CHAPTER IV

BICYCLE DYNAMIC MODEL

The equation of motion of 3D rigid body can be derived in 3 aspects. Those are the conservation of
force (torque), momentum (angular momentum), and energy. The model of a bicycle with gyroscopic
stabilization is mostly derived by the Lagrangian method (Energy aspect) because it is easy to obtain
the linear and angular velocity while the internal force or any other workless forces can be ignored.
From the literature review, we have inspected many types and complicated levels of the bicycle. We
end up with the nonlinear dynamic model from Spry [2] and extend the model to PWA model.

We next define the bicycle geometry, the assumption and limitation of the model, the notation

of the parameters and lastly the nonlinear model with neglecting relatively small-value terms.

4.1 Bicycle Geometry

Figure 4.1: The Bicycle Geometry.

Parameter Definition

The parameter notations here are also consistent with the measured parameter in Tables 2.1 and
3.1. We present them separately to emphasize each component; the bicycle dimension, the flywheel
(for design calculation), and the bicycle with gyroscopic flywheel model parameters. These are shown
in Table 4.1. The constant mass, moment of inertia, and height of the center of mass are obtained via
CATIA CAD software. These values in Table 4.1 may differ from Tables 2.1 and 3.1 since we consider

the model here in two parts; the body and the flywheel. See more in the bicycle model assumption.



Table 4.1: Parameters for Bicycle Gyroscopic Flywheel Dynamic Model.
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Parameter Symbol Value Unit
Bike roll angle ® - rad
Flywheel precession angle « - rad
Bike rotation rate 1,/) - rad/s
Flywheel spinning rate Q - rad/s
Track radius curvature iF - m
The midpoint of track segment S - m
The distance between s and wheelbase midpoint h - m
The wheelbase midpoint speed o - m/s
Disturbance force Fy - N
Bicycle body mass mp 30 kg
Flywheel mass mea 9 kg
Height of Bicycle center of mass 2G 0.39 m
Height of Flywheel center of mass ‘ZB 0.88 m
Bike Moment of inertia (IBzz, IByy; IBz2) (5.947,8.083,2.295) kg-m

Flywheel Moment of inertia

UGz Tayy Igz2)  (0.138,0.138,0.274)

kg- m

Figure 4.2: The bicycle curvature path.

F

To explain more about the curvature path of the bicycle, see Figure 4.2. In Figure, F' is the

front wheel ground contact point, R is the rear wheel ground contact point, and O is the center point

of rotation. The distance between R and F is called “wheelbase length ” (w). We can find the relation

between $ and ¢ is o = §(rr —h)/r = ¥ (r — h). For straight path running, 7 — oo, h =0and o = .

4.2 Model Assumptions

It is much more complex to treat the bicycle model as a 3D rigid body. The simplified model that

captured the major effects on the bicycle and is well enough to describe the bicycle dynamics is a

better choice. However, we should be careful to define the assumption and its limitation as shown

below.
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e The steering axis has no trail.

e The bicycle is rolling on a flat plane

The tires has no width and no deformation.

The longituditional and lateral slips at the front and rear wheel are neglected.

The bicycle is considered as a point mass at the center of mass height zp

The flywheel is considered as a point mass at the center of mass height zg

The mass moment of inertia of the front and rear wheel are neglected.

4.2.1 Nonlinear Dynamic Model

The model derivation is done by Lagrangian method. We follow the derivation in [2] but we combine
the load and flywheel cage into the bicycle body in one point mass. The kinetic energy of the system
is
1 T i % 1 T LT
T EvaBvB -+ inIBwB + EvaGvG + éwGIGwG 4.1)

and the potential energy of the system is

Va= (mBzB + mgzg)g sin 4.2)
where T _ 1 ¢
P o+ (¢Ysing)zp
wp = |Ysinyp vp = pzp
[ cos 0
posa — 1 cos psin a [0+ (Ysin p)z¢]
wg = Ysinp + & vg = X e
| @sina + 1 cos p cos a + §) f 0 |
From the Lagrangian L(q, q) = T'(¢,q) — V (¢), we can derive the Lagrange’s equations in the
form d (0L oL
— [ ==t 4.3)
dt \ Og Aqx.

where the generalized coordinates are

q1 : ¢ (Bike roll angle)
g2 : o (Flywheel precession angle)

and the generalized forces are

Il

{Ql = Fyzgcosy
QQ Ta



According to (4.3), the equation of motions are obtained

Bicycle rolling equation

(kg + kq cos? o + kg sin? &)
—2k10pa sin a cos o

+4hér cos p(k1o(sin? a — cos® a) — ks)
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as follow:

—1/}2 cos psin (k11 — kg sin® a — kg cos? @) — kwd} cosp + Fyzpcosyp “4.4)

+(QUg,, cosa)a

+1215Uc;zz cos asin ¢

—k'7g Sin(p

Flywheel precessing equation

ksa
+ksihpcos o

5 9 = T 4.5)

+k10(p% cos asin o — 12 cos? p cos avsin o — P cos (sin® @ — cos® a))

+Q (¢ cospsina — pcos a)lg,,

where
k1 = IBza ko = IByy
k3 = IBzz kg = [Gzz
k5 = Iny ke = IGzz
k7 = mpzp + mgza kg = mBzZB = mgzé
kg = k1 + ks kio = ka — ke

ki1 = ks + ko — k3 + ks

4.3 Linearized Dynamic Model

The conventional simple way to deal with the nonlinear system is to linearize the nonlinear system

around its equilibrium point. We will use this linearized model for a comparison with our reduced

nonlinear in the next section. Let the state vector
. I
T = [go a P (x]

Linearize the nonlinear model (4.4) and (4.5) about x = 0, then

(ko + ka)p — krop + Qo0+ Qg = krgp (4.6)
ksi + Qo — p) g, = Ta 4.7)

Rewrite the above two equations in a state space form

%) 0 O 1 0 %
dlal |0 0 0 1 o
dt || lazz 0 0 az| |¢

« 0 a42 A43 0 «Q

0
. 0
O"(/)k7/(]<39 + k4)
Lol ks

(4.8)



where

2oy = K19 =¥
il kg + kq

1 )
a42 = _Z—'(wQIGZZ) a43 =
5

"QIGzz

ko + k4

Q[Gzz
ks
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