CHAPTER VI

H-TKRIMP: HYBRID REPRESENTATION ON TOP-K
REGULAR-FREQUENT ITEMSETS MINING BASED ON
DATABASE PARTITIONING

As described in previous chapters, TKRIMPE based on the database partitioning and the
support estimation technique works well on sparse datasets. Whilst, TKRIMIT based on the inter-
val tidset representation achieves good performance on dense datasets. Therefore, the aim of this
chapter is to devise a new efficient algorithm by combining the techniques from TKRIMPE and
TKRIMIT. The database partitioning technique is integrated with the interval tidset representation
to gain good performance on both sparse and dense datasets. Consequently, a new efficient single-
pass algorithm, H-TKRIMP (Hybrid representation on Top-K Regular-frequent Itemsets Mining
based on database Partitioning), is introduced. In this chapter, a database partitioning technique
(as presented in Chapter 4) and a hybrid representation (i.e. a combination between normal tidset
and interval tidset representations) are described in details. Besides, the data structure used to
maintain the top-k regular-frequent itemsets during mining process and the complexity analysis

of H-TKRIMPE are also discussed.
6.1 Preliminary of H-TKRIMP

To mine a set of top-k regular-frequent itemsets, H-TKRIMPE also employs a top-k list
as the previous algorithms. The top-k list is used to maintain the top-k regular-frequent itemsets
during mining. Besides, the best-first search strategy is applied to cut down the search space and
quickly mine the regular itemsets with the highest supports. Further, the database partitioning
technique is utilized to dismiss some unnecessary computing. Ultimately, a combination between
normal tidset and interval tidset representation, Hybrid representation, is devised and included

into H-TKRIMP to obtain good performance on all characteristics of datasets.
6.2 H-TKRIMP: Top-k list structure

As previous algorithms, H-TKRIMP is also based on the use of a top-k list structure which
is a simple linked-list with a hash table. The top-k list is used to maintain a set of k (or iess
than k) regular itemsets with the highest supports and their occurrence information during mining

process. Meanwhile, the hash table is utilized to quickly access all the information of each itemset

144

in the top-k list. As shown in Figure 6.1, each entry in the top-k list consists of 4 fields: item or
itemset name (1), total support (s'), regularity (r!), and a set of tidsets (T = {T{, - 7T1£n})
where pn is the number of partitions of considered database). From the figure, the item a has a
support of 11, a regularity of 2, and tidsets as {{1, =3}, {6, =2}, {9, —3}} which means the item

@ occurs in transactions {tl ,ta,t3, t4, 16, t7, s, tg, t10, t11, t12}-

item [top-k list's link
e B a It SRR N
b o a:l1:2 . c:6:2
T 306,20 093N T L3S, TH 911
TR T . AoV =
e
f

Figure 6.1: H-TKRIMP: Top-k list structure with hash table

6.3 Database Partitioning

In H-TKRIMP, the database is first divided into several disjoint partitions which have an
equal number of transactions as presented in (Brin et al., 1997b). Then, the tidsets (there is one
tidset for each partition) of each itemset are collected by using the proposed hybrid representation
in order to calculate its support and regularity with one database scan. This partition technique

allows reducing unnecessary computational costs.

Given the regularity threshold o, the database is split into pn = [|TDB|/o,] partitions.
Each partition will then contains o transactions. For example, consider the transactional database
of Table 6.1 with 12 transactions. A regularity threshold of 4 will split the database into 3 parti-

tions with 4 transactions each.

Table 6.1: A transactional database as a running example of H-TKRIMP

tid items

1 abcedf
2 abde
3 acd

4 ab

S becef
6 ade

7 abcde
8 abd

9 dacdf
10 abe
11 abcd
12 adf

145

H-TKRIMP will fully exploit the partitioning of the database. Thus, each itemset has a

(local) support, a (local) regularity, and a (local) tidset for each partition of database.

The tidset of an itemset X in the m!" partition P,,, denoted TiX, is the set of tids in mth

partition that contains the itemset X:

b = g | X Gl tom € Fig)

m

By combining the partitioning technique with the hybrid representation together, H-
TKRIMP can use two representations (i.e. normal tidset and interval tidset) to maintain tids of

each partition. Then, TX = {TIX, F ,Tp)ﬁl} is defined as the (global) tidset of an itemset X.

The (local) support of an itemset X in the mth partition, denoted s, is the number of

transactions (also denoted tids) in the mth partition that contains the itemset X . Then, the (global)

pn X
m=15m:

support X of the itemset X is equal to

For example, consider an item a occurring in tids {1.2,3,4,6, 580, 10;1Y, 12} Li.c.
transactions T% = {t,t,t3,t4,ts, 7,18, to, t10, t11, t12}) from the transactional database of
Table 6.1. Thus, based on the partitioning technique, the tidset of the first partition 77" con-
tains the set of tids {1,2,3,4} where the item a occurs. Meanwhile, the set of tids {6,7,8}
and {9,10,11,12} are maintained in T3 and T, respectively. Thus, the (global) tidset of a is
Te = {{1,2,3,4},{6,7,8},{9,10,11,12}}. Besides, the support of ais s* =4 + 3+ 4 = 11.

As mentioned in Chapter 4, based on the use of database partitioning technique, H-

TKRIMP can reduce some considered tids on mining process.
6.4 Hybrid representation

To allow for efficient calculating support and regularity of an itemset, a hybrid represen-
tation is applied in H-TKRIMP to collect its tidset that occurs in each partition. A hybrid repre-
sentation is a combination between normal tidset (i.e. the exact value of the transaction-ids) and
interval tidset (i.e. using only one positive and one negative integer to store a set of consecutive

continuous transaction-ids).

Definition 6.1 (Normal tidset of an itemset X in mth partition) Let a set of tids that the item-
set X occurs in TDB at the m'" partition be {t;fm, tifﬁ»l,mv . ,tgfm}, where p < q. Thus, the

tidset of the itemset X is defined as:

146

X X X
T it

Definition 6.2 (Interval tidset of an itemset X in m!" partition) Let a set of tids that itemsets
X occurs in TDB at the m*" partition be {tf,{m,t;&l’m, - ,t;{m} where p < q and there are
some consecutive tids {tuX,m, tff_H’m, . ,tff,m} that are continuous between t;fm and tﬁm (where

p < wand q > v). Thus, interval tidset of itemset X is defined as:

X X X X X X X X
FX = {8t o T S R b

p,m> “p+1,m> i Yu,m)

For example, consider an item a occurring in tids {1, 2, 3,4,6,7,8,9, 10, 11, 12} from the
transactional database of Table 6.1. Thus, based on the partitioning technique and the hybrid
representation, the tidset of the first partition 77 contains the set of tids 1,-3 where item a occurs.
Meanwhile, thetidsets {6, —2} and {9, —3} are maintained in Ti" and T, respectively. Therefore,
the fserebm is T {{1, -3}, 06,42), (5.4 9 .

For each tidset T,;‘f of an itemset X, H-TKRIMP has to decide which representation should
be used to achieve a good performance. To make a decision, the advantage and disadvantage of
each representation are considered. The advantage of using an interval tidset representation is the
number of reduced tids (as described in Chapter 5). Whereas, the disadvantage is the number of

tids that have to be determined whether it is consecutive continuous tids.

Definition 6.3 (Number of reduced tids in the m!" partition) Let TX be the interval tidset of
an itemset X in the m*" partition and let TNYX = {tn{',, ... ,tni{m}, where 1 < j < |TX|,
tnfm € TX, and tn])-,(m < 0, be the set of negative tids in the interval tidset TX. Then, nrtX is

defined as the number of reduced tids in the mt? partition from the interval tidset G

|TNX

m

nrts = Z —(1+ tnf’{m)

i=1

Definition 6.4 (Number of determined tids (to check whether they are consecutive continues
tids) in the m!" partition) Let TX be the interval tidset of an itemset X in the mth partition and
let TNX = {tnfi,, ..., tn¥,}, where 1 < j < |TX|, tnfy, € TX and tny, < 0, be the set

of negative tids in the interval tidset TT),f. Then, the number of tids that are determined as the

consecutive continuous tids ndt;s can be defined as:

147

. ITX| - ITNX| =1 iftffx) >0
ndt, =

m

i =TI No: if tix | < O

Therefore, the trade-off between nrt,X and ndt:x values is taken into account. If nrtX >
ndt;X, H-TKRIMP can take advantage from the interval tidset representation. Then, H-TKRIMP
uses an interval tidset to maintain a tidset. Otherwise, a normal tidset is applied. By using a hybrid
representation, H-TKRIMP can save time from the use of the combination between a normal tidset

and an interval tidset in the mining process (in Section 6.6).
6.5 Calculation of Regularity and Support

By using the partition technique and the hybrid representation, the tidset of each itemset
is splited into several tidsets, and these tidsets may contain some negative tids when the itemset
occurs in consecutive continuous tids (as described in Definition 6.2). As a consequence, the
original definition of the regularity of an itemset of (Tanbeer et al., 2009)) and that of (Amphawan
et al., 2009) cannot find the regularity between two tidsets and between positive and negative tids.
It is suitable for only one tidset in each itemset and only for positive tids. Accordingly, five new

definitions is proposed to calculate the regularity of each itemset.

Definition 6.5 (Regularity of an itemset X between two consecutive tids in a normal tidset)

Consider the normal tidset T;X of an itemset X for the mth partition. Let tﬁm and tém be two
consecutive tids in T,ff, i.e. where p < q, and there is no tid t(),fm in T,ff, p < o < q, such that a
transaction oft(),fm contains X (note that p, q and o are indices). Thus, rtté{m is defined as the

regularity value between the two consecutive tids t;{m and t;{m by following cases:

tzly\:m fg=1

oS ST g
tq,m - tp,m lf2 95 |Tm|

q,m

Definition 6.6 (Regularity of an itemset X between two consecutive tids in an interval tidset)
Consider the interval tidset Tyx of an itemset X for the mth partition. Let tz),fm and téfm be two
consecutive tids in Tr)rf, i.e. where p < q and there is no transaction to, p < o < g, such that

X

t, contains X (note that p, q and o are indices). Then, Tttg m is denoted as the number of tids

(transactions) between tifm and tim that do not contain X. This leads to the following cases:

148

tt/;\{m ifq =1
; b= s Wi A ts,, > sy T
rttqym = - ” -
1 ifb OOnd L5, 0,2 £ 5 |15
1+ (o — 81 m) I tim < Oand it > 0,2 < g < T

Definition 6.7 (Regularity of an itemset X in the mth partition) Let for a TX, RTTX =
{rttfm, e ,Tttﬁwx[.} be the set of regularity between each pair of consecutive tids in the m"

partition. Then, the regularity of X in the mt" partition can be denoted as:

rpi = maz(rtty m, rtta,m, - - s Tt T | m)

Definition 6.8 (Regularity of an itemset X between two consecutive tidsets) Let tﬁm,m_l be
the last tid where X occurs in the (m—1)t" partition and tfm be the first tid where X occurs in the
mth partition. Then, rtp:X is denoted as the regularity of X (i.e. the number of tids (transactions)
that do not contain X) between the two consecutive partitions, (m — 1)th and m**. Obviously,
rtpf(is tffm. Lastly, to find the exact regularity between two consecutive partitions of X on all the
database, the number of transactions that do not contain X between the last tid where X occurs
and the last transaction of database: rtpffn +1 is also considered. Thus, the regularity between

any two consecutive tidsets TX_, and TX can be defined as:

2 ifm=1

ripl =% 1.~ (tf_ | tmet = tirx m-1) f2Em< PRt |y <O
|TDB| — tﬁ,ﬁ'_lllm—l ifm=pn+ 1’ti)§“3f;l|,m—1 >0
ITDB| = (tfx |y moy =t mey) Fm=prtLitie oy <0

Then, the regularity of an itemset is defined with the help of definitions 6.7 and 6.8.

Definition 6.9 (Regularity of an itemset X) The regularity of an itemset X is defined as:

rX = maz(maz(RPY), maz(RTPX))

149

where RPX = {rp{ rpg, ... ,rpl)fn} is the set of regularities of X in each partition (Defini-
tion 6.7) and RTPX = {rtpf(, rtpé(, " ,rtp;)fnﬂ} is the set of regularities of X between two

consecutive partitions (Definition 6.8).

To calculate the support of each itemset from its tidsets, two definitions are used to compute

the support in each partition and the total support of the itemset is also presented.

Definition 6.10 (Support of an itemset X in a partition) Let tiX_Lm and tffm be the two consec-
utive tids in ToX Thus, sttfm is defined as the support value between two consecutive tids tf_l,m

and tX by following cases:

1,

1 i >0

2,7
im
X

i,m

ftE <0

i,m

Therefore, the regularity of the itemset X in the mt" partition is defined as follows.
8 y p

4]
X . X
Sm = Z 'Stti,m
i=1

Definition 6.11 (Support of an itemset X) The support of an itemset X, denoted s, is the sum-

mation of support in every partition, i.e.,

For example, consider the transactional database of Table 6.1 and the case of an item a:
T* = {{1,-3},{6,-2}, {9,—3}}. The set of regularities in each partition of the item a is
RP® = {1,1,1}. The set of regularities between two consecutive partitions of a is RT'P* =
{1,6 — (1= (=3)),9~ (6 —(-2)),12— (9 - (=3))} = {1,2,1,0}. Thus, the regularity of item
ais r® = maz(maz(1,1,1),maz(1,2,1,0)) = 2. In addition, the set of supports of the item a
in each partition is = {(1 4 (=(=3)), (1 + (=(=2))), (1 + (=(=3)))} = {4,3,4}. Consequently,

the support s? of the item a is equal to 4 + 3 + 4 = 11.
6.6 H-TKRIMP algorithm

Based on the database partitioning and the hybrid representation mentioned above, the H-
TKRIMP algorithm is also described. H-TKRIMP consists of two steps : (i) Top-k list initializa-

tion: partition the database, scan each partition to obtain top-k regular items and then transform

150

each tidset into the suitable tidset (a normal tidset or an interval tidset); (i) Top-k mining: merge
(with two constraints) each pair of elements in the top-k list to produce new larger itemsets by
using the best-first search strategy, sequentially intersect their tidsets (one by one partition) to
find the k regular itemsets with the highest supports, and then transform each tidset of the new

generated itemset into the proper representation.
6.6.1 H-TKRIMP: Top-k initialization

To create the top-k list, each partition of the database is scanned (one by one transaction)
to obtain all k (or less than k) regular items. A new entry in the top-k list is created for any item
that occurs in the first o, transactions (i.e. occurs in the first partition). Each item of the current
transaction is then considered. With the help of the hash table, H-TKRIMP quickly realizes
whether the current item is already existed in the top-k list or not. For the first occurrence of an
item in the partition, a new tidset for the partition is built and its support, regularity, and a tidset

are initialized. Otherwise, H-TKRIMP updates its support, regularity and a tidset.

To update the tidset 7% of an item X in the mt" partition, H-TKRIMP has to compare the

last tid (tfm of T:X with the new coming tid (¢;). It simply consists of the following cases:

e if t; m < 0, i.e. there are some former tids which are consecutive and continuous with the
exact tid of ¢; ,,. H-TKRIMP calculates the exact tid of ¢; m < 0 (i.e tl-..l,,ln — tim), and
compares it with ¢; to check if they are continuous or not. If they are consecutive continuous
tids (i.e t; — ti—1,;m + tim = 1), H-TKRIMP has to extend the tidset Tﬁ (it consists only of
adding —1 to t;), otherwise H-TKRIMP creates a new element to take into account ¢; (it

simply consists of adding t; after ¢; ,, in T

o if t; , > 0, i.e. there is no former tid, consecutive and continuous with t; ,,. H-TKRIMP
compares t; ,, with t; to check if they are continuous or not. If they are consecutive contin-
uous tids (i.e. t; — t; m = 1) H-TKRIMIP creates a new interval in 7 (it consists of adding
—1 after ¢; ,, in T;,\:); otherwise, H-TKRIMP creates a new element to take into account t;

(it simply consists of adding ¢; after t; n, in T,’;f).

At the end of the mt" partition, if nrtX < ndtX, the interval tidsets T:X will be transformed
to a normal tidset. When the entire database is read, the top-k list is trimmed by removing all the
entries (items) with regularity greater than the regularity threshold o, and the remaining entries
are sorted in descending order of support. Lastly, H-TKRIMP removes the entries after the kb

entry in the top-k list. The detail of the top-k list’s construction is presented in Algorithm 7.

151

Algorithm 7 (H-TKRIMP: Top-k list initialization)
(1) A transaction database: T'DB
(2) A number of itemsets to be mined: k
(3) A regularity threshold: o,
Output:
(1) A top-k list

create a hash table for all I-items
for each partition m = 1 to pn do
for each transaction j in the the m*" partition do
for each item ¢ in the transaction j do
if the item ¢ does not have an entry in the top-k list then
create a new entry for the item i with si, = 1,7% = ¢; and create a tidset T, that contain t;
create a link between the hash table and the new entry
else
add the support s¢, by 1
if t; and the last tid in T}, are two consecutive continuous tids then
if the last tid in 7, < 0 then
add the last tid in T}, by —1
else
collect —1 as the last tid in T?%,

th

else
collect ¢; as the last tid in il
calculate the regularity r' by t;

for each entry (item) 7 in the top-k list do
add the support s by si,
if nrtX < ndt;X then
transform T°, to be a normal tidset // not contain tid < 0

for each item ¢ in the top-k list do
calculate the regularity 7* by |T'DB|— the last tid of T,
if r* > o, then
remove the entry 7 out of the top-k list

sort the top-k list by support descending order
remove all of entries after the k** entry in the top-k list

6.6.2 H-TKRIMP: Top-k mining

The top-k mining algorithm, shown in Algorithm 8, also adopts the best-best first search
strategy (i.e. first consider from the most frequent itemsets to the least frequent itemsets in the
top-k list) to quickly generate the regular itemsets with the highest supports and to raise up the
support of the kth itemset (s;). This strategy can help the H-TKRIMP algorithm to prune the

search space by using the support sj.

To generate a new top-k regular-frequent itemsets, two candidate itemsets X' and Y in the
top-k list are merged to be an itemset XY with the following two constraints: (i) the size of
the itemsets must be equal; (ii) both itemsets must have the same prefix (i.e. each item from
both itemsets is the same, excepts the last item). These constraints can help H-TKRIMP avoid
the repetition of generating top-k regular itemsets and help H-TKRIMP prune the search space.

Consequently, the tidsets of itemsets X and Y are sequentially intersected in order to calculate

152

the support, the regularity and the tidsets of X'Y". To sequentially intersect interval tidsets TX and

TY , H-TKRIMP categorizes this process into three cases as follow:

e Two of them are normal tidsets. The two tidsets can be easily intersected by comparing
each pair of tids. If they are equal, H-TKRIMP collects one of them into the tidset TLY of

the m*" partition.

¢ Two of them are interval tidsets. H-TKRIMP has to consider four cases when comparing

each pair of tids tiX and t}/ in order to construct 7XY (see Definition 6.2):

(1) if t, =t¥,, > 0add tX atthe end of T,X"

Gm

@) iftX, > 0,¢%,, < 0,¢%, <t¥_; . —t¥,., add t} at the end of TXY

3 ift, <0,t),, > 0,¢¥, <tX,, —t&, addt),, at the end of T"

@) if X, 5, < 0,add tXXy | — (¢, — tin) at the end of TEY 4 i<
t;-/_l,m — t}fm otherwise add tﬁ);yhm — (t}/—l,m - t}fm) at the end of TXY

¢ One of them is a normal tidset and the another one is an interval tidset. The conditions
from the second case are applied with some different details; for example, Tg is a normal

tidset and 7)), is an interval tidset.

(1) if {5, =t¥,, > 0,add ;5 atthe end of T,"

(2) it s O~ 0, B Pl % iR

K> 0,80, <0,tX <V, 1t addtX attheend of T

From T:XY, the support sXY and regularity 7XY of XY can be easily computed. If the
regularity of the new generated itemset XY is no greater than o, and its support is greater than
sk, then XY is inserted in the top-k list and the kth itemset is removed from the top-k list. Lastly,
because of the partitioning technique, TKRIMPE can reduce the time to intersect some tids of
each partition when at least one of the tidsets does not contain regular sequence of transactions.

This will frequently happen particularly in sparse datasets.

By separating the intersection process into 3 cases, H-TKRIMP can reduce computational
time in some cases. For the first case, the two tidsets are normal tidsets. This means that the two
considered candidate itemsets occur sparsely in the partition. Thus, the computational time used
to intersect these tidsets is equal to TKRIMPE which is the fastest algorithm for sparse datasets.
For the second case, the two tidsets are interval tidsets. H-TKRIMP has similar perfomance as
TKRIMIT which is the best algorithm for dense datasets. Finally, for the third case, one is a

normal tidset and another one is an interval tidset. It is the case of the intersection between tidsets

153

that are sparse and dense, respectively. H-TKRIMP has similar performance since TKRIMPE as

it consider only small size of tidsets.

Based on the hybrid representation, H-TKRIMP can reduce time to intersect tidsets from
TKRIMPE by reducing a number of tids in the dense tidsets. Moreover, H-TKRIMP can re-
duce time in the intersect process from TKRIMIT on the sparse tidsets by reducing the time to

investigate each tid in the interval tidset whether it is consecutive continuous or not.

Algorithm 8 (H-TKRIMP: top-k mining)
Input: top-k list, o, k
Output: top-k regular-frequent itemsets
for each entry z in the top-k list do
for each entry ¥ in the top-k list (z > y) do
" if the entries and y have the same size of itemsets and the same prefix then
merge the itemsets of x and y to be the itemset Z = I° U IV
for each partition m = 1 to pn do
for each t, in TX (p = 1to |T;X|)and tin T, (g = 1to |T}Y]) do
if t, > 0 and ¢, > 0 then
if t, = t, then
calculate the regularity 7 by t,, and check rZ with o,
add the support sZ, by 1
collect t,, as the last tid in)2

else if t;, > 0 and ¢, < 0 then
ift, <tq-1 —tq then
calculate the regularity 72 by t, and check rZ with o,
add the support sZ, by 1
collect t,, as the last tid in a2

elseif ¢, < 0 and ¢, > 0 then
ift,_1 —t, > t, then
calculate the regularity 72 by tq and check rZ with o,
add the support sZ, by 1

collect t, as the last tid in e

else
if tp—l = tp > tq_l = tq then
add the support sZ, by (tq—1 — tq) — tIZT,ﬁI
collect tlz:T,ﬁl — (tg—1 — tq) as the last tid in T.Z
else
add the support sZ, by (tp—1 — tp) — t|z”r,ﬁ|
collect 1£|ZT'%1 — (tp—1 — tp) as the last tid in T2

add the support sZ by sZ,
if nrtX < ndtX then
transform T2 to be a normal tidset // not contain tid < 0

calculate the regularity 7Z by |TDB|— the last tid of szn

if 4 < o, and sZ > s then
insert the itemset Z (I* U IY) into the top-k list with rZ, s and T'?
remove the k** entry from the top-k list

6.7 Example of H-TKRIMP

Consider the T'D B of Table 6.1, the regularity threshold o, of 4 and the number of desired

results £ of

top-k list from the "D B of Table 6.1 is illustrated in Figure 6.2.

5. The database is separated into three partitions. Then, the process of initializing

aslisl b:1:1 e:lil
"[({1} H () (1))]
v
il H d:1:1 I
({1}) {ty)
(a) read first transaction
’[a2l H bi2:1 |,|7 o 1l |
{{1.-1}} ({1-1)} ei}}
T e:l:2 d:2:1
() (2)) T ({ey)
(b) read second transaction
_’l a:3:1 H b:2:1 H ci2:2 I
(-2}) {t-1}} (41,33}
fall el2 d:3:1
[({1}} H ({2} H {{1,-2}} l
(c) read third transaction
a:4:] bidi2 ci2:2
"{ {{1-3}) J”| {{L-14}) |"’| (Ufn J
‘ 13 e:1:2 H d:3:1 ‘
({1} ({2} } {1,-2}}
(d) read first partition
a:4:] H b:8:2 H ¢i2:2 4]
{{1,-3}} {{1,2,4}} ({134}
1171 172 d?l
DR exl: 3%
l ({13} {{2}4 }‘—l {{1,-2}} l
(e) converse tidset to be normal tidset
a: 7 i b:6:2 cid:2
_’l t(1,-34, {6,-2}) Jr{lﬂ} 5,7, 8}} H {41,34.45,7}} l
1:2:4 e:d3 J‘_ d:6:3]
{1},{5}} {12},{5,-2}} {{1.-2}.{6,-2}}
(f) read second partition
a:9:2 H d:9:3 b:8:2]
{{1,-3},{6,-2},{9,-3}} {{1,-2},{6,-2},{9.11,12}} {{1,2,4},{5,7,8},{10,11}}

e::3
{5,234

6612
"2} 10}} {{1,3},{5,7},{9,11}}

(g) Final Top-k list in initialization process

Figure 6.2: Top-k list initialization

By scanning the first transaction t; = {a,b, ¢, d, f}, the entries for items a,b, ¢, d, and f

are created, and their supports, regularities and interval tidsets are initialized as (1 : 1 : {1}) (see

155

_’l a:9:2 d:9:3 ___4 ad:9:3
{{1,-3},{6,-2},{9,-3}} {41,-21,46,-2},{9,11,12}} {{1,-2},{6,-2},{9,11,12}}

c:6:2 H b:&:2
(41,35,45,7h49, 113} {{1,2,4},{5,7,8},{10,11}}

(a) top-k list when merging item a with item d

__" a:9:2 d:9:3 ad:9:3
{{1,-3},{6,-2},{9,-3}) {{1,-2},16,-2},{9.11,12}} {{1,-2},{6,-2},{9,11,12}}

ab:7:3 b:8:2 I
{{1,2,4},{7,8},{10,11}} {{1,2,4},{5,7,8},{10,11}}

(b) final top-k list

Figure 6.3: Top-k during mining process

Figure.6.2(a)). Next, the second to = {a, b, d, e} isread, and H-TKRIMP adds —1 at the end of the
interval tidsets of a, b and d, since these items occur in two consecutive continuous transactions.
Then, the entry for the item e is created and initialized (Figure 6.2(b)). For the third transaction
(ts = {a,c,d}), as shown in Figure 6.2(c), the last tids of item a and d are changed to —2 (they
occur in three consecutive continuous transactions t1, to and t3) and the interval tidset of the item
c is updated by adding t3 as the last tid in Tf. Now, the forth transaction is considered to update
the tidset 7 of items @ and b as illustrated in Figure 6.2(d). However, if nrt} (= 0) < ndt}(= 1),
then H-TKRIMP transforms le to be a normal tidset (see Figure 6.2(e)). After the first partition
is read, the next partition (transactions 5 to 8) initializes or updates the tidset T for each item
occurring in this partition as illustrated in Figure 6.2(f). Finally, the third partition is considered
and then H-TKRIMP transforms the tidsets into suitable representation. After scanning all the
transactions, the top-k list is sorted by support descending order and the item f is removed (see

Figure 6.2(g)). It will be the starting point for the mining process.

In the mining process, the item d is first merged with the former item a. The tidsets 7" and
T4 are sequentially intersected from the first to the last partition in order to calculate the support
5% = 9, the regularity 7%¢ = 3. The tidsets of the first and the second are Ted = {1,-2} and
Tgd = {6, -2}, respectively. Meanwhile, the tidset is Tgd = {9,11, -1} and nrtdd(= 0) <
ndt3%(= 2). Then, H-TKRIMP transforms T into a normal tidset format (Tgd = {9,11,12}).
The tidsets 7%¢ of itemset ad is T%¢ = {{1,-2},{6,—2},{9,11,12}}. Since the support 5%
is greater than s¢ = 5 and the regularity 7% is less than ¢, = 4, the item e is removed and ad
is inserted into the top-k list as shown in Figure 6.3(a). Next, the third itemset i.e. itemset ad is
considered and compared to the former itemsets a and b. Since these itemsets do not have different
size (and do not share the same prefix), they are not merged. Next, H-TKRIMP then considers
the item b which is merged with a and d (s*® = 7, 7% = 3, T% = {{1,2,4},{7,8},{10,11}};
sbd =5 rbd =5 T = {{1,2},{7,8},{11}}). The itemset ab is thus added to the list and the

156

item c is removed. The itemset bd is eliminated. Lastly, the itemsets ab and ad are considered,

and finally the top-k regular-frequent itemsets are obtained as shown in Figure 6.3(b).
6.8 Complexity analysis

In this section, we discuss the computational complexity for H-TKRIMP in terms of time

and space. Extensive experimental studies will complement this analysis in Section 6.9.

Proposition 6.12 The time complexity for creating the top-k list is O(nm) where m is the number

of transactions in the database and n is the number of items occurring in the database.

Proof: Since the proposed algorithm scans each transaction in the database once, the entry
of each items that occurs in the transaction is also looked up once in order to collect the tid into
tidset (O(nm)). The cost for sorting all (in the very worst case) the entries is O(nlogn). Then,
the time complexity to create the top-k list is formally O(nm + nlogn). In fact, the number
of items (n) is, for the considered applications, always less than the number of transactions(m).

Hence, the time complexity to create the top-k list is O(nm). |

Proposition 6.13 The time complexity for mining top-k regular-itemset is O(mk?) where m is the

number of transactions in the database and k is the number of results to be mined.

Proof: The mining process merges each itemset in the top-k list with only the former itemset
in the top-k list. Then, the tidsets of the two merged itemsets are intersected. Therefore, the
combination of all itemsets in the top-k list is k * (k + 1)/2 and the time to intersect tidset at each

step is O(m). Hence, the overall time complexity of mining process is O(mk?). |

Proposition 6.14 The memory space required by TKRIMIT is O(([3|TDBI1)k) where o, is the

number of transactions in each partition and k is the number of itemsets to be mined.

Proof: Based on the interval tidset representation, the maximum number of maintained tids
of an itemset X in TDB is [%|TDBH. With the partitioning technique, the database is divided
into several partitions. Thus, the maximum number of maintained tids of an itemset X in any
m" partition is {%ar] where o, is the number of transactions in each partition. This case happens

when the itemset X occurs in every two transactions and miss one transaction in the mt" partition.

157

Since, the interval tidset contains one positive and one negative tids alternately over the
tidset, the maximum value of the number of determined tids ndt;‘,ﬁ is equal to the number of

2q,
negative tids in the interval tidset which is ndt;X = L%l = [%ar].

To decide which representation should be used for the m!" partition, the value of nrtX
must be greater than ndtX. As mentioned in Chpater 5, the use of interval tidset representation
cannot reduce the number of tids to be maintained in the case that the number of tids is less than or
equal to [%o’r] . If the number of maintained tids is equal to [%Jr] + 1, there are at least one group
that have three or more consecutive tids in the tidset. Thus, for each increasing number of tids
that more than [%ar], the number of reduced tids is increased 3 and the number of determined

tids is reduced to 1. Thus, when the number of tids that X occurs is grater than [%o‘r] equal

to § * [%ar] = [%or], the value of nrtX and ndt:\ are equivalent. This is the worst case of
maintaining tids of the hybrid representation. Then the maximum number of maintained tids in

the m*" partition is equal to [20,] + [or] = [§o].

In addition, the maximum number of maintained tids of the itemset X in every partitions is
equal to [%JT] *pn = [;i- |T D B|] where pn is the number of partitions in database. Consequently,

all of desired memory to maintain interval tidsets for k itemsets is O(([% |TDB|])k). n

6.9 Performance evaluation

In this section, the performance of the H-TKRIMP algorithm is empirically studied
and compared with the previous top-k regular-frequent itemsets mining algorithms: MTKPP,
TKRIMPE and TKRIMIT to demonstrate the difference on performance of the algorithms to mine
top-k regular-frequent itemsets. To measure the performance of H-TKRIMP, the processing time
(including top-k list construction and mining processes), space usage (i.e. memory consumption)

and scalability (with varied number of transactions in database) are considered.

6.9.1 Experimental setup

The experiments of H-TKRIMP are done on three synthetic datasets (T1014D100K,
T20I6D100K and T20I16D100K) and nine real datasets (accidents, BMS-POS, chess, connect,
kosarak, mushroom, pumsb, pumsb* and retail) which were described their detail_s and character—
istics in Chapter 2. Program for H-TKRIMP is written in C in the same manner as the previous

algorithms: MTKPP, TKRIMPE and TKRIMIT using a top-k list. All experiments are performed

158

on a Linux platform with a Intel®Xeon 2.33 GHz and with 4 GB main memory.

To evaluate the performance of H-TKRIMP, the computational time (total execution time,
including CPU and I/O costs) of the four algorithms with the small and the large values of -k and
various values of o, are considered. The value of k is divided into two ranges which are 50 — 500
(for the small values) and 1,000 — 10, 000 (for the large values). Meanwhile, the value of o is set
depending on the characteristic of each dataset for illustrative purpose. Therefore, the value of o,
is not the same in each dataset. In fact, the number of regular itemsets of each database increases
with the regularity threshold. For sparse datasets, each itemset does not frequently occur, then the
value of o, should be specified to be large when the value of k is large in order to gain a large
number of results. For dense datasets, each itemset appears very often, then a small value of o
should be used. Due to the use of the top-k list and the proposed hybrid representation, the study
of memory consumption for H-TKRIMP compared with the previous proposed algorithms is also
discussed. Lastly, the scalability of H-TKRIMP on the number of transactions in the database is

illustrated.

6.9.2 Execution time

Let first consider the six real dense datasets (i.e. accidents, chess, connect, mushroom,
pumsb, and pumsb*). Figure 6.4 to Figure 6.21 demonstrate the the runtime on real dense
datasets with varied regularity threshold. In most cases, H-TKRIMP has similar performance
to TKRIMIT but outperforms MTKPP and TKRIMPE. When the value of k increases, the per-
formance difference becomes larger. With the large values of k, H-TKRIMP and TKRIMIT can

fully take advantage of the interval tidset representation.

Recall that H-TKRIMP and TKRIMIT employ the interval tidset representation to maintain
tids that each itemset appears, then both algorithms can group consecutive continuous tids together
and reduce the number of maintained tids of each itemset. Hence, H-TKRIMP and TKRIMIT
can sdve time to intersect tids, calculate regularity and support, and collect tidsets of each new

generated itemset.

The runtime on sparse datasets (i.e. BMS-POS, retail, T10I4D100K, T2016D 100K, and
T40110D100K) is illustrated in Figures 6.22 - 6.36. From these figures, it can be seen that
H-TKRIMP outperforms MTKPP and TKRIMIT for the small value of k because H-TKRIMP
employs the hybrid representation that maintains tidsets of each itemsets follows by the occur-

rence behavior of each itemset. On the other hand, TKRIMPE is faster than H-TKRIMP since

159

H-TKRIMP does not apply the support estimation technique, it cannot take advantage from early
terminated intersection process. With the large values of k, H-TKRIMP consumes execution time
as much as TKRIMPE (i.e. the fastest algorithm among the previous algorithms) because both of
them employ the database partitioning technique which helps ignoring some tids in the intersec-
tion process. In some cases, especially on BMS-POS and T40I10D100K datasets, H-TKRIMP
outperforms TKRIMPE, by using the hybrid representation which can also group the consecutive

continuous tids in sparse datasets,

As mentioned above, based on the database partitioning technique and the hybrid repre-
sentation, H-TKRIMP can reduce intersection process time on sparse datasets and reduce space
used-to maintain tids on dense datasets. On dense datasets, supports of most itemsets in the set
of results are quite high, thus the interval tidset representation is applied to such itemsets. As a
result, the processing time of H-TKRIMP is similar to TKRIMIT which performs best on most
dense datasets with long items. On sparse datasets, with the small value of k, the processing time
of H-TKRIMP is shorter than MTKPP and TKRIMIT but it is longer than TKRIMPE in some
cases. Since, the H-TKRIMP and TKRIMIT contain some negative tids in the tidsets, it is very
difficult to apply the estimation technique in the interval tidset representation. Accordingly, H-
TKRIMP cannot take benefit of pruning search space from estimation technique as TKRIMPE in
some datasets. With the large values of k, H-TKRIMP has the same performance as TKRIMPE
which is still better than MTKPP and TKRIMIT due to the advantage of the database partitioning
technique. By deeper analysis, in some datasets, e.g. BMS-POS and Mushroom, H-TKRIMP
is the fastest algorithm on both small and large values of k. For each itemset, H-TKRIMP uses
normal tidset to collect tids for sparse partitions and also apply interval tidset to maimain.tids in
the dense partitions. Therefore, H-TKRIMP can take benefit from the hybrid representation on

fluctuated occurred datasets.

6.9.3 Memory consumption

Another issue related to the efficiency of H-TKRIMP is memory usage. To evaluate the
space usage, the regularity threshold o, is set to be the highest value (used in previous subscction)

for each dataset.

Figure 6.37 to Figure 6.42 show the memory usage of H-TKRIMP compared to other pro-
posed algorithms on dense datasets. It can be seen from the figures that the memory usage of H-

TKRIMP increases as the value of k increases and H-TKRIMP consumes the same size of memory

160

as TKRIMIT in the most cases. From the figures, H-TKRIMP can down size memory usage from
MTKPP and TKRIMPE with the large value of k because the advantage of using interval tidset
representation. However, in some cases, H-TKRIMP uses more memory than that of TKRIMIT
because it has to convert some tidsets that have too few tids to be normal tidset (i.e. baSed on
the use of hybrid representation). By this way of doing, H-TKRIMP can save computational time
from the use of single representation (only normal tidset or interval tidset representation) but it
takes little more memory than TKRIMIT using only interval tidset representation. Meanwhile, the
memory usage on sparse datasets are illustrated in Figure 6.43 to Figure 6.47. From these figures,
the memory usage of the four proposed algorithms are similar due to the fact that each itemset
does not occur in consecutive continuous tids. Therefore, H-TKRIMP and TKRIMIT cannot take
the advantage from the interval tidset representation. However, from the results, it can be seen
that based on the used of the top-k list structure and maintaining tidset, the memory usage of
H-TKRIMP is efficient for the top-k regular-frequent itemsets mining using the recently available

gigabyte range memory.

6.9.4 Scalability test

In this experiment, two primary factors, the scalability of execution time and memory us-
age, are examined. The kosarak dataset which is a huge dataset with a large number of distinct
items (41, 270) and transactions (990, 002) is used. To test the scalability with the varied num-
ber of transactions, the database is first divided into six portions. Each portion contains: 100K,
200K, 400K, 600K, 800K and 990K transactions, respectively.The value of k (i.e. the number
of itemsets to be mined) is specified to 500 and 10, 00C (i.e. each is the instance of the small and
the large values of k), and the regularity threshold is set to 6% of the number of transactions in

each portion.

As shown in the plots in Figures 6.48 and 6.49, H-TKRIMP outperforms the three competi-
tors in all the tests conducted. All the execution time linearly grows as the dataset size increases
from 100K to 990K . For the large values of k, H-TKRIMP is much more scalable than the others
due to the fact that it benefits from the proposed hybrid representation. H-TKRIMP can reduce
the number of maintained tids during mining based on interval tidset representation. Furthermore,
the number of considered tids (in each iteration of intersection process) is also decreased by using
database partitioning technique. Meanwhile, H-TKRIMP is also the most scalable on the smail
value of k. In most cases, the scalability of H-TKRIMP and TKRIMIT are similar since they are

both based on the interval tidset representation.

161

The memory scalability is also considered. From the Figures 6.48 and 6.49, the slope of H-
TKRIMP smoothly increases as the number of transactions increases. In some cases, H-TKRIMP
consumes memory little more than that of TKRIMIT but it still better than MTKPP and TKRIMPE
because H-TKRIMP employs the hybrid representation of normal and interval tidsets. However,
H-TKRIMP has linearly scalability in term of memory usage for mining top-k regular-frequent

itemsets.

6.10 Summary

In ihis chapter, we have proposed an efficient algorithm to mine a set of top-k regular-
frequent itemsets, H-TKRIMP, which is based on: (i) a best-first search strategy that allows to
mine the most frequent itemsets as soon as possible and to raise quickly the k" support (i.e. the
support of the kt" itemset in the sorted top-k list) dynamically which is then used to prune the
search space; (ii) a partitioning of the database in order to reduce the number of comparison of
certain tids at the end of each partition during the intersection process and (iii) a hybrid represen-
tation used to maintain tidset during mining process which is a combination between normal and

interval tidset representations.

The performance studies on both real and synthetic datasets show that the proposed algo-
rithm is efficient. The performance of H-TKRIMP is compared with MTKPP, TKRIMPE and
TKRIMIT, which are at the moment the only three efficient algorithms for mining top-k regular-
frequent patterns. From the performance studies, it can be concluded that with the small and the
large value of k, H-TKRIMP has good overall performance for both dense and sparse datasets.
In most time, H-TKRIMP can reduce the number of maintained tids in the top-k list on dense
datasets. This is caused to save its processing time to mine results. On the other hand, H-TKRIMP
is able to reduce the number of considered tids in each iteration of intersection process on sparse
datasets, thus improves its running time instantly. By combining the partitioning and the hybri'd
representation together, H-TKRIMP is efficient in terms of time and space to mine top-k regular-

frequent itemsets.

162

accidents (g, = 1)

125 F | [I [
MTKPP ——
10 |- TKRIMPE —-X--
TKRIMIT --% -+
" H-TKRIMP ----(3--
@ 7
5 e
= 5 -:.":':ﬁ:‘. =
2.5 -1
|
0 50 100 200 300 400 500
k
accidents (o, = 1)
200 T)
160
= 420~
z
= 80 — —
MTKPP —+—
TKRIMPE --X%--
40 TKRIMIT --% - 7
I }?-TKRIMP[-n-E}--»
0 1000 2000 4000 6000 8000 10000

k

Figure 6.4: Runtime of H-TKRIMP on accidents (o, = 1%)

accidents (o, = 2)

T T T T T
PF-tree —+4—
14 |- MTKPP --%-- _
)
% 105 7T
H cp
= T //’/ —
X
3.5 |- e —
= L I 1
0 50 100 200 300 400 500
k

200 T T 4
160
= 120 |-
g
= 80 -
MTKPP —+—
TKRIMPE —-%--
40 TKRIMIT --% -+]
0 1000 2000 4000 6000 8000 10000

k

Figure 6.5: Runtime of H-TKRIMP on accidents (o, = 2%)

163

accidents (o, = 3)

17.5 T T T T T
PF-tree ——
14 b= MTKPP --%-- =
-
% 105} T A
= 7+ L ~
X
35 e -
=== T ! I !
0 50 100 200 300 400 500
K
accidents (o, = 3)
200 T T {
160 |-
& 120 =
g
= 80 I~
MTKPP —+—
TKRIMPE —-X--
40 = TKRIMIT --% -
| riI-TKRIMPl----E]~~--
0 1000 2000 4000 6000 8000 10000
k
Figure 6.6: Runtime of H-TKRIMP on accidents (o, = 3%)

chess (o, = 2)

0.15 I T T T T
MTKPP —+—
0.12 |~TKRIMPE --%-- =
TKRIMIT --% --
H-TKRIMP [+
2 0.09 - =
2
= 0.06 —
0.03 (— o .
o ..&..&.:..‘.T é """" l %
0 50 100 200 300 400 500
k
chess (o, = 2)
3 T T T T
TKRIMPE ¢
E -l e
24~ TKRIMIT - -% -
H-TKRIMP -+
5 18| .
- o)
£ e
ook N N A 2
0 1000 2000 4000 6000 8000 10000
k

Figure 6.7: Runtime of

H-TKRIMP on chess (o, = 2%)

time(s)

time(s)

164

chess (o, = 4)

Q:13 T T T |
MTKPP ——
0.12 }~TKRIMPE —-X--
TKRIMIT --% -+
H-TKRIMP - £+~
0.09 - -

0.06

0.03 =
) o wibee s :.:_:‘:_4_,&....‘.....?
B e 60, s [s |

chess (o, = 4)

3 I | l I I
MTKPP —f—
24 |-TKRIMPE --%-- —
. TKRIMIT --% -
H-TKRIMP -+~
18 -
| ,_:.1.:-:-1;
a
+ . r..-.r.m.:.:.. .
.""-“A-"&""».r...ﬁ l |
0 1000 2000 4000 6000 8000 prtfis

k

Figure 6.8: Runtime of H-TKRIMP on chess (o, = 4%)

time(s)

time(s)

chess (o, = 6)

| T T T
MTKPP ——
012 = TKRIMPE --%~--
TKRIMIT - - % -
H-TKRIMP -]+
0.09 |-
0.06
0.03
0 50 100 200 300 400 500
k

3 T T T T

MTKPP —+—
24 L TKRIMPE --%--
TKRIMIT -- % - -
H-TKRIMP £

18 - -

- P

. :.:-T‘ﬁ;”'
A Bl A -
........._,_m:,,,.-.r-h@ |

0 1000 2000 4000 6000 8000 10000
g k

Figure 6.9: Runtime of H-TKRIMP on chess (7, = 6%)

connect (o, = 1)

15 F T T T T T =
MTKPP —— e
15 | TKRIMPE --X-- 3
2 = TKRIMIT - - - T m
H-TKRIMP - -+ -
2 09} = —
] P
E ==
= 06 e —
03 - . A b Al v
et |] !]]
0 50 100 200 300 400 500
k

connect (o, = 1)

| | | 1
40 = MTKPP ——

TKRIMPE --%--
32 - TKRIMIT --% -
H-TKRIMP -]+
v 24 |-
(3]
£
= 16 -
8 —] B
.....m,............&.‘.._.....,*...‘...._., :
0 1000 2000 4000 6000 8000 10000
k

Figure 6.10: Runtime of H-TKRIMP on connect (o = 1%)

connect (o, = 2)

— I | | |
1S MTKPP ——
TKRIMPE - % -
12 = TKRIMIT --% --
H-TKRIMP -+ £+

@ 09 -
Q
&
= 06 -
03 . ﬁg
|
0 50 100 200 300 400 500
k
connect (o, = 2)
40 | [I |
MTKPP —+—
TKRIMPE —--X--
32 - TKRIMIT --% -~
H-TKRIMP -]+
n
5 24
E
= 18
8 % . me e |
et R T
0 1000 2000 4000 6000 8000 10000

k

Figure 6.11: Runtime of H-TKRIMP on connect (o, = 2%)

165

connect (o, = 3)

@
T
£
k
connect (cr = 3)
| T T |
40 = MTKPP ——
TKRIMPE --X--
32 — TKRIMIT -- % --
P H-TKRIMP -+
o 24
Q
E
=6
B x e e =]
...4_._,h_....:E_._.........$...A..... :
0 1000 2000 4000 6000 8000 D
k

Figure 6.12: Runtime of H-TKRIMP on connect (o, = 3%)

mushroom (o, = 4)

02 F T T T T
MTKPP ——
TKRIMPE - - --
0.16 = TKRIMIT - - % - %
. H-TKRIMP £ T
Z o012 o R at
g
= 0.08 -
0.04 -
L
0 50 100 200 300 400 500
k
mushroom (o, = 4)
25 F T T T T
MTKPP ——
TKRIMPE - -X%--
2 = TKRIMIT --% -
H-TKRIMP £+
& 15 : —
Q
E
0.5 —
il | | 1
0 1000 2000 4000 6000 8000 10000
k

Figure 6.13: Runtime of H-TKRIMP on mushroom (o, = 4%)

166

167

mushroom (o, = 6)

| |
02 MTKPP —f—
TKRIMPE —-X~--
0.16 }— TKRIMIT -3 --
H-TKRIMP £+~

I I

» .
§ ou o P ™
S %0.08 é -
0.04 -
|
0 50 100 200 300 400 500
k
mushroom (o, = 6)
3 T T T T
MTKPP —+—
2.4 |-TKRIMPE - -
TKRIMIT --% -~
H-TKRIMP -~
T U
2
= 1h2 -
0.6 -

1000 2000

4000 6000 8000 10000
k

Figure 6.14: Runtime of H-TKRIMP on mushroom (o, = 6%)

mushroom (o, = 8)

1 | | ! !
0.2 - MTKPP —— =~
i TKRIMPE —-X%-- 2
0.16 TKRIMIT --% -- == -
16 H.TKRIMP -+ i
& SR
T 012 - _-_,:.‘»ﬁ"' =
£ o
T~ 008 - i =
s
0.04 - s S —
i | 1 | |
0 50 100 200 300 400 500
k
mushroom (o, = 8)
3 T T T T
MTKPP —+—
2.4 -TKRIMPE --X--
TKRIMIT --% --
H-TKRIMP -
. 1.8 -
¥
= 1.2 -
0.6 =
|

1000 2000

4000 6000 8000 10000
k

Figure 6.15: Runtime of H-TKRIMP on mushroom (o, = 8%)

168

pumsb (o, = 2)

2 F T l ; I
MTKPP ——
16 | TKRIMPE —-%--
. TKRIMIT --% -+
H-TKRIMP ----EJ---
@ 12 z
I
S
______ ___‘___g_‘______
0.4 L = :
|
0 50 100 200 300 400 500
k
pumsb (o, = 2)
30 F T l : I
MTKPP ——
24 | TKRIMPE --X--
TKRIMIT --% -~
H-TKRIMP -3+
> 18
@
1S
< 12 =
._.....E:....._..‘EA_.....- ?— I :
0 1000 2000 4000 6000 8000 10000

k

Figure 6.16: Runtime of H-TKRIMP on pumsb (o, = 2%)

pumsb (o, = 4)

2 T ; i |
MTKPP ——
16 | TKRIMPE --X--
y TKRIMIT --% -~
H-TKRIMP (]
@z 12 j
3]
£
= 08 |
————— B - .
0.4 . = 4
|
0 50 100 200 300 400 500
k
pumsb (o, = 4)
30 F T g : |
MTKPP ——
24 |- TKRIMPE —-%-- 1
TKRIMIT --% -~
H-TKRIMP -3+
»w 18)
kg
E

6 o T
0 1000 2000 4000 6000 8000 10000

k

Figure 6.17: Runtime of H-TKRIMP on pumsb (o, = 4%)

pumsb (o, = 6)

i T : I |
MTKPP ——
6 L TKRIMPE —-X -
16 = TKRIMIT - - X --
H-TKRIMP (-~
w12 "
Q
£
= 08 i
N — - Sty
o | e i = 4
]
0 50 100 200 300 400 500
k
pumsb (o, = 6)
30 : l : |
MTKPP ——
24 |- TKRIMPE --%--
TKRIMIT --% -
H-TKRIMP -3+
7 18 [1
Q
£
= 12 | i
|
IR A e

0

1000 2000 4000 6000 8000 10000
Kk

Figure 6.18: Runtime of H-TKRIMP on pumsb (o, = 6%)

pumsb* (o, = 1)

0.8

L_TKRIMPE i = ' i ;

T T T T
MTKPP ——

TKRIMIT --% -
H-TKRIMP -+

TKRIMIT --% -

N

@ 06
Q
£
= 04
0.2
0
125
10
@ 75
Q
£
= 5
25
H-TKRIMP -+
] | ! | 1
0 1000 2000 4000 6000 8000 10000
k
Figure 6.

19: Runtime of H-TKRIMP on pumsb* (o, = 1%)

169

170

pumsb* (o, = 2)

1 T T T T 2K
MTKPP —— _,
TKRIMPE — X~
0.8 = TKRIMIT - - - LR
H-TKRIMP £ s
& 06 -
Q @
£
= 04 .
0.2 -
|
0 50 100 200 300 400 500
k
pumsb* (g, = 2)
125 F T
10
& 75k
[
E
TKRIMPE —--X -
25 TKRIMIT - - % -
| H-TKRIMP £
0 1000 2000 4000 6000 8000 10000

k

Figure 6.20: Runtime of H-TKRIMP on pumsb* (o, = 2%)

pumsb* (o, = 3)

T T T T
' mTkPP ——
TKRIMPE --%--
0.8 = TKRIMIT --% -
H-TKRIMP £
@ 06
(9]
E
=04
0.2
0 50 100 200 300 400 500
k
pumsb* (o, = 3)
125 F T T T
10 |-
5 75|
[
E .
‘IS MTKPP ——
TKRIMPE --%--
25 TKRIMIT - -% -+~
H-TKRIMP -~
0 1000 2000 4000 6000 8000 10000

k

Figure 6.21: Runtime of H-TKRIMP on pumsb* (o, = 3%)

time(s)

time(s)

BMS-POS (o, = 1)

5 | | I I
i g
-
2 - MTKPP —t—
TKRIMPE - -X~~-
1 TKRIMIT -- %--
] H-?’KRIMP [E}
0 50 100 200 300 400 S

- o T MTKPP —+—
g TKRIMPE --X--
TKRIMIT -- - -
H-TKRIMP -3+
L 1 1 |
0 1000 2000 4000 6000 8000 10000

k

Figure 6.22: Runtime of H-TKRIMP on BMS-POS (o = 1%)

time(s)

time(s)

BMS-POS (o, = 2)

N W A O

MTKPP ——
TKRIMPE --X--
TKRIMIT -- X -

50 100 200 300 400 500

30
24
18
12

H-TKRIMP -3

= | I I I |
”,9
2 e VI T
- I . S THPP stfes o
Y o TKRIMPE --X--
| TKRIMIT -- X - - —
i | | HTKRIMP -8

0 1000 2000 4000 6000 8000 10000
k

Figure 6.23: Runtime of H-TKRIMP on BMS-POS (o, = 2%)

171

time(s)

time(s)

- N W » O

172

BMS-POS (o, = 3)

""" MTKPP —+—
B TKRIMPE --X--
TKRIMIT --%--
; H-TKRIMP G-
50 100 200 300 400 500

5
3! e
AnTal T
4 O

TKRIMPE --X--
7 ol o

- |
0 1000 2000 4000 6000 8000 10000
k

Figure 6.24: Runtime of H-TKRIMP on BMS-POS (o, = 3%)

time(s)

time(s)

0.5

0.4 |-TKRIMPE —-%-- R

52 |-TKRIMPE —-X--

3.9

2.6

retail (o, = 6)

| I
MTKPP —+—

TKRMIT --% - K. e
H-TKRIMP -+ o

0.3 KT R -
0.2 e [d=- -
0.1 -

o L !

0 50 100 200 300 400 500

k
retail (o, = 6)

e T ¥

T T
MTKPP —+—

TKRIMIT - - -
H-TKRIMP -]+
3 bl e B
1 ! !
0 1000 2000 4000 6000 8000 10000
k

Figure 6.25: Runtime of H-TKRIMP on retail (o, = 6%)

time(s)

time(s)

0.5

0.4

0.3

0.2

0.1

12.5

7.5

2.5

retail (o, = 8)
= T T T
MTKPP —4— v
TKRIMPE —-X%-- !
— TKRIMIT --% - i =
H-TKRIMP -+ P

50 100 200 300 400 500
k
retail (o, = 8)

T T T
MTKPP —4—
| TKRIMPE =-X--
TKRIMIT --% -+
H-TKRIMP ----£3--+

0 1000 2000 4000 6000 8000 10000

k

Figure 6.26: Runtime of H-TKRIMP on retail (o, = 8%)

time(s)

time(s)

0.6

0.48

0.36

0.24

0.12

16.5

9.9

6.6

3.3

retail (s, = 10)

| | I 1 |
MTKPP —f— .M
L TKRIMPE - -X-- e
TKRIMIT - - % - = N
H-TKRIMP -+ B e 7
e
1 1 ! ! L
0 50 100 200 300 400 500
k
retail (o, = 10)
= T T T T
MTKPP —+—
| TKRIMPE - -X~-- _
TKRIMIT -~ % -
H-TKRIMP -+

0 1000 2000 4000 6000 8000 10000

k

Figure 6.27: Runtime of H-TKRIMP on retail (o, = 10%)

173

174

T1014D100K (o, = 4)

1 T T T T
MTKPP —+—
TKRIMPE --X-- e ek
0.8 = TKRIMIT --% - i
H-TKRIMP -3+ e
@ 06 R -
Q
E
=04 -
0.2 -
bé 1 |
0 50 100 200 300 400 500
k
T1014D100K (g, = 4)
3.5
28
o 2
£
= 1.4
07 TKRIMIT - -% -
H-TKRIMP £
! 1 1 I l
0 1000 2000 4000 6000 8000 10000
k

Figure 6.28: Runtime of H-TKRIMP on T10/4D100K (o, = 4%)

T1014D100K (g, = 6)

15 F T T T
MTKPP —— ¥
12 L TKRIMPE —-%~- G o
: TKRIMIT - - % - sl
H-TKRIMP -+-£3---- R
@ 09 o —
[
E
= 0.6 —
0.3 _4:._-'_"'_'; -
X6 | I
0 50 100 200 300 400 500
k
T1014D100K (g, = 6)
4.5
3.6 -
A o
3
E gl _
' MTKPP —+—
TKRIMPE --%--
0.9 TKRIMIT - - % - 7]
i };I-TKRIMPI--~EI---»
0 1000 2000 4000 6000 8000 10000
k

Figure 6.29: Runtime of H-TKRIMP on T10/4D100K (o, = 6%)

time(s)

time(s)

T1014D100K (o, = 8)

175

T T T T
MTKPP ——

| TKRIMPE —-X--
TKRIMIT - -3 - e
H-TKRIMP ---£---

4.2

3.15

21

1.05

400

500

- 4 TKRIMIT - - X% -
H-TKRIMP -]
!] ! | !
0 1000 2000 4000 6000 8000
K

10000

Figure 6.30: Runtime of H-TKRIMP on T10/4D100K (o, = 8%)

time(s)

time(s)

3.75 |~

w

225

1.5

0.75

5.25

3.5

1.75

T2016D100K (o, = 2)

| T T | T .
MTKPP —F— e
TKRIMPE —-X - g
~ TKRIMIT -- % -- g ~
H-TKRIMP £+~
B ! I |
0 50 100 200 300 400 500
K
TKRIMPE - X%~ -
TKRIMIT - - % -
: H-TKRIMP £+
! ! ! h !
0 1000 2000 4000 6000 8000 10000
K

Figure 6.31: Runtime of H-TKRIMP on T20I6D100K (o = 2%)

T2016D100K (a, = 4)

176

65 F T T T T
MTKPP —+—
55 | TKRIMPE --%~-
2 [~ TKRIMIT --% -
H-TKRIMP - £ :
@ 39 i —
3 g
£
13 =
1
0 50 100 200 300 400 500
K
T2016D100K (o, = 4)
2175 T T o T =
MTKPP —+—
17.4 |-TKRIMPE --X%--
[TKRIMIT --% - A
H-TKRIMP -+ -+~ o
% 13.05 | -
o e
I R
S 8.7 A
4.35 -
1 L !
0 1000 2000 4000 6000 8000 10000
K

Figure 6.32: Runtime of H-TKRIMP on T20/6D100K (o, = 4%)

T20I6D100K (o, = 6)

7.5

T T T T T
MTKPP —f—
6 |- TKRIMPE --%-- ,
TKRIMIT --% - &
H-TKRIMP £+
- 45 —
g
= 3 —
1.5 -
0 50 100 200 300 400 500
k
21.75
17.4 =
% 13.05 |
2
= 8.7 I~ ¢ -
MTKPP ——
’ TKRIMPE —-X%--
4.35 { TKRIMIT --% -]
H-TKRIMP £~
| |] 1]
0 1000 2000 4000 6000 8000 10000
k
Figure 6.33: Runtime of H-TKRIMP on T20/6D100K (o, = 6%)

time(s)

time(s)

Figure 6.34: Runtime of H-TKRIMP on T40/10D100K (o, = 2%)

time(s)

time(s)

Figure 6.35: Runtime of H-TKRIMP on T40/10D100K (o, = 4%)

12.5

10 = TKRIMIT --% --
7.5 |-

27.5
22 -
16.5 [~
1 |-
TKRIMPE —--X--
55 - TKRIMIT --% -]
H-TKRIMP -]+
l 1] I I
0 1000 2000 4000 6000 8000 10000

T40110D100K (o, = 2)

| T T !
MTKPP —4— s :
TKRIMPE --X-- gy

H-TKRIMP -+~

K 1 I
0 50 100 200 300 400 500

k

T40110D100K (o, = 4)

15 F T T T T
MTKPP —+—
12 L TKRIMPE --%--
TKRIMIT -~ -
H-TKRIMP - £+~
9 |- o -
6 —
3 -
P sl |
0 50 100 200 300 400 500
k
T40110D100K (o, = 4)
425 1T T T] =
wl e
255 |- -
17 = MTKPP —+—]
TKRIMPE —-%--
8.5 TKRIMIT --% -
H-TKRIMP -]+
1 L I l
0 1000 2000 4000 6000 8000 10000

k

177

T40110D100K (o, = 6)

15 T T T T
MTKPP —+—
12 |- TKRIMPE --%--
TKRIMIT --% -
H-TKRIMP £+
D 9 =
2
= 6 -
3 —
- |
0 50 100 200 300 400 500
k
50
40 =
% 30 k=
E
= 20 -
TKRIMPE —-%--
10 = TKRIMIT - - % -]
H-TKRIMP -+
o | 1 | | |
0 1000 2000 4000 6000 8000 10000

Figure 6.36: Runtime of H-TKRIMP on T40/10D100K (o, = 6%)

k

accidents (o, = 3)

250 T T T T
MTKPP ——
200 _TKR'MPE —_X_'
ot TKRIMIT - -% -
@ H-TKRIMP {3+
2 150 —
S
E 100
; e
50 < - . =
5 !
0 50 100 200 300 400 500
k
accidents (o, = 3)
asEe T T T T
MTKPP T
| TKRIMPE —-%--
2880 " TRRIMIT - - -
@ H-TKRIMP (] _52
£ 2160 |- ‘Q..-_’»;.-
E 1440 - —
E
720 -
e
; ! l !
0 1000 2000 4000 6000 8000 10000

Figure 6.37: Memory u

k

sage of H-TKRIMP on accidents

178

memory(MB)

memory(MB)

memory(MB)

memory(MB)

chess (o, = 6)

T T
MTKPP —f—
4 |=TKRIMPE --X~--
TKRIMIT - - --
H-TKRIMP -+~

ik
50 100 200 300 400 500

chess (o, = 6)

100

TKRI

60

40

20 -

T T
MTKPP —f—
80 |- TKRIMPE - -%-- =

H-TKRIMP &

MIT --% -

0

1000 2000 4000 6000 8000 10000
k

Figure 6.38: Memory usage of H-TKRIMP on chess

connect (o, = 3)

125 T T T T
MTKPP —+—
100 | _TKRIMPE --X--
TKRIMIT - - % -
H-TKRIMP -+
75 - -
50 -
25]
0 50 100 200 300 400 500
k
connect (o, = 3)
2425 T T T T
MTKPP ——
1940 |- TKRIMPE - -X--
TKRIMIT --% -~
H-TKRIMP {5
1455 - =
970 [~ —
485 — —
P

Figure 6.39:

1000 2000 4000 6000 8000 10000
k

Memory usage of H-TKRIMP on connect

179

mushroom (o, = 8)

7 I T T T T
MTKPP —4—
56 |- TKRIMPE --%-- -
& 'I_'I_KKRIMIT é
S 42
= . i1
E 28 RO o
5 A
14 |- sl
. ’.’m'
Rcy] |]
0 50 100 200 300 400 500
k
mushroom (o, = 8)
60 T T T T T 2
MTKPP —)o(——
TKRIMPE — - --
— 48 TKRIMIT -- X% -- e
] H-TKRIMP £+ e
< 36| &
2 o
g . o
24 |- g -
2 e
12 [-
s] | |]
0 1000 2000 4000 6000 8000 10000
k
Figure 6.40: Memory usage of H-TKRIMP on mushroom
pumsb (o, = 6)
85 F T T T T
MTKPP —+—
g8 |- TRRIMPE = -~ _
- TKRIMIT --% -+
@ H-TKRIMP -+
2 5 o
>
£
5 34 -
£
17 -
S e
0 50 100 200 300 400 500
k
pumsb (o, = 6)
1650 T T T T T
MTKPP ——
1320 |-TKRIMPE --X%-- -
- TKRIMIT --% -
@ H-TKRIMP {3+
£ 990 [~ =l
=
o
E 660 |- —
£
330 5
&'T
0 1000 2000 4000 6000 8000 10000

k

Figure 6.41: Memory usage of H-TKRIMP on pumsb

180

memory(MB)

memory(MB)

memory(MB)

memory(MB)

s T T T T
MTKPP ——
TKRIMPE - % -
40 |- TKRIMIT --% -- =
H-TKRIMP £+
30 E‘._.‘_-—;'-' -r@
20 .
10 .
|
0 50 100 200 300 400 500

pumsb* (o, = 3)

825 T T T T

MTKPP ——
660 |- TKRIMPE --X%-- _

TKRIMIT --% - R

H-TKRIMP -+
495 - P —
330 —
165 ~
L
0 1000 2000 4000 6000 8000 10000

k

Figure 6.42: Memory usage of H-TKRIMP on pumsb*

BMS-POS (o, = 3)

43 T T T
MTKPP —+—
36 |- TKRIMPE --%~--
TKRIMIT --% -+
H-TKRIMP £ " . oY
7 o s ,_,Q:_-' s
......... 5 ~.‘Q:' i
18 -
: .
] 1
0 50 100 200 300 400 500

BMS-POS (o, = 3)

175 |] ' ‘
MTKPP ——
TKRIMPE - -%--
140 = TKRIMIT - - % -
H-TKRIMP -~

105 L
70
35
I I
0 1000 2000 4000 6000 8000 10000

k

Figure 6.43: Memory usage of H-TKRIMP on BMS-POS

181

memory(MB)

memory(MB)

memory(MB)

memory(MB)

retail (o, = 10)

2 T | , :
MTKPP —4—
1.6 I-TKRIMPE —-%-- _
TKRIMIT --% -
H-TKRIMP -3+
1.2 - |
X & ®
0.8 B
4'/
0.4 |- =
| | | |
0 50 100 200 300 400 500
k
retail (s, = 10)
. I T T ¥ -5
MTKPP —4— Vs
4.8 |~TKRIMPE —-X-- o W N
TKRIMIT --% -
alg H-TKRIMP -]~

24

1.2

| 1 | 1 |
0 1000 2000 4000 6000 8000 10000
k

Figure 6.44: Memory usage of H-TKRIMP on retail

T1014D100K (o, = 8)

3 T T T T
MTKPP —+—
24 |_TKRIMPE —-X~-- _
TKRIMIT --% -
H-TKRIMP -+

1.8

1.2

0.6

0 100 200 300 400 500

T1014D100K (o, = 8)

15 T T T
MTKPP —+—
12 |- TKRIMPE —-X--
TKRIMIT -- % --
o LH-TKRIMP -3
6 -
3 .
! ! |
0 1000 2000 4000 6000 8000 10000

k

Figure 6.45: Memory usage of H-TKRIMP on T1014D100K

182

T2016D100K (o, = 6)

2 T T T
MTKPP —f—
7.2 I-TKRIMPE --X%--
& HTTKRIM!T - -
= 7]
g
E 36 —
£
1.8 r
52 | |
0 50 100 200 300 400 500
k
T2016D100K (o, = 6)
= T T T
4O MmTkPP ——
TKRIMPE —-%--
_. 32 TKRIMIT --% -~
) H-TKRIMP -]+
3 24 -
=
o
§ 18]
&
8 -
I !
0 1000 2000 4000 6000 8000 10000
k
Figure 6.46: Memory usage of H-TKRIMP on 720/6D 100K
T40110D100K (o, = 6)
12.8 T T T
MTKPP ——
10.4 |- TKRIMPE --%--
g [K
i -
S sl - s
2
g
E 52 —
£
2.6 —
.] !
0 50 100 200 300 400 500
k
T40110D100K (o, = 6)
75 T T T
MTKPP —+—
60 _TKRIMPE —_X"'
. TKRIMIT --% -
[59) H-TKRIMP -]
= 45 —
>
g
E 30 —
£
15 —
! 1 !

1000 2000 4000 6000 8000 10000
k

Figure 6.47: Memory usage of H-TKRIMP on T40/10D100K

183

184

kosarak (k = 500, g, = 6)

7 T T T T |
5.6 |-
5 42 b~
E 2.8 /.rrf'%:'“
: MTKPP —+—
TKRIMPE --X~--
1.4 TKRIMIT --% -
| HTKRIMP £
0 1 2 4 6 8 9.9
Number of transactions(100K)
kosarak (k = 500,0, = 6)
i T T T T
MTKPP —+—
56 j—TKRIMPE —-X--
g [B
& IMP ----f]-+-
: af 3 -
> g
5
G 28 - —
=
14 —
= |
0 1 2 4 6 8 9.9

Number of transactions (100K)

Figure 6.48: Scalability of H-TKRIMP (k : 500, o = 6)

kosarak (k = 10000, o, = 6)

90 T T T T
72 =
z 54 |-
g o
= 36 | o -
R MTKPP —+—
TKRIMPE —-X--
18 - VAt TKRIMIT --% -]
H-TKRIMP ----(]--+
| | | 1
0 1 2 4 6 8 9.9
Number of transactions(100K)
kosarak (k = 10000,0, = 6)
235 T T T T
MTKPP ——
188 _TKR|MPE ——X—'
iy TKRIMIT --% -+]
g o4 H-TKRIMP £+ e
= e
g
E 94 -
£
47 —
|
0 1 2 4 6 8 9.9

Number of transactions (100K)

Figure 6.49: Scalability of H-TKRIMP (k : 10,000, o,. = 6)

