
Songklanakarin J. Sci. Technol. 

40 (5), 1061-1065, Sep. - Oct. 2018 

 

 

 

Original Article 
 

 

Existence of Moore-Penrose inverses in rings with involution 
 

Wannisa Apairat1 and Sompong Chuysurichay2* 

 
1 Department of Mathematics and Statistics, Faculty of Science, 

Prince of Songkla University, Songkhla, 90110 Thailand 

 
2 Algebra and Applications Research Unit, Department of Mathematics and Statistics, 

Faculty of Science, Prince of Songkla University, Songkhla, 90110 Thailand 

 
Received: 8 May 2017; Accepted: 22 June 2017 

 

 

Abstract 
 
We give necessary and sufficient conditions for the existence of the Moore-Penrose inverse of an element in a ring with 

involution.   If R  is a ring with  involution,  we also investigate the  existence  of the  Moore-Penrose  inverse of the  product 

1 2 nx x x   where 
1 2, , , nx x x   are Moore-Penrose  invertible  elements  of R . 
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1. Introduction 
 

The concept of Moore-Penrose inverses originally 

began on the work of E.  H.  Moore in the decade of 1910-

1920.  Moore studied the “general reciprocal” of any matrix 

and applied it to solve systems of linear equations ( Moore, 

1920). It was later rediscovered by R. Penrose in 1955 

(Penrose, 1955), and is nowadays called the “Moore-Penrose 

inverse”. 

At the present time, Moore-Penrose  inverses have 

been studied  extensively in complex matrices (Baksalary & 

Trenkler, 2008; Ben-Israel & Greville, 2003; Cheng & Tian, 

2003), linear operators on Banach or Hilbert spaces (Djord 

jević, 2007; Djordjević & Koliha, 2007), 
*C -algebras (Harte 

& Mbekhta, 1992; Koliha, 1999) and  have also been extended  

to any rings with involution (Koliha, Djordjević, & Cvetković, 

2007; Mosić, & Djordjević, 2009; Mosić, Djordjević, & 

Koliha, 2009). 

The purpose of this paper is two-fold.  Firstly, we 

give necessary and sufficient conditions for an element in a 

ring with involution to be Moore-Penrose invertible. This 

generalizes the result of   Kholiha et al. (Koliha, Djordjević, &

 
Cvetković, 2007) .  Secondly, we investigate the existence of 

the Moore-Penrose inverse of the product 
1 2 nx x x  where 

1 2, , , nx x x  are Moore-Penrose invertible elements in any 

ring with involution.  For a ring R  with involution *  and 

,a R let 
†a  denote the Moore-Penrose inverse of a  ( if it 

exists). We prove  that if a  is Moore-Penrose  invertible  and  

a normal element,  i.e. 
* * aa a a  , then  the product 

1 2 nx x x  

is always Moore-Penrose invertible for 
1 2, ,..., nx x x   

* † † *, , ,{ ( ) }a a a a .  We also prove that if  a  is an EP element, 

i.e. a  is Moore-Penrose invertible and
† † aa a a  , then  

nx  is 

Moore-Penrose invertible for any 
* † † *, ,{ ( ) },x a a a a  and for 

all n N .  Finally, we show that if a  is Moore-Penrose 

invertible, then 
*( , )naa *( ,  )na a †( ) ,na a aa *( )na a a , and  

* *( )na aa  are also Moore-Penrose invertible  for all n N . 

 

2. Preliminaries 
 

Throughout this paper, R  is an associative ring.  An 

element ,a R  is group invertible if there is an element 
#  a R  such that 

 

#  aa a a , 
# # #       a aa a  and 

# #    aa a a  . 

 

 

*Corresponding author 

Email address: sompong.c@psu.ac.th 



1062 W. Apairat & S. Chuysurichay / Songklanakarin J. Sci. Technol. 40 (5), 1061-1065, 2018 

#   a is the group inverse of a  and it is uniquely  determined by the above equations.We denote 
#R the set of all group  invertible 

elements of R . An involution  
*   a a  in a ring  R   is an anti-isomorphism of degree 2, that is, 

* *(  )a a  , * * *( )a b a b    and * * *( )ab b a . 

Let R be a ring with involution * .  An element   a R  is Moore-Penrose invertible ( or MP-invertible)  if there is an 

element 
†  a R  such that 

†aa a a ,
† † †a aa a , † * † ( )aa aa and † * † ) .(a a a a  

†  a is the Moore-Penrose  inverse of a  and it is unique.  We denote †R  the set of all Moore-Penrose invertible elements of R . 

An element a R  is left *-cancellable if * *a ax a ay  implies ax ay . It is right *-cancellable if * * xaa yaa implies xa ya  

and it is *-cancellable if it is both left and right *-cancellable. 

An element  a R  satisfying 
* *  aa a a  is called normal. It is called Hermitian if 

*  a a and it is EP if 
# †  a R R   

and
# †  a a .An element p R  is a projection if p  is idempotent and Hermitian, that is, 2 *p p p  .  

For a ring R , we denote  ( )n RM  the ring of n n  matrices over R  with the usual matrix addition and multiplication. 

The ring of integers modulo a positive integer n  is denoted by 
nΖ  . 

We will use the following lemmas as characterizations of normal and EP elements. 

 

Lemma 2.1 (Mosić, Djordjević, & Koliha, 2009) Let 
†a R .  Then a  is EP if and only if 

† † aa a a . 

 

Lemma 2.2 (Mosić & Djordjević, 2009) Let 
†a R .  Then  a  is normal if and only if 

† †   aa a a  and 
* † † * a a a a  . 

It should be noted that every Hermitian element is a normal element and every normal element in †R is an EP element. 

The following theorem recalls some basic properties of the Moore-Penrose inverse. 

 

Theorem 2.3 (Mosić & Djordjević, 2009) For any
†a R , the following statements hold. 

(1)  
† †( )a a . 

(2)  
* † † * ( ) ( )a a .  

(3)  
* † † † *  ( ) ( )a a a a  . 

(4)  * † † * †  ( ) ( )aa a a  . 

(5)  
* † * * †  a a aa a aa   . 

(6)  
† * † * * * †( ) ( ) a a a a a aa   . 

(7)  
* † * † †( ) ( ) (   ) a a a a aa a   . 

 

3. Main Results 
 

Let R be a ring with involution  .  We will give necessary and sufficient conditions for an element of R to be MP-

invertible. We start with the following result. 

 

Proposition 3.1 If 
#   a R  then 

  #a R   and 
# #  ( ) ( ) a a  . 

 

Proof.  Let 
#a R . Then we have

#   #( ) (       )  a a a aa a a      , 
# # # #( ) ( ) ( )          a a a a aa    #  ( ) a   and 

#  #( ) (    )   a a a a   
# #( ) (  )   aa a a   . Hence 

# a R  and 
# #( ) (    .) a a   

 

Definition 3.2  An element a R  is  left supported by a projection  if a pa  for some projection p R  , it is right supported  

by a projection  if a aq  for some projection  q R  and it is supported by a projection if it is both  left and right supported by a 

projection. 

 

Proposition 3.3 Let
†a R . Then 

†aa  and 
†  a a  are projections. 

 

Proof. It is clear that 
† 2 † † † ( ) ( )aa aa a a aa   and

† †  ( )aa aa  . Thus 
†   aa  is a projection. Similarly,  

†  a a  is also a projection. 

 

Theorem 3.4 For any a R , the following statements are  equivalent: 

(1) a  is MP-invertible. 

 



 W. Apairat & S. Chuysurichay / Songklanakarin J. Sci. Technol. 40 (5), 1061-1065, 2018 1063 

(2) a  is left  -cancellable, right supported  by a projection  and a a  is group invertible. 

(3) a  is right  -cancellable, left supported  by a projection  and   aa
is group invertible. 

(4) a  is  -cancellable, supported  by a projection  and both a a  and   aa
are  group invertible. 

 

Proof.  

(1)  (2) , (3) , (4) Suppose that a  is MP-invertible. Let ,x y R be such that a ax a ay  . Then
† † † † † †( ) ( ) (  ) ( )ax aa ax aa ax a a ax a a ay a a ay aa ay              ay .  Thus a  is left  -cancellable.  Let † p aa  and 

† q a a  . Then ,   p q  are projections and    pa aq a  . Thus a  is left and right supported by a projection.   Since  a a  and aa
 

are Hermitian,  a a  and aa
 are EP elements. Thus  a a  and aa

 are group invertible. This proves (2) and (3). It is obvious that 

(2) and (3) implies (4). Hence (4) holds. 

(2)  (1)  Suppose that a  is left  -cancellable, right supported by a projection and a a  is group invertible.  Then 

a aq  for some projection q . Let #)  (b a a a  . Then 
#  (  )  a aqba a a a a a a a a a aq        . Since a  is left  -cancellable, 

aba aqba  aq a .  It is clear that 
# # #   (        ) ( ) ( )bab a a a a a a a a a a b        , 

#( ) [ (         ) ]ab a a a a    #( )  a a a a ab    and 

#  #( ) [( ) )   (  ]   ba a a a a a a a a        #  ( )a a a a ba   . Thus a  is MP-invertible and 
†  a b . 

(3)  (1)  Suppose that a  is right  -cancellable, left supported by a projection and  aa
 is group invertible.  Then 

a pa  for some projection p . Let  #)  (b a aa  . Then #        (   )abpaa aa aa aa aa paa        . Since a  is right  -cancellable, 

 aba    abpa pa a  . It is clear that # # #  ( ) ( (  ) )  bab a aa aa aa a aa b        , (   )ab    # #      [  ( ) ] ( )  aa aa aa aa     #( )  aa aa 

ab  and # #( ) [ ( ) ] ( )           ba a aa a a aa a        ba  . Thus a  is MP-invertible and 
†  a b . 

(4) (1) It is trivial that  (4) implies (3) and (3) implies (1). Thus (4) implies (1). This completes the proof. 

 

Remark 3.5 If R  is a ring with identity, then every element in R  is clearly supported by the identity element. Thus Theorem 3.4 

is a generalization of Proposition 1. in (Koliha, Djordjević, & Cvetković, 2007). 

The following example shows that we cannot omit the condition that a  is left (right) supported by a projection for an 

element a to be MP-invertible. 

 

Example 3.6 Let 3 for  all     { ( ) | }0   ijR A R a i j   M  with the usual matrix addition and multiplication.  

For any

0

0 0

0 0 0

x y

a z R

 
 

  
 
 

, we define 

0

0 0

0 0 0

z y

a x

 
 

  
 
 

.  Then   is an involution.  A computation shows that 0abc   for all 

, ,a b c R . This implies that 
#a R if and only if 0a   and 

† a R  if and only if 0a   . Let 

0 0 1

0 0 0

0 0 0

a

 
 

  
 
 

. Then 0ax   for 

all x R . Thus 0a ax   implies 0ax   for all x R . Likewise,    0xaa   implies 0xa  . Hence a  is  -cancellable. It is 

clear that    0aa a a    which are group invertible. However, a  is not MP-invertible. 

Next, we investigate the existence of the Moore-Penrose inverse of the product 
1 2 nx x x  given that †

1 2,  , ...,       nx x x R . 

It is worth noting that † R  is not closed under multiplication. 

 

Example 3.7 Let 
2 2(   )R M  with the matrix transposition as an involution. Let 

1 1
 

1 0
a

 
  
 

 and 
1 0

0 0
b

 
  
 

 . Then 
†,a b R  

but 
†

1 0

1 0
ab R

 
  
 

. 

 

Definition 3.8  A subset   of †R  is called star-dagger closed if   x   and 
†  x   for all .x   

It is obvious that †R  is star-dagger closed. The following theorem shows that nontrivial star-dagger closed sets exist. 

For any 
†a R , we define 

† †, ,( ) { ( ) },a a a a a    . 

 

Theorem 3.9 If 
†a R , then  ( )a  is star-dagger closed. 
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Proof.  Clearly, †( ),   ( )a a a  . Since  (  ) )  (a a a     and † † [( ) ] ( )a a a   , we have ( )x a  for all ( ).x a  Obviously, 
† (  . )a a  Since † †( ) ( )a a a  , † †( ) ( )    ( ) a a a    and † †[( )  ]  a   † †     [( ) ] ( )a a a    , we conclude that † )  (x a  for all 

). (x a  Therefore, ( )a  is star-dagger closed.  

 

Definition 3.10 A subset  of R  is called a commuting set if xy yx  for all , .x y  

 

Theorem 3.11 If 
† a R  is normal, then  ( )a  is a commuting set. 

 

Proof.  Suppose that 
†   a R  is normal. Then † †   ,     aa a a aa a a    and 

† †   .a a a a   Thus † † † †   ( ) (  ) ( ) ( )a a a a a a a a        . 

Similarly, † † †  †( ) ( ) (    )  ) (a a a a aa a a         and † †  † † † †    ( ) ( ) ( )   . ( )a a a a aa a a       Hence ( )a  is a commuting set. 

 

Theorem 3. 12 If  †R   is a commuting and star-dagger closed set, then †   xy R  for all ,x y .  Moreover, 
† † † † †   ( )xy y x x y   for all ,x y . 

 

Proof. Let ,x y . Then 
† †, , ,x y x y   . Thus 

† † † †( )( )( ) ( )( )xy y x xy xx x yy y xy  , 
† † † † † † † † † †( )( )( ) ( )( )y x xy y x x xx y yy y x  , 

† † † † † † † † ( ) ( ) ( )        xyy x xx yy xx yy xyy x     and † † † † † † † †( ) ( ) ( )     y x xy y y x x y yx x y x xy     .  This shows that †xy R  and 
† † † † †( )  xy y x x y  .  

 

Theorem 3. 13 If 
†   R  is a commuting and star-dagger closed set, then †

1 2 nx x x R  for all 
1 2, , , nx x x  .  Moreover, 

 
† † † † † † †

1 2 1 1 1 2n n n nx x x x x x x x x   for all 
1 2, , , nx x x  .  

 

Proof. The proof is straightforward by Theorem 3.12 and induction. 

 

Corollary 3.14 If 
†a R  is normal, then †

1 2  ···  nx x x R for all 
1 2,  ,...,   ( )nx x x a . 

 

Proof. Since ( )a  is a commuting and star-dagger closed set, the result follows Theorem 3.13. 

 

Corollary 3.15 If R  is commutative, then †( ),·R  is a subsemigroup of ( ),·R . 

 

Proof.  Since R  is commutative, †R  is a commuting and star-dagger closed set.  The result then follows Theorem 3.12. 

 

Theorem 3.16 If a  is an EP element, then 
†a  , a

 and †( )a   are also EP elements. 

 

Proof.  Suppose that a  is an EP element.  Then 
† † aa a a .  Thus † † † †( )  a a a a    † † † †  ( )aa a a .  This means 

†  a  is an EP 

element. We also have that † †)( ()a a a a      † †( ) ( )     a a aa   †( )a a  . Thus a
 is an EP element. This also implies †( )a   is 

an EP element. 

 

Theorem 3.17 If a  is an EP element, then 
†   nx R for all ( )x a  and all n N . 

 

Proof. Suppose that a  is an EP element. By using Theorem 3.16, we know that †, ,a a a  and †(  )a   are EP elements. Thus it 

suffices to prove that 
†   na R  for all n N . Since a  is an EP element, 

† †  aa a a . Then † †  ( ) ( )      ,n n n n na a a aa a a 
†  † ( ) (  )n n na a a  † † † ( ) ( )n na aa a , †[ ( )   ]   n na a   † † † †[( ) ] [( ) ]      (  ) ( ) n n n n naa aa aa a a     and †  [( )    ]n na a  †[( )  ]  na a   †[( )  ]na a   

†  ( )na a  †  (  )  n na a . This proves that 
†   na R and † †   ( ) ( )n na a  for all n N . 

 

Theorem 3.18 Let  
†a R . Then the following elements are  MP-invertible for all n N . 

(1)  ( )  ,naa   

(2)  ( )  ,na a   

(3)  †(  ,)na a aa   

(4)   ( )  na a a  and 

(5)   .( )na aa    
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Proof.  

(1) We know that 
†  aa R  is Hermitian. Thus aa

 is an EP element. By Theorem 3.17, †(   )naa R   for all n N . 

(2) We know that 
† a a R   is Hermitian. Thus  a a  is an EP element. By Theorem 3.17, †)  ( na a R   for all n N . 

(3)  Let 
†x a a aa .  Then †( ) x a a a a     and  † †)  (xx a a aaa a a a      † †( ) ( )a a a aa a a a      † †)  (a a a aa a aa    

x x . Thus x  is a normal element and hence an EP element. By Theorem 3.17, † †( )     na a aa R   for all n N . 

(4) Let   ( (  ) )n nx a a a aa a    and † † † †   [( ) ] [( ) ]n ny a a a a aa   . Since aa
 and a a  are EP elements, we have 

† [( ) ] naa †[( ) ]   naa and † †    [( ) ] [( ]  )n na a a a  . Then  † † 1 † †  †( ) [( ) ] ( ) ( )[( ) ] ( ) [( ) ]           n n n n n nxy aa aa aa aa aa aa aa aa aa           

and yx  † †  † † 1 †[( ) ] ( ) [( ) ] [( ) ]( )n n n na aa a a a a aa aa a a a      † † 1 †[( ) ] ( ) ( )n na aa a a a     † †  †[ ( ) ] ( ) [( ) ] )  ( .n n n na a a a a a a a    Thus, 

xyx  †  ( ) [( ) ] ( )   )  (n n n na a a a a a a a a a x      and † † †  † †[( ) ] ( )   [       ( ) ] [( ) ]n n n nyxy a aa aa aa a aa y      . Since xy  and yx  are 

projections, we also have  ( )xy xy  and  ( )yx yx . Therefore,  †(    )na a a R  and † †  †[ ( ) ] [( )  ] n na a a a a a  . 

(5) Since    [ ( ) ] ( )  n na a a a aa    , we conclude that †( )  na aa R   . 
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