

Songklanakarin J. Sci. Technol.

40 (6), 1361-1367, Nov. – Dec. 2018

Original Article

Numerical methods for finding multiplicative inverses of 𝑎 modulo 𝑁

Bencharat Prempreesuk, Prapanpong Pongsriiam, and Nairat Kanyamee*

Department of Mathematics, Faculty of Science,

Silpakorn University, Sanam Chandra Palace, Mueang, Nakhon Pathom, 73000 Thailand

Received: 2 May 2017; Revised: 14 July 2017; Accepted: 22 August 2017

Abstract

In this work, we propose new methods based on the root-finding methods in numerical analysis to calculate the inverse

of an integer 𝑎 modulo 𝑁 for any positive integer 𝑁. We apply Newton's and secant methods with a power-reduction process and

Newton's and secant methods together with the binary representation and Zeckendorf representation to determine the inverse of

an integer 𝑎 modulo 𝑁. The numerical results confirm an accuracy when compared to analytical results. In addition, the two

methods with the binary and Zeckendorf representations give better CPU times than Newton’s and secant methods with power-

reduction, for large 𝑁.

Keywords: modular multiplicative inverse, Newton’s method, secant method, binary representation, Zeckendorf representation

1. Introduction

Modular multiplicative inverse is often seen in

number theory and it is desirable to be able to calculate it

quickly. This motivates us to search for an efficient method

for finding the modular multiplicative inverse.

On the other hand, numerical analysis provides

algorithms for approximate solutions to particular problem.

So, there should be some connections between number theory

and numerical analysis fields.

Let 𝑁 ∈ ℤ+ and 𝑎, 𝑏 ∈ ℤ. We write 𝑎 ≡ 𝑏 (mod 𝑁)

if 𝑁|𝑎 − 𝑏. Assume further that (𝑎, 𝑁) = 1. Then it is a well-

known result (Rosen, 2005) in number theory that there exists

an integer 𝑥 such that

𝑎𝑥 ≡ 1 (mod 𝑁).

The integer 𝑥 is called the modular multiplicative

inverse (or simply the inverse) of 𝑎 modulo 𝑁 and it is

denoted by 𝑎−1 or
1

𝑎
. For example, 2(3) ≡ 1 (mod 5), so the

inverse of 2 modulo 5 is 3, that is, 3 ≡ 2−1 (mod 5). By the

fundamental theorem of arithmetic (Rosen, 2005), we can

write

𝑁 = 𝑝1
𝑛1𝑝2

𝑛2 … 𝑝𝑘
𝑛𝑘,

where 𝑝1, 𝑝2, … , 𝑝𝑘 are distinct primes and 𝑛1, 𝑛2, … , 𝑛𝑘 are

positive integers. We can first calculate the inverse of 𝑎

modulo 𝑝1
𝑛1 , 𝑝2

𝑛2 , … , 𝑝𝑘
𝑛𝑘, respectively, and then apply the

Chinese remainder theorem (Rosen, 2005) to obtain the

inverse of 𝑎 modulo 𝑁.

Apart from the Euclidean algorithm to calculate the

inverse, some researchers have introduced an interesting

application of numerical analysis to number theory. In

numerical analysis, we have the classical root-finding methods

such as Newton's method and secant method to find a zero of

a function 𝑓 or to find a solution of 𝑓(𝑥) = 0. The concept of

iterative root-finding methods is to construct a sequence

𝑥0, 𝑥1, 𝑥2, … that will converge to a zero of 𝑓(𝑥) in [𝑎, 𝑏]. In

2010, Knapp and Xenophontos calculated the inverses of an

integer 𝑎 modulo 𝑝𝑛 using root-finding methods, such as

Newton’s method, secant method, fixed-point iteration and a

higher-order convergent method (Knapp & Xenophontos,

2010). Newton’s method is suitable for calculating the inverse

of an integer 𝑎 modulo 𝑝𝑛 when 𝑛 = 𝑚 ∙ 2𝑖 for 𝑖 =
 1, 2, 3, … and some positive integer 𝑚. The secant method is

used to find the inverse of 𝑎 modulo 𝑝𝛼+𝛽, when the inverses

*Corresponding author

Email address: kanyamee_n@su.ac.th

1362 B. Prempreesuk et al. / Songklanakarin J. Sci. Technol. 40 (6), 1361-1367, 2018

of 𝑎 mod 𝑝𝛼 and 𝑎 mod 𝑝𝛽 are already known. The higher-

order convergent method of order 𝑟 is suitable for calculating

an inverse of 𝑎 modulo 𝑝𝑛 when 𝑛 = 𝑚 ∙ 𝑟𝑖 for 𝑖 =
 1, 2, 3, … and some positive integer 𝑚. In 2014, Dumas

studied fast algorithms for the computation of modular

inverses by using Newton-Raphson iteration (Dumas, 2014).

He designed four algorithms with a few operations used. He

claimed that his hybrid algorithm is 26% faster than any direct

method.

In this paper, we extend the work of Knapp et al. by

using Newton’s and secant methods with a power-reduction

calculation and Newton's and secant methods together with

the binary representation and the Zeckendorf representation to

determine the inverse of an integer 𝑎 modulo 𝑁 for any

positive integer 𝑁, by splitting 𝑁 into its prime factor form

and calculating the inverse in terms of 𝑎 modulo 𝑝𝑛. To do

this, we consider two representations for 𝑛 . In the first case,

we represent 𝑛 as the sum of distinct powers of 2. In the

second case, we use the Zeckendorf representation for it

(Griffiths, 2015). Then we use root-finding methods to

calculate inverses modulo 𝑝𝑛. Furthermore, we designed the

algorithms in MATLAB to calculate the inverse of 𝑎 modulo

𝑝𝑛 , and compared the CPU times of each method.

2. Root-finding methods for the inverse of 𝒂

 modulo 𝒑𝒏

In this section, we establish root-finding methods

with a power-reduction calculation to calculate the inverse of

an integer 𝑎 modulo 𝑝𝑛. The methods are based on the root-

finding methods in Knapp et al. (Knapp & Xenophontos,

2010). We are looking for an integer 𝑥 for which 𝑎𝑥 ≡

1 (mod 𝑝𝑛) or 𝑥 ≡
1

𝑎
 (mod 𝑝𝑛). Following the methods in

Knapp et al., a suitable choice for the function 𝑓 is 𝑓(𝑥) =
1

𝑥
− 𝑎. The goal is to solve the equation 𝑓(𝑥) = 0.

2.1 Newton’s method with a power-reduction

 calculation

The well-known Newton’s method is one of the

most powerful numerical methods for root-finding problems.

We combine this method with a process of modular

calculations to reduce the power of 𝑝, in order to find the

inverse mod 𝑝𝑛.

Newton’s method relies on the continuity of

𝑓′(𝑥) and 𝑓′′(𝑥). According to (Burden & Faires, 1997), the

iteration for Newton’s method to locate a zero of 𝑓 is given by

𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥𝑖)

𝑓′(𝑥𝑖)
 , 𝑖 = 1, 2, 3, …

with a suitable initial value 𝑥1. This iteration generates a

sequence {𝑥𝑖} which converges to a zero of 𝑓. To apply the

method, we first find 𝑓′(𝑥) = −
1

𝑥2 . The iteration for

Newton’s method becomes

𝑥𝑖+1 = 𝑥𝑖 −

1

𝑥𝑖
−𝑎

−
1

𝑥𝑖
2

 𝑥𝑖+1 = 𝑥𝑖(2 − 𝑎𝑥𝑖), 𝑖 = 1, 2, 3, … (2.1)

Here, we obtain the sequence {𝑥𝑖} which converges to a

solution of 𝑓(𝑥) = 0.

Theorem 2.1.1. Let 𝛼 > 0 and suppose that 𝑥𝑖 is an inverse

of 𝑎 modulo 𝑝𝛼. Then 𝑥𝑖+1 given by (2.1) is an inverse of 𝑎

modulo 𝑝2𝛼.

Proof. See Knapp and Xenophontos (2010).

Theorem 2.1.1 implies that if we know the inverse

of 𝑎 modulo 𝑝𝛼 , then we can use Newton’s method to

calculate the inverse of 𝑎 modulo 𝑝2𝛼, 𝑎 modulo 𝑝4𝛼, 𝑎

modulo 𝑝8𝛼 and so on. For simplicity, we choose the initial

guess 𝑥1 to be the inverse of 𝑎 modulo 𝑝 and apply Newton’s

method in (2.1) to determine the inverse of 𝑎 modulo

𝑝2, 𝑎 modulo 𝑝4 , 𝑎 modulo 𝑝8 and so on. As a result, this

method is suitable for calculating the inverse of an integer 𝑎

modulo 𝑝𝑛 when 𝑛 = 2𝑘 , 𝑘 = 1, 2, 3, … . It is known that

the method converges at a quadratic rate for a simple root

(Burden & Faires, 1997).

In addition to Newton’s method in Knapp et al., we

construct an algorithm to find the inverse of an integer 𝑎

modulo 𝑝𝑛 for any integer 𝑛, not necessarily of the form 𝑝2𝑘
.

We first apply Newton’s method in (2.1) to calculate the

inverse 𝑥 of an integer 𝑎 modulo 𝑝2𝑘
 where 2𝑘−1 < 𝑛 < 2𝑘

for some positive integer 𝑘. Then, we begin to reduce the

power of 𝑝 from 2𝑘 down to 𝑛. Since ≡ 1 (mod 𝑝2𝑘
), it

follows that 𝑎𝑥 ≡ 1 (mod 𝑝𝑛). The reduction process applies

this idea together with the congruence property to search for

the smallest positive number in the same congruent class as

𝑥 modulo 𝑝𝑛 (shown in line 20 (referring to line 14) in

Algorithm 1). By continuing this process, we finally arrive

with the inverse of an integer 𝑎 modulo 𝑝𝑛. The algorithm

(Algorithm 1) to determine such an inverse is shown in Table

1.

Example 1: Let 𝑝 = 3, 𝑎 = 2 and 𝑛 = 6. We want to

calculate the inverse of 2 modulo 36. We choose the initial

value 𝑥1 = 2 since 2 ⋅ 2 ≡ 1 (mod 3). Observe that 4 < 6 <
8. We apply Newton’s method to find the inverse of 2 modulo

32 and so on until 38 as follows:

𝑥2 ≡ 5 (mod 32)

𝑥3 ≡ 41 (mod 34)

𝑥4 ≡ 3281 (mod 38).
After we obtain 𝑥4, we use the power-reduction

calculation and finally get the inverse of 2 modulo 36 as 365.

2.2 The secant method with a power-reduction

 calculation

Secant method is designed to converge almost as

fast as Newton’s method, but involves only 𝑓(𝑥) not 𝑓′(𝑥)

(Atkinson, 1988). In a similar way to Newton’s method, we

also combine this method with a modular calculation to

reduce the power of 𝑝. The iteration for secant method is

given by

 𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥𝑖)(𝑥𝑖−𝑥𝑖−1)

𝑓(𝑥𝑖)−𝑓(𝑥𝑖−1)
 , 𝑖 = 2, 3, 4, …

 B. Prempreesuk et al. / Songklanakarin J. Sci. Technol. 40 (6), 1361-1367, 2018 1363

Table 1. Algorithm for Newton’s method with a power-reduction

calculation

The method requires two initial values 𝑥1 and 𝑥2 to

generate a sequence {𝑥𝑖} which converges to a zero of 𝑓. By

setting 𝑓(𝑥) =
1

𝑥
− 𝑎, the iteration for secant method is given

by

𝑥𝑖+1 = 𝑥𝑖 −
(

1

𝑥𝑖
− 𝑎) (𝑥𝑖 − 𝑥𝑖−1)

(
1

𝑥𝑖
− 𝑎) − (

1

𝑥𝑖−1
− 𝑎)

𝑥𝑖+1 = 𝑥𝑖 + 𝑥𝑖−1 − 𝑎𝑥𝑖𝑥𝑖−1 , 𝑖 = 2, 3, 4, …

 (2.2)

Equation (2.2) provides a sequence {𝑥𝑖} which

converges to a root of 𝑓(𝑥) = 0.

Theorem 2.2.1. Suppose that 𝑥𝑖−1 ≡
1

𝑎
 (mod 𝑝𝛼) and that

𝑥𝑖 ≡
1

𝑎
 (mod 𝑝𝛽). Then, for 𝑥𝑖+1 given by (2.2) we have

𝑥𝑖+1 ≡
1

𝑎
 (mod 𝑝𝛼+𝛽).

Proof. See Knapp and Xenophontos (2010).

Based on this theorem, we can use secant method to

find the inverse of 𝑎 modulo 𝑝𝛼+𝛽 if we know the inverse of

𝑎 modulo 𝑝𝛼 and 𝑎 modulo 𝑝𝛽. We first choose 𝑥1 and 𝑥2

such that 𝑥1 ≡
1

𝑎
 (mod 𝑝𝛼), and 𝑥2 ≡

1

𝑎
 (mod 𝑝𝛽). Then,

we iterate 𝑥3 from secant method, which gives the inverse of

𝑎 modulo 𝑝𝛼+𝛽, and continue the process. Since it is simpler

to calculate the inverse of 𝑎 modulo 𝑝, both initial values 𝑥1

and 𝑥2 for the secant method are chosen to be the inverse of 𝑎

modulo 𝑝. Then, we apply the secant method to calculate 𝑥3

that is the inverse of 𝑎 modulo 𝑝2. By continuing the process,

we obtain the inverse of 𝑎 modulo 𝑝3, 𝑎 modulo 𝑝5, 𝑎 modulo

𝑝8 and so on. In fact, the iterated values, 𝑥𝑖, are the inverses in

which the powers of 𝑝 that are the Fibonacci numbers. This

method is known to provide convergence of order
1+√5

2
≈

1.618 (Atkinson, 1988).

 In addition to the secant method in Knapp et al., we

construct an algorithm to find the inverse of an integer 𝑎

modulo 𝑝𝑛 for any positive integer 𝑛, other than the form of

𝑝𝛼+𝛽 or 𝑝𝐹𝑘 where 𝐹𝑘 is a Fibonacci number. Recall that the

Fibonacci sequence (𝐹𝑘)𝑘≥1 is defined by the recurrence

relation 𝐹𝑘 = 𝐹𝑘−1 + 𝐹𝑘−2 for 𝑘 ≥ 3 and the initial values

𝐹1 = 𝐹2 = 1. We first apply the secant method in (2.2) to

calculate the inverse of an integer 𝑎 modulo 𝑝𝐹𝑘 where

𝐹𝑘−1 < 𝑛 < 𝐹𝑘 for some positive integer 𝑘. Then, we use the

reduction process (mentioned in section 2.1) to reduce the

power of 𝑝 from 𝐹𝑘 down to 𝑛 in order to obtain the inverse of

integer 𝑎 modulo 𝑝𝑛. The algorithm (Algorithm 2) to

determine such an inverse is shown in Table 2.

Table 2. Algorithm for the secant method with a power-reduction

calculation

Example 2: Let 𝑝 = 3, 𝑎 = 2 and 𝑛 = 11. We want to

calculate the inverse of 2 modulo 311. We choose the initial

values 𝑥1 = 2, 𝑥2 = 2 because 2 ⋅ 2 ≡ 1 (mod 3). Notice that

8 < 11 < 13. We apply the secant method to find the inverse

of 2 modulo 32, 2 modulo 33 and so on until 2 modulo 313 as

follows:

𝑥3 ≡ 5 (mod 32)

𝑥4 ≡ 14 (mod 33)

𝑥5 ≡ 122 (mod 35)

𝑥6 ≡ 3281 (mod 38)

𝑥7 ≡ 797162 (mod 313).

1364 B. Prempreesuk et al. / Songklanakarin J. Sci. Technol. 40 (6), 1361-1367, 2018

Once we obtain 𝑥7, we use the power-reduction calculation

and finally get the inverse of 2 modulo 311 as 88574.

3. Calculating the Inverse of 𝒂 Mod 𝑵 and 𝒂 Mod 𝒑𝒏

In this section, we use the methods in section 2.1

and section 2.2 to calculate the inverse of 𝑎 modulo 𝑝𝑛 for

any positive integer 𝑛. We consider 𝑛 in two cases. For the

first case, we represent 𝑛 as the sum of distinct powers of 2.

For the second case, we represent 𝑛 in the form of Zeckendorf

representation.

3.1 Using binary representation

Since we know that every positive integer can be

represented by the sum of distinct powers of 2 (Rosen, 2005),

we first express 𝑛 in the binary system. If 𝑛 is a positive

integer, the binary expansion of 𝑛 is given by (Mathew, 1992)

𝑛 = (𝑏𝑗 × 2𝑗) + (𝑏𝑗−1 × 2𝑗−1) + ⋯ + (𝑏1 × 21) +

 (𝑏0 × 20),

where each digit 𝑏𝑗 is either a 0 or a 1. This can also be

written in the notation

𝑛 = 𝑏𝑗𝑏𝑗−1 … 𝑏2𝑏1𝑏0two
.

Therefore

𝑝𝑛 = 𝑝𝑏𝑗2𝑗+𝑏𝑗−12𝑗−1+⋯+2𝑏1+𝑏0 (3.1)

or

𝑝𝑛 = 𝑝𝑏𝑗2𝑗
∙ 𝑝𝑏𝑗−12𝑗−1

… 𝑝2𝑏1 ∙ 𝑝𝑏0. (3.2)

The form in (3.2) consists of a prime number to powers 2𝑘.

We can apply Newton’s method in Algorithm 1 to calculate

the inverse of an integer 𝑎 modulo 𝑝2𝑘
 for each 𝑘 in which 𝑏𝑘

in (3.1) is not zero. The secant method in Theorem 2.2.1 and

Algorithm 2 are then applied to determine the inverse of each

pair of 𝑎 modulo 𝑝2𝑘
 until the largest power term. The

algorithm (Algorithm 3) to calculate the inverse using the

binary representation is presented in Table 3.

Example 3: Let 𝑝 = 2, 𝑎 = 3 and 𝑛 = 10. We want to

calculate the inverse of 3 modulo 210. We choose the initial

value 𝑥1 = 1, since 3 ∙ 1 ≡ 1 (mod 2). The binary

representation of 𝑛 in this problem is 𝑛 = 10 = 23 + 2 =
1010𝑡𝑤𝑜. Observe that the representation contains the terms

23 and 2. We apply Newton’s method and Theorem 2.1.1. to

find the inverses of 3 modulo 22𝑖
, 𝑖 ≤ 3 as follows:

𝑥2 ≡ 3 (mod 22) or 𝑥2 ≡ 3 (mod 221
)

𝑥3 ≡ 11 (mod 24) or 𝑥3 ≡ 11 (mod 222
)

𝑥4 ≡ 171 (mod 28) or 𝑥4 ≡ 171 (mod 223
).

Table 3. Algorithm for calculating the inverse using binary

representation

Using the secant method and Theorem 2.2.1. with 𝑥2 and 𝑥4

as the initial conditions to calculate the inverse of 3 modulo

210 yields

𝑥 = 683 (mod 223+2)

Therefore, 683 is the inverse of 3 modulo 210.

3.2 Using the Zeckendorf representation

Consider the fact that any positive integer can be

expressed as the sum of Fibonacci numbers (Rosen, 2005). In

this section, we represent the integer 𝑛 in the form of the

Zeckendorf representation.

Theorem 3.2.1. (Zeckendorf’s Theorem (Rosen, 2005;

Griffiths, 2015)) Every positive integer can be represented

uniquely as the sum of one or more distinct Fibonacci

numbers in such a way that the sum does not include any two

consecutive Fibonacci numbers. More precisely, if 𝑛 is any

positive integer, there exist positive integers 𝑐𝑖 ≥ 2, with

𝑐𝑖+1 > 𝑐𝑖 + 1 for every 𝑖 ∈ {0,1,2, … , 𝑘} such that

𝑛 = ∑ 𝐹𝑐𝑖

𝑘

𝑖=0

where 𝐹𝑘 is the 𝑘th Fibonacci number. Such a sum is called

the Zeckendorf representation of 𝑛. In fact, the greedy

algorithm always leads to Zeckendorf representation.

 B. Prempreesuk et al. / Songklanakarin J. Sci. Technol. 40 (6), 1361-1367, 2018 1365

Proof. See Rosen (2005) and Griffiths (2015).

Example 4: Consider the number 𝑛 = 95. There are several

ways to express this number as a sum of Fibonacci numbers.

Notice that 95 = 89 + 3 + 2 + 1 = 𝐹11 + 𝐹4 + 𝐹3 + 𝐹2 and

95 = 55 + 34 + 5 + 1 = 𝐹10 + 𝐹9 + 𝐹5 + 𝐹2 are not

Zeckendorf representations because 3, 2, 1 and 55, 34 are

consecutive Fibonacci numbers. However, 95 = 89 + 5 +
1 = 𝐹11 + 𝐹5 + 𝐹2 is a Zeckendorf representation which is

uniquely determined.

From the greedy algorithm and Zeckendorf’s

theorem, we can construct an algorithm to write 𝑛 in form of

the Zeckendorf representation. We first construct a Fibonacci

sequence starting from 1 and contains numbers closest to 𝑛.

The binary search algorithm is applied to find the largest

Fibonacci numbers, 𝐹𝑛1
, that is less than or equal to 𝑛. Then

repeat the process to find the largest Fibonacci numbers, 𝐹𝑛2
,

that is less than or equal to 𝑛 − 𝐹𝑛1
. By continuing this

process, we arrive with the Zeckendorf representation 𝑛 =
𝐹𝑛1

+ 𝐹𝑛2
+ ⋯ + 𝐹𝑛𝑘

 for some 𝑘 ∈ ℕ. Algorithm 4 in Table 4

provides the process for finding such a representation.

Table 4. Algorithm for representing 𝑛 with the Zeckendorf

representation

Once we have the Zeckendorf representation from

Algorithm 4. The secant method in section 2.2 is applied to

find the inverse of an integer 𝑎 modulo 𝑝𝐹𝑖 for each Fibonacci

number 𝐹𝑖 in Algorithm 4. Then, we apply the secant method

again to find the inverse of an integer 𝑎 modulo

𝑝𝐹𝑛1+𝐹𝑛2+⋯+𝐹𝑛𝑘 . The algorithm (Algorithm 5) that includes

the secant method to find the inverse of an integer 𝑎 modulo

𝑝𝑛 is shown in Table 5.

Table 5. Algorithm for calculating the inverse using Zeckendorf

representation

Example 5: Let 𝑝 = 2, 𝑎 = 3 and 𝑛 = 12. We want to

calculate the inverse of 3 modulo 212. We choose the initial

values 𝑥1 = 1 and 𝑥2 = 1 because 3 ∙ 1 ≡ 1 (mod 2). We

have that 12 = 8 + 3 + 1. Then, we use the secant method

and Theorem 2.1.1. to find the inverses of 3 modulo 2𝑘, where

𝑘 is a Fibonacci number less than or equal 12 as follows:

𝑥3 ≡ 3 (mod 22)

𝑥4 ≡ 3 (mod 23)

𝑥5 ≡ 11 (mod 25)

𝑥6 ≡ 171 (mod 28).
Next, we apply the secant method and Theorem 2.2.1. again to

find the inverse of 3 modulo 21+3 and 3 modulo 24+8. This

yields the inverse

𝑥 = 2731 (mod 28+3+1).
Therefore, 2731 is the inverse of 3 modulo 212.

In the next example, we compare the CPU times of

each method used to find the inverse of 𝑎 modulo 𝑝𝑛 by using

MATLAB. The calculations are carried out with an Intel Core

i7 CPU@4 GHz RAM 32 GB computer. The results are

presented in Example 6.

Example 6: Let 𝑝 = 3, 𝑎 = 2. We choose the initial values

𝑥1 = 2 and 𝑥2 = 2, since 2 ⋅ 2 ≡ 1 (mod 3). The CPU times

are recorded in seconds.

1366 B. Prempreesuk et al. / Songklanakarin J. Sci. Technol. 40 (6), 1361-1367, 2018

Table 6. CPU times in finding the inverse of 𝑎 modulo 𝑝𝑛 by the four
methods.

Method Newton Secant Base 2 Zeckendorf

𝑎 (mod 𝑝32) 0.005446 0.008523 0.018183 0.017999

𝑎 (mod 𝑝128) 0.005586 3.393821 0.018325 0.017747

𝑎 (mod 𝑝21) 0.010100 0.000300 0.025102 0.013143

𝑎 (mod 𝑝55) 0.009226 0.006529 0.023589 0.013082

𝑎 (mod 𝑝233) >1000 0.006682 0.023929 0.013357

𝑎 (mod 𝑝40) 313.999486 1.805201 0.021543 0.017441

𝑎 (mod 𝑝111) 10.129003 >1000 0.023383 0.017748

𝑎 (mod 𝑝115) 0.134732 >1000 0.023891 0.017690

From Table 6, Newton’s method is the fastest in

finding inverses when 𝑛 is a power of 2 and not too large, due

to lesser number of operations than that in the other methods.

In this example, we can see that when 𝑛 = 32 or 128,

Newton’s method gives the smallest calculation time. If we

consider the secant method, it has the best time when 𝑛 is a

Fibonacci number and not too large. We can see that this

method gives the shortest time to find the inverses when 𝑛 =
21, 55 and 233. The binary and Zeckendorf representation

methods can calculate the inverses for any 𝑛 and the CPU

time increased a bit as 𝑛 becomes larger. These last two

methods are the best way to calculate the inverses of 𝑎

modulo 𝑝𝑛, especially when 𝑛 is not in a power of 2 or a

Fibonacci number, or when 𝑛 is large.

The figures below confirm the discussion above.

Figure 1(a) shows the graphs of the CPU times for the four

methods versus 𝑛 when 𝑛 = 2,3, … ,30. The CPU time in the

graph of Newton’s method drops when 𝑛 = 2, 4, 8, 16, 24 and

it jumps up due to the power-reduction process. For example,

the method uses comparatively little CPU time when 𝑛 = 16,

but it takes a much longer time when 𝑛 = 17 since it first

calculates the inverse of 𝑎 modulo 𝑝24 and then reduces the

power down to 𝑛 = 17. Similarly, the CPU time in the graph

for the secant method drops when 𝑛 = 2, 3, 5, 8, 13, 21 and it

jumps up in a similar manner. If we consider the graphs of

CPU times for the binary and Zeckendorf representation

methods, they are quite stable and do not increase much; these

two methods become faster than the first two methods as 𝑛

increases. Figure 1(b) illustrates the behavior of CPU times of

these methods when 𝑛 = 2, 3, … , 100. We can see from the

graphs that the times taken do not grow rapidly as 𝑛 gets

larger. These are time-efficient and very stable methods to

calculate the inverse of 𝑎 modulo 𝑝𝑛 for any number 𝑛.

We end the section with an example of calculating

the inverse of an integer 𝑎 modulo 𝑁 where 𝑁 =

𝑝1
𝑛1𝑝2

𝑛2 … 𝑝𝑚
𝑛𝑚.

Example 7: Let 𝑎 = 2 and 𝑁 = 33075. The prime

factorization of 𝑁 is 𝑁 = 33 ⋅ 52 ⋅ 72. We would like to find

an integer 𝑥 such that

2𝑥 ≡ 1 (mod 33 ⋅ 52 ⋅ 72).

We break it down into finding

2𝑥 ≡ 1 (mod 33),
2𝑥 ≡ 1 (mod 52),
2𝑥 ≡ 1 (mod 72).

By using our algorithms, we can find the inverses in each case

as

(a)

(b)

Figure 1. (a) The CPU times of the four methods versus 𝑛 when 𝑛 =
2,3, … ,30. (b) The CPU times with binary and Zeckendorf

representations versus 𝑛 when 𝑛 = 2,3, … ,100.

 𝑥 ≡ 14 (mod 33),

𝑥 ≡ 13 (mod 52),
𝑥 ≡ 25 (mod 72).

Then we combine them by using the Chinese remainder

theorem.

Let 𝑎1 = 14, 𝑎2 = 13, 𝑎3 = 25, 𝑚1 = 33, 𝑚2 =
52, 𝑚3 = 72. For the Chinese remainder theorem (Rosen,

2005) we define

𝑀1 =
𝑀

𝑚1
=

33 ⋅ 52 ⋅ 72

33 = 52 ⋅ 72 = 1225

𝑀2 =
𝑀

𝑚2
=

33 ⋅ 52 ⋅ 72

52 = 33 ⋅ 72 = 1323

𝑀3 =
𝑀

𝑚3
=

33 ⋅ 52 ⋅ 72

72 = 33 ⋅ 52 = 675.

To determine the inverse of 𝑀1, denoted by 𝑀1

′ , we

solve 1225𝑀1
′ ≡ 1 (mod 33), which is equivalent to 10𝑀1

′ ≡
1 (mod 33). So 𝑀1

′ ≡ 19 (mod 33). Next, we find the inverse

of 𝑀2, denoted by 𝑀2
′ , by solving 1323𝑀2

′ ≡ 1 (mod 52),

which is equivalent to 23𝑀2
′ ≡ 1 (mod 52). So 𝑀2

′ ≡
12 (mod 52). The inverse of 𝑀3, denoted by 𝑀3

′ , is

calculated by solving 675𝑀3
′ ≡ 1 (mod 72), or equivalently,

38𝑀3
′ ≡ 1 (mod 72). Then 𝑀3

′ ≡ 40 (mod 72).

Therefore, according to the Chinese remainder

theorem, the inverse of 2 modulo 33075 is

𝑥 ≡ 𝑎1𝑀1𝑀1
′ + 𝑎2𝑀2𝑀2

′ + 𝑎3𝑀3𝑀3
′ (mod 𝑀)

 B. Prempreesuk et al. / Songklanakarin J. Sci. Technol. 40 (6), 1361-1367, 2018 1367

 ≡ 14(1225)(19) + 13(1323)(12)

+ 25(675)(40) (mod 33 ⋅ 52 ⋅ 72)

 ≡ 1207238 (mod 33 ⋅ 52 ⋅ 72)

 ≡ 16538 (mod 33 ⋅ 52 ⋅ 72).

4. Conclusions and Discussion

This work introduces new methods to calculate

inverses modulo 𝑁 for any positive integer 𝑁. We express 𝑁

in its prime factorization as 𝑁 = 𝑝1
𝑛1𝑝2

𝑛2 … 𝑝𝑚
𝑛𝑚, where

𝑝1, 𝑝2, … , 𝑝𝑚 are distinct prime numbers and 𝑛1, 𝑛2, … , 𝑛𝑚 are

positive integers. Then, we calculate the inverse by breaking it

down to find the inverses of 𝑎 mod 𝑝1
𝑛1 , 𝑎 mod 𝑝2

𝑛2 , …, and

𝑎 mod 𝑝𝑚
𝑛𝑚 and combine them using the Chinese remainder

theorem. The four methods proposed to calculate the inverse

of 𝑎 mod 𝑝𝑛 are based on Newton's and secant methods.

We also construct an algorithm for each method to

help calculating the inverses of 𝑎 modulo 𝑝𝑛 in MATLAB

and present an example of each method. In addition, we

compare the CPU times of each method in Example 6.

Newton’s method with power-reduction calculation is good

for the case when 𝑛 = 2𝑖 for = 1, 2, 3, … . The secant method

with power-reduction calculation is used to find the inverse of

𝑎 modulo 𝑝𝛼+𝛽 when the inverses of 𝑎 mod 𝑝𝛼 and

𝑎 mod 𝑝𝛽 are already obtained. In fact, it is good for the case

when 𝑛 is a Fibonacci number. However, these two methods

may take time when 𝑛 is not in such a form because of the

power-reduction process. The method that expresses 𝑛 as a

binary representation followed by Newton’s and secant

methods is suitable for any number 𝑛 because every number

can be represented in base 2. The method does not involve

power-reduction calculation. As a result, it is time efficient

and very stable for calculating the inverse for any number 𝑛,

especially when 𝑛 is large or is not in a power of 2 or a

Fibonacci number. Similarly, the method that expresses 𝑛 in

Zeckendorf representation followed by the secant method is

suitable for any number 𝑛 because every number has a

Zeckendorf representation. This method is also as good as that

using the binary representation.

Acknowledgements

We would like to thank Dr. Pinyo Taeprasartsit for

his helpful suggestions in programming throughout this work.

References

Atkinson, K. E. (1988). An introduction to numerical analysis

(2nd ed.). Hoboken, NJ: John Wiley & Sons.

Burden, R. L., & Faires, J. D. (1997). Numerical analysis.

Pacific Grove, CA: Brooks/Cole.

Dumas, J. G. (2014). On Newton-Raphson iteration for

multiplicative inverses modulo

 prime powers. IEEE Transations on Computers,

63(8), 2016-2109. doi:10.1109/TC.2013.94

Griffiths, M. (2015). The Zeckendorf representation of a

Beatty-Related Finonacci

 sum. Fibonacci Quart, 53(3), 230-236. MSC2010:

11B39, 11B83.

Knapp, M. P., & Xenophontos, C. (2010). Numerical analysis

meets number theory: Using rootfinding methods to

calculate inverses mod 𝑝𝑛. Applicable Analysis

Discrete Mathematics, 4(1), 23-31. doi:10.2298/

AADM100201012K

Mathew, J. H. (1992). Numerical methods for mathematics,

science, and engineering.

 Upper Saddle River, NJ: Prentice-Hall.

Rosen, K. H. (2005). Elementary number theory and its

application. Boston, MA: Addison-Wesley.

