

Songklanakarin J. Sci. Technol. 40 (5), 1055-1060, Sep. - Oct. 2018

Original Article

ps-ro fuzzy α -irresolute functions

Pankaj Chettri* and Anamika Chettri

Department of Mathematics, Sikkim Manipal University, Sikkim, 737136 India

Received: 10 March 2017; Revised: 27 May 2017; Accepted: 22 June 2017

Abstract

The aim of this paper is to initiate and study a new class of functions termed as ps-ro fuzzy α -irresolute functions. It is found that this class of functions is independent of the existing class of fuzzy α -irresolute, ps-ro fuzzy irresolute and ps-ro fuzzy continuous functions. Also the ps-ro fuzzy α -irresoluteness is found to be stronger than ps-ro fuzzy semicontinuity, ps-ro fuzzy irresoluteness and ps-ro fuzzy α -continuity. Several characterizations of these functions are obtained in terms of newly introduced concept of $ps-\alpha$ interior (closure) operators, ps-ro fuzzy α -nbd, ps-ro fuzzy dense set and their graphs.

Keywords: ps-ro fuzzy topology, ps-ro fuzzy a-irresolute functions, ps-ro fuzzy a-nbd, ps-ro fuzzy dense set

1. Introduction

While studying the interplay among a fuzzy topological space (for short, fts) (X, τ) and its corresponding general topology called strong α -level topology, ps-ro fuzzy topology was introduced, whose members and their complements are called ps-ro open and ps-ro closed fuzzy sets respectively (Deb Ray & Chettri, 2010). In terms of these, a class of functions called ps-ro fuzzy continuous functions was introduced and explored (Deb Ray & Chettri, 2011, 2016). The notions of ps-ro fuzzy semi continuity, ps-ro fuzzy irresoluteness and ps-ro fuzzy α -continuity were introduced and their different properties and interrelations with the existing allied concepts were studied in (Chettri & Gurung, 2016; Chettri, Gurung, & Halder, 2014; Chettri, Gurung, & Katwal, 2016).

In this paper, we introduce the notions of *ps-ro* fuzzy α -irresoluteness, determine their various characterizations and establish their relation with existing notion of various types of fuzzy functions.

We state a few known definitions and results here that we require subsequently. A fuzzy point x_t is a fuzzy set where $0 < t \le 1$ and defined as $x_t(z)$ equals to t for z = x, otherwise its value is 0. A fuzzy point x_t is called q-

*Corresponding author Email address: pankajct@gmail.com coincident with a fuzzy set *B*, written as $x_t q B$ if t + B(x) > 1 (Pao-Ming & Ying-Ming, 1980). For a function *g* from a set *A* into a set *B*, the following holds:

(i) $g^{-1}(1-V) = 1 - g^{-1}(V)$, for any fuzzy set *V* on *B*.

(ii) $U_1 \leq U_2 \Rightarrow g(U_1) \leq g(U_2)$, for any fuzzy sets U_1 and U_2 on A. Also, $V_1 \leq V_2 \Rightarrow g^{-1}(V_1) \leq g^{-1}(V_2)$, for any fuzzy sets V_1 and V_2 on B.

(iii) For any fuzzy set U and V on A and B, $gg^{-1}(V) \leq V$ and $g^{-1}g(U) \geq U$. Equality holds if g is onto and one-to-one respectively (Chang, 1968).

Let *g* be a function between two non-empty sets *A* and *B* and *U*, *V* be fuzzy sets on *A* and *B* respectively, then 1 - U (called complement of *U*), g(U) and $g^{-1}(V)$ are fuzzy sets on *A*, *B* and *A* respectively, defined by $(1 - U)(x) = 1 - U(x) \forall x \in A, g(U)(y) = \begin{cases} \sup_{z \in g^{-1}(y)} U(z), when g^{-1}(y) \neq \emptyset \\ 0, otherwise \end{cases}$

and $g^{-1}(V)(x) = V(g(x))$ (Zadeh, 1965).

A fuzzy topology τ is a family of fuzzy sets on A if (a) $0, 1 \in \tau$ (b) arbitrary union and finite intersection of members of τ belongs to τ . Then (A, τ) is called a *fts*. Members of the fuzzy topology and their complements are termed as fuzzy open and closed sets respectively on A (Chang, 1968).

For a fuzzy set γ on A, the set $\gamma^{\alpha} = \{x \in A : \gamma(x) > \alpha\}$ is termed as strong α -level set of A. In a *fts* (A, τ) , the family $i_{\alpha}(\tau) = \{\gamma^{\alpha}: \gamma \in \tau\}$ for all $\alpha \in I_1 = [0,1)$ forms a

strong α -level topology on A (Kohli & Prasan nan, 2001; Lowen, 1976). A fuzzy open set γ on a fts (A, τ) is said to be pseudo regular open fuzzy set if γ^{α} is regular open in $(A, i_{\alpha}(\tau)), \forall \in I_1$. The collection of all pseudo regular open fuzzy sets form a fuzzy topology on A called *ps-ro* fuzzy topology on A, whose members are called *ps-ro* open and their complements as *ps-ro* closed fuzzy sets on (A, τ) (Deb Ray & Chettri, 2010). A fuzzy set Uon a fts (A, τ) is called fuzzy α -open if $U \leq int(cl(int(U)))$ (Bin Sahana, 1991).

Fuzzy *ps*-closure and *ps*-interior of *U* are denoted by *ps*-*cl*(*U*) and *ps*-*int*(*U*) respectively and are given by *pscl*(*U*) = \land {*V*: *U* ≤ *V*, *V* is *ps*-*ro* closed fuzzy set on *A*} and *ps*-*int*(*U*) = V{*V*: *V* ≤ *U*, *V* is *ps*-*ro* open fuzzy set on *A*} (Deb Ray & Chettri, 2011, 2016). A fuzzy set *U* on a *fts*(*A*, *τ*) is said to be *ps*-*ro* semiopen (*ps*-*roa*-open) fuzzy set if *U* ≤ *ps*-*cl*(*ps*-*int*(*U*))(resp. *U* ≤ *ps*-*int*(*ps*-*cl*(*psint*(*U*)))) (Chettri & Gurung, 2016; Chettri, Gurung, & Halder, 2014).

A function g from a $fts(A, \tau_1)$ to another $fts(B, \tau_2)$ is

(i) fuzzy α -irresolute if the inverse image of every fuzzy α -open set on *B* is also so on *A* (Prasad, Thakur, & Saraf, 1994).

(ii) ps-ro fuzzy continuous (ps-ro semicontinuous, ps-ro α -continuous) if the inverse image of every ps-ro open fuzzy set on B is ps-ro open (resp. ps-ro semiopen, ps-ro α -open) fuzzy set on A (Chettri & Gurung, 2016; Chettri, Gurung, & Halder, 2014; Deb Ray & Chettri, 2011, 2016).

(iii) *ps-ro* fuzzy irresolute if the inverse image of every *ps-ro* semi open fuzzy set on *B* is also so on *A* (Chettri, Gurung, & Katwal, 2016).

2. *ps-ro* Fuzzy α-Irresolute Function

Definition 2.1: A function g between two $fts(A, \tau_1)$ and (B, τ_2) is called *ps-ro* fuzzy α -irresolute if $g^{-1}(V)$ is *ps-ro* α -open fuzzy set on A for each *ps-ro* α -open fuzzy set V on B.

We discuss some examples below to establish interrelations of the newly defined function with few well known existing functions between two fts.

Example 2.1: Let $A = \{a, b, c\}$ and $B = \{x, y, z\}$. Let U, V and W be fuzzy sets on A defined by $U(a) = 0.2, U(b) = 0.2, U(c) = 0.3; V(r) = 0.2, \forall r \in A; W(r) = 0.5, \forall r \in A$. Let P, Q, R and S be fuzzy sets on B given by $P(s) = 0.4, \forall s \in B; Q(x) = 0.5, Q(y) = 0.5, Q(z) = 0.6; R(s) = 0.3, \forall s \in B$ and S(x) = 0.3, S(y) = 0.3, S(z) = 0.4. Clearly, $\tau_1 = \{0, 1, U, V, W\}$ and $\tau_2 = \{0, 1, P, Q, R, S\}$ are fuzzy topologies on A and B respectively. In the corresponding strong α -level topological space $(A, i_{\alpha}(\tau_1)) \forall \alpha \in I_1$, the open sets are $\emptyset, A, U^{\alpha}, V^{\alpha}$ and W^{α} where

$$U^{\alpha} = \begin{cases} A \text{ for } \alpha < 0.2\\ \{c\} \text{ for } 0.2 \le \alpha < 0.3\\ \emptyset \text{ for } \alpha \ge 0.3 \end{cases}, V^{\alpha} = \begin{cases} A \text{ for } \alpha < 0.2\\ \emptyset \text{ for } \alpha \ge 0.2 \end{cases} \text{ and}$$
$$W^{\alpha} = \begin{cases} A \text{ for } \alpha < 0.5\\ \emptyset \text{ for } \alpha \ge 0.5 \end{cases}$$

For $0.2 \le \alpha < 0.3$, the closed sets on $(A, i_{\alpha}(\tau_1))$ are \emptyset, A and $A - \{c\}$. As $int(cl(U^{\alpha})) = A, A^{\alpha}$ is not regular open

on $(A, i_{\alpha}(\tau_1))$ for $0.2 \le \alpha < 0.3$ and hence U is not pseudo regular open fuzzy set on (A, τ_1) . $int(cl(V^{\alpha})) = V^{\alpha}$ and $int(cl(W^{\alpha})) = W^{\alpha}$. So, V^{α} and W^{α} are regular open on $(A, i_{\alpha}(\tau_1)), \forall \alpha \in I_1. 0, 1, V \text{ and } W \text{ are pseudo regular open}$ fuzzy sets on (A, τ_1) and thus *ps-ro* fuzzy topology on A is $\{0,1,V,W\}$. Again, Q and S are not pseudo regular open fuzzy sets for $0.5 \le \alpha < 0.6$ and $0.3 \le \alpha < 0.4$ respectively on *B*. So, the *ps-ro* fuzzy topology on *B* is {0,1, *P*, *R*}. Let *g* be a function from $fts(A, \tau_1)$ to $fts(B, \tau_2)$ defined by g(a) = x, g(b) = y and g(c) = z. 0, 1, P and R are ps-ro open and hence ps- $ro \alpha$ -open fuzzy sets on B. Any fuzzy set T on B satisfying $R \le T \le P$ is also ps-ro α -open fuzzy set on B. For all ps-ro α -open fuzzy set H on B, $g^{-1}(H)$ is also so on A. Hence, g is ps-ro fuzzy α -irresolute. Here, Q is fuzzy α -open set on B but $g^{-1}(Q)$ is not so on A. So, g is not fuzzy α-irresolute.

Example 2.2: Let $A = \{a, b, c\}$ and $B = \{x, y, z\}$. Let U, Vand W be fuzzy sets on A defined by $U(r) = 0.5, \forall r \in$ $A;V(a) = 0.1, V(b) = 0.1, V(c) = 0.2; W(r) = 0.3, \forall r \in A.$ Let P, Q, R, S and T be fuzzy sets on B defined by P(x) = 0.3, $P(y) = 0.3, P(z) = 0.4; Q(s) = 0.2, \forall s \in B; R(s) = 0.4,$ $\forall s \in B; S(x)=0.1, S(y)=0.2, S(z)=0.2 \text{ and } T(x)=0.4,$ T(y) = 0.4, T(z) = 0.5. Clearly, $\tau_1 = \{0, 1, U, V, W\}$ and $\tau_2 =$ $\{0,1,P,Q,R,S,T\}$ are fuzzy topologies on A and B respectively. V is not pseudo regular open fuzzy set for $0.1 \leq$ $\alpha < 0.2$ on A. So, the *ps-ro* fuzzy topology on A is $\{0,1,U,W\}$ and that on B is $\{0,1,Q,R\}$. Let g be a function between two $fts(A, \tau_1)$ and (B, τ_2) given by g(a) =x, g(b) = x and g(c) = y. For each fuzzy α -open set E on B, $g^{-1}(E)$ is also so on A. Therefore, g is fuzzy α irresolute. Here, *Q* is *ps-ro* α -open fuzzy set on *B* but $g^{-1}(Q)$ is not so on A. Thus, g is not ps-ro fuzzy α -irresolute.

Remark 2.1: From Example (2.1) and Example (2.2), we can conclude that *ps-ro* fuzzy α -irresolute and fuzzy α -irresolute functions are independent of each other.

Example 2.3: Let $A = \{a, b, c\}$ and $B = \{x, y, z\}$. Let U, V, Wand D be fuzzy sets on A defined by U(a) = 0.2, U(b) = $0.3, U(c) = 0.3; V(r) = 0.4, \forall r \in A; W(r) = 0.1, \forall r \in A$ and $D(r) = 0.8, \forall r \in A$. Let P, Q and R be fuzzy sets on Bdefined by $P(s) = 0.4, \forall s \in B; Q(x) = 0.2, Q(y) = 0.2$ and Q(z) = 0.3 and $R(s) = 0.1, \forall s \in B$. Clearly, $\tau_1 = \{0, 1, U, v\}$ V, W, D and $\tau_2 = \{0, 1, P, Q, R\}$ are fuzzy topologies on A and B respectively. U is not pseudo regular open fuzzy set for $0.2 \le \alpha < 0.3$ on A. So, the *ps-ro* fuzzy topology on A is $\{0,1,V,W,D\}$. Again, Q is not pseudo regular open fuzzy set for $0.2 \le \alpha < 0.3$ on *B*. So, the *ps-ro* fuzzy topology on *B* is $\{0,1,P,R\}$. Let g be a function from the $fts(A,\tau_1)$ to the *f*ts (B, τ_2) defined by g(a) = x, g(b) = y and g(c) = z. Here, $g^{-1}(T)$ is *ps-ro* open fuzzy set on A for every *ps-ro* open fuzzy set Ton B, proving that g is ps-ro fuzzy continuous . *Q* is *ps-ro* α -open fuzzy set on *B* but $g^{-1}(Q)$ is not so on *A*. Hence, *g* is not *ps-ro* fuzzy α -irresolute.

Remark 2.2: In Example (2.1), *P* is a *ps-ro* open fuzzy set on *B* but $g^{-1}(P)$ is not a *ps-ro* open fuzzy set on *A*. Hence, *g* is not *ps-ro* fuzzy continuous but *g* is *ps-ro* fuzzy α -irresolute.

Combining this with Example (2.3), *ps-ro* fuzzy α -irresolute and *ps-ro* fuzzy continuous functions do not imply each other.

Remark 2.3: *ps-ro* fuzzy α -irresoluteness implies *ps-ro* fuzzy semicontinuity but the converse is not true is illustrated by the example as follows.

Example 2.4: Let $A = \{a, b, c\}$ and $B = \{x, y, z\}$. Let U, V and W be fuzzy sets on A defined by $U(a) = 0.1, U(b) = 0.2, U(c) = 0.2; V(r) = 0.3, \forall r \in A; W(s) = 0.1, \forall s \in B$. Let P, Q, R and S be fuzzy sets on B defined by P(x) = 0.3, $P(y) = 0.3, P(z) = 0.4; Q(s) = 0.4, \forall s \in B; R(x) = 0.1, R(y) = 0.1, R(z) = 0.2$ and $S(s) = 0.2, \forall s \in B$. Clearly, $\tau_1 = \{0,1,U, V, W\}$ and $\tau_2 = \{0,1,P,Q,R,S\}$ are fuzzy topologies on A and B are $\{0,1,V,W\}$ and $\{0,1,Q,S\}$ respectively. Let g be a function from the $fts(A, \tau_1)$ to the $fts(B, \tau_2)$ defined by g(a) = x, g(b) = y and g(c) = y. Here, g is ps-ro fuzzy set on B but $f^{-1}(Q)$ is not so on A. Hence, g is not ps-ro fuzzy α -irresolute.

Remark 2.4: In Example (2.4), g is not ps-ro fuzzy α -irresolute. For all ps-ro semiopen fuzzy set T on B, $g^{-1}(T)$ is also so on A. So, g is ps-ro fuzzy irresolute. In Example (2.1), $g^{-1}(Q)$ is not a ps-ro semiopen fuzzy set on A although Q is so on B. So, g is not ps-ro fuzzy irresolute. Hence, ps-ro fuzzy α -irresolute and ps-ro fuzzy irresolute functions are independent of each other.

Remark 2.5: Clearly, *ps-ro* fuzzy α -irresoluteness implies *ps-ro* fuzzy α -continuity but this converse is not true as shown below.

In Example (2.3), $g^{-1}(T)$ is *ps-ro* α -open fuzzy set on *A* for all *ps-ro*open fuzzy set *T* on *B*. So, *g* is a *ps-ro* fuzzy α -continuous function. Here, *Q* is a *ps-ro* α -open fuzzy set on *B* but $f^{-1}(Q)$ is not so on *A*, proving that *g* is not *ps-ro* fuzzy α -irresolute function.

All above discussed interrelations can be put together in an arrow diagram is given as Figure (1).

Theorem 2.1: A function *g* between two $fts(X, \tau_1)$ and (Y, τ_2) is *ps-ro* fuzzy α -irresolute iff for any fuzzy point x_t of

X and any *ps-ro* α-open fuzzy set *B* on *Y* satisfying $g(x_t)qB$, \exists a *ps-ro* α-open fuzzy set *A* on *X* such that $x_tqA \leq g^{-1}(B)$.

Proof: Let g be ps-ro fuzzy α -irresolute. Let x_t be any fuzzy point on X and B be a ps-ro α -open fuzzy set on Y with $g(x_t)qB$. Thus $g^{-1}(B)$ is ps-ro α -open fuzzy set on X and Bg(x) + t > 1. So, $x_tqg^{-1}(B)$. Taking $g^{-1}(B) = A$, the result follows.

Conversely, let *B* be a *ps-ro* α -open fuzzy set on *Y* and x_t be a fuzzy point on $g^{-1}(B)$. Then $x_t \leq g^{-1}(B)$ and $g(x_t) \leq g(g^{-1}(B)) \leq B$. Choose a fuzzy point x_t' such that $x_t'(x) = 1 - x_t(x)$. Now, $B(y) + g(x_t')(y) = B(y) + g(1 - x_t)(y) \geq B(y) + (1 - B)(y) = 1$. So, $g(x_t')qB$. Then $\exists ps-ro\alpha$ -open fuzzy set *A* on *X* such that $x_t'qA \leq g^{-1}(B)$. $x_t'(x) + A(x) = 1 - x_t(x) + A(x) > 1$. So, $x_t \leq A$. Hence, $x_t \leq A \leq g^{-1}(B)$. As x_t is arbitrary, taking union of all such relations, $\bigvee\{A: x_t \in g^{-1}(B)\} = g^{-1}(B)$ which shows that $g^{-1}(B)$ is *ps-ro* α -open fuzzy set on *X*. So, *g* is *ps-ro* fuzzy α -irresolute.

Theorem 2.2: A function *g* between two *fts* (A, τ_1) and (B, τ_2) is *ps-ro* fuzzy α -irresolute iff for each *ps-ro* α -closed fuzzy set *U* on *B*, *ps-cl*(*ps-int*(*ps-cl*(*g*⁻¹(*U*)))) $\leq g^{-1}(U)$.

Proof: The proof is straightforward and hence omitted.

Theorem 2.3: Let A, B and C be three fts and $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions then:

(a) If f and g are ps-ro fuzzy α -irresolute function then $g \circ f$ is also so.

(b) If f is *ps-ro* fuzzy α -irresolute and g is *ps-ro* fuzzy α -continuous, then $g \circ f$ is *ps-ro* fuzzy α -continuous.

Proof: The proof is straightforward and hence omitted.

Definition 2.2: For any fuzzy set *U* on a *fts* (*A*, τ), we define, $ps - \alpha int(U) = \bigvee \{V: V \leq U, V \text{ is } ps - ro \alpha \text{-open fuzzy set on } A$ and $ps - \alpha cl(U) = \land \{V: U \leq V, V \text{ is } ps - ro \alpha \text{-closed fuzzy set on } A$.

Some properties of $ps-\alpha$ int and $ps-\alpha$ cl operators are furnished below. The proofs are straightforward and hence omitted.

Figure 1. ps-ro fuzzy α-irresolute arrow diagram

Theorem 2.4: For any fuzzy set U of a $fts(X, \tau)$, the following results are hold:

(a) $ps-\alpha$ int(U) is the largest $ps-ro \alpha$ -open fuzzy set which is contained in U and $ps-\alpha$ cl(U) is the smallest $ps-ro \alpha$ -closed fuzzy set which contains U.

(b) A is ps-ro α -open fuzzy set iff U = ps- $\alpha int(U)$ and A is ps-ro α -closed fuzzy set iff U = ps- $\alpha cl(U)$.

(c) $ps-\alpha int(ps-\alpha int(U)) = ps-\alpha int(U)$ and $ps-\alpha cl(ps-\alpha cl(U)) = ps-\alpha cl(U)$.

(d) $ps - \alpha int(U) \le ps - \alpha int(V)$ and $ps - \alpha cl(U) \le ps - \alpha cl(V)$ if $U \le V$.

(e) $1 - ps - \alpha \operatorname{int}(U) = ps - \alpha \operatorname{cl}(1 - U)$ and $1 - ps - \operatorname{cl}(U) = ps - \alpha \operatorname{int}(1 - U)$.

Proof: The proof is straightforward and hence omitted.

Theorem 2.5: For a function g from a $fts(X, \tau_1)$ to another $fts(Y, \tau_2)$ the following statements are equivalent.

(a) g is a ps-ro fuzzy α -irresolute function.

(b) The inverse image of every $ps-ro \alpha$ -closed fuzzy set on Y is $ps-ro \alpha$ -closed fuzzy set on X.

(c) For any fuzzy point x_t on X and each ps-ro α -open fuzzy set B on Y and $g(x_t) \in B$, $\exists ps$ -ro α -open fuzzy set A on X satisfying $x_t \in A$ and $g(A) \leq B$.

(d) $ps-cl(ps-int(ps-cl(g^{-1}(B)))) \le g^{-1}(ps-\alpha cl(B))$, for all fuzzy set B on Y.

(e) $g(ps-cl(ps-int(ps-cl(A)))) \le ps-\alpha cl(g(A))$, for all fuzzy set A on X.

 $(f) g(ps-\alpha cl(A)) \leq ps-\alpha clg(A)$ for all fuzzy set A on X.

 $(g) ps - \alpha cl(g^{-1}(B)) \leq g^{-1}(ps - \alpha cl(B))$ for all fuzzy sets *B* on *Y*.

(h) $g^{-1}(ps-\alpha intB) \leq ps-\alpha int(g^{-1}(B))$ for all fuzzy set B on Y.

Proof: $(a) \Rightarrow (b)$ and $(b) \Rightarrow (a)$ The proof is straightforward and hence omitted.

 $(a) \Rightarrow (c)$ Let x_t be any fuzzy point on X and B be any *ps-ro* α -open fuzzy set on Y with $g(x_t) \in B$. Since f is *ps-ro* fuzzy α -irresolute, it implies that $g^{-1}(B)$ is *ps-ro* α open fuzzy set on X which contains x_t . Taking $g^{-1}(B) = A$, we get the required result.

 $(c) \Rightarrow (a)$ Let the given condition hold and *B* be a *ps-ro* α -open fuzzy set on *Y*. If $g^{-1}(B) = 0$, then the result is true. If $g^{-1}(B) \neq 0$, then \exists a fuzzy point x_t on $g^{-1}(B)$. So, \exists *ps-ro* α -open fuzzy set U_{x_t} on *X* which contains x_t such that $x_t \in U_{x_t} \leq g^{-1}(B)$. x_t being arbitrary, taking union of all such relations, we get $g^{-1}(B) = \bigvee \{x_t : x_t \in g^{-1}(B)\} \leq \bigvee \{U_{x_t} : x_t \in g^{-1}(B)\} \leq g^{-1}(B)$. $g^{-1}(B) = \bigvee \{U_{x_t} : x_t \in g^{-1}(B)\} \leq B$ which shows that $g^{-1}(B)$ is *ps-ro* α -open fuzzy set on *X*. Hence, *g* is *ps-ro* fuzzy α -irresolute.

 $(b) \Rightarrow (d)$ For any fuzzy set B on Y, $ps - \alpha cl(B)$ is $ps - ro \alpha$ -closed fuzzy set on Y. So by given hypothesis, $g^{-1}(ps - \alpha cl(B))$ is $ps - ro \alpha$ -closed fuzzy set on X which imply that $ps - cl(ps - int(ps - cl(g^{-1}(ps - \alpha cl(B))))) \le g^{-1}(ps - \alpha cl(B))$. Thus for a fuzzy set A on X, as $A \le ps - \alpha cl(A)$, we have $ps - cl(ps - int(ps - cl(g^{-1}(B)))) \le g^{-1}(ps - \alpha cl(B))$.

 $\begin{array}{l} (d) \Rightarrow (e) \text{ Let } Abe \text{ fuzzy set on } X \text{ and } g(A) = B.\\ \text{Then, } A \leq g^{-1}(B). \text{ So by our hypothesis, } ps-cl(ps-int(ps-cl(g^{-1}(B)))) \leq g^{-1}(ps-\alpha cl(B)). \text{ So, } ps-cl(ps-int(ps-cl(A))) \leq ps-cl(ps-int(ps-cl(g^{-1}(B)))) \leq g^{-1}(ps-\alpha cl(B)) \\ = g^{-1}(ps-\alpha cl(g(A))). \text{ This gives } g(ps-cl(ps-int(ps-cl(A))) \leq gg^{-1}(ps-\alpha cl(g(A)))) \leq ps-\alpha cl(g(A)). \text{ Therefore, } g(ps-cl(ps-int(ps-cl(A))) \leq ps-\alpha cl(g(A)). \end{array}$

 $(e) \Rightarrow (b)$ Let *B* be any *ps-ro* α -closed fuzzy set on *Y* and $A = g^{-1}(B)$. Then $g(A) \leq B$ and by given hypothesis, $g(ps-cl(ps-int(ps-cl A))) \leq ps-\alpha cl(g(A) \leq ps-\alpha cl(B) = B$. So, $g^{-1}(g(ps-cl(ps-int(ps-cl A)))) \leq g^{-1}(B)$. This gives $ps-cl(ps-int(ps-cl A)) \leq g^{-1}(B)$ and hence, $ps-cl(ps-int(ps-cl(g^{-1}(B)))) \leq g^{-1}(B)$, proving that $g^{-1}(B)$ is *ps-ro* α -closed fuzzy set on *X*.

 $(b) \Rightarrow (f)$ For any fuzzy set A on X, $A \le g^{-1}(f(A)) \le g^{-1}(ps - \alpha cl(g(A)))$. As $ps - \alpha cl(g(A))$ is psro α -closed fuzzy set on Y, $g^{-1}(ps - \alpha cl(g(A)))$ is also so on X. Now, $ps - \alpha cl(A) \le g^{-1}(ps - \alpha cl(g(A)))$ and $g(ps - \alpha cl(A)) \le g(g^{-1}(ps - \alpha cl(g(A))) \le ps - \alpha cl(g(A))$. Thus, $g(ps - \alpha cl(A) \le ps - \alpha clg(A)$.

 $(f) \Rightarrow (g)$ Let *B* be any fuzzy set on *Y* and $A = g^{-1}(B)$. By hypothesis, $g(ps - \alpha cl(g^{-1}B))) \le ps - \alpha clg$ $(g^{-1}(B)) \le ps - \alpha cl(B)$ and $ps - \alpha cl(g^{-1}(B)) \le g^{-1}(g(ps - \alpha cl(g^{-1}(B)))) \le g^{-1}(ps - \alpha cl(B))$. Thus $ps - \alpha cl(g^{-1}(B) \le g^{-1}(ps - \alpha cl(B))$.

 $(g) \Rightarrow (h)$ The proof is straightforward and hence omitted.

 $(h) \Rightarrow (a)$ Let *B* be a *ps-ro* α -open fuzzy set on *Y*. $B = ps - \alpha$ int *B*. Then $g^{-1}(ps - \alpha$ int $B) = g^{-1}(B) \le ps - \alpha$ int $(g^{-1}(B))$. Also, $ps - \alpha$ int $(g^{-1}(B)) \le g^{-1}(B)$. Therefore, $ps - \alpha$ int $(g^{-1}(B)) = g^{-1}(B)$ which imply that $g^{-1}(B)$ is $ps - ro\alpha$ -open fuzzy set on *X*. Therefore, *g* is *ps-ro*fuzzy α irresolute function.

Theorem 2.6: A bijective function g from a $fts(X, \tau_1)$ to another $fts(Y, \tau_2)$ is ps-ro fuzzy α -irresolute iff for any fuzzy set U on X, ps- α $int(g(U)) \le g(ps-\alpha int(U))$.

Proof: Let g be ps-ro fuzzy α -irresolute and U a fuzzy set on X. $g^{-1}(ps-\alpha int(f(U)))$ is ps-ro α -open fuzzy set on X. g being one-to-one, $g^{-1}(ps-\alpha int(f(U))) \leq ps-\alpha int(g^{-1}(g(U)))) = ps-\alpha int(U)$. Again, g being onto, $g(g^{-1}(ps-\alpha int(g(U)))) = ps-\alpha int(g(U)) \leq g(ps-\alpha int(U))$.

Conversely, let V be any ps-roa-open fuzzy set on Y. g being onto, $V = ps - \alpha int(V) = ps - \alpha int(g(g^{-1}(V)))$. By hypothesis, $ps - \alpha int(g(g^{-1}(V)) \le g(ps - \alpha int(g^{-1}(V)))$. As g is one to one, $g^{-1}(V) \le g^{-1}(g(ps - \alpha int(g^{-1}(V)))) = ps - \alpha int(g^{-1}(V))$. As, $ps - \alpha int(g^{-1}(V)) \le g^{-1}(V)$, $ps - \alpha int(g^{-1}(V)) = g^{-1}(V)$ showing that $g^{-1}(V)$ is ps-ro α -open fuzzy set on X. Hence, g is ps-rofuzzy α -irresolute function.

Theorem 2.7: For a *ps-ro* fuzzy α -irresolute function $g:(X, \tau_1) \to (Y, \tau_2)$, *ps-cl* (*ps-int* (*ps-cl* ($g^{-1}(V)$))) $\leq g^{-1}$ (*ps-cl*(V)), *ps-\alpha cl*($g^{-1}(V)$) $\leq g^{-1}$ (*ps-cl*(V)) forall fuzzy set V on Y and $g(ps\text{-}cl(ps\text{-}int(ps\text{-}cl(V)))) \leq ps\text{-}cl(g(U))$, $g(ps-\alpha cl(U)) \leq ps\text{-}clg(U)$ for any fuzzy set U on X.

1058

Proof: Let g be ps-ro fuzzy α -irresolute and V be a fuzzy set on Y. ps-cl(V) is ps-ro closed and hence ps-ro α -closed fuzzy set on Y. $g^{-1}(ps$ -cl(V)) is ps-ro α -closed fuzzy set on X which imply that ps-cl(ps-int(ps- $cl(g^{-1}(ps-cl(V)))) \leq g^{-1}(ps$ -cl(V)). As, $U \leq ps$ -cl(V), for a fuzzy set U on X, ps-cl(ps-int(ps- $cl(g^{-1}(V)))) \leq g^{-1}(ps$ -cl(V). Again, $V \leq ps$ -cl(V), $g^{-1}(V) \leq g^{-1}(ps$ -cl(V) which gives ps- α $cl(g^{-1}(V)) \leq ps$ - α $cl(g^{-1}(ps$ - $cl(V))) = g^{-1}(ps$ -cl(V)). Similarly another part can be proved.

Theorem 2.8: $g^{-1}(ps\text{-}int(V)) \leq ps-\alpha int(g^{-1}(V))$ for a *psro* fuzzy α -irresolute function $g:(X,\tau_1) \to (Y,\tau_2)$, for any fuzzy set *V* on *Y*.

Proof: Let g be ps-ro fuzzy α -irresolute and V be a fuzzy set on Y. ps-int(V) is ps-ro open and hence ps-ro α -open fuzzy set on Y. $g^{-1}(ps\text{-int}(V))$ being ps-ro α -open fuzzy set on X, $g^{-1}(ps\text{-int}(V)) = ps - \alpha \operatorname{int}(g^{-1}(ps\text{-int}(V))) \leq ps - \alpha \operatorname{int}(g^{-1}(V), \text{ as } ps\text{-int}(V) \leq V$. Therefore, $g^{-1}(ps\text{-int}(V)) \leq ps - \alpha \operatorname{int}(g^{-1}(V))$.

Lemma 2.1 (Azad (1981), Lemma 2.4, p.17]: Let $h: X \to X \times Y$ be the graph of a function $g: (X, \tau_1) \to (Y, \tau_2)$ given by h(x) = (x, g(x)). If U and V be fuzzy sets on X and Y respectively, then $h^{-1}(U \times V) = U \wedge g^{-1}(V)$.

Theorem 2.9: For a function g from a $fts(X, \tau_1)$ to another $fts(Y, \tau_2)$, if the graph $h: X \to X \times Y$ of g is ps-ro fuzzy α -irresolute then g is also ps-ro fuzzy α -irresolute, where (X, τ_1) and (Y, τ_2) are two fts.

Proof: Let *B* be any *ps-ro* α -open fuzzy set on *Y*. Using Lemma (2.1) we get,

 $g^{-1}(B) = 1 \land g^{-1}(B) = h^{-1}(1 \times B).$ $(1 \times B)$ is *ps-ro* α -open fuzzy set on $(X \times Y)$ and as *h* is *ps-ro* fuzzy α -irresolute function, $h^{-1}(1 \times B)$ is *ps-ro* α -open fuzzy set on *X*. Thus, $g^{-1}(B)$ is *ps-ro* α -open fuzzy set on *X*. Hence *g* is *ps-ro* fuzzy α -irresolute.

Definition 2.3: A fuzzy set *U* on a *fts* (X, τ) is called *ps-ro* fuzzy dense set if *ps-cl*(*U*) = 1 and *U* is called a nowhere *ps-ro* fuzzy dense set if *ps-int*(*ps-cl*(*U*)) = 0.

Theorem 2.10: If a function $g: (X, \tau_1) \to (Y, \tau_2)$ is *ps-ro* fuzzy α -irresolute, where (X, τ_1) and (Y, τ_2) are two *fts* then $g^{-1}(A)$ is a *ps-ro* α -closed fuzzy set on *X* for any nowhere *ps-ro* fuzzy dense set *U* on *Y*.

Proof: Let U be a nowhere ps-ro fuzzy dense set on Y. pscl(ps-int(1-U)) = 1. ps-int(ps-cl(ps-int(1-U))) = 1. So, $1-U \le ps$ -int(ps-cl(ps-int(1-U))) = 1 and hence 1-U is ps-ro α -open fuzzy set on Y. $g^{-1}(1-U) = 1 - g^{-1}(U)$, $f^{-1}(U)$ is ps-ro α -closed fuzzy set on X.

Definition 2.4: A fuzzy set *U* is said to be a *ps-ro* fuzzy α -nbd of a fuzzy point x_t if \exists a *ps-ro* α -open fuzzy set *V* such that $x_t \in V \leq U$.

Theorem 2.11: For a function *f* between two $fts(X, \tau_1)$ and (Y, τ_2) , the following are equivalent:

(*a*) *f* is *ps-ro* fuzzy α -irresolute function.

(b) For any fuzzy point x_t on X, the inverse of each ps-ro fuzzy α -nbd V of $f(x_t)$ on Y is a ps-ro fuzzy α -nbd of x_t on X.

(c) For any fuzzy point x_t on X and any *ps-ro* fuzzy α -nbd V of $f(x_t)$ on Y, $\exists a ps-ro$ fuzzy α -nbd U of x_t on X satisfying $f(U) \leq V$.

Proof:

 $(a) \Rightarrow (b)$ Let f be ps-ro fuzzy α -irresolute. Let x_t be a fuzzy point on X and V be a ps-ro fuzzy α -nbd of $f(x_t)$ on Y. Then $\exists a ps$ - $ro \alpha$ -open fuzzy set W on Y such that $f(x_t) \in W \leq V$. Now, f being a ps-ro fuzzy α -irresolute, $f^{-1}(W)$ is ps- $ro \alpha$ -open fuzzy set on X. Then $x_t \in f^{-1}(W) \leq f^{-1}(V)$ which proves that $f^{-1}(V)$ is a ps-ro fuzzy α -nbd of x_t on X.

(b) \Rightarrow (c) Let x_t be any fuzzy point on X and V be a *ps-ro* fuzzy α -nbd of $f(x_t)$ on Y. $f^{-1}(V)$ is a *ps-ro* fuzzy α -nbd of x_t on X. Let $f^{-1}(V) = U$. Then $f(U) \leq V$.

 $(c) \Rightarrow (a)$ Let x_t be any fuzzy point on X and V be a *ps-ro* α -open fuzzy set on Y with $f(x_t) \in V$ then $\exists a ps-ro$ fuzzy α -nbd W of x_t on X with $f(W) \leq V$. As W is a *ps-ro* fuzzy α -nbd of x_t on X, $\exists a ps-ro \alpha$ -open fuzzy set U on X satisfying $x_t \in U \leq W$ i.e., $f(x_t) \in f(U) \leq f(W) \leq V$. Hence, $f(U) \leq V$. Now, using $(c) \Rightarrow (a)$ of Theorem (2.5), the result follows.

References

- Azad, K. K. (1981). On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity. *Journal of Mathematical Analysis and Applications*, 82, 41-32.
- Bin Sahana, A. S. (1991). On fuzzy strong semi-continuity and fuzzy precontinuity. *Fuzzy Sets and Systems*, 44, 303-308.
- Chang, C. L. (1968). Fuzzy topological spaces. Journal of Mathematical Analysis and Applications, 24, 182-190.
- Chettri, P., Gurung, S., & Halder, H. (2014). On *ps-ro* semiopen fuzzy set and *ps-ro* fuzzy semicontinuous, semiopen functions. *Tbilisi Mathematical Journal*, 7(1), 87-97.
- Chettri, P., Gurung, S., & Katwal, K. (2016). On ps-rofuzzy irresolute functions. The Journal of Fuzzy Mathematics, 24(3), 815-824
- Chettri, P., & Gurung, S. (2016). On *ps-ro* fuzzy αcontinuous functions. *Annals of Fuzzy Mathematics and Informatics*, 12(1), 83-92.
- Deb Ray, A., & Chettri, P. (2010). On pseudo δ -open fuzzy sets and pseudo fuzzy δ -continuous functions. *International Journal of Contemporary Mathematical Sciences*, 5(29), 1403-1411.
- Deb Ray, A., & Chettri, P. (2011). Fuzzy pseudo nearly compact spaces and *ps-ro* continuous functions. *The Journal of Fuzzy Mathematics*, 19(3), 737-746.
- Deb Ray, A., & Chettri, P. (2016). Further on fuzzy pseudo near compactness and *ps-ro* fuzzy continuous functions. *Theory and Applications of Mathematics and Computer Science*, 6(2), 96-102.

1060

- Kohli, J. K., & Prasannan, A. R. (2001). Starplus-compactness and starplus-compact open fuzzy topologies on function spaces. *Journal of Mathematical Analysis* and Applications, 254, 87-100.
- Lowen, R. (1976). Fuzzy topological spaces and fuzzy compactness. *Journal of Mathematical Analysis and Applications*, 56, 621-633.
- Pao-Ming, P., & Ying-Ming, L. (1980). Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith convergence. *Journal of Mathematical Analysis and Applications*, 76, 571-599.
- Prasad, R., Thakur, S. S., & Saraf, R. K. (1994). Fuzzy αirresolute mappings. *The Journal of Fuzzy Mathematics*, 2(2), 335-339.
- Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8, 338-353.