ธนาทร ศุกร์มาลา 2552: การศึกษาความร้อนโน้มถ่วงของพอลิพรอพิลีน และ พอลิพรอพิลีน/แคลเซียมคาร์บอเนต ปริญญาวิทยาศาสตรมหาบัณฑิต (ฟิสิกส์) สาขาฟิสิกส์ ภาควิชาฟิสิกส์ อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก: รองศาสตราจารย์สุปรียา ตรีวิจิตรเกษม, Dr.Ing. 97 หน้า

การย่อยสลายด้วยความร้อนแบบไม่ไอโซเทอร์มัลของ พอลิพรอพิลีน (PP) และ พอลิพรอพิลีนผสมแกลเซียมการ์บอเนต (PP/CaCO₃) ซึ่งได้ศึกษาด้วยชุดวิเคราะห์ความร้อน โน้มถ่วง (TGA) ในที่นี้ใช้อัตราส่วน PP:CaCO₃ จำนวณ 5 อัตราส่วนดังนี้ 100:0, 92:8, 90:10, 85:15 และ 80:20 โดยน้ำหนัก เมื่อนำข้อมูลที่ได้จากกราฟ TGA และ กราฟอนุพันธ์ความร้อน โน้มถ่วง (DTG) มาคำนวณหาก่าพารามิเตอร์จลน์ *E*, ln *A* และ *n* ด้วยวิธีฟิตแบบจำลอง คือ แบบจำลอง Modified Freeman and Carroll (FC) ได้ก่า พลังงานก่อกัมมันต์ *E*, ลอการิทึม แฟกเตอร์ก่อนเอกซ์โพเนนเซียล ln *A* และ อันดับการเกิดปฏิกิริยา *n* ของแต่ละการย่อยสลาย ด้วยความร้อนเพียงชุดเดียว โดย PP/CaCO₃ มีก่าพลังงานก่อกัมมันต์เพิ่มขึ้นตามอัตราการเพิ่ม อุณหภูมิ และที่อัตราการเพิ่มอุณหภูมิเดียวกัน พลังงานก่อกัมมันต์มีก่าลดลงตามปริมาณ CaCO₃ ที่ เพิ่มขึ้น

เมื่อกำนวณ ก่าพารามิเตอร์จลน์ ด้วยวิธีแบบจำลองอิสระ ไอโซคอนเวอร์ชัน โดยใช้ แบบจำลอง Kissinger-Akahira-Sunose (KAS) แบบจำลอง Flynn-Wall-Ozawa (FWO) และ แบบจำลอง Friedman (FR) ได้ก่า พลังงานก่อกัมมันต์ปรากฏ E_{α} และลอการิทึมแฟกเตอร์ก่อน เอกซ์โพเนนเชียล ln A_{α} เป็นฟังก์ชันของกอนเวอร์ชัน α เมื่อใช้วิธีเขียนกราฟหลักโดยฟิต แบบจำลอง พบว่า อินทิกรอลกอนเวอร์ชันฟังก์ชัน $g(\alpha) = [-\ln(1-\alpha)]^{1/2}$ เป็นฟังก์ชันที่ สอดกล้องกับผลการทดลองมากที่สุด ก่าพลังงานก่อกัมมันต์ปรากฏ และ ลอการิทึมแฟกเตอร์ก่อน เอกซ์โพเนนเชียล เป็นฟังก์ชันของกอนเวอร์ชัน α ที่กำนวณจากแบบจำลอง KAS มีก่าต่ำกว่า แบบจำลอง FWO และ แบบจำลอง FR เมื่อพิจารณาก่าพลังงานก่อกัมมันต์ปรากฏ และ ลอการิทึมแฟกเตอร์ก่อนเอกซ์โพเนนเชียล ที่เฉลี่ยจาก $\alpha = 0.1 - 0.7$ พบว่า ก่าพลังงานก่อกัมมันต์ ปรากฏเฉลี่ย ที่กำนวณจาก แบบจำลอง ทั้ง 3 มีก่าลดลงตาม ปริมาณแกลเซียมลาร์บอเนตที่เพิ่มขึ้น นั่นก็อ การเติม CaCO, ใน พอลิพรอพิลีน มีผลทำให้ PP/CaCO, มีการย่อยสลายได้ง่ายกว่า PP Thanathon Sukmala 2009: Thermogravimetric Study of Polypropylene and Polypropylene/CaCO₃. Master of Science (Physics), Major Field: Physics, Department of Physics. Thesis Advisor: Associate Professor Supreya Trivijitkasem, Dr.Ing. 97 pages.

The nonisothermal decomposition process of polypropylene / $CaCO_3$ composites were investigated by thermogravimetric analysis (TGA). Five composition were used: 100:0, 92:8, 90:10, 85:15 and 80:20. The kinetic parameters E, $\ln A$ and n were determined from model – fitting method : the Modified Freeman and Carroll (FC) using the TG and DTG data. A single set of the kinetic triplet was obtained. The activation energy of PP/CaCO₃ was increased as the increasing of rate of heating, and at a given rate of heating, the activation energy of PP/CaCO₃ was decreased as the increasing of CaCO₃ content.

The dependence of apparent activation energy E_{α} and logarithm pre-exponent factor $\ln A_{\alpha}$ on the degree of conversion α were determined using isoconversion model-free method. The Kissinger-Akahira-Sunose (KAS), the Flynn-Wall-Ozawa (FWO) and the Friedman (FR) models were applied. The appropriate integral conversion function $g(\alpha) = [-\ln(1-\alpha)]^{1/2}$ of the process was selected by means of the model-fitting master-plot method. The dependence of apparent activation energy E_{α} and logarithm pre-exponent factor $\ln A_{\alpha}$ on the degree of conversion α determined from KAS method were lower than FWO method and FR method. The apparent activation energy E_{α} and logarithm pre-exponent factor $\ln A_{\alpha}$ was average from $\alpha = 0.1 - 0.7$, the results showed that the apparent activation energy E_{α} decreased as the increase of CaCO₃ content. Adding CaCO₃ in polypropylene results in a easier decomposition process.