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Abstract

The objective of this research is to propose an approximation average run length (ARL) using the Markov chain
approach (MCA) of a generally weighted moving average chart (GWMA) when observations are based on an underlying
binomial distribution. The numerical results obtained from the MCA were compared with the results obtained from a Monte
Carlo (MC) simulation method and the efficiency of the ARL was measured by CPU time. The performances of the GWMA and
exponentially weighted moving average (EWMA) charts were compared in terms of monitoring the change in the process mean
as defined by an out-of-control average run length (ARL1). The numerical results showed that the results of the ARL obtained
from MCA were in good agreement with the results obtained from MC; however, the MCA took less CPU time than the MC
simulation method. Furthermore, the performance of the GWMA chart was superior to the EWMA chart when the magnitudes of
change were small (6<0.05), otherwise the EWMA performed better than the GWMA chart.

Keywords: closed-form formulae, time-varying chart, time consuming, binomial distribution and stopping times

1. Introduction

The role of a control chart is to monitor a process, to
identify any unusual causes and to make improvements for a
change in a process. A variety of statistical methods have been
developed in many processes that include health care,
industry, business, engineering, and other applications. An
important assumption in the design of control charts is that the
measurable quality characteristic is normally distributed.
However, in many situations we may have reasons to believe
that an underlying distribution always deviates from a normal
distribution. In practical applications, there are many situa-
tions in which the observations come from non-normal
distributions such as exponential, Student-t or gamma
distributions (Amhemed, 2010; Borror, 1999; Stoumbos &
Reysnolds, 2000). The observations from these non-normal

*Corresponding author
Email address: saowanit.s@sci.kmutnb.ac.th

distributions need to be monitored by an appropriate control
chart. The underlying statistical principles for a control chart
of nonconforming proportions are based on a binomial
distribution. Attribute control charts are an important tool in
statistical process control to monitor count data or attribute
data. When the quality characteristic cannot be measured on a
continuous scale, an attribute control chart must be used; for
example, p, np, ¢, and u charts. Examples of quality
characteristics as attributes are the number of failures in a
production run, the proportion of defective items, and the
number of nonconformities in a production process. The p and
np charts are widely used, primarily to monitor the fraction of
non-conforming products.

Since the introduction of the cumulative sum
(CUSUM) chart by Page (1954) and the exponentially
weighted moving average (EWMA) chart by Roberts (1959),
both charts have been widely employed to monitor a process
mean due to their excellent performance in detecting small to
moderate mean shifts and they have also been applied to
discrete processes for attribute data (Montgomery, 2012). The
EWMA is also relatively robust in the face of non-normal
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distributed quality characteristics. Borror, Montgomery, and
Runger (1999) presented the EWMA chart to monitor Poisson
observations and evaluate an average run length (ARL) using
the Markov chain approach (MCA). The results showed that
the performance of the EWMA chart was superior to the
Shewhart ¢ chart.

A double EWMA (DEWMA) chart was developed
by Shamma and Shamma (1992). Later, Zhang, Govindaraju,
Lai, and Bebbington (2003) studied the DEWMA chart when
observations were from a Poisson distribution and found that
this chart was more sensitive to small changes in the process
mean than the EWMA chart. Recently, Sheu and Lin (2003)
proposed and analyzed the generally weighted moving
average control chart (GWMA), which was a generalization of

the EWMA- X control chart for monitoring process changes.
The authors evaluated the ARL of the EWMA and GWMA
control charts using simulation. The GWMA control chart is
more sensitive than the EWMA control chart especially for
detecting a small shift. Sheu and Yang (2006) studied a
GWMA chart when observations were Poisson distributions
and found that the GWMA chart performed better than ¢ and
EWMA charts for large process changes.

One of the common characteristics of control charts
for measurement and comparison of the performance is ARL.
The expected numbers of observations are taken from a
process until the control chart signals. Ideally, an acceptable
in-control ARL (ARLo) should be large enough. Otherwise, it
should be small when the process is out-of-control, which is
traditionally called an ARL..

Many methods for evaluating the ARL for control
charts have been studied. Monte Carlo (MC) simulation is a
simple approach that is often used to test accuracy with other
methods. Roberts (1959) presented the ARL for EWMA
charts using simulations for processes following a normal
distribution and derived nomograms that could be used to find
the ARL for a variety of parameter values. The MCA was first
proposed by Brook and Evans (1972) to study the run length
properties under the assumption of independent and
identically distributed (i.i.d.) observations for a CUSUM
chart. More references on the evaluation of characteristics by
MCA are Champ and Woodall (1987), and Champ and
Rigdon (1991). Crowder (1987) used numerical quadrature
methods to solve exact integral equations for the ARL for the
normal distribution. ARL for an EWMA control chart for an
exponential distribution using differential equations was
studied by Gan (1998). Recently, Phengsalae, Areepong, and
Sukparungsee (2015) and Areepong and Sukparungsee (2016)
derived the closed-form expression of ARL when observa-
tions were underlying Poisson and ZIB processes, respec-
tively.

The aim of this paper is to propose the MCA to
evaluate the ARL of a GWMA for a binomial distribution.
Moreover, the performances of GWMA and EWMA charts
were compared.

2. Control Charts and their Properties

Assume that the process observations Xy, Xyyoiy X

n
are identical and independently distributed random variables
with a binomial distribution, where Xi is the number of

nonconforming items in sample i of n samples of size m. The
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fraction of nonconforming items is defined as the ratio of the
number of nonconforming items in the population to the total
number of items in that population. The binomial mass
function can be expressed as

f(X)=[2j p*l-p)"™ ; x=0,12,...,n,

where £ (x) is the probability of x successes out of n trials, n

is the number of trials, and p is the probability of success in a
given trial. In general, the mean of a binomial distribution
with parameters n and p is

E(X)=np.
The variance of the binomial distribution can be calculated by
Var(X)=np(l- p).

It is assumed that p = p, while the process is in-
control and p = p, > p, when the process goes out-of-control.

It is assumed that there is a change-point time @ <o at which
the parameter changes from p=p, to p= p,. Note,

@ =00 means that a process always remains in an in-control
state.
Let E, () be the expectation that an in-control

parameter (p: pO) has been changed to an out-of-control
parameter (p = pl) for a distribution function F(x;n, p) at
the change-time point (9), where @ < oo, In the literature on

quality controls, the quantity E_(z) is called the ARL of the

control chart for a given process where 1 is the stopping time.
A typical condition imposed on an ARLy is that:

ARL,=E_(7)=T, 1)

where T is given (usually large). For a given distribution
function and chart, this condition then determines the choices
for the control limits.

A typical definition of the ARLu is that

ARL =E/ (|7 21). )
for the change point occurs at the beginning 8=1.

2.1 Exponentially weighted moving average control
chart: EWMA

The EWMA control chart was first introduced by
Roberts (1959) to detect small shifts in the mean of a process.
It is now widely implemented in process control. The EWMA
statistics are as follows:

Z, =X, +(1-A)Z,, t=1 2, ..., ©)

-1

where Z: is the EWMA statistic at time t" and Z,=E (X.) is
the initial statistic value.
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X, is the binomial observations at the t time
A is asmoothing parameter (0< A <1).
The mean and variance of EWMA statistics are E(Z,)=p, and Var(Z)=o; =0 (211)[1—(1—/1)2‘]

respectively. Since 0<(1—A1)<1, we have that (1—A1)* — 0 as t—>oo. Therefore, asymptotic variance is

var(z,) =2 =02( e j . When constant upper and lower limits are preferred for detecting change-points, the standard
! 2-2

deviation used in the limits is usually the asymptotic value. The upper and lower control limits of EWMA chart are

7
ucL pO+Ha/(2_/1) h,
and LCL:pO—Ho-/ A _h. ®)
(2-4)

The corresponding stopping time for the EWMA procedure is given by

r=inf{t>0:Z, >UCL or Z, < LCL}.

where H is the width of a control limit. Let LCL =h_=0 as we consider the EWMA chart for monitoring the case of an

increasing mean while the fraction of non-conforming products cannot be less than 0.
2.2 Generally weighted moving average control chart: GWMA

The GWMA chart was first presented by Sheu and Lin (2003). This chart is a generalized extension model of the

EWMA chart by adding an adjustment smoothing constant (w). If the weighted historical observation constant equals q =1—-A4

and W =1, then the GWMA chart coincides with the EWMA chart.

The GWMA statistic is expressed as follows
t A W W w
Y, =Z(q(l_1) _qI )xt—i+1+qt Yo. ©
i=1

Using a geometric series, equation (6) can be rewritten as

v, - 0-0@-D-@-Da@-D y  wy -
(a-Hd-a)
where Y is GWMA statistic at time tth, where the initial statistic value Y, = p,

Xi_jz1 is  the binomial observations at the t—i+1M;r=23 ..
q isa weighted parameter (0<q<1) and q=1-4

w isan adjustment smoothing constant (0 <w<1).
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The mean and variance of the GWMA statistic are E(Y,) = &, and Var(Y,) = = Qo”, respectively. The upper and lower

control limits of GWMA chart are

UCL=p, +Lo\[Q, =h, ®)
LCL=p, - Lo Q, =h, )

where Q = Zt“(q(i-l)w _qu)Z, L is the width of a control limitand let LCL =h_ =0.
i=1

The corresponding stopping time for the GWMA procedure is given by

r=inf{t >0:Y, >UCL orY, < LCL}.

3. Approximation of ARL using the MCA

The MCA is one of the most effective methods to study the characteristics of a control chart. This approach has been

discussed by many authors (e.g. Brook and Evans, 1972; Lucas and Saccucci, 1990). Lucas and Saccucci (1990) introduced the

MCA to approximate an ARL t state in an in-control process assuming the observation X;; j=1,2,...,N is an in-control state

and j=N +1 is an out-of-control state. The transition probability (Pjj) is the probability of moving from state I to state J in
one step and is given by
P, =(X; =%|X, =x). (10)

The transition probability matrix (P) and element of matrix (Pjj) can be rewritten as

P Pn | Pa b b
Lo or o 4 - oo P:P?\T’ (1 —R)lN}’ (11)
P - PNl PNN | PN,N+1 ' ’ ' ON 1
Y P Pyt
0 o | 1

where R is the N x N transition probability matrix among the in-control states, 1, isthe N x N identity matrix, 1n is the

N x1 column vector of ones, 0 is the 1x N row vector of zeros and 1 is the scalar of one.
The k stage transition probability matrix Pk is useful for evaluating ARL because it contains the probability that the
chain goes from one state to another state in k steps. This matrix is

R (1, -R")1,
P.=| :
0N IN
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The vector (I, —R*)1, is the vector of transition probabilities from state i <N +1 to the state N +1 in K steps.
Hence
P(z; <k|X, = x) =element[(I - R“)1,1(i)
=pY"(1,-R")1,,
where PS’T is the initial probability vector with 1 at i" position and 0 otherwise. Then,
P(z; = k|X0 =%)=P(z, < k|X0 =¥%)-P(r; < k—1|X0 =X)
=p!T (R -R)1,. (12)

Using Equation (12), the ARL can be rewritten as

ARL(N) = > kP{T (R“! -R“)1,,

k=1
— ZP,S)T kallN
k=1
= PS)T (I N R)illN (13)
where POT s a vector with initial probability vector [0, ., 01 0 .. o]w, I is the identity matrix, 1 is a unit vector.

An approximation of the ARL using the MCA to detect the mean changes of a process is in the interval of the lower
control limit and upper control limit. The region of the in-control state is divided into N subintervals.

The j™ subinterval of the upper control limit (U;), j subinterval of the lower control limit (L;) and the i subinterval of
the midpoint (mi) are given by

—h + j(hu 7h|_)
L n !

Lj _ hL + (J _1)(hu _hL)
n

U

]

and  m=h + @D =)
i L on

Consequently, the transition probability equation (Pjj) can be rewritten as
B, =P(L, <Z §U1|ZH:mi) (14)

and we can substitute the GWMA statistic (Y1), Lj, Uj, and mi into Equation (14). This transition probability equation is

P =P(L, < A-m@-9-(q-1)q-q)

(@-D(-0) Xia+ 0™y <Uj Yy =m)
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_ P(Lj _(-a)@-)-(@-Dal-a) ,

v T9"M <U; j
(@-D@-q)

[2nh, +2(j D, —h)-2ng"h, —q" (2 -H(h, ~h)I@-A-0) _,

2n[(1-9)(a-1) - (g-Da-q)] o (15)
_[2nh +2j(h, ~h)-2ng"h, ~q"(2i-1)(h, ~h)I(q-D(-0) '

2n[(1-a)(@-1)-(9-Dal-g)l

4. Numerical Results

In this section, the numerical results of the ARL approximation of the GWMA chart using the MCA and MC
approaches are presented and the performance is compared in terms of monitoring the change in the process mean of the
binomial GWMA and EWMA charts. Tables 1-4 shows the accuracy of the numerical results of the ARL for GWMA chart

obtained from the MCA and MC when the observations are from a binomial distribution. We assume that the ARLo values are

370 and 500, the in-control process mean is p, e {0,01, 0,05}, the weighted factors are 2 ¢ {0.05, 0.1} and q<{0.9, 0.95}

and the magnitudes of the change in the process mean § e {0,01,0,05,0_10,0_25,0_50}. The results show that the numerical

results obtained by the MCA are close to the results obtained from the MC. In addition, we compared the results of ARLo and
ARL: obtained from the MCA for the GWMA and EWMA charts and the results obtained from the MC verified the accuracy of
the closed-form formulae. The results in Tables 1-4 show that the ARL:1 values obtained from the MCA method for the GWMA
chart are less than the values obtained from the EWMA chart for small changes. For larger changes, the EWMA chart gives a
smaller value of the ARL: than the GWMA chart. Note that calculations with the MCA clearly take much less computational

time than the MC where the CPU was the Core i7-4700MQ processor 4th Generation.

Table 1. ARLs for the GWMA and EWMA charts given p0 =0.01, A =0.05, ( =0.95 and ARL, =370.

GWMA EWMA
g w=0.1 W =03 W =05 w=07 w=09 w=1
UCL=4.27 UCL=1.884 UCL=1.267 UCL=.9845 UCL=.8214 UCL=.7630

000  MCA 370.958 370.801 370513 370.189 369.528 370.281
(40.479") (41.762) (41.34) (41.465) (41.808) (41.574)

MC 367.55 371.646 369.723 370.561 369.037 368.072
t0.081%* to.778 +0.3033 t1.058 112 t1.149
(524.241%) (528.406) (527.581) (528.282) (519.624) (516.832)

001  MCA 359.989 345.495 341.278 340.024 339.249 339.921
(40.888) (43.555) (41.497) (42.385) (42.448) (41.871)

MC 356.594 344.928 340.493 339.746 339.157 336.574

to.268 to.701 tos72 t0.9629 t1.028 t1052
(527.19) (503.216) (498.345) (494.133) (492.76) (486.317)

005 MCA 322.663 269.654 254.238 249.289 247.228 247.254
(39.936) (41.777) (41.98) (42.776) (42.682) (42.183)

MC 320.584 270.29 253.649 249.06 247503 246.28

to22 to0.4932 to.6078 to682 to737 to.755

(475.969) (407.49) (369.551) (362.921) (357.664) (356.572)
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Table 1.  Continued.

GWMA EWMA
g w=0.1 W =03 W =05 w=07 W=09 w=1
UCL=4.27 UCL=1.884 UCL=1.267 UCL=.9845 UCL=.8214 UCL=.7630
010  MCA 286.718 210.628 187.706 179.243 175.259 174.359
(36.983) (42.526) (42.401) (42.713) (42.526) (41.948)
MC 285.334 211.167 187.569 179.754 174.875 173.592
to.1819 t0.3428 t0.4136 to0.468 to504 to.520
(420.969) (311.503) (275.638) (263.251) (254.827) (250.522)
025 MCA 2175 127.798 100.09 87.865 80.981 78.598
(40.28) (42.136) (42.245) (42.136) (42.011) (41.98)
MC 216.975 127.968 100.645 87.935 81.267 78.653
to.119 t0.1573 t0.1789 t0.194 to211 to.218
(318.57) (188.324) (152.569) (128.405) (128.576) (114.177)
050  MCA 157.336 78.888 55.241 44.065 37.335 34.828
(40.155) (41.965) (43.056) (42.776) (42.136) (42.027)
MC 157.379 78.866 55.149 41.159 37.328 35.116
*0.0750 to0.0756 to.076 to.078 to.082 *0.055
(233.517) (116.22) (80.263) (64.537) (54.913) (51.355)
* CPU Times (second)
** standard deviation of ARL
Table 2. ARLs for the GWMA and EWMA charts given ), =0.01, A =0.05, ( =0.95 and ARL, =500.
GWMA EWMA
g W =0.1 W =03 W =05 w=07 w=09 w =1
UCL=4.617 UCL=1.9505 UCL=1.304 UCL=1.0121 UCL=.8435 UCL=.7835
000  MCA 500.585 500.279 500.171 500.921 500.9 501.14
(43.93) (44.351) (45.583) (47.455) (49.733) (46.457)
MC 484517 504.054 499.248 498.917 495.803 495.833
to.142 *0.366 to.408 to.46 to.4s8 t0.489
(6898.91) (7170.6) (7774.9) (7091.18) (7513.16) (7036.03)
001  MCA 480.257 459.139 455531 455.993 456528 455.636
(40.186) (41.574) (41.886) (41.668) (41.871) (40.998)
MC 465.889 463.691 456.77 454.012 450 453538
to0.417 t1035 t122 t1313 t1.368 t141
(706.794) (683.44) (725.389) (663.738) (724.796) (663.987)
005 MCA 415.05 340.997 325.96 323.458 323.77 323,525
(39.64) (42.042) (42.526) (41.839) (45.116) (41.918)
MC 406.194 343.415 325.535 321.929 319.343 322213
to0.324 to692 tos21 to0.899 t0.959 to.992
(594.878) (503.181) (516.192) (473.369) (518.251) (470.546)
010  MCA 357.578 254.817 231.192 224,589 222.776 221.873
(39.749) (42.183) (60.918) (42.183) (43.851) (71.339)
MC 352.117 256.268 231.752 225548 222.104 222.927
t0.251 *0.459 tos53 *0.603 t0.645 t0.676
(515.037) (374.621) (362.765) (332.016) (357.195) (324.622)
025  MCA 258.342 144.493 114.738 102.658 96.502 94.158
(40.295) (42.151) (70.107) (42.026) (42.121) (99.185)
MC 256.435 144.758 114.807 103.231 96.536 94.70
to.147 to.188 to212 t0.234 to0.254 *0.265
(376.134) (212.052) (170.322) (160.509) (165.174) (138.482)
050  MCA 181.017 85.924 60.516 48.925 42.18 39.582
(40.357) (42.26) (42.167) (41.824) (41.949) (45.912)
MC 180.63 86.088 60.683 49.184 42.304 39.655
to0.088 tos4 to0.085 to0.089 *0.004 *o0.005
(265.326) (126.423) (89.825) (72.307) (68.468) (57.986)
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Table3. ARLs for the GWMA and EWMA charts given [J, =0.05, A=01, ( =0.90 and ARL,=370.
GWMA EWMA
4 w=0.1 w=0.3 W =05 w=07 w=09 w=1
UCL=23.95 UCL=9.155 UCL=5.925 UCL=4.499 UCL=3.6901 UCL=3.403
0.00 MCA 370.313 370.465 369.999 370.459 370.165 371.702
(39.655) (44.414) (42.557) (43.056) (42.182) (42.973)
MC 368.302 369.206 363.448 359.886 354.556 354.379
*0.383 *0.888 *0.999 t1.055 t1082 t1104
(532.524) (524.928) (519.28) (516.754) (504.211) (520.685)
001 MCA 349.616 314.73 313.657 314.821 315.94 317.594
(35.272) (40.217) (43.01) (43.103) (43.01) (42.619)
MC 340.333 315.988 309.232 305.441 305.357 304.479
t0.326 to727 to.837 to0.883 t0933 to951
(498.881) (461.7) (452.481) (453.588) (449.844) (459.828)
0.05 MCA 269.066 191.312 179.899 178.349 178.968 179.917
(35.334) (40.264) (41.917) (42.932) (43.337) (42.744)
MC 268.151 192.433 178.299 175.007 176.561 179.74
t0.19 to.364 t0.430 toa477 tos519 to0533
(392.061) (282.222) (259.882) (257.62) (261.177) (262.285)
010 MCA 217.767 126.145 108.29 102.681 100.479 99.973
(34.96) (40.592) (42.635) (42.9) (42.588) (43.15)
MC 217.404 126.485 108.249 101.948 99.908 99.052
*o.125 to.188 F0.430 *0.253 *o0.279 +0.203
(318.398) (185.532) (157.67) (150.011) (146.719) (149.418)
025 MCA 146.342 65.041 46.233 37.895 32.909 30.967
(35.053) (39.624) (42.729) (43.072) (42.963) (42.791)
MC 146.332 65.084 46.36 37.934 33.173 31.022
*o0.058 *0.058 *0.063 *o0.0682 to0.045 t0.07833
(215.594) (95.16) (67.936) (55.973) (49.187) (46.8)
050 MCA 98.902 38.385 24.203 17.565 13.426 11.805
(35.303) (39.936) (42.526) (42.729) (42.978) (43.244)
MC 98.885 38.448 24.234 17.604 33.447 11.893
*0.0306 to0.024 to.023 to0.0223 to.022 to.021
(144.987) (56.285) (35.506) (26.442) (20.124) (18.112)
Table 4. ARLs for the GWMA and EWMA charts given [, = 0.05, A =0.1,  =0.90 and ARL,=500.
GWMA EWMA
o
w=0.1 w=0.3 W =05 w=07 w=09 w =1
UCL=24.625 UCL=9.298 UCL=6.016 UCL=4.568 UCL=3.746 UCL=3.4553
000 MCA 500.338 499.877 500.458 499.678 499.813 499.343
(35.677) (40.155) (42.23) (42.464) (42.884) (42.885)
MC 487472 493,502 493,635 479.749 473.286 473.175
*0.659 t1.266 ti1a1 t1.436 t1461 T 1476
(686.607) (693.846) (694.127) (686.17) (675.172) (663.223)
001 MCA 446531 415.818 41654 418.788 421.732 422503
(37.222) (40.42) (42.339) (43.103) (42.931) (42.822)
MC 43522 409.326 408.279 405.963 402.301 402.922
*0.533 tio01 t1145 t1203 t1229 t1253
(633.24) (592.71) (593.677) (596.563) (590.089) (581.322)
005 MCA 320.63 232.435 224.01 205.495 229.25 230.709
(35.1) (39.577) (42.432) (43.165) (43.29) (42.713)
MC 317.326 231.708 222.184 220.841 222.181 223.219
to0.278 to471 t0.563 to619 to.664 to.685
(460.655) (336.249) (322.532) (323.92) (328.585) (324.154)
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Table 4.  Continued.
GWMA EWMA
4 w w w w w w
=0.1 =0.3 =0.5 =07 =0.9 =1
UCL=24.625 UCL=9.298 UCL=6.016 UCL=4.568 UCL=3.746 UCL=3.4553

010 MCA 246.01 143.889 127.144 123311 123.165 123.182
(34.944) (39.952) (42.448) (42.573) (42.947) (42.979)

MC 244.916 143.383 126.61 122,558 121.246 121312

*0.158 to0.225 to.278 t0.316 t0.345 to0.36
(355.292) (207.638) (192.567) (181.476) (178.387) (176.562)

025 MCA 157.827 69.381 50.074 41.824 37.150 35.283
(35.428) 40.139) (42.744) (42.62) (43.072) (42.557)

MC 157.669 69.285 50.237 41.9321 37.035 35.464

*0.065 t0.065 toor1 to.078 to0.085 to.90

(229.244) (100.461) (73.243) (61.777) (54.616) (51.824)

050 MCA 104.532 40.001 25.386 18.619 14.460 12.814
(34.991) (39.937) (41.964) (43.025) (43.493) (42.619)

MC 104.513 39.971 25.438 18.668 14.474 12.871
+0.033 +0.025 t0.024 +0.024 *0.0242 *0.025

(152.787) (58.485) (37.191) (27.815) (21.544) (18.86)

5. Discussion References

An approximation of the ARL using the MCA for a
GWMA was presented when observations are from a binomial
distribution. The results showed that the numerical results
obtained from the MCA are in good agreement with the
results obtained from the MC. Additionally, we compared the
effectiveness of the GWMA and EWMA procedures to detect
changes in binomial distributions. The comparison of control
charts is based on ARLo and ARL: criteria. We demonstrated
that the performance of the GWMA chart is superior to the
EWMA chart for small changes; otherwise, the performance
of the EWMA chart is superior to the GWMA chart. However,
the performance of the GWMA chart could be improved by
modification of a pair of the weighted parameters (w, ).

6. Conclusions

The GWMA chart has memory-less properties and
the ability to detect small shifts where §<0.05. Without loss of
generality, this chart can be relaxed due to its feasibility with
two parameters as a time weighted parameter (q) and
adjustment smoothing constant (w). Furthermore, the GWMA
chart performs better as the values of w increase for small
shifts.
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