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Abstract 
 
The objective of this research is to propose an approximation average run length (ARL) using the Markov chain 

approach (MCA) of a generally weighted moving average chart (GWMA) when observations are based on an underlying 

binomial distribution. The numerical results obtained from the MCA were compared with the results obtained from a Monte 

Carlo (MC) simulation method and the efficiency of the ARL was measured by CPU time. The performances of the GWMA and 

exponentially weighted moving average (EWMA) charts were compared in terms of monitoring the change in the process mean 

as defined by an out-of-control average run length (ARL1). The numerical results showed that the results of the ARL obtained 

from MCA were in good agreement with the results obtained from MC; however, the MCA took less CPU time than the MC 

simulation method. Furthermore, the performance of the GWMA chart was superior to the EWMA chart when the magnitudes of 

change were small (δ≤0.05), otherwise the EWMA performed better than the GWMA chart. 

 

Keywords: closed-form formulae, time-varying chart, time consuming, binomial distribution and stopping times

 

 

1. Introduction 
 

The role of a control chart is to monitor a process, to 

identify any unusual causes and to make improvements for a 

change in a process. A variety of statistical methods have been 

developed in many processes that include health care, 

industry, business, engineering, and other applications. An 

important assumption in the design of control charts is that the 

measurable quality characteristic is normally distributed. 

However, in many situations we may have reasons to believe 

that an underlying distribution always deviates from a normal 

distribution. In practical applications, there are many situa-

tions in which the observations come from non-normal 

distributions such as exponential, Student-t or gamma 

distributions (Amhemed, 2010; Borror, 1999; Stoumbos & 

Reysnolds, 2000). The observations from these non-normal

 

distributions need to be monitored by an appropriate control 

chart. The underlying statistical principles for a control chart 

of nonconforming proportions are based on a binomial 

distribution. Attribute control charts are an important tool in 

statistical process control to monitor count data or attribute 

data. When the quality characteristic cannot be measured on a 

continuous scale, an attribute control chart must be used; for 

example, p, np, c, and u charts. Examples of quality 

characteristics as attributes are the number of failures in a 

production run, the proportion of defective items, and the 

number of nonconformities in a production process. The p and 

np charts are widely used, primarily to monitor the fraction of 

non-conforming products.  

Since the introduction of the cumulative sum 

(CUSUM) chart by Page (1954) and the exponentially 

weighted moving average (EWMA) chart by Roberts (1959), 

both charts have been widely employed to monitor a process 

mean due to their excellent performance in detecting small to 

moderate mean shifts and they have also been applied to 

discrete processes for attribute data (Montgomery, 2012). The 

EWMA is also relatively robust in the face of non-normal 
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distributed quality characteristics. Borror, Montgomery, and 

Runger (1999) presented the EWMA chart to monitor Poisson 

observations and evaluate an average run length (ARL) using 

the Markov chain approach (MCA). The results showed that 

the performance of the EWMA chart was superior to the 

Shewhart c chart.  

A double EWMA (DEWMA) chart was developed 

by Shamma and Shamma (1992). Later, Zhang, Govindaraju, 

Lai, and Bebbington (2003) studied the DEWMA chart when 

observations were from a Poisson distribution and found that 

this chart was more sensitive to small changes in the process 

mean than the EWMA chart. Recently, Sheu and Lin (2003) 

proposed and analyzed the generally weighted moving 

average control chart (GWMA), which was a generalization of 

the EWMA-  control chart for monitoring process changes. 

The authors evaluated the ARL of the EWMA and GWMA 

control charts using simulation. The GWMA control chart is 

more sensitive than the EWMA control chart especially for 

detecting a small shift. Sheu and Yang (2006) studied a 

GWMA chart when observations were Poisson distributions 

and found that the GWMA chart performed better than c and 

EWMA charts for large process changes.  

One of the common characteristics of control charts 

for measurement and comparison of the performance is ARL. 

The expected numbers of observations are taken from a 

process until the control chart signals. Ideally, an acceptable 

in-control ARL (ARL0) should be large enough. Otherwise, it 

should be small when the process is out-of-control, which is 

traditionally called an ARL1. 

Many methods for evaluating the ARL for control 

charts have been studied. Monte Carlo (MC) simulation is a 

simple approach that is often used to test accuracy with other 

methods. Roberts (1959) presented the ARL for EWMA 

charts using simulations for processes following a normal 

distribution and derived nomograms that could be used to find 

the ARL for a variety of parameter values. The MCA was first 

proposed by Brook and Evans (1972) to study the run length 

properties under the assumption of independent and 

identically distributed (i.i.d.) observations for a CUSUM 

chart. More references on the evaluation of characteristics by 

MCA are Champ and Woodall (1987), and Champ and 

Rigdon (1991). Crowder (1987) used numerical quadrature 

methods to solve exact integral equations for the ARL for the 

normal distribution. ARL for an EWMA control chart for an 

exponential distribution using differential equations was 

studied by Gan (1998). Recently, Phengsalae, Areepong, and 

Sukparungsee (2015) and Areepong and Sukparungsee (2016) 

derived the closed-form expression of ARL when observa-

tions were underlying Poisson and ZIB processes, respec-

tively.   

The aim of this paper is to propose the MCA to 

evaluate the ARL of a GWMA for a binomial distribution. 

Moreover, the performances of GWMA and EWMA charts 

were compared. 

 

2. Control Charts and their Properties 
 

Assume that the process observations  

are identical and independently distributed random variables 

with a binomial distribution, where  is the number of 

nonconforming items in sample i of n samples of size m. The 

fraction of nonconforming items is defined as the ratio of the 

number of nonconforming items in the population to the total 

number of items in that population. The binomial mass 

function can be expressed as 

 

 

 

 

where  is the probability of x successes out of n trials, n 

is the number of trials, and p is the probability of success in a 

given trial. In general, the mean of a binomial distribution 

with parameters n and p is 

  

   
 

The variance of the binomial distribution can be calculated by  
 

 
 

It is assumed that  while the process is in-

control and  when the process goes out-of-control. 

It is assumed that there is a change-point time  at which 

the parameter changes from  to . Note, 

 means that a process always remains in an in-control 

state.  

Let  be the expectation that an in-control 

parameter  has been changed to an out-of-control 

parameter  for a distribution function  at 

the change-time point  where  In the literature on 

quality controls, the quantity  is called the ARL of the 

control chart for a given process where τ
 
is the stopping time. 

A typical condition imposed on an ARL0 is that: 
 

                         (1) 
 

 

where T is given (usually large). For a given distribution 

function and chart, this condition then determines the choices 

for the control limits. 

A typical definition of the ARL1 is that 
 

                                                       ,                                          (2) 

 

for the change point occurs at the beginning .  

 

2.1 Exponentially weighted moving average control  

      chart: EWMA 
 

The EWMA control chart was first introduced by 

Roberts (1959) to detect small shifts in the mean of a process. 

It is now widely implemented in process control. The EWMA 

statistics are as follows: 

 

           (3) 

 

where  Zt is the EWMA statistic at time tth and is 

the initial statistic value. 
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  is the binomial observations at the tth
 time  

  is a smoothing parameter  

The mean and variance of EWMA statistics are  and  

respectively. Since  we have that  as
  

Therefore, asymptotic variance is                        

. When constant upper and lower limits are preferred for detecting change-points, the standard 

 

deviation used in the limits is usually the asymptotic value. The upper and lower control limits of EWMA chart are 

 

                                                                        (4) 

 

and                                                                                                                                          (5) 

The corresponding stopping time for the EWMA procedure is given by 

 

 

where H is the width of a control limit. Let  as we consider the EWMA chart for monitoring the case of an 

increasing mean while the fraction of non-conforming products cannot be less than 0. 

 

2.2 Generally weighted moving average control chart: GWMA 

  

 The GWMA chart was first presented by Sheu and Lin (2003). This chart is a generalized extension model of the 

EWMA chart by adding an adjustment smoothing constant (w). If the weighted historical observation constant equals  

and  then the GWMA chart coincides with the EWMA chart. 

The GWMA statistic is expressed as follows 

 

                      (6) 

Using a geometric series, equation (6) can be rewritten as 
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The mean and variance of the GWMA statistic are  and  respectively. The upper and lower 

control limits of GWMA chart are  

                                                                                                   (8) 

 

                                                                                                    (9) 

where  L  is the width of a control limit and let  

The corresponding stopping time for the GWMA procedure is given by 

 

 

3. Approximation of ARL using the MCA 

  

The MCA is one of the most effective methods to study the characteristics of a control chart. This approach has been 

discussed by many authors (e.g. Brook and Evans, 1972; Lucas and Saccucci, 1990). Lucas and Saccucci (1990) introduced the 

MCA to approximate an ARL t state in an in-control process assuming the observation 
 

 is an in-control state 

and  is an out-of-control state. The transition probability (Pij) is the probability of moving from state  to state  in 

one step and is given by 

                                                                (10) 

The transition probability matrix (P) and element of matrix (Pij) can be rewritten as  

 

   or    or                                   (11) 

 

where R is the  transition probability matrix among the in-control states,   is the  identity matrix, 1N is the 

 column vector of ones, 0 is the  row vector of zeros and 1 is the scalar of one.  

The k stage transition probability matrix Pk is useful for evaluating ARL because it contains the probability that the 

chain goes from one state to another state in k steps. This matrix is 
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 The vector  is the vector of transition probabilities from state  to the state  in  steps. 

Hence  

 
  

 

                        =  

where  is the initial probability vector with 1 at position and 0 otherwise. Then,  

  

            =                                                                (12) 

Using Equation (12), the ARL can be rewritten as 

    

       

                                                          (13) 

where  is a vector with initial probability vector  I is the identity matrix, 1 is a unit vector. 

 An approximation of the ARL using the MCA to detect the mean changes of a process is in the interval of the lower 

control limit and upper control limit. The region of the in-control state is divided into  subintervals. 

 The jth subinterval of the upper control limit (Uj), jth

 
subinterval of the lower control limit (Lj) and the ith subinterval of 

the midpoint (mi) are given by 

     

   

and           

Consequently, the transition probability equation (Pij) can be rewritten as 

                                             (14) 

and we can substitute the GWMA statistic (Yt), Lj, Uj, and mi into Equation (14). This transition probability equation is 
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              (15) 

4. Numerical Results 
  

In this section, the numerical results of the ARL approximation of the GWMA chart using the MCA and MC 

approaches are presented and the performance is compared in terms of monitoring the change in the process mean of the 

binomial GWMA and EWMA charts. Tables 1–4 shows the accuracy of the numerical results of the ARL for GWMA chart 

obtained from the MCA and MC when the observations are from a binomial distribution. We assume that the ARL0 values are 

370 and 500, the in-control process mean is  the weighted factors are  

and the magnitudes of the change in the process mean . The results show that the numerical 

results obtained by the MCA are close to the results obtained from the MC. In addition, we compared the results of ARL0 and 

ARL1 obtained from the MCA for the GWMA and EWMA charts and the results obtained from the MC verified the accuracy of 

the closed-form formulae. The results in Tables 1–4 show that the ARL1 values obtained from the MCA method for the GWMA 

chart are less than the values obtained from the EWMA chart for small changes. For larger changes, the EWMA chart gives a 

smaller value of the ARL1 than the GWMA chart. Note that calculations with the MCA clearly take much less computational 

time than the MC where the CPU was the Core i7-4700MQ processor 4th Generation. 

Table 1. ARLs for the GWMA and EWMA charts given = 0.01,  =0.05, q = 0.95 and ARL0 =370. 

  

GWMA EWMA 

w =0.1 

UCL=4.27 

w =0.3 

UCL=1.884 

w =0.5 

UCL=1.267 

w = 0.7 

UCL=.9845 

w = 0.9 

UCL=.8214 

w =1 

UCL=.7630 

        

0.00 

 
 

MCA 

 
MC 

370.958 

(40.479*) 
367.55 

0.281** 

(524.241*) 

370.891 

(41.762) 
371.646 

0.778 

(528.406) 

370.513 

(41.34) 
369.723 

0.3033 

(527.581) 

370.189 

(41.465) 
370.561 

1.058 

(528.282) 

369.528 

(41.808) 
369.037 

1.122 

(519.624) 

370.281 

(41.574) 
368.072 

1.149 

(516.832) 

0.01 

 

 

MCA 

 

MC 

359.989 

(40.888) 

356.594 

0.268 

(527.19) 

345.495 

(43.555) 

344.928 

0.701 

(503.216) 

341.278 

(41.497) 

340.493 

0.8722 

(498.345) 

340.024 

(42.385) 

339.746 

0.9629 

(494.133) 

339.249 

(42.448) 

339.157 

1.028 

(492.76) 

339.921 

(41.871) 

336.574 

1.052 

(486.317) 

0.05 
 

 

MCA 
 

MC 

322.663 
(39.936) 

320.584 

0.222 
(475.969) 

269.654 
(41.777) 

270.29 

0.4932 
(407.49) 

254.238 
(41.98) 

253.649 

0.6078 
(369.551) 

249.289 
(42.776) 

249.06 

0.682 
(362.921) 

247.228 
(42.682) 

247.503 

0.737 
(357.664) 

247.254 
(42.183) 

246.28 

0.755 
(356.572) 
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Table 1. Continued. 

  

GWMA EWMA 

w =0.1 

UCL=4.27 

w =0.3 

UCL=1.884 

w =0.5 

UCL=1.267 

w = 0.7 

UCL=.9845 

w = 0.9 

UCL=.8214 

w =1 

UCL=.7630 

        

0.10 
 

 

MCA 
 

MC 

286.718 
(36.983) 

285.334 

0.1819 
(420.969) 

210.628 
(42.526) 

211.167 

0.3428 
(311.503) 

187.706 
(42.401) 

187.569 

0.4136 
(275.638) 

179.243 
(42.713) 

179.754 

0.468 
(263.251) 

175.259 
(42.526) 

174.875 

0.504 
(254.827) 

174.359 
(41.948) 

173.592 

0.520 
(250.522) 

0.25 

 
 

MCA 

 
MC 

217.5 

(40.28) 
216.975 

0.119 

(318.57) 

127.798 

(42.136) 
127.968 

0.1573 

(188.324) 

100.09 

(42.245) 
100.645 

0.1789 

(152.569) 

87.865 

(42.136) 
87.935 

0.194 

(128.405) 

80.981 

(42.011) 
81.267 

0.211 

(128.576) 

78.598 

(41.98) 
78.653 

0.218 

(114.177) 
0.50 

 

 

MCA 

 

MC 

157.336 

(40.155) 

157.379 

0.0759 

(233.517) 

78.888 

(41.965) 

78.866 

0.0756 

(116.22) 

55.241 

(43.056) 

55.149 

0.076 

(80.263) 

44.065 

(42.776) 

41.159 

0.078 

(64.537) 

37.335 

(42.136) 

37.328 

0.082 

(54.913) 

34.828 

(42.027) 

35.116 

0.055 

(51.355) 

 
 

* CPU Times (second)  
** standard deviation of ARL 
 

Table 2. ARLs for the GWMA and  EWMA charts given = 0.01,  =0.05, q = 0.95 and ARL0 =500. 

 

  

GWMA EWMA 

w =0.1 

UCL=4.617 

w =0.3 

UCL=1.9505 

w =0.5 

UCL=1.304 

w = 0.7 

UCL=1.0121 

w = 0.9 

UCL=.8435 

w =1 

UCL=.7835 

        

0.00 

 

 

MCA 

 

MC 

500.585 

(43.93) 

484.517 

0.142 

(6898.91) 

500.279 

(44.351) 

504.054 

0.366 

(7170.6) 

500.171 

(45.583) 

499.248 

0.428 

(7774.9) 

500.921 

(47.455) 

498.917 

0.46 

(7091.18) 

500.9 

(49.733) 

495.803 

0.48 

(7513.16) 

501.14 

(46.457) 

495.833 

0.489 

(7036.03) 

0.01 
 

 

MCA 
 

MC 

480.257 
(40.186) 

465.889 

0.417 
(706.794) 

459.139 
(41.574) 

463.691 

1.035 
(683.44) 

455.531 

(41.886) 

456.77 

1.222 
(725.389) 

455.993 
(41.668) 

454.012 

1.313 
(663.738) 

456.528 
(41.871) 

450 

1.368 
(724.796) 

455.636 
(40.998) 

453.538 

1.41 
(663.987) 

0.05 

 
 

MCA 

 
MC 

415.05 

(39.64) 
406.194 

0.324 

(594.878) 

340.997 

(42.042) 
343.415 

0.692 

(503.181) 

325.96 

(42.526) 
325.535 

0.821 

(516.192) 

323.458 

(41.839) 
321.929 

0.899 

(473.369) 

323.77 

(45.116) 
319.343 

0.959 

(518.251) 

323.525 

(41.918) 
322.213 

0.992 

(470.546) 
0.10 

 

 

MCA 

 

MC 

357.578 

(39.749) 

352.117 

0.251 

(515.037) 

254.817 

(42.183) 

256.268 

0.459 

(374.621) 

231.192 

(60.918) 

231.752 

0.53 

(362.765) 

224.589 

(42.183) 

225.548 

0.603 

(332.016) 

222.776 

(43.851) 

222.104 

0.645 

(357.195) 

221.873 

(71.339) 

222.927 

0.676 

(324.622) 

0.25 
 

 

MCA 
 

MC 

258.342 
(40.295) 

256.435 

0.147 
(376.134) 

144.493 
(42.151) 

144.758 

0.188 
(212.052) 

114.738 
(70.107) 

114.807 

0.212 
(170.322) 

102.658 
(42.026) 

103.231 

0.234 
(160.509) 

96.502 
(42.121) 

96.536 

0.254 
(165.174) 

94.158 

(99.185) 

94.70 

0.265 
(138.482) 

0.50 

 
 

MCA 

 
MC 

181.017 

(40.357) 
180.63 

0.088 

(265.326) 

85.924 

(42.26) 
86.088 

0.84 

(126.423) 

60.516 

(42.167) 
60.683 

0.085 

(89.825) 

48.925 

(41.824) 
49.184 

0.089 

(72.307) 

42.18 

(41.949) 
42.304 

0.004 

(68.468) 

39.582 

(45.912) 
39.655 

0.005 

(57.986) 
 



     

     

     

0p



     

     

     

     

     

     
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Table 3. ARLs for the GWMA and  EWMA charts given = 0.05,  =0.1, q = 0.90 and ARL0=370. 

  

GWMA EWMA 

w =0.1 

UCL=23.95 

w =0.3 

UCL=9.155 

w =0.5 

UCL=5.925 

w = 0.7 

UCL=4.499 

w = 0.9 

UCL=3.6901 

w =1 

UCL=3.403 

        

0.00    

 
 

MCA 

 
MC 

370.313 

(39.655) 
368.302 

0.383 

(532.524) 

370.465 

(44.414) 
369.206 

0.888 

(524.928) 

369.999 

(42.557) 
363.448 

0.999 

(519.28) 

370.459 

(43.056) 
359.886 

1.055 

(516.754) 

370.165 

(42.182) 
354.556 

1.082 

(504.211) 

371.702 

(42.973) 
354.379 

1.104 

(520.685) 
0.01   

 

 

MCA 

 

MC 

349.616 

(35.272) 

340.333 

0.326 

(498.881) 

314.73 

(40.217) 

315.988 

0.727 

(461.7) 

313.657 

(43.01) 

309.232 

0.837 

(452.481) 

314.821 

(43.103) 

305.441 

0.883 

(453.588) 

315.94 

(43.01) 

305.357 

0.933 

(449.844) 

317.594 

(42.619) 

304.479 

0.951 

(459.828) 

0.05    
 

 

MCA 
 

MC 

269.066 
(35.334) 

268.151 

0.196 
(392.061) 

191.312 
(40.264) 

192.433 

0.364 
(282.222) 

179.899 
(41.917) 

178.299 

0.430 
(259.882) 

178.349 

(42.932) 

175.097 

0.477 
(257.62) 

178.968 
(43.337) 

176.561 

0.519 
(261.177) 

179.917 
(42.744) 

179.74 

0.533 
(262.285) 

0.10    

 
 

MCA 

 
MC 

217.767 

(34.96) 
217.404 

0.125 

(318.398) 

126.145 

(40.592) 
126.485 

0.188 

(185.532) 

108.29 

(42.635) 
108.249 

0.430 

(157.67) 

102.681 

(42.9) 
101.948 

0.253 

(150.011) 

100.479 

(42.588) 
99.908 

0.279 

(146.719) 

99.973 

(43.15) 
99.052 

0.293 

(149.418) 
0.25    

 

 

MCA 

 

MC 

146.342 

(35.053) 

146.332 

0.058 

(215.594) 

65.041 

(39.624) 

65.084 

0.058 

(95.16) 

46.233 

(42.729) 

46.36 

0.063 

(67.936) 

37.895 

(43.072) 

37.934 

0.0682 

(55.973) 

32.909 

(42.963) 

33.173 

0.045 

(49.187) 

30.967 

(42.791) 

31.022 

0.07833 

(46.8) 

0.50    
 

 

MCA 
 

MC 

98.902 
(35.303) 

98.885 

0.0306 
(144.987) 

38.385 
(39.936) 

38.448 

0.024 
(56.285) 

24.203 
(42.526) 

24.234 

0.023 
(35.506) 

17.565 
(42.729) 

17.604 

0.0223 
(26.442) 

13.426 
(42.978) 

33.447 

0.022 
(20.124) 

11.805 

(43.244) 

11.893 

0.021 
(18.112) 

 

 

Table 4. ARLs for the GWMA and  EWMA charts given = 0.05,  =0.1, q = 0.90 and ARL0=500. 

  

GWMA EWMA 

w =0.1 

UCL=24.625 

w =0.3 

UCL=9.298 

w =0.5 

UCL=6.016 

w = 0.7 

UCL=4.568 

w = 0.9 

UCL=3.746 

w =1 

UCL=3.4553 

        

0.00    

 
 

MCA 

 
MC 

500.338 

(35.677) 
487.472 

0.659 

(686.607) 

499.877 

(40.155) 
493.502 

1.266 

(693.846) 

500.458 

(42.23) 
493.635 

1.41 

(694.127) 

499.678 

(42.464) 
479.749 

1.436 

(686.17) 

499.813 

(42.884) 
473.286 

1.461 

(675.172) 

499.343 

(42.885) 
473.175 

1.476 

(663.223) 
0.01   

 

 

MCA 

 

MC 

446.531 

(37.222) 

435.22 

0.533 

(633.24) 

415.818 

(40.42) 

409.326 

1.01 

(592.71) 

416.54 

(42.339) 

408.279 

1.145 

(593.677) 

418.788 

(43.103) 

405.963 

1.203 

(596.563) 

421.732 

(42.931) 

402.301 

1.229 

(590.089) 

422.503 

(42.822) 

402.922 

1.253 

(581.322) 

0.05    
 

 

MCA 
 

MC 

320.63 
(35.1) 

317.326 

0.278 

(460.655) 

232.435 
(39.577) 

231.708 

0.471 

(336.249) 

224.01 

(42.432) 

222.184 

0.563 

(322.532) 

225.495 
(43.165) 

220.841 

0.619 

(323.92) 

229.25 
(43.29) 

222.181 

0.664 

(328.585) 

230.709 
(42.713)  

223.219 

0.685 

(324.154) 

 

0p



     

     

     

     

     

     

0p



     

     

     



1376 S. Sukparungsee / Songklanakarin J. Sci. Technol. 40 (6), 1368-1377, 2018 

 

Table 4. Continued. 

  

GWMA EWMA 

=0.1 

UCL=24.625 

=0.3 

UCL=9.298 

=0.5 

UCL=6.016 

= 0.7 

UCL=4.568 

= 0.9 

UCL=3.746 

=1 

UCL=3.4553 

        

0.10    

 
 

MCA 

 
MC 

246.01 

(34.944) 
244.916 

0.158 

(355.292) 

143.889 

(39.952) 
143.383 

0.225 

(207.638) 

127.144 

(42.448) 
126.61 

0.278 

(192.567) 

123.311 

(42.573) 
122.558 

0.316 

(181.476) 

123.165 

(42.947) 
121.246 

0.345 

(178.387) 

123.182 

(42.979) 
121.312 

0.36 

(176.562) 
0.25    

 

 

MCA 

 

MC 

157.827 

(35.428) 

157.669 

0.065 

(229.244) 

69.381 

40.139) 

69.285 

0.065 

(100.461) 

50.074 

(42.744) 

50.237 

0.071 

(73.243) 

41.824 

(42.62) 

41.9321 

0.078 

(61.777) 

37.150 

(43.072) 

37.035 

0.085 

(54.616) 

35.283 

(42.557) 

35.464 

0.90 

(51.824) 

0.50    
 

 

MCA 
 

MC 

104.532 
(34.991) 

104.513 

0.033 

(152.787) 

40.001 
(39.937) 

39.971 

0.025 

(58.485) 

25.386 
(41.964) 

25.438 

0.024 

(37.191) 

18.619 
(43.025) 

18.668 

0.024 

(27.815) 

14.460 
(43.493) 

14.474 

0.0242 

(21.544) 

12.814 

(42.619) 

12.871 

0.025 

(18.86) 

 

 

 

5. Discussion 
 

An approximation of the ARL using the MCA for a 

GWMA was presented when observations are from a binomial 

distribution. The results showed that the numerical results 

obtained from the MCA are in good agreement with the 

results obtained from the MC. Additionally, we compared the 

effectiveness of the GWMA and EWMA procedures to detect 

changes in binomial distributions. The comparison of control 

charts is based on ARL0 and ARL1 criteria. We demonstrated 

that the performance of the GWMA chart is superior to the 

EWMA chart for small changes; otherwise, the performance 

of the EWMA chart is superior to the GWMA chart. However, 

the performance of the GWMA chart could be improved by 

modification of a pair of the weighted parameters (w, q). 

 

6.  Conclusions 
 

The GWMA chart has memory-less properties and 

the ability to detect small shifts where δ≤0.05. Without loss of 

generality, this chart can be relaxed due to its feasibility with 

two parameters as a time weighted parameter (q) and 

adjustment smoothing constant (w). Furthermore, the GWMA 

chart performs better as the values of w increase for small 

shifts.  
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