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Abstract 
 
In this work, we propose new methods based on the root-finding methods in numerical analysis to calculate the inverse 

of an integer 𝑎 modulo 𝑁 for any positive integer 𝑁. We apply Newton's and secant methods with a power-reduction process and 

Newton's and secant methods together with the binary representation and Zeckendorf representation to determine the inverse of 

an integer 𝑎 modulo 𝑁. The numerical results confirm an accuracy when compared to analytical results. In addition, the  two 

methods with the binary and Zeckendorf representations give better CPU times than Newton’s and secant methods with power-

reduction, for large 𝑁. 
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1. Introduction 
 

Modular multiplicative inverse is often seen in 

number theory and it is desirable to be able to calculate it 

quickly. This motivates us to search for an efficient method 

for finding the modular multiplicative inverse. 

On the other hand, numerical analysis provides 

algorithms for approximate solutions to particular problem. 

So, there should be some connections between number theory 

and numerical analysis fields. 

Let 𝑁 ∈ ℤ+ and 𝑎, 𝑏 ∈ ℤ. We write 𝑎 ≡ 𝑏 (mod 𝑁) 

if 𝑁|𝑎 − 𝑏. Assume further that (𝑎, 𝑁) = 1. Then it is a well-

known result (Rosen, 2005) in number theory that there exists 

an integer 𝑥 such that 

 

𝑎𝑥 ≡ 1 (mod 𝑁). 
 

The integer 𝑥 is called the modular multiplicative 

inverse (or simply the inverse) of 𝑎 modulo 𝑁  and it is 

denoted by 𝑎−1 or 
1

𝑎
. For example, 2(3) ≡ 1 (mod 5), so the 

inverse of 2 modulo 5 is 3, that is, 3 ≡ 2−1 (mod 5). By the

 
fundamental theorem of arithmetic (Rosen, 2005), we can 

write  
 

𝑁 = 𝑝1
𝑛1𝑝2

𝑛2 … 𝑝𝑘
𝑛𝑘, 

 

where 𝑝1, 𝑝2, … , 𝑝𝑘 are distinct primes and 𝑛1, 𝑛2, … , 𝑛𝑘 are 

positive integers. We can first calculate the inverse of 𝑎 

modulo 𝑝1
𝑛1 , 𝑝2

𝑛2 , … , 𝑝𝑘
𝑛𝑘, respectively, and then apply the 

Chinese remainder theorem (Rosen, 2005) to obtain the 

inverse of 𝑎 modulo 𝑁. 

Apart from the Euclidean algorithm to calculate the 

inverse, some researchers have introduced an interesting 

application of numerical analysis to number theory.  In 

numerical analysis, we have the classical root-finding methods 

such as Newton's method and secant method to find a zero of 

a function 𝑓 or to find a solution of 𝑓(𝑥) = 0. The concept of 

iterative root-finding methods is to construct a sequence 

𝑥0, 𝑥1, 𝑥2, … that will converge to a zero of 𝑓(𝑥) in [𝑎, 𝑏]. In 

2010, Knapp and Xenophontos calculated the inverses of an 

integer 𝑎 modulo 𝑝𝑛 using root-finding methods, such as 

Newton’s method, secant method, fixed-point iteration and a 

higher-order convergent method (Knapp & Xenophontos, 

2010). Newton’s method is suitable for calculating the inverse 

of an integer 𝑎 modulo 𝑝𝑛 when  𝑛 =  𝑚 ∙ 2𝑖 for 𝑖 =
 1, 2, 3, … and some positive integer 𝑚. The secant method is 

used to find the inverse of 𝑎 modulo 𝑝𝛼+𝛽, when the inverses 
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of 𝑎 mod  𝑝𝛼 and 𝑎 mod  𝑝𝛽 are already known. The higher-

order convergent method of order 𝑟 is suitable for calculating 

an inverse of 𝑎 modulo 𝑝𝑛 when  𝑛 =  𝑚 ∙ 𝑟𝑖 for 𝑖 =
 1, 2, 3, … and some positive integer 𝑚. In 2014, Dumas 

studied fast algorithms for the computation of modular 

inverses by using Newton-Raphson iteration (Dumas, 2014). 

He designed four algorithms with a few operations used. He 

claimed that his hybrid algorithm is 26% faster than any direct 

method. 

In this paper, we extend the work of Knapp et al. by 

using Newton’s and secant methods with a power-reduction 

calculation and Newton's and secant methods together with 

the binary representation and the Zeckendorf representation to 

determine the inverse of an integer 𝑎 modulo 𝑁 for any 

positive integer 𝑁, by splitting 𝑁 into its prime factor form 

and calculating the inverse in terms of 𝑎 modulo 𝑝𝑛.  To do 

this, we consider  two representations for 𝑛 . In the first case, 

we represent 𝑛 as the sum of distinct powers of 2. In the 

second case, we use the Zeckendorf representation for it 

(Griffiths, 2015). Then we use root-finding methods to 

calculate inverses modulo 𝑝𝑛. Furthermore, we designed the 

algorithms in MATLAB to calculate the inverse of 𝑎 modulo 

𝑝𝑛 , and compared the CPU times of each method. 

 

2. Root-finding methods for the inverse of 𝒂  

    modulo 𝒑𝒏 
 

In this section, we establish root-finding methods 

with a power-reduction calculation to calculate the inverse of 

an integer 𝑎 modulo 𝑝𝑛. The methods are based on the root-

finding methods in Knapp et al. (Knapp & Xenophontos, 

2010). We are looking for an integer 𝑥 for which  𝑎𝑥 ≡

1  (mod 𝑝𝑛) or 𝑥 ≡
1

𝑎
  (mod 𝑝𝑛). Following the methods in 

Knapp et al., a suitable choice for the function 𝑓 is 𝑓(𝑥) =
1

𝑥
− 𝑎. The goal is to solve the equation 𝑓(𝑥) = 0. 

 

2.1 Newton’s method with a power-reduction  

      calculation  
 

The well-known Newton’s method is one of the 

most powerful numerical methods for root-finding problems. 

We combine this method with a process of modular 

calculations to reduce the power of 𝑝, in order to find the 

inverse mod 𝑝𝑛.  

Newton’s method relies on the continuity of 

𝑓′(𝑥) and 𝑓′′(𝑥). According to (Burden & Faires, 1997), the 

iteration for Newton’s method to locate a zero of 𝑓 is given by 

 

𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
           ,    𝑖 = 1, 2, 3, … 

 

with a suitable initial value 𝑥1. This iteration generates a 

sequence {𝑥𝑖} which converges to a zero of 𝑓. To apply the 

method, we first find 𝑓′(𝑥) = −
1

𝑥2 . The iteration for 

Newton’s method becomes 

 

𝑥𝑖+1 = 𝑥𝑖 −

1

𝑥𝑖
−𝑎

−
1

𝑥𝑖
2

  

 

 𝑥𝑖+1  = 𝑥𝑖(2 − 𝑎𝑥𝑖), 𝑖 = 1, 2, 3, …             (2.1) 

 

Here, we obtain the sequence {𝑥𝑖}  which converges to a 

solution of 𝑓(𝑥) = 0.  

 

Theorem 2.1.1. Let 𝛼 > 0 and suppose that 𝑥𝑖 is an inverse 

of 𝑎 modulo 𝑝𝛼. Then 𝑥𝑖+1 given by (2.1) is an inverse of 𝑎 

modulo 𝑝2𝛼. 

 

Proof. See Knapp and Xenophontos (2010). 

Theorem 2.1.1 implies that if we know the inverse 

of 𝑎 modulo 𝑝𝛼 , then we can use Newton’s method to 

calculate the inverse of 𝑎 modulo 𝑝2𝛼, 𝑎 modulo 𝑝4𝛼, 𝑎 

modulo 𝑝8𝛼 and so on. For simplicity, we choose the initial 

guess 𝑥1 to be the inverse of 𝑎 modulo 𝑝 and apply Newton’s 

method in (2.1) to determine the inverse of 𝑎 modulo 

𝑝2, 𝑎 modulo 𝑝4  , 𝑎 modulo 𝑝8 and so on. As a result, this 

method is suitable for calculating the inverse of an integer 𝑎 

modulo 𝑝𝑛 when  𝑛 =  2𝑘 , 𝑘 =  1, 2, 3, … . It is known that 

the method converges at a quadratic rate for a simple root 

(Burden & Faires, 1997).  

In addition to Newton’s method in Knapp et al., we 

construct an algorithm to find the inverse of an integer 𝑎 

modulo 𝑝𝑛 for any integer 𝑛, not necessarily of the form 𝑝2𝑘
. 

We first apply Newton’s method in (2.1) to calculate the 

inverse 𝑥 of an integer 𝑎 modulo 𝑝2𝑘
 where 2𝑘−1 < 𝑛 < 2𝑘 

for some positive integer 𝑘. Then, we begin to reduce the 

power of 𝑝 from 2𝑘 down to 𝑛. Since ≡ 1 (mod 𝑝2𝑘
), it 

follows that 𝑎𝑥 ≡ 1 (mod 𝑝𝑛). The reduction process applies 

this idea together with the congruence property to search for 

the smallest positive number in the same congruent class as 

𝑥 modulo 𝑝𝑛 (shown in line 20 (referring to line 14) in 

Algorithm 1). By continuing this process, we finally arrive 

with the inverse of an integer 𝑎 modulo 𝑝𝑛. The algorithm 

(Algorithm 1) to determine such an inverse is shown in Table 

1. 
 

Example 1: Let 𝑝 = 3, 𝑎 = 2 and 𝑛 = 6. We want to 

calculate the inverse of 2 modulo 36. We choose the initial 

value 𝑥1 = 2 since 2 ⋅ 2 ≡ 1 (mod 3). Observe that 4 < 6 <
8. We apply Newton’s method to find the inverse of 2 modulo 

32 and so on until 38 as follows: 

𝑥2 ≡ 5 (mod 32) 

𝑥3 ≡ 41 (mod 34) 

𝑥4 ≡ 3281 (mod 38). 
After we obtain 𝑥4, we use the power-reduction 

calculation and finally get the inverse of 2 modulo 36 as 365. 

 

2.2 The secant method with a power-reduction  

      calculation 
 

Secant method is designed to converge almost as 

fast as Newton’s method, but involves only 𝑓(𝑥) not 𝑓′(𝑥) 

(Atkinson, 1988). In a similar way to Newton’s method, we 

also combine this method with a modular calculation to 

reduce the power of 𝑝. The iteration for secant method is 

given by  

 

    𝑥𝑖+1 = 𝑥𝑖 −  
𝑓(𝑥𝑖)(𝑥𝑖−𝑥𝑖−1)

𝑓(𝑥𝑖)−𝑓(𝑥𝑖−1)
       ,    𝑖 = 2, 3, 4, … 
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Table 1. Algorithm for Newton’s method with a power-reduction 

calculation 
 

 
 

The method requires two initial values 𝑥1 and 𝑥2 to 

generate a sequence {𝑥𝑖} which converges to a zero of 𝑓. By 

setting 𝑓(𝑥) =
1

𝑥
− 𝑎, the iteration for secant method is given 

by 

𝑥𝑖+1 =  𝑥𝑖 −
(

1

𝑥𝑖
− 𝑎) (𝑥𝑖 − 𝑥𝑖−1)

(
1

𝑥𝑖
− 𝑎) − (

1

𝑥𝑖−1
− 𝑎)

 

 

𝑥𝑖+1 =  𝑥𝑖 + 𝑥𝑖−1 − 𝑎𝑥𝑖𝑥𝑖−1 ,                𝑖 = 2, 3, 4, … 

                                                                             (2.2) 

 

Equation (2.2) provides a sequence {𝑥𝑖}  which 

converges to a root of 𝑓(𝑥) = 0.  

 

Theorem 2.2.1. Suppose that  𝑥𝑖−1 ≡
1

𝑎
  (mod 𝑝𝛼) and that 

𝑥𝑖 ≡
1

𝑎
  (mod 𝑝𝛽). Then, for 𝑥𝑖+1 given by (2.2) we have 

𝑥𝑖+1 ≡
1

𝑎
  (mod 𝑝𝛼+𝛽). 

 

Proof. See Knapp and Xenophontos (2010). 

 

Based on this theorem, we can use secant method to 

find the inverse of 𝑎 modulo 𝑝𝛼+𝛽 if we know the inverse of 

𝑎 modulo 𝑝𝛼 and 𝑎 modulo 𝑝𝛽. We first choose 𝑥1 and 𝑥2 

such that 𝑥1 ≡
1

𝑎
  (mod 𝑝𝛼), and 𝑥2 ≡

1

𝑎
  (mod 𝑝𝛽). Then, 

we iterate 𝑥3 from secant method, which gives the inverse of 

𝑎 modulo 𝑝𝛼+𝛽, and continue the process. Since it is simpler 

to calculate the inverse of 𝑎 modulo 𝑝, both initial values 𝑥1 

and 𝑥2 for the secant method are chosen to be the inverse of 𝑎 

modulo 𝑝. Then, we apply the secant method to calculate 𝑥3 

that is the inverse of 𝑎 modulo 𝑝2. By continuing the process, 

we obtain the inverse of 𝑎 modulo 𝑝3, 𝑎 modulo 𝑝5, 𝑎 modulo 

𝑝8 and so on. In fact, the iterated values, 𝑥𝑖, are the inverses in 

which the powers of 𝑝 that are the Fibonacci numbers. This 

method is known to provide convergence of order  
1+√5

2
≈

1.618 (Atkinson, 1988).  

 In addition to the secant method in Knapp et al., we 

construct an algorithm to find the inverse of an integer 𝑎 

modulo 𝑝𝑛 for any positive integer 𝑛, other than the form of 

𝑝𝛼+𝛽 or 𝑝𝐹𝑘  where 𝐹𝑘 is a Fibonacci number. Recall that the 

Fibonacci sequence (𝐹𝑘)𝑘≥1 is defined by the recurrence 

relation 𝐹𝑘 = 𝐹𝑘−1 + 𝐹𝑘−2 for 𝑘 ≥ 3 and the initial values 

𝐹1 = 𝐹2 = 1. We first apply the secant method in (2.2) to 

calculate the inverse of an integer 𝑎 modulo 𝑝𝐹𝑘  where 

𝐹𝑘−1 < 𝑛 < 𝐹𝑘 for some positive integer 𝑘. Then, we use the 

reduction process (mentioned in section 2.1) to reduce the 

power of 𝑝 from 𝐹𝑘 down to 𝑛 in order to obtain the inverse of 

integer 𝑎 modulo 𝑝𝑛. The algorithm (Algorithm 2) to 

determine such an inverse is shown in Table 2. 

 
Table 2. Algorithm for the secant method with a power-reduction 

calculation 
 

 
 

Example 2: Let 𝑝 = 3, 𝑎 = 2 and 𝑛 = 11. We want to 

calculate the inverse of 2 modulo 311. We choose the initial 

values 𝑥1 = 2, 𝑥2 = 2 because 2 ⋅ 2 ≡ 1 (mod 3). Notice that 

8 < 11 < 13. We apply the secant method to find the inverse 

of 2 modulo 32, 2 modulo 33 and so on until 2 modulo 313 as 

follows: 

𝑥3 ≡ 5 (mod 32) 

𝑥4 ≡ 14 (mod 33) 

𝑥5 ≡ 122 (mod 35) 

𝑥6 ≡ 3281 (mod 38) 

𝑥7 ≡ 797162 (mod 313). 
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Once we obtain 𝑥7, we use the power-reduction calculation 

and finally get the inverse of 2 modulo 311 as 88574. 

 

3. Calculating the Inverse of 𝒂 Mod 𝑵 and 𝒂 Mod 𝒑𝒏 
 

In this section, we use the methods in section 2.1 

and section 2.2 to calculate the inverse of 𝑎 modulo 𝑝𝑛 for 

any positive integer 𝑛. We consider 𝑛 in two cases. For the 

first case, we represent 𝑛 as the sum of distinct powers of 2. 

For the second case, we represent 𝑛 in the form of Zeckendorf 

representation. 

 

3.1 Using binary representation 
 

Since we know that every positive integer can be 

represented by the sum of distinct powers of 2 (Rosen, 2005), 

we first express 𝑛 in the binary system. If 𝑛 is a positive 

integer, the binary expansion of 𝑛 is given by (Mathew, 1992) 

 

𝑛 = (𝑏𝑗 × 2𝑗) + (𝑏𝑗−1 × 2𝑗−1) + ⋯ + (𝑏1 × 21) +

                           (𝑏0 × 20), 

 

where each digit 𝑏𝑗  is either a 0 or a 1. This can also be 

written in the notation  

 

𝑛 = 𝑏𝑗𝑏𝑗−1 … 𝑏2𝑏1𝑏0two
. 

 

Therefore  

 

𝑝𝑛 = 𝑝𝑏𝑗2𝑗+𝑏𝑗−12𝑗−1+⋯+2𝑏1+𝑏0                 (3.1) 

 

or  

 

𝑝𝑛 = 𝑝𝑏𝑗2𝑗
∙ 𝑝𝑏𝑗−12𝑗−1

… 𝑝2𝑏1 ∙ 𝑝𝑏0.              (3.2) 

 

The form in (3.2) consists of a prime number to powers 2𝑘. 

We can apply Newton’s method in Algorithm 1 to calculate 

the inverse of an integer 𝑎 modulo 𝑝2𝑘
 for each 𝑘 in which 𝑏𝑘 

in (3.1) is not zero. The secant method in Theorem 2.2.1 and 

Algorithm 2 are then applied to determine the inverse of each 

pair of 𝑎 modulo 𝑝2𝑘
 until the largest power term. The 

algorithm (Algorithm 3)   to calculate the inverse using the 

binary representation is presented in Table 3. 

 

Example 3: Let 𝑝 = 2, 𝑎 = 3 and 𝑛 = 10. We want to 

calculate the inverse of 3 modulo 210. We choose the initial 

value 𝑥1 = 1, since 3 ∙ 1 ≡ 1 (mod 2). The binary 

representation of 𝑛 in this problem is 𝑛 = 10 = 23 + 2 =
1010𝑡𝑤𝑜. Observe that the representation contains the terms 

23 and 2. We apply Newton’s method and Theorem 2.1.1. to 

find the inverses of 3 modulo 22𝑖
, 𝑖 ≤ 3 as follows: 

𝑥2 ≡ 3  (mod 22)  or  𝑥2 ≡ 3  (mod 221
) 

𝑥3 ≡ 11  (mod 24)  or  𝑥3 ≡ 11  (mod 222
) 

𝑥4 ≡ 171  (mod 28)  or  𝑥4 ≡ 171  (mod 223
). 

Table 3. Algorithm for calculating the inverse using binary 

representation 
 

 
 

Using the secant method and Theorem 2.2.1. with 𝑥2 and 𝑥4 

as the initial conditions to calculate the inverse of 3 modulo 

210 yields 

𝑥 = 683  (mod 223+2) 

Therefore, 683 is the inverse of 3 modulo 210. 

 

3.2 Using the Zeckendorf representation 
 

Consider the fact that any positive integer can be 

expressed as the sum of Fibonacci numbers (Rosen, 2005). In 

this section, we represent the integer 𝑛 in the form of the 

Zeckendorf representation.  

 
Theorem 3.2.1. (Zeckendorf’s Theorem (Rosen, 2005; 

Griffiths, 2015)) Every positive integer can be represented 

uniquely as the sum of one or more distinct Fibonacci 

numbers in such a way that the sum does not include any two 

consecutive Fibonacci numbers. More precisely, if 𝑛 is any 

positive integer, there exist positive integers 𝑐𝑖 ≥ 2, with 

𝑐𝑖+1 > 𝑐𝑖 + 1 for every 𝑖 ∈ {0,1,2, … , 𝑘} such that 

  

𝑛 = ∑ 𝐹𝑐𝑖

𝑘

𝑖=0

 

 

where 𝐹𝑘 is the 𝑘th Fibonacci number. Such a sum is called 

the Zeckendorf representation of 𝑛. In fact, the greedy 

algorithm always leads to Zeckendorf representation. 
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Proof. See Rosen (2005) and Griffiths (2015).  
 

Example 4: Consider the number 𝑛 = 95. There are several 

ways to express this number as a sum of Fibonacci numbers. 

Notice that 95 = 89 + 3 + 2 + 1 = 𝐹11 + 𝐹4 + 𝐹3 + 𝐹2 and 

95 = 55 + 34 + 5 + 1 = 𝐹10 + 𝐹9 + 𝐹5 + 𝐹2 are not 

Zeckendorf representations because 3, 2, 1 and 55, 34 are 

consecutive Fibonacci numbers. However, 95 = 89 + 5 +
1 = 𝐹11 + 𝐹5 + 𝐹2 is a Zeckendorf representation which is 

uniquely determined. 

From the greedy algorithm and Zeckendorf’s 

theorem, we can construct an algorithm to write 𝑛 in form of 

the Zeckendorf representation. We first construct a Fibonacci 

sequence starting from 1 and contains numbers closest to 𝑛. 

The binary search algorithm is applied to find the largest 

Fibonacci numbers, 𝐹𝑛1
, that is less than or equal to 𝑛. Then 

repeat the process to find the largest Fibonacci numbers, 𝐹𝑛2
, 

that is less than or equal to 𝑛 − 𝐹𝑛1
. By continuing this 

process, we arrive with the Zeckendorf representation 𝑛 =
𝐹𝑛1

+ 𝐹𝑛2
+ ⋯ + 𝐹𝑛𝑘

 for some 𝑘 ∈ ℕ. Algorithm 4 in Table 4 

provides the process for finding such a representation. 

 
Table 4. Algorithm for representing 𝑛 with the Zeckendorf 

representation 
 

 
 

Once we have the Zeckendorf representation from 

Algorithm 4. The secant method in section 2.2 is applied to 

find the inverse of an integer 𝑎 modulo 𝑝𝐹𝑖 for each Fibonacci 

number 𝐹𝑖 in Algorithm 4. Then, we apply the secant method 

again to find the inverse of an integer 𝑎 modulo 

𝑝𝐹𝑛1+𝐹𝑛2+⋯+𝐹𝑛𝑘 . The algorithm (Algorithm 5)  that includes 

the secant method to find the inverse of an integer 𝑎 modulo 

𝑝𝑛 is shown in Table 5. 

 

 

 

 

 

 

 

Table 5. Algorithm for calculating the inverse using Zeckendorf 

representation 
 

 

 
Example 5: Let 𝑝 = 2, 𝑎 = 3 and 𝑛 = 12. We want to 

calculate the inverse of 3 modulo 212. We choose the initial 

values 𝑥1 = 1 and 𝑥2 = 1 because 3 ∙ 1 ≡ 1 (mod 2). We 

have that 12 = 8 + 3 + 1. Then, we use the secant method 

and Theorem 2.1.1. to find the inverses of 3 modulo 2𝑘, where 

𝑘 is a Fibonacci number less than or equal 12 as follows: 

𝑥3 ≡ 3  (mod 22) 

𝑥4 ≡ 3  (mod 23) 

𝑥5 ≡ 11  (mod 25) 

𝑥6 ≡ 171  (mod 28). 
Next, we apply the secant method and Theorem 2.2.1. again to 

find the inverse of 3 modulo 21+3 and 3 modulo 24+8. This 

yields the inverse 

𝑥 = 2731  (mod 28+3+1). 
Therefore, 2731 is the inverse of 3 modulo 212.  

In the next example, we compare the CPU times of 

each method used to find the inverse of 𝑎 modulo 𝑝𝑛 by using 

MATLAB. The calculations are carried out with an Intel Core 

i7 CPU@4 GHz RAM 32 GB computer. The results are 

presented in Example 6. 

 

Example 6: Let 𝑝 = 3, 𝑎 = 2.  We choose the initial values 

𝑥1 = 2 and 𝑥2 = 2, since 2 ⋅ 2 ≡ 1 (mod 3). The CPU times 

are recorded in seconds. 
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Table 6. CPU times in finding the inverse of 𝑎 modulo 𝑝𝑛 by the four 
methods. 

 

Method Newton Secant Base 2 Zeckendorf 

     

𝑎 (mod 𝑝32) 0.005446 0.008523 0.018183 0.017999 

𝑎 (mod 𝑝128) 0.005586 3.393821 0.018325 0.017747 

𝑎 (mod 𝑝21) 0.010100 0.000300 0.025102 0.013143 

𝑎 (mod 𝑝55) 0.009226 0.006529 0.023589 0.013082 

𝑎 (mod 𝑝233) >1000 0.006682 0.023929 0.013357 

𝑎 (mod 𝑝40) 313.999486 1.805201 0.021543 0.017441 

𝑎 (mod 𝑝111) 10.129003 >1000 0.023383 0.017748 

𝑎 (mod 𝑝115) 0.134732 >1000 0.023891 0.017690 

 

 

From Table 6, Newton’s method is the fastest in 

finding inverses when 𝑛 is a power of 2 and not too large, due 

to lesser number of operations than that in the other methods. 

In this example, we can see that when 𝑛 = 32 or 128, 

Newton’s method gives the smallest calculation time. If we 

consider the secant method, it has the best time when 𝑛 is a 

Fibonacci number and not too large. We can see that this 

method gives the shortest time to find the inverses when 𝑛 =
21, 55 and 233. The binary and Zeckendorf representation 

methods can calculate the inverses for any 𝑛 and the CPU 

time increased a bit as 𝑛 becomes larger. These last two 

methods are the best way to calculate the inverses of 𝑎 

modulo 𝑝𝑛, especially when 𝑛 is not in a power of 2 or a 

Fibonacci number, or when 𝑛 is large.  

The figures below confirm the discussion above. 

Figure 1(a) shows the graphs of the CPU times for the four 

methods versus 𝑛 when 𝑛 = 2,3, … ,30. The CPU time in the 

graph of Newton’s method drops when 𝑛 = 2, 4, 8, 16, 24 and 

it jumps up due to the power-reduction process. For example, 

the method uses comparatively little CPU time when 𝑛 = 16, 

but it takes a much longer time when 𝑛 = 17 since it first 

calculates the inverse of 𝑎 modulo 𝑝24 and then reduces the 

power down to 𝑛 = 17. Similarly, the CPU time in the graph 

for the secant method drops when 𝑛 = 2, 3, 5, 8, 13, 21 and it 

jumps up in a similar manner. If we consider the graphs of 

CPU times for the binary and Zeckendorf representation 

methods, they are quite stable and do not increase much; these 

two methods become faster than the first two methods as 𝑛 

increases. Figure 1(b) illustrates the behavior of CPU times of 

these methods when 𝑛 = 2, 3, … , 100. We can see from the 

graphs that the times taken do not grow rapidly as 𝑛 gets 

larger. These are time-efficient and very stable methods to 

calculate the inverse of 𝑎 modulo 𝑝𝑛 for any number 𝑛. 

We end the section with an example of calculating 

the inverse of an integer 𝑎 modulo 𝑁 where 𝑁 =

𝑝1
𝑛1𝑝2

𝑛2 … 𝑝𝑚
𝑛𝑚. 

 

Example 7: Let 𝑎 = 2 and 𝑁 = 33075. The prime 

factorization of 𝑁 is 𝑁 = 33 ⋅ 52 ⋅ 72. We would like to find 

an integer 𝑥 such that  

2𝑥 ≡ 1  (mod 33 ⋅ 52 ⋅ 72). 

We break it down into finding 

2𝑥 ≡ 1  (mod 33), 
2𝑥 ≡ 1  (mod 52), 
2𝑥 ≡ 1  (mod 72). 

By using our algorithms, we can find the inverses in each case 

as 

 
(a) 

 
(b) 

 

Figure 1. (a) The CPU times of the four methods versus 𝑛 when 𝑛 =
2,3, … ,30. (b) The CPU times with binary and Zeckendorf 

representations versus 𝑛 when 𝑛 = 2,3, … ,100. 

 
 𝑥 ≡ 14  (mod 33), 

𝑥 ≡ 13  (mod 52), 
𝑥 ≡ 25  (mod 72). 

Then we combine them by using the Chinese remainder 

theorem. 

Let 𝑎1 = 14, 𝑎2 = 13, 𝑎3 = 25, 𝑚1 = 33, 𝑚2 =
52,  𝑚3 = 72. For the Chinese remainder theorem (Rosen, 

2005) we define 

 

𝑀1 =
𝑀

𝑚1
=

33 ⋅ 52 ⋅ 72

33 = 52 ⋅ 72 = 1225 

𝑀2 =
𝑀

𝑚2
=

33 ⋅ 52 ⋅ 72

52 = 33 ⋅ 72 = 1323 

𝑀3 =
𝑀

𝑚3
=

33 ⋅ 52 ⋅ 72

72 = 33 ⋅ 52 = 675.   

 
To determine the inverse of  𝑀1, denoted by 𝑀1

′ , we 

solve 1225𝑀1
′ ≡ 1 (mod 33), which is equivalent to 10𝑀1

′ ≡
1 (mod 33). So 𝑀1

′ ≡ 19 (mod 33). Next, we find the inverse 

of 𝑀2, denoted by 𝑀2
′ , by solving 1323𝑀2

′ ≡ 1 (mod 52), 

which is equivalent to 23𝑀2
′ ≡ 1 (mod 52). So 𝑀2

′ ≡
12 (mod 52).  The inverse  of 𝑀3, denoted by 𝑀3

′ , is 

calculated by solving  675𝑀3
′ ≡ 1 (mod 72), or equivalently, 

38𝑀3
′ ≡ 1 (mod 72). Then 𝑀3

′ ≡ 40 (mod 72). 

Therefore, according to the Chinese remainder 

theorem, the inverse of 2 modulo 33075 is  

𝑥 ≡ 𝑎1𝑀1𝑀1
′ + 𝑎2𝑀2𝑀2

′ + 𝑎3𝑀3𝑀3
′   (mod 𝑀) 
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   ≡ 14(1225)(19) + 13(1323)(12)

+ 25(675)(40)  (mod 33 ⋅ 52 ⋅ 72) 

   ≡ 1207238  (mod 33 ⋅ 52 ⋅ 72) 

   ≡ 16538  (mod 33 ⋅ 52 ⋅ 72). 

 

4. Conclusions and Discussion 
 

This work introduces new methods to calculate 

inverses modulo 𝑁 for any positive integer 𝑁. We express 𝑁 

in its prime factorization as 𝑁 = 𝑝1
𝑛1𝑝2

𝑛2 … 𝑝𝑚
𝑛𝑚, where 

𝑝1, 𝑝2, … , 𝑝𝑚 are distinct prime numbers and 𝑛1, 𝑛2, … , 𝑛𝑚 are 

positive integers. Then, we calculate the inverse by breaking it 

down to find the inverses of 𝑎 mod 𝑝1
𝑛1 , 𝑎 mod 𝑝2

𝑛2 , …, and 

𝑎 mod 𝑝𝑚
𝑛𝑚 and combine them using the Chinese remainder 

theorem. The four methods proposed to calculate the inverse 

of 𝑎 mod 𝑝𝑛 are based on Newton's and secant methods.   

We also construct an algorithm for each method to 

help calculating the inverses of 𝑎 modulo 𝑝𝑛 in MATLAB 

and present an example of each method. In addition, we 

compare the CPU times of each method in Example 6. 

Newton’s method with power-reduction calculation is good 

for the case when 𝑛 =  2𝑖 for =  1, 2, 3, … . The secant method 

with power-reduction calculation is used to find the inverse of 

𝑎 modulo 𝑝𝛼+𝛽 when the inverses of 𝑎 mod  𝑝𝛼 and 

𝑎 mod  𝑝𝛽 are already obtained. In fact, it is good for the case 

when 𝑛 is a Fibonacci number. However, these two methods 

may take time when 𝑛 is not in such a form because of the 

power-reduction process. The method that expresses 𝑛 as a 

binary representation followed by Newton’s and secant 

methods is suitable for any number 𝑛 because every number 

can be represented in base 2. The method does not involve 

power-reduction calculation. As a result, it is time efficient 

and very stable for calculating the inverse for any number 𝑛, 

especially when 𝑛 is large or is not in a power of 2 or a 

Fibonacci number. Similarly, the method that expresses 𝑛 in

Zeckendorf representation followed by the secant method is 

suitable for any number 𝑛 because every number has a 

Zeckendorf representation. This method is also as good as that 

using the binary representation. 
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