CHAPTER V

TKRIMIT: TOP-K REGULAR-FREQUENT ITEMSETS MINING
BASED ON INTERVAL TIDSET REPRESENTATION

The aim of this chapter is to reduce the computational time and memory consumption from
the MTKPP and TKRIMPE algorithms by reducing the number of maintained tids during mining
process. Hence, a new concise representation, called interval transaction-ids set (interval tidset),
used to maintain the occurrence information of each regular itemset is introduced and described
in details. Based on the interval tidset representation, an interval tidset is employed instead of
a normal tidset (i.e. maintaining all of tids that each itemset occurs) as used in MTKPP and
TKRIMPE algorithms. In addition, an efficient algorithm, called Top-K Regular-frequent Itemsets
based on Interval Tidset representation (TKRIMIT), is also proposed. Lastly, the data structure

and the complexity analysis of the TKRIMIT algorithm are discussed.

The experimental studies illustrate that TKRIMIT provides significant improvements, in
particular for dense datasets, in comparison with MTKPP and TKRIMPE on both small and large

number of required results.
5.1 Preliminary of TKRIMIT

To mine the top-k regular-frequent itemsets, TKRIMIT also employs a top-k list as MTKPP
and TKRIMPE in order to maintain a set of top-k regular-frequent itemsets during mining process.
Besides, the best-first search strategy is adopted to quickly mine itemsets with the highest supports
(i.e. to raise up the support of the k" itemset in the top-k list which helps to cut down the search
space). In addition, the interval tidset representation is devised and utilized to reduce the number
of maintained tids. By this way of doing, TKRIMIT can reduce memory to maintain tidsets and

time to intersect between tidsets.
5.2 Interval Tidset representation

Interval tidset representation is a new concise representation used to store the occurrence
information (tidsets) of the top-k regular-frequent itemsets during mining process. The main
concept of the interval tidset is to wrap up two or more consecutive continuous tids by maintaining

only the first (with one positive integer) and the last tids (with one negative integer) of that group
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of tids. By applying this representation, TKRIMIT can thus reduce time to compute support and
regularity, and also memory to store occurrence information. In particular this representation is

appropriate for dense datasets.

Definition 5.1 (Interval tidset of an itemset X) Let a set of tids that itemset X occurs in TDB
be TX = {tz)f, . ,tX} where p < q and there are some consecutive tids {82 ey B
that are continuous between tif and t{;" (where p < wand q > v). Thus, the interval tidset of the

itemset X is defined as:

X X X X X X X X
ITE =t ey e — ) B e T}

y by 9 q

For example, from the transactional database of Table 5.1, an item o occurs in the set of
transactions: T® = {t1,to,t3,t4, ts, t7, ts, tg, t10, t11, t12} Which is composed of two groups of
consecutive continuous transactions. Thus, by using the interval tidset representation, the in-
terval tidset of the item a is IT® = {1,-3,6,—6}. The first interval tids (1, —3) represents
{t1,t2,t3,ts} whereas (6, —6) represents the last seven consecutive continuous tids that the item
a occurs in the database. For the item a, the use of interval tidset representation is efficient.
It can reduce seven tids to be maintained comparing with the normal tidset representation. For
items b and c, the sets of transactions that they occur are Tb = {t1,t2,t4,ts5,t7,t8, t10, t11} and
T¢ = {t1,t3,t5,t7,to, t11}, respectively. Therefore, the interval tidsets of the items b and c are
IT = {1,-1,4,-1,7,-1,10, -1} and IT® = {1,3,5,7,9, 11} which are the examples of the

worst cases of interval tidset representation.

The interval tidset representation is efficient as soon as there are three consecutive contin-
uous tids in the tidsets whereas in the worst cases, the interval tidset representation contains the

same number of tids as the normal tidset representation.

Theorem 5.1 Let |ITX| is the number of tids in the interval tidset of an itemset X and X is its
support. The |ITX| < sX where sX > [% x |TDB|] and |TDB| > 3. Otherwise, |[ITX| can be

less than or eqaul to 5%,

Proof: Let sX > [% x |TDB|] and let the tidset T of the itemset X has no more than two
consecutive continuous tids. In fact, the maximum value of sX when the tidset of X has no more
than two consecutive continuous tids is [% x |TDB|]. It happens in the case that the itemset X

occurs in every two transactions and misses one transaction. In contradiction, for any s¥ which
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g~ [% x |T'DB|] must have at least one group of tids that occurs in three or more consecutive
continuous. Therefore, when the tidset 7% has a group of three or more consecutive continuous
tids, TKRIMIT (based on the interval tidset representation) can group these tids together by using

only one positive and negative tids. Thus, [ErA] g%, |

With this representation a tidset of any itemsets may contain some negative tids. Therefore,
the original definition (Definition 3.1) is not suitable to calculate the regularity from this kind
of tidsets. Thus, a new way to calculate the regularity of any itemsets from the interval tidset

representation is proposed.

Definition 5.2 (Regularity of an itemset X from interval tidset) Let tff and té( be two consec-
utive tids in interval tidset ITX, i.e. where p < q and there is no transaction t,, p < r < g,
such that t, contains X (note that p, q and r are indeces). Then, rtté( is denoted as the regularity
between two consecutive tids tf and th (i.e. the number of tids (transactions) between tﬁ and
t;( that do not contain X ). Obviously, rtt{{ is tf{. Last, to find the exact regularity of X in the
database, the regularity between the last tid of ITXand the last tid of the database should be

calculated. This leads to the cases as follows:

tg ifg=1

tX — X iftX and ) >0,2 < g < |ITX|

1 iftX > 0andtX < 0,2 < g < |[ITX|
Ttt;( - X X _ 4X 3 ¢ 5% X

gty — L ) ifty <0andty >0,2<q<|ITH|

ITDB| — t{ipx) if tpx > 0, (le. g = [ITX| + 1)

ITDB| + (tfigx) — tipx-1) i Gipx) <O, (e g = |ITX|+1)
Finally, the regularity of X is defined as rX = mam(’r‘ttf,rttf, - ,rttfgﬂ).

For example, consider the interval tidset IT* = {1, 3,6, —6} of the item a. The set of
regularities between each pair of two consecutive tids is equal to {1,1,6+(-3-1),1,12—(-6—

6)} = {1,1,2,1,0} and the regularity of the item a is 2.
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Table 5.1: A transactional database as a running example of TKRIMIT

tid items
1 abcdf
2 abde
3 acd
AT
: Zief m}”‘
6 ade /‘i;o W &
7 abcde '
8 abd
|9 acdf
10 abe
11 abcd
12 adf

5.3 TKRIMIT: Top-k list structure

As in (Amphawan et al., 2009), TKRIMIT is based on the use of a top-k list, which is an
ordinary linked-list, to maintain the top-k regular-frequent itemsets. A hash table is also utilized
with the top-k list in order to quickly access each entry in the top-k list. At any time, the top-k list
only contains not more than k regular-frequent itemsets in main memory. As shown in Figure 5.1,
each entry in a top-k list consists of 4 fields: (i) item or itemset name (I), (ii) total support (sh,
(iii) regularity (r!) and (iiii) an interval tidset where I occurs (IT1). For example, the item a has

a support of 11, a regularity of 2 and its interval tidset is IT® = {1,-3,6, -6} (see Figure 5.1).

item |top-k list's link
A | eeeeeeeeedeeeeianaeeee
A4
b _ all2 | | c:6:2
c | e - | {1,-3,6,-6} {1,3:5;7:9;11}
d L — )
e
f

Figure 5.1: TKRIMIT: Top-k list structure with hash table

5.4 TKRIMIT algorithm

As mentioned above, the TKRIMIT is based on the interval tidset representation to maintain
the occurrence information of each itemset and the use of a top-k list to collect the k regular
itemsets during mining process. The TKRIMIT algorithm consists of two steps: (i) Top-k list

initialization: scan database once to obtain and collect the all regular items(with highest support)
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into the top-k list; (i) Top-k mining: merge each pair of entries in the top-k list and then intersect
their interval tidsets in order to collect tidset and to calculate the support and regularity of a new

generated regular itemset.

5.4.1 TKRIMIT: Top-k list initialization

To create the top-k list, TKRIMIT scans the database once (transaction per transaction).
Then, each item of the current transaction is then considered. With the help of the hash table,
TKRIMIT can know quickly if the current item is already existed in the top-k list or not. In the
first case, its support, regularity and interval tidset have just updated. If it is its first occurrence

then a new entry is created and its support, regularity and interval tidset are initialized.

To update the interval tidset ITX of an item X, TKRIMIT has to compare the last tid (t;)
of ITX with the new coming tid (¢;). Thanks to the interval representation (see Definition 5.1) it

simply consists of the following cases:

e if t; < 0, i.e. there are some former consecutive continuous tids occurs with the exact
tid of t;, TKRIMIT calculates the exact tid of t; < 0 (i.e. t;—; — t;) and compares it
with ¢; to check whether they are continuous. If they are consecutive continuous tids (i.e
tj — ti—1 + t; = 1), TKRIMIT has to extend the interval tidset ITX (it consists only of
adding —1 to t;). Otherwise, TKRIMIT creates a new element to take into account t; (it

simply consists of adding ¢; after ¢; in IT%y,

e if t; > 0, i.e. there is no former consecutive continuous tid occurs with ¢;, TKRIMIT
compared ¢; with t; to check whether they are continuous or not. If they are consecutive
continuous tids (i.e. t; — t; = 1), TKRIMIT creates a new interval in ITX (it consists
of adding —1 after ¢; in ITX). Otherwise, TKRIMIT creates a new element to take into

account t; (it simply consists of adding ¢; after ¢; in i

After scanning all transactions, the top-k list is trimmed by removing all the entries (items)
with regularity greater than the regularity threshold o, and the remaining entries are sorted in
descending order of support. Lastly, TKRIMIT removes the entries after the kth entry in top-k

list. The details of the top- list’s construction are presented in Algorithm 5.
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Algorithm 5 (TKRIMIT: Top-k list initialization)
(I) A transaction database: TDB
(2) A number of itemsets to be mined: k
(3) A regularity threshold: o,
Output:
(1) A top-k list

create a hash table for all 1-items
for each transaction j in TDB do
for each item 7 in the transaction j do
if the item ¢ does not have an entry in top-k list then
create a new entry for item i with s = 1,7" =t;,and T = T* U't;
create a link between the hash table and the entry
else
calculate the regularity 7 by t;
add the support s* by 1
if the last tid in T (t}5|) < 0 then
if t; — (tj)_; — tjry)) =1 then
add the last tid in 7% by —1
else
collect t; as the last tid in T*
else
if t;— the last tid in 7% = 1 then
collect —1 as the last tid in T

else
collect ¢; as the last tid in T*

for each item i in top-k list do ‘
calculate the regularity ¢ by |T'D B|— the last tid of 7" (in case of the last tid > 0, otherwise [T DB|—

(tI’Tlil_l - t|lT‘|))
if r* > o, then
remove the entry 7 out of the top-k list

sort the top-k list by support descending order
remove all of items having the support less than k" item in the top-k list
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Algorithm 6 (TKRIMIT: Top-k mining)
Input:
(1) A top-k list
(2) A number of itemsets to be mined: k
(3) A regularity threshold: o,
Output:
(1) A set of top-k regular-frequent itemsets

for each entry z in the top-k list do
for each entry y in the top- list (z > y) do
if the entries 2 and y have the same size of itemsets and the same prefix
(17| = |I¥| and if = 4%,45 =13, ..., 10, = if’l?_l)then
merge the itemsets of  and y to be itemset Z = I* U IV
rZ2 =0,52 =0
for each t,, in T (p=1to|T7|)and t, in T (¢ =1t |T"]) do
if t, > 0 and t, > O then
if t, = t, then
calculate the regularity 7% by t,, and check rZ with o,
add the support s by 1
collect t,, as the last tid in ™
elseift, >0andt, <0 then
ift, <tq-1 —t4 then
calculate the regularity 7% by t, and check rZ with o,
add the support sZ by 1
collect t,, as the last tid in 7%
else if t,, < 0 and t, > O then
ift, 1 —t, >t, then
calculate the regularity rZ by tq and check rZ with o,
add the support sZ by 1
collect t, as the last tid in T'?

else
ift,_1 — 1t >tg-1— 14 then
collect tiZTZI — (tg—1 — tq) as the last tid in T2
add the support sZ by (tg—1 — tq) — tIZTZI
else
collect t%.z — (tp—1 — tp) as the last tid in TZ
add the support sZ by (t,—1 — tp) — t|ZTZ|

calculate the regularity 7% by |T'DB|— the last tid of TZ (in case of the last tid > 0, otherwise
ITDB|- (tfz)_, = tfrz))
if 72 < o, and sZ > s, then

remove k** entry from the top-k list

insert the itemset Z into the top-k list with %, sZ and TZ
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5.4.2 TKRIMIT: Top-k mining

As described in Algorithm 6, a best-first search strategy (from the most frequent itemsets
to the least frequent itemsets) is adopted to quickly generate the regular itemsets with the highest
supports from the top-k list. This technique can help TKRIMIT to prune the search space when

TKRIMIT can quickly find the top-k regular-frequent itemsets with the highest supports.

To find the top-k regular-frequent itemsets, two candidate itemsets X and Y in the top-k list
are merged with the following two constraints: (i) the size of the itemsets of both elements must be
equal; (if) both itemsets must have the same prefix (i.e. each item from both itemsets is the same,
except the last item). This way of doing will help the proposed algorithm to avoid the repetition of
generating larger itemset and may help to prune the search space. Then, the interval tidsets of the
two candidate itemsets are sequentially intersected in order to calculate the support, the regularity
and to collect the interval tidset of the new generated itemset. To sequentially intersect the interval
tidsets ITX and ITY of X and Y, one have to consider four cases when comparing each pair of

tids tiX and t}/ in order to construct ITXY (see Definition 5.1):

() if t;* = ¢ > 0add ¢ at the end of IT*Y
Gi) if X > 0,¢Y < 0,8 < ¥, —t¥, add t} at the end of ITX
Gif) if ¢ < 0,8 > 0,¢Y <X, — ¢}, add ¢} atthe end of ITXY

i) if £, % < 0, add ]y Yxv — (85, — tX) at the end of ITXY if ¢t | — tX < ¢V, — Y,

otherwise add tl)fq’fxyl - (t}/_l - t}/) at the end of ITXY

From ITXY, the support sX¥ and the regularity XY of XY (see definition 5.2) are easily
computed. TKRIMIT then removes the k" entry and inserts the itemset XY into the top-k list if
sXY is greater than the support of the kth itemset in the top-k list and if XY is not greater than

the regularity threshold o.

5.5 Example of TKRIMIT

Consider the TD B of Table 5.1, a regularity threshold o, of 4 and the number of desired

results k of 5. Then, the initialization of the top-k list from the TD B is illustrated in Figure 5.2.

After scanning the first transaction (t; = {a, b, ¢, d, f}), the entries for items a, b, c, d and

f are created, their supports, regularities and interval tidsets are also initialized as (1 : 1 : {1}h
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a: Ll b:1:1 ¢: 11
= {1} (1) M {1
. Y
ol 1 sl ]
{1 ¥ {1}
(a) read t;
a2 b:2:1 |
S ST g ()
v
f:1:1 e:1:2 d:2:1
{1} i 2} s, (a8
(b) read to
a:3:1 b:2:1 c:2:2
T of ™ o™ [ {13}
v
I e:1:2 d:3:1
(1) ol (2} (<1 =
(c) read t3
e d:9:2 b:8:2
11,3660 [P (12631110 [P0 -14-17-1.10-1}
e:5:3 c:6:2
252100 [ 11357911

(d) Sorted and trimmed top-k list

Figure 5.2: Top-k list initialization

(see Figure 5.2(a)). With the second transaction (t = {a,b,d, e}), TKRIMIT adds —1 at the
end of the interval tidsets of a,b and d, since these items occur in two consecutive continuous
transactions. Then, the entry for the item e is created and initialized (éee Figure 5.2(b)). For
the third transaction (t3 = {a,c,d}), as shown in Figure 5.2(c), the last tids of the items a and
d are changed to —2 (i.e. they occur in the three consecutive continuous transactions ¢1, to and
t3) and the interval tidset of item c is updated by adding ¢3 as the last tid. After scanning all
the transactions, the top-k list is sorted by its support descending order and item f is removed

(Figure 5.2(d)).

In the mining process, item d is firstly merged with the former item a. The interval tidsets
IT® and IT? are sequentially intersected to calculate the support s%¢ = 9, the regularity r%¢ = 3
and to collect the interval tidset /7% = {1,-2,6,-3,11, -1} of the itemset ad. Since the
support s%¢ is greater than s® = 5 and the regularity 7%¢ is less than o, = 4, the item e is removed
and ad is inserted into the top-k list as shown in Figure 5.3(a). Next, the third itemset i.e. the

itemset ad is compared to the former itemsets a and b. These itemsets do not share the same



aslie? d:9:2 ad:9:2
P 03660 [P (1263101 [ P] (1,2,6-3,11,-1)
c:6:2 b:8:2
1357911y [€l1,-1,4-1,7,-1.10,-1)
(a) top-k list when merging item a with item d
a:l11:2 d:9:2 ad:9:2
P ety ™ pEmera 1y J N6 a1
y
ab:7:3 b:&:2
{1,-1,4,7,-1,10,-1} ‘_{l,-1,4,-l,7,-1.10,-1}
(b) final top-k list

Figure 5.3: Top-k during mining process
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prefix and thus are not merged. TKRIMIT then considers the item b which is merged with a and d
(s% =7,r% =3, IT® = {1,-2,7,-1,10,-1}; s%¢ = 5, r¥¢ = 5, IT% = {1, -1,7,-1,11}).

The itemset ab is thus added to the list and itemset c is removed. The itemset bd is eliminated,

since its regularity is greater than o,. Lastly, the itemsets ab and ad are considered and the top-k

regular-frequent itemsets are finally obtained as shown in Figure 5.3(b).

5.6 Complexity analysis

In this section, the complexity of TKRIMIT is further discussed in terms of time and space.

Proposition 5.3 The time complexity for initializing the top-k list is O(nm) where n is the number

of items occurring in database and m is the number of transactions in database.

Proof: Since the proposed algorithm scans each transaction in the database once, the entry

of each item that occurs in the transaction is also looked up once in order to collect tids into

tidsets. Hence, the cost for database scanning is O(nm) whereas the cost for sorting all (in the

very worst case) the entries is O(nlogn). Then, the time complexity to create the top-k list is

formally O(nm + nlogn). In fact, the number of items (n) is, for the considered applications,

always less than the number of transactions(m). Thus, the time complexity to create the top-k list

is O(nm).
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Proposition 5.4 The time complexity for mining top-k regular-itemsets is O(m(k?)) where m is

the number of transaction in database and k is the number of itemsets to be mined.

Proof: The mining process merges each itemset in the top-k list with only the former itemset
in the top-k list. Then, the interval tidsets of the two merged itemsets are intersected. Therefore,
the combination of all itemsets in the top-k list is k % (k 4+ 1)/2 and the time to intersect any

two interval tidsets at each step is O(m). Thus, the overall time complexity of mining process is

O(mk?). |

Proposition 5.5 The memory space required for TKRIMIT is O(([%m])k) where m is the number

of transaction in database and k is the number of itemsets to be mined.

Proof: Base on Theorem 5.1, the maximum number of maintained tids of each item-

set is [%[TDBH. Then, all of desired memory to maintain interval tidsets for k itemsets is

O(([3m1)k). ]

5.7 Performance evaluation

In order to validate the effectiveness of the TKRIMIT algorithm based on the interval tid-
set representation, several experiments were conducted to compare the performance of TKRIMIT
with the TKRIMPE and MTKPP algorithms. To measure the performance of the three algorithms,
the processing time (i.e. included top-k list construction and mining processes) and space usage
(i.e. memory consumption and the number of maintained tids during mining process) are consid-

ered.

5.7.1 Experimental setup

All experiments were performed on an Intel®Xeon 2.33 GHz with 4 GB main memory,
running on Linux platform and all the programs were coded in C with the same structure as
MTKPP (i.e. based on the use of top-k list). The experiments were performed on nine real datasets

(accidents, BMS-POS, chess, connect, kosarak, mushroom, pumsb, pumsb*, retail) and three
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synthetic datasets (T1014D100K, T20I6D100K, and T40110D100K) of which some statistical
information are shown in Chapter 2. The performance of TKRIMIT is evaluated by various values
of k and o,.. It can be observed that in all datasets the high value of regularity threshold (o) will
give a greater number of regular itemsets. This is due to the fact that as the o, increases, there is
a greater possibility of getting more regular itemsets compared to low o values. This is why the
value of o, is specified for each datasets in the experiments is not equal. The value of regularity
threshold is set between 1 to 10% of total number of transactions in database. The values of k are
varied between 50 to 10, 000 to see the performance of the proposed algorithm for the small and

large value of k.

5.7.2 Compactness of using interval tidset representation

Based on the interval tidset representation, TKRIMIT can generate more concise tidsets
than the original tidsets (used in MTKPP and TKRIMPE) since the former maintains only the
first and the last tids of the two or more consecutive continuous tids by using only one positive
and one negative integer, respectively. Meanwhile, the latter collects all of tids that each itemset
occurs. Thus, the number of tids that TKRIMIT can reduce on dense and sparse datasets are
considered. To depict the result, the numbers of reduced tids by TKRIMPE is shown in Figure 5.4
to Figure 5.14.

It is observed from Figure 5.4 to Figure 5.9 that the TKRIMIT can reduce a lot of tids to
store in the interval tidset on dense datasets. For the small values of k, TKRIMIT can reduce up
to 86,000, 000 tids whereas the number of reduced tids is 713,000, 000 with the large values of
k. However, as shown in Figure 5.10 to Figure 5.14, TKRIMIT cannot significantly reduce the
number of maintained tids from MTKPP and TKRIMPE on sparse datsets. Because of the char-
acteristics of sparse datasets, most of itemsets do not occur in consecutive continuous tids. Thus,
the number of reduced tids is in range [500, 34, 000] for the small value of & and [800,742, 000] for

the large values of k.

5.7.3 Execution time

From Figures 5.15 to Figure 5.32, the evaluation results for real dense datasets are re-
ported. From these figures, the performance of TKRIMIT is different from other algorithms such

as MTKPP and TKRIMPE using normal tidsets (i.e. maintaining all of tids that each itemset
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occurs). It can see from these figures that the performance of using interval tidset is better than
using normal tidset on the small and large value of k. In addition, on dense dataset, each itemset
occurs almost every transaction or occurs very frequent. Then, TKRIMIT can take the advantage
from the use of interval tidset representation. However, on mushroom dataset and the large values
of k, TKRIMIT cannot significantly reduce the runtime from MTKPP and TKRIMPE. This is
because mushroom has a small number of transactions, then TKRIMIT cannot yield.the benefit

of grouping tids together.

Meanwhile, the execution time on sparse datasets is shown in Figure 5.33 to Figure 5.47.
Note that the performance of TKRIMIT is similar with MTKPP and run slower than TKRIMPE
from these figures. TKRIMIT cannot take the advantage from database partitioning and support
estimation techniques as used in TKRIMPE. Due to each itemset in sparse datasets occurs not
often and it does not occurs in the consecutive continuous transactions, TKRIMIT cannot take the

advantages from grouping consecutive continuous tids from sparse datasets.

5.74 Memory consumption

As mentioned above, TKRIMIT can essentially reduce the number of maintained tids dur-
ing mining. In this subsection, the memory usage of TKRIMIT is also investigated by comparing

with MTKPP and TKRIMPE.

Figure 5.48 to Figure 5.53 show the memory usage of TKRIMIT, MTKPP and TKRIMPE
on real dense datasets. From this figure, TKRIMIT can significantly save the memory usage from
MTKPP and TKRIMPE. For the large value of k, TKRIMIT consumes over two orders of mag-
nitude less memory than MTKPP and TKRIMPE. The memory usage of TKRIMIT increases lin-
early as the number of desired itemsets increases while memory used by MTKPP and TKRIMPE
increase dramatically. This is because MTKPP and TKRIMPE use normal tidset that maintain
all tids occurring in each itemset. The memory usage of MTKPP and TKRIMPE depend on the
support (i.e. number of tids that each itemset occurs) of each itemsets. Meanwhile, TKRIMIT can
take the advantage from the use of interval tidset representation which group several consecutive

continuous tids together.

As shown in Figure 5.54 to Figure 5.58, the required memory of TKRIMIT on sparse
datasets is examined. Followed by this figure, the memory usage of the three algorithms is quite
similar. This is because each itemset on sparse dataset does not occur frequently and consecutively

continuous. Then, TKRIMIT cannot group several tids together.



112

4

5.7.5 Scalability test * -

v 4

’

To study the scalabil'?y of the TKRIMIT algorithm, the execution time and memory con-
sumption of TKRIMIIT are considered by comparing with MTKPP and TKRIMPE when the size
of database increases. The kosarak dataset which is a huge dataset with a large number of distinct
of items (41,270) and transactions (990, 002) is used to test scalability by varying the number
of transactions. The database is first divided into six portions (i.e. 100,000, 200, 000, 400, 000,
600, 000, 800, 000 and 990, 002 transactions). Then, the performance of TKRIMIT is investigated
on each portion. The values of desired itemsets (k) are also varied into small (i.e. 50, 100, 200,
300, 400, and 500) and large (i.e. 1,000, 2,000, 4, 000, 6,000, 8,000, 10,000) values. Lastly, the

regularity threshold is fixed to 6% of number of transactions in each portion.

In Figure 5.59 and Figure 5.60, the scalability of TKRIMIT, MTKPP and TKRIMPE are
tested in terms of runtime with different number of transactions in the database. From these
figures, the runtime of TKRIMIT scales linearly increase when the size of database increases.
Based on the interval tidset representation, TKRIMIT can group many consecutive tids together
and then TKRIMIT has a better scalability than that of MTKPP on the small and large values
of k. Meanwhile, TKRIMIT cannot significantly reduce the runtime from TKRIMPE because
TKRIMIT uses only grouping technique (i.e. interval tidset representation) and cannot take the

advantages from the database partitioning and support estimation techniques.

Figures 5.59 and 5.60 also plot the high water mark of space usage of TKRIMIT, TKRIMPE
and MTKPP with varying the size of the database. The three algorithms have linear scalability
and TKRIMIT is a clear winner. Therefore, it can be seen from the figures that by based on the
interval tidset representation, TKRIMIT is very efficient and scalable in terms of space usaée with

respect to the number of itemsets to be mined and the number of transactions in database.

5.8 Summary

This chapter have presented a new efficient and scalable algorithm named TKRIMIT (Top-
K Regular-frequent Itemsets Mining based on Interval Tidset representation) to discover a set
of k regular itemsets with the highest supports. A new concise representation, called inter-
val transaction-ids set (interval tidset), has also introduced. Based on the interval tidset repre-

sentation, a set of tids that each itemset occuring consecutively continuous is transformed and
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compressed to interval tids by using only one positive and negative integer. The top-k regular-
frequent itemsets are found by intersection of interval tidsets along the order of top-k list. Be-
sides, TKRIMIT is based on a best-first search startegy that can help TKRIMIT algorithm to raise
quickly the support of the kth itemsets in the sorted top-k list which help the proposed algorithm

to prune the search space.

The analysis and experiment results show that TKRIMIT achieves high performance on
both dense and sparse datasets. The proposed algorithm delivers competitive performance and,
especially for dense datasets, outperforms MTKPP and TKRIMPE which are currently the most
efficient algorithm for top-k regular-frequent. Based on this study, it is can be claimed that the
proposed algorithm are superior to MTKPP and TKRIMPE on both the small and large values of

k when the datasets are dense.
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connect (o, = 2)

15 F , : l | |
EPE -3 ,///
TKRIMPE - =X - ’X
1.2 FTKRIMIT --% - - i
@ 09| ¥ .
Q _
& -
£ ‘ggl _ 5
03 - i SRR K- Ko nnne o, g, ¥, i
7" | A \ l I
0 50 100 200 300 200 =
k
connect (o, = 2)
40 | T T | :
MTKPP ——
TKRIMPE --X--
32 TKRIMIT - -% --
Z 24 y
Q
E
=e i
8 o
------------ ;F—-----x

0 1000 2000

4000 6000 8000 10000
k
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Figure 5.24: Runtime of TKRIMIT on mushroom (o, = 4%)
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Figure 5.25: Runtime of TKRIMIT on mushroom (o, = 6%)



time(s)
o

2.4

time(s)

1.2

0.6

mushroom (o, = 8)

125

T T I I T 2
2 = MTKPP —4— “
TKRIMPE --X-- =
g |-TKRIMIT - - - =
s -
12 - XK =l
8 |- . —
P J*—
SEN e X -1
e | ] ] ]
0 50 100 200 300 400 500
k
mushroom (o, = 8)
T I I T T
MTKPP ——
ITKRIMPE ——-X-- -
TKRIMIT - -3 -+
S e ] | ] ]
0 1000 2000 4000 6000 8000 10000
k

Figure 5.26: Runtime of TKRIMIT on mushroom (o, = 8%)
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Figure 5.27: Runtime of TKRIMIT on pumsb (o, = 2%)
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Figure 5.28: Runtime of TKRIMIT on pumsb (o, = 4%)
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Figure 5.29: Runtime of TKRIMIT on pumsb (o, = 6%)
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Figure 5.30: Runtime of TKRIMIT on pumsb* (o, = 1%)
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Figure 5.31: Runtime of TKRIMIT on pumsb* (o, = 2%)
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Figure 5.32: Runtime of TKRIMIT on pumsb* (o, = 3%)
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Figure 5.34: Runtime of TKRIMIT on BMS-POS (o = 2%)
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Figure 5.35: Runtime of TKRIMIT on BMS-POS (o, = 3%)
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Figure 5.38: Runtime of TKRIMIT on retail (o, = 10%)
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Figure 5.39: Runtime of TKRIMIT on T1014D100K (o, = 4%)
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Figure 5.40: Runtime of TKRIMIT on T10/4D100K (o, = 6%)
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Figure 5.41: Runtime of TKRIMIT on T10I4D100K (o, = 8%)



time(s)

time(s)

T2016D100K (o, = 2)

375 F T T T T
MTKPP —f—
TKRIMPE ==X --
3 FTKRIMIT --3% - >

2.25 -
15 -
0.75 . _
- !
0 50 100 200 300 400 500
K

8.75 T T T T T =
7+ — i 8
525 -  y—__- o ciae .
7
35/ 2
f MTKPP —+—
1.75 |- TKRIMPE —-%~- ]
TKRIMIT --3% -
! 1 1 ! !
0 1000 2000 4000 6000 8000 10000

k

Figure 5.42: Runtime of TKRIMIT on T20/6D100K (o = 2%)
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Figure 5.43: Runtime of TKRIMIT on T2016D100K (o, = 4%)
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Figure 5.44: Runtime of TKRIMIT on

T2016D100K (o, = 6%)
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Figure 5.45: Runtime of TKRIMIT on

T40110D100K (o, = 2%)
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Figure 5.46: Runtime of TKRIMIT on T40110D100K (o, = 4%)
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Figure 5.47: Runtime of TKRIMIT on T40110D100K (o, = 6%)
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Figure 5.48: Memory usage of TKRIMIT on accidents
chess (o, = 6)
5 T T T T
MTKPP —f—
4 I TKRIMPE --X~- _
TKRIMIT --% --
3+ -
2 =
1+ .
x*
0 50 100 200 300 400 500
k
chess (o, = 6)
100 T T T T
MTKPP ——
80 HKRIMPE —-X%--
TKRIMIT --% -~
60 -
40 -
20 -
________ PR
--------- 1
0 1000 2000 4000 6000 8000 10000
k

Figure 5.49: Memory usage of TKRIMIT on chess
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Figure 5.50: Memory usage of TKRIMIT on connect

mushroom (o, = 8)
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Figure 5.51: Memory usage of TKRIMIT on mushroom
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Figure 5.52: Memory usage of TKRIMIT on pumsb
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Figure 5.53: Memory usage of TKRIMIT on pumsb*
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Figure 5.55: Memory usage of TKRIMIT on retail
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Figure 5.54: Memory usage of TKRIMIT on BMS-POS
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Figure 5.56: Memory usage of TKRIMIT on T10/4D100K
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Figure 5.59: Scalability of TKRIMIT (k : 500, o, = 6)
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Figure 5.60: Scalability of TKRIMIT (k : 10, 000, o = 6)
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