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APPENDIX A

Constraint Matrices Formulation

The constraints matrices are the crucial parameters to define the region of the state in a poly-
hedral partition, to perform the PWA stability analysis and the controller synthesis. This section will
show the summary how to construct the constraint matrices Gi, E;, F;,S;. Tt is instructive to first

formulate H, F;, G;, and E;, respectively.

Polyhedral Hyperplane

From the definition of the hyperplane 9Hy (2.9) and the hyperplane matrix H (2.10), it is obvious to
obtain H;, from the linear equation that separates any regions and all of them are collected in i

Each hyperplane induced two closed half-spaces

oM} = {z|Hkx + hi > 0} (1)
8?—[,; — {:l? l Hix + he < 0} 2)

with the convention hy, < 0 that implies Iy is always in 0H, forall k € K.

Continuity Matrix
v ’ i .
e XS OHy, 3)
0, otherwise
In order to make the continuity matrices full column rank, we can augment them according to
= (B fi
- 4
L 0
Cell Identifier
~ | (=1) x kthrow of H, X; COH,
B Iow el G = { (+1) x kth row of H, X; C OH{
Cell Bounding

The cell boundings E; can be obtained by
e If i € I, delete all rows of G; whose the last entry is non-zero.
e Ifi € I1, and X; is unbound, augment G; with the row [O1xn 1]

e Otherwise, F; = G;.



The Constraint Matrices for PWA Bicycle model
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APPENDIX B

Ellipsoid Cell Boundings

In mathematics, the ellipsoid can be written in different ways, e.g. the quadratic set, the shape
matrix with uncertainty, etc. We will not go further to those topics. The minimum volume ellipsoid

that cover each polyhedral cell in this thesis is suitable to define in this form
Emve = {z € R™ | ||Sz + 5]l2 < 1}

Our interested parameter of polyhedral cell is its m vertices v;. The minimum volume ellipsoid is

obtained by solving the following convex optimization problem

minimize log det S~!
I Sv; + s
vl ST + T 1
=i~ 0

subject to .,m (5)

We call S an ellipsoid cell bounding. It is useful for deriving the control law as shown in Theorem 2.2.

The Ellipsoid Cell Bounding for PWA Bicycle model

The computed parameter, polyhedral vertices, and the resulted ellipsoid cell bounding in all 9 regions

are listed below.
Ta= 0°1745 Yo = 0.1745 zq = 100

xp = 1.0472 yp = 1.0472 zp = 100
x4 and z;, denote the bounding point of parameter ¢ (10°,60°).
1y and y, denote the bounding point of parameter « (10°, 60°).

2p denotes the bounding point of parameter ¢, & (no bounding, so we assign a sufficiently high value).
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