CHAPTER V

PIECEWISE AFFINE MODEL FOR BICYCLE ROBOT

In order to synthesis the controller by PWQ stabilization technique, one needs to model the nonlinear
system dynamics to be the PWA model with the error as small as possible. In this chapter, we describe
how to obtain the PWA model by a simple trigonometric terms approximation method, least-square-
error without boundary constraints, and least-square-error without boundary constraints.

We starts with defining the regions that will be approximated by PWA model. The bicycle
roll angle is partitioned into 3 regions, the flywheel precession angle does so. Thus, the operating
regions were split into 9 regions or polyhedral cells, see Fig. 5.1. X5 is considered to be in Ij or
the steady state point region where the state trajectory rest at the point (0,0, 0,0) when the system is
made stable. The other cells X; are in the set /3. Note that these 9 regions is not the best choice to
reduce model error. More regions lead to more accurate model but more calculation is needed.

The nonlinear differential equations (4.4) and (4.5) can be approximated by continuous PWA

functions into the state-space form (2.7). We define the parameters for our bicycle robot model as
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Next, the PWA model approximation methods will be shown from a simple method (fast cal-
culation but roughly accuracy) to the more complex (longer time for calculation but more accuracy)

method. All constant terms are taken from Table 4.1.

5.1 Trigonometric Terms Approximation

We approximate the nonlinear terms sin and cos by least square error method in each interval, while

the other nonlinear terms are approximated by linearization about the operationg point (0, 0, 0, 0).

e Approximate the nonlinear terms sin and cos by least square error method and use ‘¢’ to repre-

sent o and « only for this occasion as follow

— When § < —0.1745, we approximate sin# ~ m;(6 + 0.1745) and cosf =~ mqy(0 +
0.1745),

~0.1745
H — argmin/ (m1(0 + 0.1745) — 0.1745 — sin §)2d6
~1.0472

~0.1745
= argmin/ (ma(6 + 0.1745) + 1 — cos §)2de
~1.0472
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Figure 5.1: Polyhedral partition of the PWA bicycle state space model.
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*The calculation is done only in the range —1.0472 < § < —0.1745 or —60° < # <

—10°.

- When —0.1745 < 6 < 0.1745, we linearize sin ¢ and cos 6 around 6 = 0,

sinf ~ 6

cosf ~ 1

— When 6 > 0.1745, we approximate sin § ~ m3(§ —0.1745) and cos § =~ m4(6—0.1745),

1.0472

m3 = argmin/ (m3(6 — 0.1745) 4 0.1745 — sin 6)%d#
0

1745

1.0472

m4 = argmin /
0.1745

(ma(f — 0.1745) 4+ 1 — cos 0)d#

*The calculation is done only in the range —1.0472 < # < —0.1745 or 10° < 6 < 60°.

Finally,

0.85580 — 0.02516

sin 0 ~ %)

0.85580 + 0.02516

0.495760 + 1.0865
cos f ~ 1

—0.49576 + 1.0865

0 < —-0.1745
—0.1745 < 6 <0.1745
6 >0.1745

0 < —0.1745
—0.1745 < 0 < 0.1745
60 > 0.1745

5.1

(5.2)

e Substitute the approximated functions from (5.1) and (5.2) shown below into (4.4) and (4.5).

sin o = ay; o+ bu
siny ~ ag;p + by;

cos a =2 agix + by;
COs p =2 ayip + ba;
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Figure 5.2: Affine approximation of functions sin and cos.

where 7 = 1,...,9 indicated the region of approximation.

e Approximate the higher order terms and other nonlinear terms of ¢ and ¢ based on linearization

about the operating point (o, &, p, ¢) = (0,0,0,0) into the state-space form (2.7) where

A9 = (&P + kD - kP - kD) KD A9 = —(xQ+ KR)/ks

AY = (kP + KPP A = (k3 +KD)/ks

AL ENE A = (&8 + K3+ K)/ks
A9 = (kY +KD)/KD AD = 0

o) = [(BE - kY= KD o = —(K{E+KE)/ks

BY = 1/ks
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Table 5.1: Approximated trigonometric functions in each polyhedral cell.

al
sina = 0.8558a + 0.02516 | sina =~ 0.8558a + 0.02516 | sin« ~ 0.8558a + 0.02516
cosa =~ —0.4957a + 1.0865 | cosa =~ —0.4957a + 1.0865 | cosa =~ —0.4957a + 1.0865
sin p = 0.8558p — 0.02516 | sinp = ¢ sin p =~ 0.8558p + 0.02516
cos p ~ 0.4957¢ + 1.0865 cosp =~ 1 cos p =~ —0.4957p + 1.0865
10° sina ~ « sina = « sina = «

cosa = 1 cosa ~ 1 cosa =1
sin p =~ 0.8558¢ — 0.02516 | sinp =~ p sin ¢ =~ 0.8558¢ + 0.02516
cos p ~ 0.4957¢p + 1.0865 cosp ~ 1 cos ~ —0.4957p + 1.0865

—10° MSina ~ 0.8558a — 0.02516 | sina ~ 0.8558a — 0.02516 | sina ~ 0.8558a — 0.02516
cosa =~ 0.4957a + 1.0865 cosa =~ 0.4957a + 1.0865 cosa = 0.4957a + 1.0865
sin g =~ 0.8558¢p — 0.02516 | sinp = ¢ sin ¢ ~ 0.8558¢ + 0.02516
cos ¢ = 0.4957p + 1.0865 cosp =~ 1 cos p =~ —0.4957p + 1.0865

~10° 10° e

K = (ko + kabd, + keb?,) K = pbai(kio(b3 — b3;) — ks)

K3(i) = —1p?(azibai + aqibsi) (k11 — kab?; — keb3,) Kii) = —1p%b3;bai(—2kaa1sbi; — 2kgag:b;)

Kéi) = Qlg;.b Kéi) = Qg (azbs)

K?') = PQUg..(aziby) Ks(;i) = Qg (bsibas)

Kgi) = krgas; e &)) = krgbs;

KY = kiovay K'Y = kioub

Kf? = ksba; Kﬁ) = —k10¥?(2a4:baibribni)

K%) = —kiop?(a1sba; + azibri)b3; K%Q = —kiotp?briba b2,

KG = —kuoyba(bd, - b3) KQ = Qle.a(anb)

KY = Qlc.(biibs) K& = —Qlg.:b

Ké? = Wplg..(ariba) Kéig) = —1p2ba;bai (k11 — kab?; — keb3;)

e Substitute the bicycle parameters in the Table 4.1 and get the resulting system matrices

5.2 Least-Square Error Approximation without Boundary Constraints

This approximation method gives a discontinuous model at the cell boundaries since the error is forced
to be minimized while nothing concerning with the boundary constraints are taken into account. To
approximate the nonlinear terms of & and ¢ into a state-space form, we formulate the least square

problem from the proposed approximated linear model :

INx1 = GNxmbmx1 + N x1 (5.3)
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28
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b = (42 A9 A Y o)
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o = [40 4 AZ A o]
i is the exact value of ) or ¢ obtained from the bicycle dynamic equation (4.4) and (4.5)
u is the approximation error

z) is the k** vector containing N realizations of a uniform random variable in the range

S =2

[mkmm, Ikmam] in each Xi
is the number of realization (higher is better)
is the number the state plus a single affine term

Then we can present the problem as

0@ = argmin || j — GWgW Hg (5.4)
(1)

Solving (5.4) for each cell, we will get all 9 sets of system matrices of the bicycle PWA model.

5.3 Least-Square Error Approximation with Boundary Constraints

This model is continuous across the boundary. We carefully begin an approximation with the cell

X5 €

Iy in order to made this cell the most accurate. The benefit is that there is no constraint for

model continuity at the first approximation in X5. When the first cell has already been placed, it

introduces one more boundary constraint at its attached polyhedral cell. This is in case II and in the

same manner for more constraints in case III.

Case I: No constraint
Formulate the least square problem (5.4) with the same methodology for the operating-point

region X5. The closed form solution is

40 — (G(S)TG'(5))~1G(5)T3'J' (5.5)

Case II: One constraint
One constraint of the problem is appeared when the approximation is done in the nearby region
of X5 i.e. Xo, X4, Xg, Xs. Consider an example of Xg, the continuity the model at boundary
x1 = -y connecting X5 to Xs. The solution for ) can be obtained by solving the following
problem

minimize H i — GO Hz

(5.6)
subjectto G0 = G,00)
where G, = [y z2 3 x4 1]

For the rest of X5 connected regions X», X4, X¢, Xg, the approximation is applied in the sim-

ilar fashion.
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e Case 1lI: Two constraints
Two constraints are taken into account when an approximation is done in the region X1, X3, X7, Xo.
Consider the continuity of the model in X3 at the boundary x; = 7 that connects the region X
and X3 and the boundary x5 = f that connects to the region Xg and X3, the problem can be
written in this form
minimize || § — G®8® |3
subject to G70(3) — GWH(Q) G
G303 = Go®)
where G, = [fy To I3 T4 1]
Gg = [331 B x3 x4 1]

In 5.2 and 5.3, the range [21,,.,, Z1,me.) and [T2,.., T2,n,,] are defined upon the region X;. For the
angular velocities as represented by x3 and x4, there is no partition region given. Hence, we assign
an operating point (0, 0) for them. The approximation of 2, and 25 will be varied in each region but
3 and x4 will be fixed at (0, 0) which its resulting models are like the linearisation model around this
point.

The example of system matrices in each region after substituting constant parameters are shown
in the next pages. They are calculated by the assumption that the bicycle rotating velocity and forward
velocity are very small and no disturbance force (Fy = 0) in the system. Also, the constant terms
1/') = 0.01 rad/s, 0 = 0 m/s, 2 = 3000 rpm = 314.16 rad/s, and other values from Table 4.1 are also

included.



Trigonometric terms approximation model

0 0 1 0 [0 ] [0 ]
0 0 0 i 0 0
A1=1 9991  —0.0006 0 i e P (1) Cha W
|-0.0778 -58 677.723 0 | —0.1705 | 7.2464)
C0 0 1 0 " e i A
0 0 0 1 0 0
A2 = 1108566 0 0 Lk A 0 RS ¥
L0 f 55883 o708 0 | —0.1569 |7.2464)
0 0 1 0 0 } i %0 ]
0 0 0 1 0 0
A3= 19901 00006 O ~5.3011 = | 0732 | BT o
00778 —5.8 677.723 0 |—0.1705 | |7.2464)
T 0 0 1 0 L C 0 ]
0 0 0 1 0 0
A4 = 193079 0 0 —4.886 a=1 o036 P17 | o
| 0 —6.7773 623.7653 0 o |7.2464)
T0 0 1 0 [0 G|
0 0 0 1 0 0
As = 110.8762 0 0 4886 “ 7 o R
L0 _6.2378 623.7654 0 0 17.2464]
T 0 0 1 0 T 0 0
0 0 0 1 0 0
A6 = 19 3079 0 0 —4.886 %6\ ¥0.2736 Bs=1
0  —6.7773 623.7653 0 (] |7.2464)
C 0 0 1 0 T 0 0 ]
A 0 0 0 1 B 0 a_| 0
7= 19291 0.0006 0 ~5.3011 87 = | _ 08002 71 0
00778 5.8 677.723 0 | 0.1705 |7.2464
C 0 0 1 0 T 0 ] T 0 ]
0 0 0 1 0 0
A8 = 1108566 0 0 _53011] BT | o Bs=1
L0 _5.3383 677.7228 0 10.1569 17.2464)
T0 0 1 0 T 0] T 0 ]
e o= 0 0 0 1 | o | O
9= 1 9291 —0.0006 0 53011 %7 |0.2732 9= | o
| 007780, 5.8 67T 23 0 10.1705 | 7.2464 |
C; =0 &= D; =0

Ih=1{5} I =1{1,2,34,6,78,9}
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Least-square error approximation without boundary constraints model — Discontinuous model

0

0
8.7185
|—1.6106

Ay

0

0
10.8284
| 0.717

Ay

0

0
8.7356
10.5886

0

0
8.7439
| —0.0724

0

0
10.8427
| —0.0354

0

0
8.7377
| —0.0269

Ag

0

0
8.7356
1.4033

A7

0

0
10.7681
| 6.6803

Ag

0

0
8.7063
-2.721

Ag

C;=0
Ip = {5}

0 1 0

0 0 1
0.0357 —0.0015 -3.862
—3.7379 494.975 0.1775
0 1 0

0 0 1
0.0011  0.0053  —-3.87
—5.586 495.2182 —-0.671
0 1 0

0 0 1
-0.019 —-0.0014 —3.8658
—3.0051 495.1564 0.1435
0 1 0
0 0 1
—0.0007 —0.0001 —4.8606
—-4.9344 620.5933 —0.0131]
0 1 0 1
0 0 1
0.0001 0.0001  —4.861
—6.0111 620.6116 —0.0106 |
0 1 0
0 0 1
—0.0044 —-0.0004 —4.8619
—-4.9932 620.6132 0.0017 |
0 1 0
0 0 1
—0.0484 0.002 —-3.8671
—5.4668 494.6352 —0.2225|
0 1 0
0 0 1
0.014 0.0001 —3.8668
—3.2871 494.709 —0.0058 |
0 1 0

0 0 1
0.014 —-0.0018 —3.8661
—6.1022 494.6512 0.0637

I = {1,2,3,4,6,7,8,9}
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ae

ar
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ag —

0

0
—0.7247
| —1.6888
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0
Bs %
|7.2464

0
0
0
|7.2464

By

- =

0
0
0
| 7.2464|




0 0 1
L] 0 0 0
1= 19.3186 0.0104  0.0001
| 0.011  —6.2415 620.6116
F/ 0 1
= 0 0 0
10.8427 0.0104  0.0001
|—0.0354 —6.2415 620.6116
0 0 1
0 0 0
Az =
9.3166 0.0104  0.0001
10.0088 —6.2415 620.6116
0 0 1
0 0 0
At
9.3186 0.0001  0.0001
| 0.011 —6.0111 620.6116
'y 8 0 1
e 0 0 0
10.8427  0.0001  0.0001
|—0.0354 —6.0111 620.6116
[0 0 1
0 0 0
Ay =
9.3166 0.0001  0.0001
0.0088 —6.0111 620.6116
[0 0 1
A = 0 0 0
9.3186 0.013  0.0001
| 0.011 —2.9629 620.6116
[0 0 1
g = 0 0 0
10.8427  0.013  0.0001
|—0.0354 —2.9629 620.6116
[0 0 1
0 0 0
Ag =
9.3166 0.013  0.0001
0.0088 —2.9629 620.6116
C;,=0

I={5} I1=1{1,2,3,4,6,78,9)
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Least-square error approximation with boundary constraints model — Continuous model

0
ey,

By =

Bs =
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5.4 Comparison of Model Error

The rms errors are calculated from the 10,000 uniform random points within the respected region.
The values are collected in the Table 5.4 and Table 5.4. The error in each partitioned region is shown
in three dimensions plot in Figures 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, and 5.10. The model which
has the highest to the lowest error are linearized model, trigonometric terms approximation model,
continuous model, and discontinuous model, respectively. This happens to both the bicycle roll angle
and flywheel precessing angle. The approximation yields a good result for partitioning the roll angle

at +10°. Partitioning for more regions will possibly reduce the error.

Table 5.2: Summary of the root-mean-square error of the approximated PWA model.

Bicycle angle

Model region  Linearized Continuous Discontinuous  trig. terms approx.

X4 0.8168 0.2100 0.1537 0.2116
X2 0.0026 0.0027 0.0036 0.0054
X3 0.8147 0.2100 0.1528 0.2077
X4 0.8037 0.2101 0.1533 0.2123
Xs 0.0015 0.0025 0.0013 0.0013
X6 0.8036 0.2101 0.1534 0.2124
X7 0.8175 0.2100 0.1532 0.2071
Xs 0.0026 0.0027 0.0070 0.0067
X9 0.8169 0.2100 0.1539 0.2123
Average 0.5422 0.1409 0.1036 0.1419
Flywheel angle

Model region  Linearized Continuous Discontinuous  trig. terms approx.

X1 1.4861 1.0376 0.3231 1.1844
X2 0.6506 0.1398 0.2099 0.4688
X3 1.4574 1.0376 0.4514 1.1873
X4 0.1816 0.1880 0.0823 0.1117
X5 0.0310 0.0053 0.0183 0.0183
X6 0.1817 0.1880 0.0794 0.1118
X7 1.4642 1.0376 0.4358 0.6338
Xs 0.6498 0.1398 0.9693 1.2216
X9 1.4905 1.0376 0.6298 0.6384

Average 0.8437 0.5346 0.3555 0.6196




Table 5.3: Summary of the maximum absolute error of the approximated PWA model.

Bicycle angle

Model region  Linearized Continuous Discontinuous  trig. terms approx.

X1 1.9624 0.6175 0.4319 0.6295
X2 0.0114 0.0128 0.0117 0.0195
X3 1.9663 0.6175 0.4512 0.6459
X4 1.9333 0.6033 0.4396 0.6069
Xs 0.0038 0.0099 0.0041 0.0041
X6 1.9332 0.6033 0.4379 0.6052
X7 1.9651 0.6175 0.4476 0.6499
X3 0.0115 0.0128 0.0138 0.0218
X9 1.9612 0.6175 0.4359 0.6255
Maximum 1.9663 0.6175 0.4512 0.6499
Flywheel angle

Model region  Linearized Continuous Discontinuous  trig. terms approx.

- Xh 4.1177 3.4618 1.2155 3.7983
Xa 1.4790 0.4272 0.6162 1.1821
X3 4.0637 3.4618 1.0550 3.7934
X4 0.6119 0.6413 0.3404 0.5110
X5 0.0702 0.0220 0.0346 0.0346
X6 0.6148 0.6413 0.3385 0.5091
X7 4.0478 3.4618 1.9893 1.6790
X3 1.4816 0.4272 2.3126 1.7674
X9 4.1000 3.4618 1.7019 1.6914

Maximum 4.1177 3.4618 2.3126 3.7983
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Figure 5.3: The roll angle error plane of the linearized model.

precession angle error (rad)

precession angle (rad) roll angle (rad)

Figure 5.4: The precession angle error plane of the linearized model.
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Figure 5.5: The roll angle error plane of the trigonometic terms approximation PWA model.
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Figure 5.6: The precession angle error plane of the trigonometic terms approximation PWA model.
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Figure 5.7: The roll angle error plane of the discontinuous PWA model.
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Figure 5.8: The precession angle error plane of the discontinuous PWA model.
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Figure 5.9: The roll angle error plane of the continuous PWA model.
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Figure 5.10: The precession angle error plane of the continuous PWA model.
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