CHAPTER 1V

TKRIMPE: TOP-K REGULAR-FREQUENT ITEMSETS MINING
USING DATABASE PARTITIONING AND SUPPORT
ESTIMATION

As mentioned in the previous chapter, the MTKPP algorithm scans the database once to
collect a set of transaction-ids (tidset) where each itemset occurs, and then MTKPP applies an
intersection operation on the tidsets to collect the tidset and to calculate the support and the reg-
ularity of each larger itemset. Unfortunately, MTKPP spends a lot of time to intersect the tidsets

comparing to the whole execution time.

Therefore, the aim of this chapter is to reduce the computational time on the intersection
process of the MTKPP algorithm. Then, a new efficient algorithm, called Top-K Regular-frequent
Itemsets Mining using database Partitioning and support Estimation (TKRIMPE), to mine a set
of top-k regular-frequent itemsets is proposed. The partition and estimation methods used to
dismiss some inessential computing are also described in details. Besides, the data structure used
to maintain the top-k regular-frequent itemsets and the complexity analysis of TKRIMPE are also

discussed.

The experimental studies illustrate that TKRIMPE provides significant improvements, in
particular for sparse datasets, in comparison with MTKPP on both small and large number of

required results.
4.1 Preliminary of TKRIMPE

To mine the top-k regular-frequent itemsets, TKRIMPE employs a top-k list to maintain
top-k regular-frequent itemsets during mining process. Besides, a best-first search strategy is also
applied to quickly mine the itemsets with the highest supports (i.e. to raise up the support of the
k" itemset in the top-k list which helps to reduce the search space). Furthermore, the database
partitioning technique is utilized to reduce the time to intersect tidsets. Meanwhile, the support
estimation technique is used to early terminate the intersection process and to prune the set of

candidates.
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4.2 TKRIMPE: Top-k list structure

TKRIMPE is based on the use of a top-k list as proposed in (Amphawan et al., 2009). The
top-k list is simply a linked-list with a hash table for efficiency reasons (two main .operations -
which are required to frequently access the information of itemsets- will be operated: initialization
and updating the information of the top-k regular-frequent itemsets). At any time, the top-k list
only contains not much more than k regular-frequent itemsets in main memory. Each entry in a
top-k list consists of 4 fields: an item or itemset name I, a total support s!, a regularity r! and a
set of tidsets 7"/ where I occurs in each partition, respectively. For example in Figure 4.1, an item
a has a support of 8, a regularity of 3. Its set of tidsets is {{1,4}, {6,7,8},{10,11,12}} which

means the item a occurs in transactions {t1, t4, t¢, t7, ts, t10, t11, t12}

item |top-k list's link
LT R, W Y L
b a:8:3 d:7:3
(@ ] {{1,4},{6,7,8},110,11,12} } ' {11,2,4},16,7,},{9,12} }
R T e R T 5
e
T
2

Figure 4.1: TKRIMPE: Top-k list with a hash table

4.3 Database Partitioning

In TKRIMPE, the database is first separated into several disjoint partitions of an equal size
as presented in (Brin et al., 1997b). Then, TKRIMPE collects the tidsets (there is one tidset by
partition) of each itemset in one database scan in order to calculate its support and regularity.

Partitioning technique allows to reduce some unnecessary computational costs.

Given a regularity threshold o, the database is split into pn = [|TDB|/o,] partitions.
Each partition will then contains o, transactions. For example, consider the transactional database
of Table 4.1 with 12 transactions. A regularity threshold of 4 will split the database into 3 parti-

tions of 4 transactions each.

TKRIMPE will fully exploit the partitioning of the database. Thus, a new local tidset, a
local support and a local regularity related to a partition are considered. The (local) tidset of an
itemset X in the m!" partition P,,, denoted as T,;l\’, is the set of tids in mt* partiticn that contains

itemset X:

TX = {t,|X C ty,tq € P}
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Table 4.1: A transactional database as a running example of TKRIMPE

tid items
1 abde
2 cde
3 bcfg
4 abdfg
5 ceg
6 abcdg
7 abcd
8 abce
9 bed
10 aceg
11 abf
12 abdg

Then, the (global) tidset of an itemset X, TX, is defined as TX = {TIX, B, ,Tp)fz}.The
(local) support of an itemset X in the m!" partition, denoted s, is the number of transactions
(also denoted tids) in the m!" partition that contains itemset X, i.e. s = |T:X|. Then, the (global)
support s of the itemset X is equal to 0", sX.

For example, consider an item a occurring in the set of tids {1,4,6,7,8,10, 11,12} (i.e.
transactions 7% = {ti, t4, tg, t7,ts, t10, t11,t12}) from the transactional database of Table 4.1.
Thus, the set of tids {1,4} is contained in T} which is the tidset of the first partition. Meanwhile,
the sets of tids {6,7,8} and {10, 11,12} are stored in T3 and T, respectively. Thus, the tidset
of the item a is T* = {{1,4},{6,7,8},{10,11,12}}. Besides, the support of the item a is
s*=24+343=28.

By using the partition technique, the tidset of each itemset is spilt into several small tidsets.
As a consequence, the original definition of the regularity of an itemset (see Definition3.1) cannot
find the regularity between partitions. It is suitable on only one tidset for each itemset as in
(Amphawan et al., 2009). Then, three new definitions are proposed to calculate the regularity in
each partition, regularity between two consecutive partitions and the total regularity of an itemset.

The effect of the partition technique is evaluated in Section 4.8.2.

Definition 4.1 (Regularity of an itemset X in a partition) Let tfm and ti.fm be two consecutive

tids in TX, i.e. where j < k and there is no tid tffm in T, j < i < k, such that the transaction
of t{\m contains X. Thus, rtt;-\' = t;f}m = t])fm is the regularity value between two consecutive

tids tj\’m and thm. Therefore, the regularity of the itemset X in the mth partition is defined as:

rpa = maz(rtty, rity, ..., Tt X)),
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Proposition 4.2 The regularity of an itemset X in any partition Py, is strictly less than regularity

threshold: rpX < o,.

Proof: Following Definition 4.1 it is obvious that the maximum regularity of an itemset in a

partition is equal to o, — 1, which is the gap between the first and the last tids in the partition. W

Definition 4.3 (Regularity of an itemset X between two consecutive partitions) Let

tl)T(",fflnn—l be the last tid where X occurs in the (m — 1)t partition and tf,m be the first
tid where X occurs in the m** partition. Then, rtp;t = t{fm — tljg":,‘._llﬂn—l is the number of tids
(transactions) that do not contain X between the (m —1)t" and mt* partitions. Thus, a regularity
of X between the two partitions is defined. Obviously, rtpy is t{fm. To find the exact regularity
between two consecutive partitions of X on the entire database, the number of transactions that
do not contain X between the last tid where X occurs and the last tid (transaction) of database
has to be calculated by: rtpg(n_,_l = |TDB| - tl)’},,’fll,pn' Lastly, the regularity between any two

consecutive tidsets T2_, and TX can be defined as:

t‘lx,m ifm=1
|TDB| - tI)T(F,ff_llym—l ifm=pn+1

Therefore, the regularity of an itemset is defined with the help of Definitions 4.1 and 6.8.

Definition 4.4 (Regularity of an itemset X) The regularity of an itemset X is defined as

rX = maz(maz(RPX), maz(RTPX))

where RPX = {rp{,rp¥,... ,'r‘pﬁn} is the set of regularities of X in each partition (Defini-
tion 4.1) and RTPX = {rtpf{, rtpg, ... ,rtpfnﬂ} is the set of regularities of X between two

consecutive partitions (Definition 6.8).

For example consider the transactional database of Table 4.1 and the case of an item a:
T° = {{1,4},{6,7,8}, {10,11,12}}. The set of regularities in each partition of the item a is
RP® = {(4-1),max(7 - 6,8 - 7),maz(11-10,12-11)} = {3,1,1}. 'fhe set of regularities
between two consecutive partitions of a is RTP* = {1,6 — 4,10 — 8,12 — 12} = {1,2,2,0}.

Thus, the regularity of the item a is r* = maz(maz(3,1,1), max(1,2,2, 0)) = 3.
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4.4 Support Estimation

The support estimation is used when the number of itemsets in the top-k list is equal or
greater than k. The support estimation requires less computational efforts than the computing of
the real support. When the estimated support of an itemset is less than the support of the kth
itemset in the sorted the top-k list, TKRIMPE can conclude that the support of the itemset is less
than the support of the k" element in the top-k list, and then TKRIMPE can prune the itemset out

of a search space without intersection all of tids.

The support estimation is based on the notion of the left and right boundaries in each parti-
tion of two itemsets when these itemsets are merged. It will be also useful for regularity estima-
tion. The left (right) boundary of itemsets X and Y in the m*" partition is simply the first (last)
index of tids in 72X and 7}¥ such that the corresponding tids are equal for the two itemsets.

Formally: given the tids tX € TX and t¥, € T¥ (1 <i < |TX|, 1 < j < |T%)), the left

i,m

boundaries 16X and IbY of itemsets X and Y at the mt" partition during merging are given by:

gy RO e

o = : X Y
min(i) if ¢, =t ,
W 0 fTXNTY =¢

min(j) if ti),{m = t}fm

Obviously, the right boundaries are defined in a very similar way:

i (HT T =9
rbX = e AFE | =1

mazx(i) if t7, =t}fm

i,m

0 if TX NI = ¢

rof, =< Y if|TXNTY| =1

mazx(j) if tffm = t}fm

Thus, the estimated support is defined as the minimum distance between the left and the

right boundaries of itemsets X and Y.
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Definition 4.5 (Estimated support) The estimated support of an itemset XY in the m** par-
XY

tition, denoted as es;,", is the minimum distance between the left and the right boundaries of

itemsets X andY in the mt" partition, i.e.,

0 if 16X = 0oribt =0

1+ min(rby — 1bX,rbY — IbY) otherwise

Lemma 4.6 The estimated support esX¥ of an itemset XY in the mt? partition can be bounded

with the help of the real support of XY in the m** partition and the size of partitions:

s,),(ly < esﬁy < sﬁy + ((or — 2)/2)

Proof: Obviously, since the left and the right boundaries are indexes of the first and the last
tids where itemsets X and Y occur together, the support of itemset XY could not be greater than
the difference between the right and the left indices(i.e. the estimated support). Indeed, one can
notice that the support of the itemset XY is equal to the estimated support of XY if XY occurs
in every tid between the boundaries and that the support of XY is less than estimated support if
there is at least one tid between the boundaries where the itemsets X and Y do not occur together.

Thus, 57)7(1}/ < esﬁy.

In any partition, the maximum number of tids between the left and right boundaries of
the itemset XY is o, — 2. This is the case when itemsets X and Y occur together in the first
and the last transactions of the partition. The difference between the estimated support and the
real support (esXY — sXY) corresponds to the number of tids where X and Y do not occur
together between the left and the right boundaries. Then, in the worst case, this difference is
equal to (o, — 2)/2. It happens when all the tids (between the left and the right boundaries)
are totally different. Otherwise, the maximum of the difference is less than (o, — 2)/2. Thus

esXV < XY + ((or — 2)/2). ]

Definition 4.7 (The estimated support of an itemset XY') The estimated support of an itemset

XY, denoted es’XY, is the summation of estimated support in every partition, i.e.,

pn
ast ¥ = Z esﬁy
m=1
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Lemma 4.8 Let es™Y be the estimated support of XY and s*Y be the support of XY, then
ESXY > SXY.

Proof: Based on Lemma 4.6, in each partition, the estimated support of XY is greater than
or equal to the real support of XY. Therefore, the estimated support of XY is no less than the

XY _SPNE XY s, XY L X
real support because es™ ' = ) i es;t >80T =) 08y |

Theorem 4.1 An itemset XY is not a top-k regular-frequent itemset if esXY < sy, where sy is

the support of the k" element in the sorted top-k list.

Proof: Based on Lemma 4.8, the estimated support of an itemset XY is always no less than
its support. If the estimated support of XY is less than s, then the support of XY is also less

than s;. Therefore, the itemset XY is riot a top-k regular-frequent itemset. ]

Theorem 4.1 has clear practical implications. Indeed, for all situations where Theorem 4.1
holds, TKRIMPE can early prune the search space. The effect of this pruning strategy is evaluated

in Section 4.8.2.

4.5 TKRIMPE algorithm

As MTKPP, TKRIMPE consists of two steps : (i) Top-k list initialization: partition
database, scan each partition to obtain all regular items, and collect them into the top-k list with
their supports, regularities and sets of tidsets; (ii) Top-k mining: merge each pair of entries in the
top-k list using a best-first search strategy (i.e. finding the itemsets with the highest support first)
and then intersect their tidsets (one by one partition) in order to find the top-k regular-frequent

itemsets using the proposed support estimation technique.

4.5.1 TKRIMPE: Top-k list initialization

To create the top-k list, each partition of the database is scanned (one by one) to obtain all
items. A new entry in the top-k list is created for any item that occurs in the first o, transactions

(i.e. in the first partition), and then a new tidset for the first partition is built. Finally, the tidset and
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the values of a support and a regularity are updated. For the following partitions, TKRIMPE first
looks if the considered item is already existed in the top-k or not. This is done with the help of a
hash function for efficiency reasons. For a first occurrence of an item in the partition, a new tidset
of the partition is created and the values of support, regularity and tidset are initialized. If the
item was already seen in the partition, TKRIMPE only updates its values in the top-k list. When
the entire database has been read, the top-k list is trimmed by removing the items with regularity
greater than o,.. Then, the top-k list is sorted in descending order of support. Finally, TKRIMPE
removes the items that have a support less than s (the support of the k" item in the top-k list)

from the top- list. Details are given in Algorithm 3.

Algorithm 3 (TKRIMPE: Top-k list initialization)
(1) A transaction database: TDB
(2) A number of itemsets to be mined: k
(3) A regularity threshold: o,
Output:
(1) A top-k list

create a hash table for all 1-items
for each transaction j in the first partition do
for each item 1 in the transaction j do
if the item 7 does not have an entry in the top-k list then
create a new entry for item ¢ with s* = 1,7 = ¢, and create a tidset T} that contain ,
create a link between the hash table and the new entry
else
add the support s* by 1
calculate the regularity % by ¢;
collet t; as the last tid in T}

for each partition m = 2 to pn do
for each transaction j in the m*" partition do
for each item 7 in the transaction j do
if the item ¢ has an entry in the top-k list then

if ¢ is the first tid that ¢ occurs in the m'" partition then
add the support s° by 1
calculate the regularity 7 by t; and check rt with o,
create a tidset T, and collect ¢; as an element in T},

else
add the support s by 1
calculate the regularity 7 by t;
collect t; as the last tid in T},

for each item ¢ in the top-k list do _ .
calculate the regularity r* by |T'D B|— the last tid of Th (t|1T' | )
PN
if r* > o, then
remove the entry of ¢ out of the top-k list

sort the top-k list by support descending order
remove all of entries after the k*" entry in top-k list
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4.5.2 TKRIMPE: Top-k mining

As described in Algorithm 4, TKRIMPE starts from the most frequent itemset to the least
frequent itemset in the top-k list to generate a new regular itemset with a best-first search strategy
to quickly generate the regular-frequent itemsets with the highest support. It then combines two
elements X and Y in the top-k list under the following two constraints: (i) the number of items
in the itemsets of both elements must be equal; (if) both itemsets must have the same prefix (i.e.
each item from both itemsets is the same, except the last item). When both itemsets satisfy the two
constraints, the tidsets of X and Y of each partition are sequentially intersected in order to find the
regularity, the support and the tidsets of the new generated regular itemset XY". When the number
of itemsets in the top-k list is greater than or equal to k, the estimation technique is performed in
each partition (see Definition 4.5). Following Definition 4.7, the estimated support esXY of the
candidate itemset XY is then evaluated. If esXY < sy (the support of the k" itemset in the sorted
top-k list), TKRIMPE will stop to consider the itemset XY (thanks to Theorem 4.1). Otherwise,
the remaining tids between the left and the right boundaries of each partitionAare continuously
intersected to find the (real) support and regularity. If the regularity of the new generated itemset
XY is no greater than o, and its support is greater than s, then XY is inserted in the top-k
list and the k'" itemset is removed from the top-k list. Lastly, one have to notice that thanks to
the partitioning technique TKRIMPE can reduce the time to intersect some tids of each partition
when at least one of the tidsets does not contains a regular sequence of transactions. This will

particularly happens often in sparse datasets.

The advantages of the database partitioning and support estimation techniques will be illus-
trated in Section 4.8. The partitioning technique allows to reduce the number of tids to compare
during intersection, and the support estimation allows to early reduce the number of candidate

itemsets.
4.6 Example of TKRIMPE

Let consider the T DB presented in Table 4.1, the regularity threshold o, be 4 and the

number of required results k be 5. The database is thus separated into three partitions. .

The initialization of the top-k list from 7D B is illustrated in Figure 4.2. After scanning the
first transaction t; = {a, b, d, e}, the entries for items a, b, d and e are initialized in the top-k list as
shown in Figure 4.2(a). Then the second, the third and the fourth transactions are considered. The
tidsets for the first partition, the values of support and regularity of each element are initialized or

updated as shown in Figure 4.2(b). The next partition (transactions 5 to 8) initializes or updates
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Algorithm 4 (TKRIMPE: Top-k mining)
Input:
(1) A top-k list
(2) A number of itemsets to be mined: k
(3) A regularity threshold: o,
Output:
(1) A set of top-k regular-frequent itemsets

for each entry x in the top-k list do
for each entry y in the top-k list (z > y) do
if the entries z and y have the same size of itemsets and the same prefix (|[I*| = |IY| and i =
& eyl V8o oy = i?m_l) then
merge the itemsets of the entries z and y to be itemset Z = I* U IV
es? =0,742 =0,52 =0
for each partition m do
calculate the left [bZ,, [bY, and the right boundaries rby, , by, of the mt" partition
- calculate the estimated support esZ, from [bZ,, [bY, and rb%,, rb¥,
calculate the regularity 2 from [b%,, [bY, and rb%,, rb¥, and check r# with o,

add the estimated support es? by es?Z,
if es? < s* then
stop considering Z {s? < sx}
for each partition m do
for each t,, in T (p = Ib%, to7b%,) and t, in T)), (g = [bY, to bY,) do
ift, = t, then
calculate the regularity % by t,,
add the support sZ by 1
collect ¢, as the last tid in T2

recalculate the estimated support es? = es? — esZ, + |T2
if es? < s, then
stop considering Z {s? < sy}
calculate the regularity 72 by |7 DB|— last tid of pnt partition (tIZTZ | pn)
pnl
if rZ < g, and sZ > s then
remove the kt" entry from the top-k list
insert the itemset Z (I U IY) into the top-k list with 72, s% and T

the tidsets for the second partition for each element as illustrated in Figure 4.2(c). Finally, the third
partition is considered and the top-k list after scanning all transactions is given in Figure 4.2(d).
Then, the item f which has the regularity r/ = 7 greater than o, = 4 is removed from the top-k
list. The top-k list is sorted by support descending order and item e is removed, since the support
of e (s¢ = 5) is less than the support of g (sY = 6) which is the kth (5t%) item in the top-k list.
The top-k list after initialization is shown in Figure 4.2(e). It will be the starting point for the

mining process.

Since the item b is the first item in the top-k list, TKRIMPE starts by considering the item
a and then looks in the previous items which have the same size and same prefix. Thus, the
item b is combined with the item a and their tidsets are intersected (partition by partition). Since
the number of itemsets in the top-k list is greater or equal to k = 5, TKRIMPE determines the

estimated support of ba. The left and the right boundaries of b and a in the first partition are
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a:l:1 el d:1:1
_’I ({1} H ({1} H {18 |
I e:v:I l
{{Lh}
(a) read first transaction
ai2:3 bi3:2 c:2:2
> (A ({1341) <z+z )
£:23 ezl d:3:2
l (13,41} H ({12} H 1{1,2,4}} l
v
I 2:2:3 l
{1341}

(b) read first partition

_" 25573 b:6:2 H c:6:2
141,4},{6,7,8}} 1{1,3,4},{6,7,8}} 42,3},{5,6,7,8}}

£:2:3 }‘_ e:4:3 di5:i2
(43.4}).44) {({1,2},45.8}} {$1,2,4},16,7}}
l 243 ‘
{{3,4),{5.6}}

(c) read second partition

a:8.3 H 6:9:2 c:8:2
™ 01,4),{6.7,8),110,11,12) {{1,3,4),{6,7,8},{9.,11,12}} {42,3,15,6,7.8),{9,10}}

[ 13 H e:5:3 d:7:3
{{3.4}.¢). 411} } {{1,2},{5,8},{10}} {{1.2,4},{6.7}.,{9,12}}

I g:6:4
{{3,4},{5,64,{10,12}}

(d) read third partition

b:9:2 a:8:3 c:8:2
(11,34}, {678 19,11,12} {11,4},16,7.8},{10,11,12}} £{2,3).15.6,7.8},{9,10}

1 g:6:4 di7:3 |
{{3,4}.{5,7},{10,12}} 1{1,2,4},{6,7},19,12}}

(e) final top-k list

Figure 4.2: Top-k list initialization

_’[ b:9:2 a3 c:8:2
{{1,3,4},{6,7.8},{9,11 12} {{1,4},16,7,8},{10,11, 12}} 1{2,3},15,6,7,8},{9,10}}

| ba:7:3 d:7:3
{{1,4},16,7,8},{11,12}} {41,2,4},{6,7},{9.12}}

Figure 4.3: Top-k frequent itemsets

b = 1,163 =41, rb? = 3 and rb} = 2, respectively. Therefore, the estimated support est® of the
first partition is 1 4+ min(3 — 1,2 — 1) = 2. The estimated supports of the second and the third
partition are obtained in the same manner: es3® = 3 and es$® = 2. Finally, the estimated support

ab

esb of ba is equal to 2+3+2 = 7. The itemset ba is still a candidate because es®” = s = 7 > 5.

Thus, TKRIMPE intersects the remaining tids between the left and the right boundaries of each
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partition to discover the support, regularity and tidsets of ba: 7, 3 and {{1,4}, {6, 7,8}, {11,12}}.
Since the regularity of ba is less than o,.(4) and the support of ba is more than s = 6, itemset ba
is inserted in the top-k list and item g (the kt" itemset) is removed from the top-k list (Fig. 4.3).
Next, the third element, item c, is considered. There are two elements in the pre\?ioﬁs sequence
and have the same prefix as ¢: b and a. The item c thus is combined with b. The itemset be is
early pruned because its estimated support es®® = 1 + 3 + 1 = 5 is less than s;. Next, the item
d and the itemset ba are treated in the same manner. When all itemsets in the top-k list have been

considered, all top-k regular-frequent itemsets are obtained as shown in Figure 4.3.
4.7 Complexity analysis

In this section, the computational complexity for TKRIMPE is discussed in the terms of

time and space. Extensive experimental studies will complement this analysis in Section 4.8.
Proposition 4.9 The time complexity for creating the top-k list is O(nm) where m is the number

of transactions in the database and n is the number of items occurring in the database.

Proof: Since the proposed algorithm scans each wransaction in the database once, the entry
of each item that occurs in the transaction is also looked up once in order to collect the tid into
tidset (O(nm)). The cost for sorting all (in the very worst case) the entries is O(nlogn). Then,
the time complexity to create the top-k list is formally O(nm 4 nlogn). In fact, the number
of items (n) is, for the considered applications, always less than the number of transactions(m).
Thus, the time complexity to create the top-k list is O(nm). o
Proposition 4.10 The time complexity for mining top-k regular-itemset is O(mk?) where m is the

number of transactions in the database and k is the number of results to be mined.

Proof: The mining process merges each itemset in the top-k list with only the former itemset
in the top-k list. Then, the tidsets of the two merged itemsets are intersected. Therefore, the
combination of all itemsets in the top-k list is k * (k + 1)/2 and the time to intersect tidset at each

step is O(m). Thus, the overall time complexity of mining process is O(mk?). [ |

.

Proposition 4.11 The memory space required by the top-k list is O(km), where m is the number

of transactions in the database and k is the number of results to be mined.

Proof: The top-k list contains only k itemsets during the mining process and the maximum
tids contained in each element of the top-k list is m. Therefore, the space complexity of using

top-k list is O(km). |
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4.8 Performance Evaluation

In this section, the experimental studies are here reported to investigate the performance
of the TKRIMPE algorithm over various datasets. As illustrated in previous chapter, MTKPP
algorithm (Amphawan et al., 2009) outperforms the PF-tree algorithm (Tanbeer et al., 2009) for
all datasets. Then, experiments are conducted to evaluate the performance of TKRIMPE by com-
paring with MTKPP which are the top-k regular-frequent itemsets mining. To investigate the
effectiveness of TKRIMPE, the advantages of database partitioning and support estimation tech-
niques used in TKRIMPE are first illustrated. the processing time (i.e. CPU and I/Os costs) is
examined to compare the performance of the two algorithms with the small and large values of k
and various values of regularity threshold (o). Furthermore, a study of memory consumption of
TKRIMPE is also considered because of the use of the top-k list structure. Lastly, the scalability

of TKRIMPE on the number of transactions in the database is evaluated.

4.8.1 Experimental setup

All the experiments are performed on a Linux platform with a Intel®Xeon 2.33 GHz and
with 4 GB main memory. The experiments are done on nine real datasets (accidents, BMS-
POS, chess, connect, kosarak, mushroom, pumsb, pumsb* and retail) and three synthetic datasets
(T1014D 100K, T20I16D100K and T20I6D100K) which were described their details and charac-
teristics in Chapter 2. Programs for MTKPP and TKRIMPE are written in C based O;l the use of

the top-k list structure,

In the experiments, the value of o, is set depending on the characteristic of each dataset
for illustrative purpose. Therefore, the value of o, is specified to be different values. In fact, the
number of regular itemsets for each database increases with the value of the regularity threshold.
On sparse datasets, each itemsets does not occur frequently thus the value of o should be set to
be large when the value of k is large. While, each itemset appears very often in dense dataset, a
small value of o, should be applied. Hence, the value of k is divided into two rages: (i) [50,500]

for the small values; and (ii) 1,000, 10,000] the large values, respectively.
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4.8.2 Advantages of the database partitioning and the support estimation techniques ap-

plied in TKRIMPE

The advantages of applying partitioning and estimation techniques in the TKRIMPE algo-
rithm are first investigated. To do this, the numbers of early terminated itemsets (i.e. the inter-
section processes of these itemsets are not completed) by using the estimation technique and the
numbers of non-considered tids during intersection process (i.e. the summation of non-regarded
tids for each time of intersection) are considered. This analysis is done in an absolute manner and

does not depend on the implementation.

Figure 4.4 to Figure 4.14 show the numbers of itemsets that are early terminated (pruned)
by using the support estimation technique.For dense dataset, TKRIMPE is not so efficient, neither
for the small value nor the large values of k, where the number of early terminated itemsets are in
ranges: [10,1,370] for the small values of k and [980, 25, 799] for the large values, respectively.
The reason is that the support of each top-k regular-frequent itemset is quite close to each other.
Then, TKRIMPE cannot take benefit from the estimation technique which is an over e’s.timation

method.

However, on sparse datasets (i.e. BMS-POS, retail, T1014D100K, T20I6D100K and
T40110D100K) shown in Figure 4.10 to Figure 4.14, the numbers of early terminated itemsets
of the small and large values of k are varied between ranges: [0.2K,98K] and [17K,5500K],
respectively. Obviously, from these figures, it could be seen that the use of estimation technique
achieves high number of pruned itemsets for sparse datasets because each itemset occurs very few
and not together. Thus, TKRIMPE cannot use the benefit of support estimation to prune such

itemsets.

To show the benefit of partitioning technique, the number of of non-regarded tids (i.e. the
summation of non-considered tids in each iteration of the intersection process) are illustrated in
Figure 4.15 to Figure 4.25 illustrate the benefit of using the partitioning and the estimation tech-
niques which is the summation of the number of non-considered tids in each iteration of intersec-
tion process. There are between 9,000 and 38, 000, 000 non-regarded tids for sparse datasets and

between 200 and 11, 000, 000 non-regarded tids for dense datsets.
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4.8.3 Execution time

As mentioned above, TKRIMPE can save a lot of operations on itemsets using the database
partitioning and the support estimation techniques. Recall that the performance of MTKPP is
always better than that of PF-tree, a comparison on total execution times between top-k regular-

frequent itemsets mining algorithms: MTKPP and TKRIMPE is thus now only provided.

Let first consider the runtime of TKRIMPE on the six real dense datasets (i.e. accidents,
chess, connect, mushroom, pumsb, purﬁsb*) as shown in Figure 4.26 to Figure 4.43. From these
figures, the execution times of MTKPP and TKRIMPE are always ranked in the same order on
both the small and large values of k, due to TKRIMPE can only reduce a few number of com-
parison among the borders of a partition (i.e. the number of non-regarded tids is very few for
each dense dataset). However, in some cases with the small values of k, TKRIMPE is faster
than MTKPP because it can take advantage from the estimation technique. On the BMS-POS,
retail and three synthetic sparse datasets (see Figure 4.44 to Figure 4.58), TMRIMPE outperforms
MTKPP on both the small and large values of k. For the real retail dataset, one can notice that
TMRIMPE significantly outperforms MTKPP algorithm, since TKRIMPE fully takes advantage
of the partition and the support estimation techniques. On synthetic datasets, TMRIMPE outper-
forms MTKPP for the small and large values of k. However, on T40I10D100K, TKRIMPE has
similar performance as MTKPP when k is large. Since this dataset is neither sparse nor dense
dataset, TKRIMPE cannot take advantage of partitioning and estimation technique for this kind

of dataset.

As a whole these results illustrate that TMRIMPE is very efficient when compared with
MTKPP for sparse datasets as it was suggested in the description of the Top-k mining algorithm.

In addition, TMRIMPE has better, but not significant, performance for dense datasets.
gA

4.8.4 Memory consumption

Now, the memory consumption of TKRIMPE and MTKPP algorithms are examined. Both
algorithms use a top-k list which contains item-name, a set of tidsets, support and regularity values
for each entry. Obviously, the memory usage of the two algorithms is similar. Figures 4.59 to 4.69

show the memory usage for several values of k on the dense and sparse databases.

These experiments show that the memory consumption is low enough to be able to mine

classical databases within the current available gigabyte-range memory. Indeed, in both imple-
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mentations the top-k list structure is handled in very efficiently way.

Lastly, it is obvious that the memory usage increases when k increases. In fact, the memory
usage of the proposed algorithm depends on the support value of each element in the top-k list
because the algorithm has to maintain the tidsets of all itemsets in the top-k list in order to compute

the support and the regularity.

4.8.5 Scalability test

the scalability of the TKRIMPE algorithm is studied on execution time and memory con-
sumption by varying the number of transactions in database. The kosarak dataset is used to test the
scalability of TKRIMPE and compared it with MTKPP. Since the kosarak is a huge dataset with
a large number of distinct of items (41,270) and transactions (990, 002), the database is firstly
divided into six portions (i.e. 100K, 200K, 400K, 600K, 800K and 990K transactions) and the
value of desired itemsets (k) is specified to be 500 and 10, 000 to investigate the scalability on the
small and large values, respectively. Finally, the regularity threshold is set to 6% of number of

transactions in each portion for each experiment.

From Figures 4.70 and 4.71, TKRIMPE has very good linear scalability against the number
of transactions in the dataset. In comparison with MTKPP, TKRIMPE not only runs faster, but it
also has much better scalability in terms of database size: the slope ratio for MTKPP is higher than
that for TKRIMPE. This is because TKRIMPE can take the advantage from databése partitionin'g

and support estimation techniques.

The scalability of TKRIMPE is also investigated in terms of memory. From figures 4.70
and 4.71, these two algorithms have very similar memory requirement for all datasets because
they use the same representation (tidset) to maintain tids that each itemsets occurs. Once the
number of transactions increases, the memory usage of TKRIMPE and MTKPP also increase.
However, TKRIMPE shows stable performance of about linearly increase of the memory require-
ment with respect to the database size. Therefore, it can be observed from the scalability test that
TKRIMPE can mine the top-k regular-frequent patterns over large datasets and distinct items with

considerable amount of runtime and memory.
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4.9 Summary

In this chapter, an efficient algorithm to mine a set of top-k regular-frequent itemsets,
TKRIMPE, is proposed which is based on: (i) the best-first search strategy that allows to mine the
most frequent itemsets as soon as possible and to raise quickly the k" support (i.e. the support of
the kt" itemset in the sorted top-k list) dynamically which is then used to prune the search space;
(ii) the partitioning of the database in ofder to reduce the number of comparison of certain tids at
the end of each partition during the intersection process and (iii) the support estimation technique

used to prune the search space.

The pgrformance studies on both real and synthetic datasets show that the proposed algo-
rithm is efficient. TKRIMPE is also compared with MTKPP, which are at the moment the only
one efficient algorithms for mining top-k regular-frequent patterns. From the results, TKRIMPE
outperforms MTKPP, for small and large value of k when the dataset is sparse, and have similar

performance for dense datasets.
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Figure 4.41: Runtime of TKRIMPE on pumsb* (o, = 1%)
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Figure 4.42: Runtime of TKRIMPE on pumsb* (o, = 2%)
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Figure 4.43: Runtime of TKRIMPE on pumsb* (o, = 3%)
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Figure 4.44: Runtime of TKRIMPE on BMS-POS (o, = 1%)
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Figure 4.45: Runtime of TKRIMPE on BMS-POS (o = 2%)
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Figure 4.46: Runtime of TKRIMPE on BMS-POS (o, = 3%)
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Figure 4.47: Runtime of TKRIMPE on retail (o = 6%)
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Figure 4.48: Runtime of TKRIMPE on

retail (o, = 10)
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Figure 4.49:

Runtime of TKRIMPE on retail (o, = 10%)
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0.8

0.6

0.4

0.2

3.5

2.8

21

1.4

0.7

4.50: Runtime of TKRIMPE on T10/4D100K (o, = 4%)

1.5

1.2

0.9

0.6

0.3

4.5

3.6

2.7

1.8

0.9

T1014D100K (o, = 4)

- T T T T T =
MTKPP ——
| TKRIMPE —-X-- X
/’X—’,
e //x/’ =]
L - o
L ¥ o
o F|
et | ] | | ]
0 50 100 200 300 400 500
k
T1014D100K (o, = 4)
T T T T T
— -~
’,4
L aibe |
,/’x”
— ”,X’ =
o o
= g MTKPP —+— ]
Z4 TKRIMPE —-%--
| | ] | ]
0 1000 2000 4000 6000 8000 10000

k

T1014D100K (o, = 6)

= | I I | |
MTKPP ——
TKRIMPE --X%-- ==
- X
L X7 —
n X _
SR e X~ =
“ 1 | l !
0 50 100 200 300 400 500
k
T1014D100K (o, = 6)
T T T T T
B 2
X
- X .
U _
N S
//
= MTKPP —— =
24 TKRIMPE —-%~-
] ] ] | ]
0 1000 2000 4000 6000 8000 10000
k

88



89
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Figure 4.52: Runtime of TKRIMPE on T/0/4D100K (o, = 8%)
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Figure 4.53: Runtime of TKRIMPE on 720I16D100K (o = 2%)
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Figure 4.54: Runtime of TKRIMPE on T20/6D100K (o, = 4%)
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Figure 4.55: Runtime of TKRIMPE on T20I6D100K (o = 6%)
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Figure 4.56: Runtime of TKRIMPE on T40110D100K (o, = 2%)
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Figure 4.57: Runtime of TKRIMPE on T40110D100K (o, = 4%)
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Figure 4.58: Runtime of TKRIMPE on T40110D100K (o, = 6%)
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Figure 4.59: Memory usage of TKRIMPE on accidents
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Figure 4.60: Memory usage of TKRIMPE on chess
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Figure 4.61: Memory usage of TKRIMPE on connect
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Figure 4.62: Memory usage of TKRIMPE on mushroom
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Figure 4.63: Memory usage of TKRIMPE on pumsb
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Figure 4.64: Memory usage of TKRIMPE on pumsb*
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Figure 4.66: Memory usage of TKRIMPE on retail
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Figure 4.67: Memory usage of TKRIMPE on T1014D 100K
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Figure 4.68: Memory usage of TKRIMPE on T20/6D100K
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Figure 4.69: Memory usage of TKRIMPE on 740/10D100K
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Figure 4.70: Scalability of TKRIMPE (% : 500, o;. = 6)
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