      r̂ =1.052 

  

̂=0.873 p̂ =0.551 
     ĉ =2.695 

   

̂=0.701     k̂ =1.311 

    
    ̂=0.692 

     

     

log-likelihood 
 

-3778.073 -3633.407 -3007.488 
AIC 

 

7560.146 7272.814 6022.976 

BIC 

 

7563.880 7278.416 6030.445 

K-S test 
 

0.018 0.015 0.003 
p-value 

 

0.020 0.084 0.998 
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