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Abstract 
 
We propose a new discrete distribution namely the discrete weighted exponential (dWE) distribution. It is discreti-

zation of weighted exponential distribution. Some mathematical properties are presented such as the probability mass function, 

the distribution function, the survival function, the probability generating function, the moment generating function, the 

characteristic function, the hazard function, and the reversed hazard function. For parameter estimation, we calculate the 

estimates based on maximum likelihood method. Furthermore, we apply the dWE distribution in real datasets. In summary, the 

dWE distribution could be an alternative model for count data. 

 

Keywords: discrete analogue, count data, discrete hazard function, discrete reversed hazard function,  

      probability generating function 

 

 

1. Introduction 
 

A probability distribution is a mathematical function 

that plays an important role in describing a random variable. 

The function leads to important characteristics, e.g., proba-

bility-generating function, mean and variance. In general, 

distributions are categorized by type of random variables 

which are discrete and continuous. The discrete distributions 

are applied when researchers would like to describe phe-

nomena or events that are discrete random variables, e.g., a 

number of customers in bank, number of accidents at a 

specified intersection, or number of failures in a production 

process. The discrete distributions such as the binomial, 

Poisson, and geometric distributions are often used. If a 

continuous random variable of interest, the normal, expo-

nential distributions, etc. may be focused. In fact, none of the 

distributions is suitable in all situations, so various researchers 

made much effort to develop new distributions. There are 

many techniques for development, such as mixture, truncated, 

transmuted, and compound with power series. Those tech-

niques are uniquely focused on a continuous distribution or a

 
discrete distribution. Some recently developed distributions 

are truncated Poisson (Plackett, 1953), generalized normal 

(Nadarajah, 2005), beta-negative binomial (Wang, 2011), 

transmuted Kumaraswamy (Khan, King, & Hudson, 2016), 

and exponentiated power Lindley geometric distributions 

(Alizadeh, Bagheri, Alizadeh, & Nadarajah, 2016). 

For the past decade, generalization of count data 

distribution and lifetime distribution are of much interest. 

Noticeable applications of these distributions may help im-

prove analytic results in many fields such as quality control 

(Skinner, Montgomery, & Runger, 2003), engineering (Haase 

& McPherson, 2007), insurance claim (Jean-Philippe, Denuit, 

& Guillen, 2008), traffic (Quddus, 2008), ecology (Lindén & 

Mäntyniemi, 2011), and public health (Zhou et al., 2014). 

Particularly in reliability frameworks, the lifetime distri-

butions such as exponential and Weibull distributions are used 

to describe time to failure of a device. In real situations, the 

lifetime data are focused on point of time or recorded in a 

discrete for convenience. For instance, age of people or 

lifetime of a device are recorded in years without a decimal. In 

this case, aforementioned generalization techniques may be 

not capable of deriving an associated distribution. Therefore, a 

methodology to generate a discrete distribution from a con-

tinuous distribution has recently emerged, called discretization 

method. 
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The most well-known type of discretization method 

is considered based on difference values of survival functions, 

which is used to create probability mass function (pmf). 

Nakagawa and Osaki (1975) studied the discrete failure-time 

distribution, the discrete Weibull distribution, and discussed a 

few reliability properties. Roy (1993) showed that the expo-

nential distribution is related to the geometric distribution by 

using this type of procedure. Moreover, many researchers 

have made much effort to demonstrate discrete procedures. 

Roy (2003) also proposed discrete normal distribution and its 

properties. In addition, Kemp (2004) provided a definition of 

this type including reliability of discrete lifetime distribution. 

Some recent discrete distributions created from corresponding 

continuous distribution are discrete Maxwell (Krishna & 

Pundir, 2007), discrete Burr (Krishna & Pundir, 2009), 

discrete Pareto (Krishna & Pundir, 2009), discrete Lindley 

(Gómez-Déniz & Calderín-Ojeda, 2011), discrete generalized 

gamma (Chakraborty & Chakravarty, 2012), and discrete 

asymmetric Laplace distributions (Sangpoom & Bodhisuwan, 

2016). 

This paper describes a new discretized distribution 

created from a corresponding continuous distribution by dis-

cretization proces relying on Roy’s method. Thus, a new 

discrete distribution will be developed from the weighted 

exponential (WE) distribution (Gupta & Kundu, 2009). The 

WE distribution is created by weighting the exponential 

distribution. It is a generalization of the exponential like 

Weibull, gamma, and generalized exponential distributions, so 

it can be applied in the reliability field. Moreover, the WE 

distribution has been extended further by researchers as the 

wrapped weighted exponential (Roy & Adnan, 2012), gene-

ralized weighted exponential (Kharazmi, Mahdan, & Fathi 

zadeh, 2015) and length biased weighted exponential distri-

butions (Das & Kundu, 2016). 

For the rest of this paper, a definition of a new 

discrete distribution is provided in Section 2. Some mathe-

matical properties and a parameter estimation are shown in 

Section 3 and Section 4, respectively. Finally, the purposed 

distribution is applied to two real datasets. 

 

2. A New Discretized Distribution 
 

In this section, some important components for 

constructing a new distribution are shown such as the concept 

of discretization method and some features of the WE 

distribution. Then, a discrete weighted exponential (dWE) 

distribution is constructed.  

 

2.1 The weighted exponential distribution 
 

The WE distribution, which is a lifetime distribution 

extended from Azzalini's idea (Azzalini, 1985), was deve-

loped by Gupta and Kundu (2009). It is a generalized version 

of the exponential distribution with one additional shape 

parameter. 

 

Definition 1:  

Let X  be distributed according to the WE random 

variable with shape parameter   and scale parameter  . Its 

probability density function (pdf) and distribution function 

(Gupta & Kundu, 2009) are respectively 

 
1

( ) 1 ,x xf x e e 




  
  
 

 

 

and 

  11 1
( ) 1 1 ,

1

xxx e e
 

 

     
       

    
 

 

where  0,x   and parameters ,  0   . 

We can see from the pdf, when 1   and   , 

the WE distribution converges to the exponential distribution 

with parameter, 1  . It also converges to the gamma 

distribution with shape parameter 2 and scale parameter  , 

when 0  . Furthermore, it coincides with the generalized 

exponential distribution when shape  and scale parameters are 

2 and  , repectively when 1   (Gupta & Kundu, 2009). 

Some pdf plots of the WE distribution are shown in Figure 1. 

 

 
 

Figure 1. Some pdf plots of the WE distribution with different 

values of parameters   with 1   (left) and of   with 

1   (right). 

 

2.2 A discretization method 
 

There are many types of discretization method 

(Chakraborty, 2015) which obtain the pmf, e.g., the method 

based on the pdf, survival function, and hazard function. The 

pmf that obtain from the method relying on the pdf retains the 

structure of the pdf, while the method based on survival 

function maintains the form of continuous survival function, 

and the method based upon hazard function preserves the 

continuous function. Each type depends on the suitability of 

the characteristic properties of a continuous distribution. In 

this paper, difference values between survival values, ( )XS x  

and ( 1)XS x  ,  are considered. Relying upon this discreti-

zation, a full range of random variable is determined by 

survival functions. If X  is a continuous random variable that 

has a survival function,  XS x , and Y X     is the largest 

integer less than or equal to X . The pmf of Y  is 
 

 ( ) p y P Y y   

          P X y     

          1P y x y     

             1 ,X XS y S y                     (1) 
 

where 0,1,2,y  . 
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2.3 The discrete weighted exponential distribution 
 

In order to obtain a discrete version of the WE distribution, a discretization method based on survival functions of the 

WE distribution is employed. 

 

Theorem 1: 

If Y  be a random variable of dWE distribution with parameters   and   denoted by  ~ dWE ,Y   , then its pmf is 
 

 
      

  

1 1

1 1

1 e 1 e 1 e
,

e

y

y
p y

  

 





 

 

   
  

where  N;N 0,1,2,y   and parameters ,  0   . 

 

Proof: 

When X  follows Definition 1, its survival function is 

    11 1
1 1 e 1 e .

1

xxS x
 

 

     
        
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                 (2) 

From the Equation (1), if Y X     is the largest integer less than or equal to X  then Equation (2) is plugged into 

Equation (1). We will obtain 
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Based on the following verifications we can say that  p y  is said to be a pmf, 

1.   0p y  for all y , 

2.  For summation of pmf on all supporting value, 
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Consequently, some probability functions will be obtained. 
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Theorem 2: 

If Y is a dWE random variable, denoted by  ~ dWE ,Y   , then its survival function is 
 

       1 1 11 1
1 1 e 1 e ,

1

y y
S y

  

 

        
        

    
 

where  N;N 0,1,2,y   and parameters ,  0   . 

 

Proof: 

Suppose X  is a continuous random variable supporting  0,x  . Similarly,  S y  is defined as the survival function 

of a discrete random variable Y  when Y X    . Thus 
 

   1 1S x P X x     

  1P X x          

              1P Y y    

 1 P Y y    

 .S y                      (3) 

If X  is a continuous random variable according to the Definition 1 and Y  is a discrete random variable following the 

Theorem 1, then the Theorem 2 is proved. 
 

 
 

Figure 2. Some pmf plots of the dWE distribution with various values of   and   

 

Figure 2 shows the pmf plots of the dWE 

distribution. Explicitly, the shape of distribution changes 

when the parameter   changes. If   or   increases, the 

distribution limit to an exponential curve. On the other hand, it 

has unimodal curve. Some related distributions are discussed, 

e.g., the dWE distribution coincides with the discrete 

generalized exponential (dGE) distribution with the shape 

parameter 2 and the scale parameter 1 /   when 1  . It also 

can be reduced to the discrete exponential (dE) distribution 

with scale parameter 1 /   or the geometric (Geo) distribution 

with the parameter e   when    and the discrete 

gamma (dG) distribution with the shape parameter 2 and the 

scale parameter 1 /   when 0  . 

3. Some Mathematical Properties 
 

Some mathematical properties are explored in this 

section, both basic properties and reliability properties, such 

as a probability generating function (pgf), a moment gene-

rating function (mgf), a characteristic function, a hazard 

function, and a reversed hazard function. 
 

3.1 Probability generating function 
 

The pgf plays an important role in statistical theory, 

because this function leads to its associated functions such as 

the mgf, mean, variance etc. It is defined as 
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     
0

,y y

y

G s f y s E s




                                      (4) 

when s  is a real number, and  f y  is the pmf of discrete random variable y . 

 

Theorem 3: 

Suppose a random variable Y  has the dWE distribution, then its pgf is given by 
 

 
       

   
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 
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      


 
 

where  0,y  , s  is a real number and parameters ,  0   . 

 

Proof: 

The pmf of the dWE distribution from the Theorem 1 is replaced in Equation (4), then the pgf is 
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The expectation and variance of Y  can be simply derived from the pgf  following Theorem 3. First, the first derivative 

of the pgf is took with respect to s ,  YG s . 
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By setting 1s   we obtain 
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Similarly, the second derivative of  G s ,   YG s , is 
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When Equation (5) and Equation (6) are set 1s  , the first and second derivatives of  G s  are  1YG  and  1YG  

respectively. Then, its variance can be obtained from the first and second derivatives of  G s  is 
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Consequently, the variance of Y  is 
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Moreover if the pgf in Theorem 3 is set ets   the mgf of Y  will be obtain 
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When s  in the pgf is replace by eit , the characteristic function of the dWE distribution will be obtain as 
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where 1i   . 

 

3.2 Hazard and reversed hazard functions 
 

A hazard function, also called failure rate, is conditional probability that a unit fails in the next small time interval 

x   , given the unit has survived at x . When the unit that has survived at x    fails in the next small time interval  , the 

conditional probability is called a reversed hazard function. In general, the hazard and reversed hazard functions (Gupta, 2015) 

are defined as 
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respectively, where y  is non-negative integer. 
 

Consequently, the hazard and reversed hazard functions of the dWE random variable are 
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respectively. Some plots of these function are shown in Figure 3. 
 

 
 

Figure 3. The plots of the hazard (left) and reversed hazard (right) functions of the dWE distribution, various the parameter values   and   

 

All of the hazard functions are increasing functions. Noticeably, slope is increasing when parameter    is increasing. 

Therefore, the plots of the reversed hazard functions are decreasing curve, and slope is directly dependant on parameter  . 

 

3.3 Parameter estimation 
 

The parameter estimation in this study will be discussed based on the maximum likelihood estimation (MLE). An 

associated log-likelihood function of the dWE distribution is provided by 
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By taking partial derivative the Equation (8) with respected to parameters   and  , we get 
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Then the Equation (9) and Equation (10) are set equal to zero in order to obtain the maximum likelihood estimators. 

Nevertheless, we cannot obtain explicit expressions of the estimators, then numerical method is employed. 

 

3.4 Applications 
 

In this section, the dWE distribution is applied to two real datasets and compared to the discrete Lindley (dL), negative 

binomial (NB), Geo, dG, and dGE distributions. The first dataset is the number of deaths due to horse kicks in the Prussian army 

between 1875 and 1894 (Klugman, Panjer, & Willmot, 2012). The other is the prices (in £ ) of the 31 different children's wooden 

toys on sale in a Suffolk craft shop in April 1991 (Hand DalY, Daly, Lunn, McConway, & Ostroski, 1994). The best fits are 

verified with the Anderson-Darling (AD) test and other criteria including log-likelihood (LL) and the Akaike information 

criterion (AIC) for model selection. Furthermore, the estimated parameters are obtained by using the optim function in R 

language (R Core Team, 2016). Tables 1 and 2 show the MLE, LL, AD test, and AIC of the data, respectively. Figure 4 shows a 

comparison between real datasets and expected values of fitted distributions. 
 

Table 1. The number of deaths due to horse kicks in the Prussian army data 
 

Number 
of death 

Observed 
values 

Expected 

dWE dG dGE Geo dL NB 

        

0 109 109 108 108 124 119 112 

1 65 67 68 68 47 52 62 

2 22 19 19 18 18 19 20 

3 3 4 4 4 7 6 5 

4 1 1 1 1 3 2 1 
        

Estimated parameters 
0.0025   ˆ 2.0486n      2. 53ˆ 39   ˆ 0.6211p      1. 47ˆ 36         6. 09ˆ 12n   

   ˆ 1.8239   ˆ 0.5357   0. 53ˆ 22p             0. 91ˆ 90p   
       

LL -206.42 -206.41 -206.62 -213.65 -209.96 -206.53 
AIC 416.83 416.81 417.24 429.30 421.93 417.06 

AD statistic 0.0573 0.0646 0.0910 2.4958 1.2174 0.1128 

p-value 0.9601 0.9521 0.9195 0.0322 0.1617 0.8935 
       

 

Table 2. The children’s wooden toy prices data 
. 

Prices 
Observed 

values 

Expected 

dWE dG dGE Geo dL NB 

        

0 4 5 5 5 7 4 5 

1 9 6 5 5 5 5 5 
2 4 5 4 5 4 5 4 

3 2 4 4 4 3 4 4 

4 2 3 3 3 3 3 3 
5 2 2 2 2 2 3 2 

6 1 2 2 2 2 2 2 

7 1 1 1 1 1 1 1 
8 1 1 1 1 1 1 1 

9 1 1 1 1 1 1 1 

10 1 1 1 1 1 1 1 
11 2 0 0 0 0 0 0 

12 1 0 0 0 0 0 0 
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Table 2. (Continued) 
 

Estimated 
Parameters 

8.8355   ˆ 1.2470n   1. 95ˆ 27   0. 23ˆ 21p   0. 72ˆ 40   1. 31ˆ 29n   

0. 23ˆ 26   3. 73ˆ 35   0. 82ˆ 75p     0. 87ˆ 25p   
       

LL -74.7811 -75.1343 -75.1388 -75.4858 -75.6413 -75.2366 

AIC 153.5623 154.2686 154.2777 152.9715 153.2825 154.4733 

AD statistic 0.3446 0.4053 0.4065 0.3719 0.7248 0.3996 
p-value 0.7873 0.7215 0.7209 0.7256 0.4635 0.7231 

       

 

 

 
 

Figure 4. Real data and expected values of fitted distributions with 
various discrete distributions 

 
 

For primary consideration of appropriatness of the 

distributions, the LL and AIC values are concerned. From 

Table 1, although, the dG distribution has the biggest LL 

value and the smallest AIC value, the dWE distribution is the 

most appropriate based on AD goodness of fit test for the 

number of deaths due to horse kicks in the Prussian army 

between 1875 and 1894 data. In the same manner, the dWE 

distribution is more appropriate than the others based on LL 

and AD goodness of fit test for the children's wooden toy 

prices data in Table 2. 

 

4. Conclusions 
 

In this study, the new count data distribution named 

the dWE distribution is developed by discretization of the WE 

distribution. The pmf of the dWE distribution is derived, some 

mathematical properties are discussed, and reliability func-

tions are presented. In addition, the dWE distribution is 

applied to two real datasets and compared to the others based 

on MLE. We choose the dG, dGE, and Geo distributions for 

comparison because they are related to dWE distribution. The 

dL and NB distributions have decreasing and unimodal shapes 

like the dWE distribution. The result is that the dWE fit better 

than the others. Thus, the dWE distribution can be an 

alternative count data distribution. 
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