CHAPTER II

RELATED THEORIES

In this chapter, an overview of the fundamental theory used in modeling and designing PWA control

systems is given.

2.1 Bicycle Properties

In this section, we describe the important properties of the bicycle that affect the stability of the

bicycle.

2.1.1 Nature of the Bicycle

The bicycle is naturally unstable. When it stays upright, by no holding force, it will roll down left or
right. However, it is not too hard to learn riding a bicycle by human. We turn the steering to the right
when the bicycle seems to roll to the right side. It behaves the same manner for the left hand side.

That is a mean of dynamic control of the bicycle.

2.1.2 The Trail

Fork axis

= 7

- Trail distance

Sideways force on tire

Figure 2.1: The position of the trail distance of the bicycle [48].

At the beginning, the bicycle has no trail or front fork. That means the handle bar axis is
perpendicular to the ground. This type of bicycle has no effect of trail to the rolling angle when we
steer the handlebar. The non-zero trail distance produce a major impact to the dynamics of the bicycle.
D.E.H. Jones [48] studied this effect by constructing the bicycle with different kinds of trail distance.

The interesting case is the positive trail which we are always familiar with. Positive trail provides a



torque about the steering axis that counteracts angular momentum when the bike body leans to the
left or the right. This counteracting torque causes the front wheel to turn in the direction opposite to
the direction of lean, and thus enhances the stability of the bike. This torque does not appear only

when the bicycle is moving but it is also generated when the bicycle is tilting.

2.1.3 Self-stability

Imagine when the bicycle is running forward along a road with non-zero speed and no maneuvering.
We know that the bicycle is an unstable system. However, it was proved that the bicycle that has
the positive front fork trail is itself stable in an interval of speed [15,16,21]. David E.H. Jones [48]
emphasized that the steering geometry dramatically influences the stability. When the bicycle is
tilting, its center of gravity is lower. Then, the front wheel steers to the tilting direction to minimize
its gravitational potential energy. This will not occur if the trail is zero. In addition, Astrom presented
in another perspective. The ground reaction force exerts a torque on the front fork assembly to made
the front fork steer. The analysis through the simple second order linearized model is discussed
in [15].

It is essential to understand the self-stabilization behavior of the bicycle. To control the bicycle
upright and running on a straight path, we do not need any inputs to stabilize the bicycle in a particular
speed range unless we have a curvature path. Here, we show our analysis using the experimental
bicycle parameters that we measure ourselves. The moment of inertias are retrieved via CATIA
CAD-software. The analysis is based on the linear 4th-order equation (The Whipple model) in [21].

The equation of motion is

P ® T
M|.| +vCy + (9Ko + v’K2) =" 2.1)
B B Tp
With our real measured and CAD-program calculated parameters in Table 2.1, we have
M - 8.6551 0.9466 c. — 0 9.3019
~ [0.9466 0.3165 17 |-0.7057 1.4885
(2.2)
Ko — —14.7837 —2.0400 K 0 14.0139
0 7| —2.040 -0.7164 2 7|0 19743

The result is that the self-stable speed range is 3.60 < v < 10.26 m/s. Note that the range is wider
than a bicycle with the rider which has more weight.

We will take this advantage of self-stability to leave the steering bar move freely when we
want the bicycle to run on a straight path at that particular speed range. Also, it is not necessary to
control the roll angle by precessing the gyroscopic flywheel when the bicycle is self-stabilized. The

explanation about how to control the bicycle roll angle will be discuss in the section 4.



2.1.4 Gyroscopic Effect at the Front Wheel

The gyroscopic action at the front wheel affect the stability of the bicycle. In Figure 2.3, we assume
the bicycle is running with forward speed. According to our earth fixed coordinate frame, the spinning
axis is perpendicular to the direction of the bicycle and have a positive wspeed- To say, it points to the
same direction as y-axis. Next, when we steer the handlebar to the left, wgteer vector points vertically
with the z-axis. This will result to the bicycle to roll to the right side. The rolling direction can be
found mathematically by Troll = (Is2Wspeed€2) X Wsteer€3 = Wroll€1 Where I,5 is the moment of

inertia of the steering handlebar with respect to the principal axis e;.
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Figure 2.2: Eigenvalues from the linearized self-stability analysis.
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Figure 2.3: Gyroscopic effect at the front wheel coordinate and notation.



Table 2.1: Parameters of the Experimental Bicycle for Self-stability Analysis.

Parameter Symbol Value Unit

Wheelbase w 1.07 m

Trail c 0.12 m

Front fork angle 20.56 degree

Front wheel

Mass mpg 2.234 kg

Mass center (zF,yF, zF) (1.07,0,0.32) m

Radius TR 0.32 m
Irez Ipsy IFe: 0.099 0 0

Moment of inertia Wen N oy U 0 0197 0 kg- m?
b, 1Po lEoe 0 0 0.099

Rear wheel

Mass mp 2.234 kg

Mass center (TR, YR, ZR) (0,0,0.32) m

Radius TR 0.32 m
ITRzz Mindailne, 0.099 0 0

Moment of inertia IRy, IRy 0 0197 0 kg- m?
e By Insa 0 0 0.099

@ (with battery)

Mass mp 30 kg

Mass center (rB,YyB, 2B) (0.49,0,0.39) m
BBy 1B 1.995 0 —0.053

Moment of inertia Ipy: 1By e 0 2.347 0 kg- m?
IB.x IB.y IB:: —0.053 0 0.487

Front fork & Handlebar

Mass myg 2.148 kg

Mass center (zH,yH,zH) (0.92,0,0.77) m
Ttier T Lo 0.168 0 0.023

Moment of inertia Teiys el 0 0132 0 kg- m?
P tro L 1y S 0.023 0 0.047

Gyroscopic Flywheel

Mass mg 9.0329 kg

Mass center (z¢,v6, 26) (0.49,0,0.88) m
e 1oy log 0.138 0 0

Moment of inertia Ie: log lou 0 0138 0 kg- m?
e lo W 0 0 0.274

Nevertheless, the effect on the bicycle is very small compared to the gravitational torque and



gyroscopic flywheel unless the wheel spinning speed is very high. Our model therefore neglects this
effect.

2.2 Lagrangian Mechanics

Lagrangian mechanics is a re-formulation of classical mechanics that combines conservation of mo-
mentum with conservation of energy [49]. The Lagrangian is an efficient method to derive the equa-

tion of motion through the energy aspect. The Lagrangian function L is defined as

L(q,q) =T(q,9) — V(q)

where T' is the Kinetic energy, V' is the Potential energy, and q is the generalized coordinate. Accord-

ing to the derivation in [50], the result Lagrangian’s equations is then

d (0L oL (1)
= [ S T8 o L 90 8 23
dt (3%) oqx i - k 1By gl &)

where (Q}:€ is the nonconservative generalized forces.

The Kinetic energy of the rigid body can be calculated by

1 1
T = EmvC Ve + §HC ‘W (2.4)
or in the matrix form
1
T = §mvz1vc + §wTICw (2.5)

where v, is the linear velocity of the rigid body, w is the angular velocity about its mass center, H is
the angular momentun about the mass center, and I.. is the moment of inertia of the rigid body.
The Potential energy may be caused by gravitational force, elastic spring force, elastic force

between two charges, etc. It can be represented as
F=-VV(r) (2.6)

In this thesis, the instrumental force for the potential energy is from the gravity near the Earth’s

surface. It is given by

F = —mge,, V =mgz

2.3 Piecewise Affine System

The Piecewise Affine system is a kind of nonlinear system which is linear in each local cell/partition
where each partition has its own dynamics. The fascinating advantage of this type of control is that it
is linear, however in a region, but provides more accuracy than a linearized model and the controller
synthesis based on Piecewise Quadratic Lyapunov function is global. One time solving a batch LMIs

problem, the obtained gain can be used to stabilize the system in overall operating point.
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2.3.1 Model Representation

Consider piecewise affine systems on the form

{0 zamtalony =exmer
Here, x(t) is the continuous state vector, u(t) is an exogenous signal (control or disturbance, depend-
ing on the context), { X; };c; € R™ is a partition of the state space into a number of closed polyhedral
cells and I is the set of cell indices. Assume that the cells have disjoint interior (so that any two
cells can only share a common boundary) and that they form a partition of some compact subspace
X = U;erX; of R™. Let x(t) be a continuous piecewise function on the time interval [0, T']. We say
that z(t) is a trajectory of (2.7), if for every t € [0, T] such that the derivative x(t) is defined, the
equation z(t) = A;z(t) + a; + B;u(t) holds for all ¢ with z(t) € X;. Note that for a given system
there may be initial values such that a corresponding trajectory only exists for small T'.

Focus on properties of the equilibrium = = 0, and let Iy C I be the index set for cells that
contain the origin, let I; = I \ Iy, and assume that a; = 0, ¢; = 0 for ¢« € Iy. For convenient, we use

the notation z = [ = 1 ]T,

- A a;
Ai“[ 0 0]’

z(t) = A;z(t) + Byu(t)

os]]

i:‘l: 0 }vcz“[cz Cl]

and re-write (2.7) as

| y(t) = Gat) + Dyult) 2
Each polyhedral cell of the system (2.8) is partitioned by K hyperplanes
My, = {z| Hxx + hy = 0} Vit OF "k = 1= 0K (2.9)
For convenient, all hyperplanes are represented as a hyperplane matrix
H=[He h (2.10)
The polyhedral cells are represented on the form
X; = {z|Gix + gi = 0} 2.11)

where > denotes elementwise inequality. To made it more compact, we construct matrices
Gi= |G; ]
where G; is called a cell identifier.

2.3.2 Quadratic Stability

The term quadratic stability refers to stability that can be established using a quadratic Lyapunov
function. It is possible to prove stability of piecewise linear systems using a globally quadratic Lya-

punov function V(z) = 27 Pz. In particular, if a, = 0 V2 € I and there exists P > 0 such that

ATP+ PA; <0 Viel (2.12)
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Then every trajectory of (2.7) tends to zero exponentially. The stability of a family of linear system
depends on each cell partition. The equation (2.12) are linear matrix inequalities in P which can be
solved as a convex optimization problem.

To verify that there exists no matrix P satisfying (2.12), it is a dual problem to find a positive
definite matrices R; , 1 € I such that

> ATRi + RiAi > 0 (2.13)
el
If the condition (2.13) is satisfied, then the Lyapunov function P in (2.12) will not be admitted.

2.3.3 Piecewise Quadratic Stability

We consider functions that are continuous and piecewise quadratic. This condition must be satisfied

with all cell X;, so it is sufficient to require that
2T (ATP + PA)z <0, forze X; (2.14)

To obtain a relaxed conditions for quadratic stability, one applies the S-procedure and construct pos-

itive definite matrices S;, ¢« € I such that
ATP 1+ PA; +.8;<0 P45)

Matrices S; in S-procedure can be construct from the system description, in this case are cell bound-
ing matrices E; and E;. With nonnegative entries matrices U;, we have

tTETU;Ex >0 , z€ Xyiely
T BRUBE B 5  mey 1&N (@:16)
The cell boundings are important parameters from the partition information to enforce the positivity
of the quadratic Lyapunov functions for all 2z € X;. The polyhedral cell bounding matrices can be
defined as

E;=[E; e] and Ez>=0, z(t)€ X,
The next step is to make the quadratic Lyapunov functions to be valid in all regions and continuous

across cell boundaries. Let
e FiTTFi, 1€ Iy
P, =FITF, ien

where F; and F; are called the continuity matrices with their properties

2.17)

Fi = [E fz] and F_‘lf(t) = F‘j.’i(t) for I(t) € Xiij

Since the expression for P; is linear in a symmetric matrix 7', it will be possible to state the search
for a piecewise quadratic Lyapunov function as a set of linear matrix inequalities. The constructed

Lyapunov function will in general have the form

V(z) = {

Next, we formulate LMIs for finding an existence of piecewise quadratic Lyapunov function of the

system (2.7).

ITPZ'J:, r€X;, 1€

CETPiIf, re X, 1€l (2%
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Theorem 2.1 (Piecewise Quadratic Stability). [3]
Consider symmetrics T, U; and W; have nonnegative entries, while P; = FiT TF;,i € Iyand P; =
ETTE,i el

0> ATP1 + PA; + E'TUEz
L Lo i€l (2.19)
0< P — Ei Wi E;
0> A_;TR + pi/ii + ETUlE, .
o ~ g— 1€ I (2.20)
0< P, — Ei W, E;

then every trajectory z(t) of (2.7) with u = 0 for t > 0 tends to zero exponentially.

2.3.4 Piecewise Quadratic Stabilization of PWA system

This section will show how to obtain the globally linear state feedback that stabilizes a PWA system.

This can be cast as a convex optimization problem. Let us consider the state feedback
uw=—Lzx
which results in the closed loop system
z(t) = (A; — BiL)z(t) + a; z€X;, 1€ (2.21)

to be asymptotically stable for all region.
For the quadratic stabilization problem, we need to find a gain L that admits a quadratic Lya-

punov function V' (z) = 7 Pz. For each cell X;, we use the ellipsoid cell boundings

I1Siz + sill2 < 1 Vz € X; (2.22)
or
1—(Siz+ si)T(Six +s5)>0 Vr € X; (2.23)
> T & -sTs, —STs; T
M [—SZTS: " ;?;J H >0 Vz € X; (2.24)

and the condition in (2.14) to derive the sufficient condition for PWA system stability via S-procedure.
Then, the closed-loop system is quadratically stable if we can find a positive definite matrix P =

PT > 0 and positive scalars u; > 0 such that

0> (Al = BlL)TP + P(A1 = BzL) 1€ Iy
(A;i — B,L)TP + P(A; — B;,L) Pa; -STs;, -STs; (2.25)

e (2 1 ]

L a;rP 0 e —S?Si 1-— s?si il

The above condition is bilinear in L and P and not efficient to be solved, however the problem

can be transformed and resulted in Theorem 2.2.
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Theorem 2.2 (Quadratic Stabilization). [3]

If there exists a positive definite matrix Q = QT > 0, positive scalars v; > 0 and a matrix Y such

that
0> QAT + A;Q - YTBT - B;Y
v QAT + A,Q - YTBY - B)Y —va;al QST — via;sT (2.26)
(QST — via;sT)T v;(I — s;sT)

where j € Iy and i € I,. Then, the feedback v = —Lx with L = Y Q™! renders the piecewise linear

system exponentially stable.

In this thesis, we will use this criteria to design the PWA state feedback control laws.

S e SO

The National Research Council of Thailand

ove.... 2.3 300 280
Record No E 4 B 2 UB

..........................

............

...............

..............






