CHAPTER III

MINING TOP-K REGULAR-FREQUENT ITEMSETS

Based on the idea of “Controlling the number of regular-frequent itemsets to be
mined”motivated from (Fu et al., 2000) and (Tanbeer et al., 2009), a problem of mining k regular-
frequent with highest supports is introduced and defined in this chapter. Besides, an efficient
single-pass algorithm named Mining Top-K Periodic(Regular)-frequent Patterns (MTKPP), used
to mine this kind of itemsets is also presented. To discover a set of top-k regular-frequent itemsets,
the users can specify only a regularity threshold and a number of desired results instead of setting
a support threshold. By avoiding the setting of a support threshold, this approach might help the
users from the difficulty of specifying an appropriate support threshold to mine regular-frequent

itemsets.
3.1 Top-k regular-frequent itemsets mining

This section introduces the basic notations and definitions needed to define top-k regular-

frequent itemsets as defined in (Amphawan et al., 2009).

Let I = {i1,12,...,in} be asetof n > 1 literals, called items. A set X = {i;,,...,1;} C
I is called an itemset or an [-itemset (an itemset of size [). A transactional database TDB =
{t1,t2,...,tm} is a set of transactions in which each transaction t; = (g, Y’) is a tuple containing
unique transaction identifier ¢ (tid in the latter) and an itemset Y. If X C Y, it is said that ¢,
contains X (or X occurs in t4) and is denoted as tg‘. Therefore, TX = {tz)f s ,tf }, where
1 < p < q < |TDBJ, is the set of all ordered tids (called tidset) where X occurs. The support
of an itemset X, denoted as sX = |TX|, is the number of tids (transactions) in TDB where X

appears.

Definition 3.1 (Regularity of an itemset X)) Let t]X and tf be two consecutive tids in the tidset
TX of an itemset X, i.e. where j < k and there is no transaction t;, j < i < k, such that
t; contains X. Then, rttX = tf - tJ)-(is the regularity value which represents the number of
transactions not containing X between two consecutive transactions tj-{ and tiX. Thus, RTTX =
{reefX, rttf, ... rttX 1} is denoted as the set of all regularities of X. Then, the regularity of X

can be defined as

rX = maz(RTTY) = max(rtt, rtts, . .. ,rtti{ﬂ_l)

17

Definition 3.2 (Regular-frequent itemset) An itemset X is called a regular-frequent itemset if
() its regularity is no greater than a user-given regularity threshold (or); (i1) its support is no

less than a user-given support threshold (o).

Thus, the regular-frequent itemsets mining problem is to discover a complete set of regular-
frequent itemsets from transactional database with two user-given support and regularity thresh-
olds. However, as mentioned in the previous chapter the user may prefer to specify a simple
threshold on the amount of results instead of a support threshold. The following definition of a

top-k regular-frequent itemsets mining problem is thus proposed.

Definition 3.3 (Top-k regular-frequent itemset) An itemset X is called a top-k regular-frequent
itemset if (i) its regularity is no greater than a user-given regularity threshold (denoted as o)

and (ii) there exist no more than k — 1 itemsets whose their supports are higher than that of X.

Therefore, the top-k regular-frequent itemsets mining problem is to discover a set of top-k
regular-frequent itemsets from transactional database with two user-given parameters: a number

k of expected outputs and a regularity threshold o
3.2 Preliminary of MTKPP

In this section, details of the MTKPP algorithm which is an efficient single-pass algorithm
used to discover a set of k regular itemsets with highest supports from a transactional database are
introduced. It adopts a best-first search strategy to quickly find regular itemsets with the highest
values of support. MTKPP is based on the use of a top-k list (with hash table) structure to maintain

top-k regular-frequent itemsets during mining process.
3.3 MTKPP: Top-k list structure

Top-k list is a linked-list used to maintain k periodic(regular)-frequent patterns with highest
supports. A hash table is also used with the top-k list in order to quickly access information in
the top-k list. At any time during mining process, the top-k list contains not much more than
k regular-frequent itemsets in main memory. Each entry in a top-k list consists of 4 fields: an
item or itemset name (I), a total support (s1), a regularity (periodicity) (r!) and a tidset where T
occurs (T7). For example in Figure 3.1, an item a has a support of 8, a regularity of 3. Its tidset

is {1,4,6,7,8,10,11,12} which means the item a occurs in {t1,t4, s, t7, s, t10, t11, t12}.

18

item |top-k list's link
AN Eetteee ey s
b i a:8:3 = d:7:3
c {1,4,6,7,8,10,11,12} {1,2,4,6,7,9,12}
FIT o A RO N T e R N TR >
e
F
g

Figure 3.1: MTKPP: Top-k list with hash table

3.4 MTKPP algorithm

MTKPP consists of two steps: (i) Top-k list initialization: scan a database once to obtain
k regular items (with highest support) and collect them into the top-k list with their supports,
regularities and tidsets; and (if) Top-k mining: merge each pair of entries in the top-k list by using
the best-first search strategy (i.e. finding the itemsets with the highest support first in order to
reduce search space) to generate a larger candidate itemset and then sequentially intersect their

tidsets to calculate support and regularity of the new generated itemset.
3.4.1 MTKPP: Top-k list initialization

To create the top-k list, the database is scanned once to obtain all items. At the first occur-
rence of each item, the MTKPP algorithm creates a new entry in the top-k list and then initializes
its support, regularity and tidset. For other occurrences, the hash table is looked up to find the ex-
isting entry in the top- list and update the entry values. All items that have regularity greater than
o, are removed from the top-k list and the top-k list is sorted in support descending order. Finally,
all items that have support less than the support of the k" item in top-k list (s%) are removed from

the top-k list. The details of the top-k list initialization process are described in Algorithm 1.
3.42 MTKPP: Top-k mining

To mine a set of top-k regular—ffequent itemsets from the top-k list, the best-first search
strategy is adopted first to generate regular itemsets with the highest supports. To generate a new
candidate itemset, MTKPP starts from considering the most regular-frequent-item to the least
regular-frequent item in the top-k list. It then combines two entries in the top-k list under the
following two constraints: (i) the size of the itemsets of both considered entries. must be equal,
(ii) both itemsets must have the same prefix (i.e. each item from both itemsets is the same, except
the last item). When both itemsets satisfy the two constraints above, MTKPP will sequentially

intersect their tidsets in order to calculate the support, the regularity, and the tidset of the new

19

Algorithm 1 (MTKPP: Top-k list initialization)

Input:
(I) A transaction database: TDB
(2) A number of itemsets to be mined: k
(3) A regularity threshold: o,
Output:
(1) A top-k list

create a hash table for all 1-items
for each transaction j in TDB do
for each item 7 in the transaction j do
if the item 7 does not have an entry in the top-k list then
create a new entry for the item ¢ with s* = 1,7¢ = t; and create a tidset 7" that contains t,
create a link between the hash table and the new entry
else
add the support s* by 1
calculate the regularity 7 by ¢;
collect ¢; as the last tid in 77

for each item 7 in the top-k list do
calculate the regularity 7 by |T'DB|~ the last tid of T*
if r* > o, then
remove the entry 7 out of the top-k list

sort the top-k list by support descending order
remove all of entries after the k*" entry in the top-k list

Algorithm 2 (MTKPP: Top-k mining)

Input:
(1) A top-k list
(2) A number of itemsets to be mined: &
(3) A regularity threshold: o,
Output:
(1) A set of top-k regular-frequent itemsets

for each entry z in the top-k list do
for each entry y in the top-k list (z > y) do
if the entries x and y have the same size of itemsets and the same prefix then
merge the itemsets of z and y to be itemset Z = I® U IV
for each t,, in 77" and t, in T*" do
ift, = t, then

calculate the regularity 7Z by t,,
add the support sZ by 1
collect t,, as the last tid in T=

calculate the regularity 72 by |T'DB|— the last tid of T2
if 72 < o, and sZ > sy then
remove the k*" entry from the top-k list
insert the itemset Z (I U I¥) into the top-k list with rZ, sZ and T?

generated candidate itemset. If the regularity of the new candidate itemset is not greater than o,

and the support is greater than the support of the kth regular itemset in the top-k list, then the kth

regular itemset will be removed from the top- list and the newly generated candidate itemset is

inserted into the top-k list. The details of the mining process are described in Algorithm 2.

20

3.5 Example of MTKPP

Let consider the T'D B presented in Table 3.1. The regularity threshold ¢, and the number
of required results k are 4 and 5, respectively. Figure 3.2 illustrates the creating of the top-k list

process from the TDB.

Table 3.1: A transactional database as a running example of MTKPP

tid items

1 abde
2 cde

3 befg
4 abdfg
5 ceg

6 abcdg
! abcd
8 abce
9 bed
10 aceg
11 abf
12 abdg

With the scanning of the first transaction ¢; = {a, b, d, e}, the entries for items a, b, d and
e are initialized in the top-k list as shown in Figure 3.2(a). The next transaction (t2 = {c, d, e})
initializes a new entry in the top-k list for item c. It then updates the values of support and
regularity for items d and e to be 2 : 1 and their tidsets to be {1,2} (Figure 3.2(b)). As shown
in Figure 3.2(c), after scanning the third transaction (t3 = {b,c, f,g}), the regularity 7° of the
item b changes from 1 to 2. The top-k list after scanning all transactions is given in Figure 3.2(d).
Next, the item f which has the regularity 7/ = 7 greater than o, = 4 is removed from the top-k
list. Finally, the top-k list is sorted by support descending order and item e is removed from the
top-k list, since the support of e (s = 5) is less than support of g (s9 = 6) which is the kt*(5*)

pattern in the top-k list. The top-k list after initialization phase is shown in Figure 3.2(e).

MTKPP mines the top-k regular-frequent itemsets from the top- list of Figure 3.2(e). Since
item b is the first item in the top- list and it has no items in the previous sequence, MTKPP starts
by considering item a and search for identical size and prefix items (in the previous sequence),
item b. Then, item b is combined with item a and their tidsets are intersected to find the support
(s’ = 7), the regularity (r*® = 3) and the tidset (T%* = {1,4,6,7,8,11,12}) of itemset ba.
Since the regularity of ba is less than o, = 4 and the support of ba is more than s, = 6, the
itemset ba is inserted into the top-k list and item g (the k** itemset) is removed from the top-k
list (Figure 3.3). Next, the third element, item c, is considered. There are two entries which are

in the previous sequence and have the same prefix as ¢: b and a. Thus, item ¢ is combined with

21

N A

e:l:1

1
(a)

a1l belel el

o {1 () @2)

e:2:1 '
I {1,2} H (1.2}]

(b)

= e o I u |
[o N e T

v
2ul:3
{3}
(c)
s a:8:3 b:9:2 ci8:2
{1,4,6,7,8,10,11,12} {1,3,4,6,7,8,9,11,12} {2356789,10)
1357 €:3:3 d: 7 3
{34,11} {1,2,5,8,10} {1,2,4,6,7,9,12}
{3,4,5,6,10,12)
(d)
b:9:2 a:8:3 c.8:2

"’|{1,3,4,6,7,8,9,11,12) {1,4,6,7,8,10,11,12} {2,3,5,6,7,8,9,10}

[(?4561012 l4—| (122(;7.':/?9,12}
(e

)

Figure 3.2: Top-k list initialization

b:9:2 a:8:3 c:8:2
{1,3,4,6,7,8,9,11,12 {1,4,6,7,8,10,11,12} {2,3,5,6,7,8,9,10}
ba:7:3 di@f3
{1,4,6,7,8,11,12} {1,2,4,6,7,9,12}

Figure 3.3: Top-k regular-frequent itemsets

item b and their tidsets are intersected. The tidset and the regularity of cb are {3,6,7,8,9} and 3,
respectively. Because the support of cb (5 = 5) is less than the support of s, = 7, the itemset
cb is no longer considered. Next, item c and item a are combined and their tidsets are intersected.
The tidset of ca is then {6, 7,8, 10}. Since the regularity of ca(r*® = 6) is greater than 4, itemset
ca cannot be a regular itemset. Next, item d and itemset ba are considered in the same manner.
When all itemsets in the top-k list have been considered, the top-k regular-frequent itemsets are

stored in the top-k list with their occurrence information. The final result is shown in Figure 3.3.

22

3.6 Performance evaluation

In this section, the experimental studies are reported in order to evaluate the performance
of the MTKPP algorithm. From the best of our knowledge, there is no other existing approach to
discover top-k regular-frequent itemsets. Then, the effectiveness of MTKPP algorithm is focused
and compared with PF-tree (Tanbeer et al., 2009) which is a regular-frequent itemset mining
algorithm. It should be noticed that PF-tree mines the regular-frequent itemsets with a user-
given support threshold whereas MTKPP requires the number of regular-frequent itemsets to be
mined (k). Then, the support threshold is fixed in the way that PF-tree mines the same set of
regular-frequent itemsets with highest supports as MTKPP (i.e. it is specified as o5 = s which
is equal to the lowest support of the set of top-k regular-frequent itemsets). To demonstrate the
performance of MTKPP, the processing time (i.e. CPU and I/Os costs) is investigated to compare
the performance of the two algorithms with the small and large values of k and various values
of regularity threshold (o). Furthermore, a study of memory consumption of MTKPP is also
considered because of the use of the top-k list structure. Lastly, the scalability of MTKPP on the

number of transactions in the database is evaluated.

3.6.1 Experimental setup

As shown the characteristics in Chapter 2, nine real (i.e. accidents, BMS-POS, chess,
connect, kosarak, mushroom, pumsb, pumsb*, retail) and three synthetic (i.e. T1014D100K,
T2016D100K, and T40I10D100K) datasets were employed to examine the performance of
MTKPP. The simulations were performed on a Intel®Xeon 2.33 GHz and with 4 GB main mem-
ory on a Linux platform and the program of MTKPP and PF-tree implemented in C. In the ex-
periments, the value of o is set depending on the characteristic of each dataset for illustrative
purpose. Therefore, the value of o is specified to be different values. In fact, the number of
regular itemsets for each database increases with the value of the regularity threshold. On sparse

datasets, each itemset does not occur frequently thus the value of o, should be set to be large when

the value of k is large. While, each itemset appears very often in dense dataset, a small value of

o, should be applied. Hence, the value of k is divided into two rages: (i) [50,500] for the small

values; and (i) [1,000, 10,000] the large values, respectively.

3.6.2 Execution time

Figure 3.4 to Figure 3.21 show the runtime of MTKPP and PF-tree on real dense datasets
(i.e. accidents, chess, connect, mushroom, pumsb, and pumsb*). From these figures, it can be

observed that in almost cases, MTKPP outperforms PF-tree with the small-and large values of

~ -

23

k. However, in some cases especially on connect and mushroom datasets when the value of k
is large, MTKPP cannot significantly reduce the computational time from PF-tree. This happen
because these two datasets have a small number of transactions (in some cases the number of
transaction is less that the number of desired results). Then, PF-tree can reduce time to merge
tidset from children to parent nodes, while MTKPP cannot take the advantage of using a top-k

list.

Figure 3.22 to Figure 3.36 illustrate the processing time of two real sparse datasets
(i.e. BMS-POS and retail) and the three synthetic datasets (T10I14D100K, T2016D100K and
T40110D100K). One can observe that the computation time of MTKPP increases as k increases.
When the value of k increases, MTKPP has to find more results, therefore the computation time
increases as well. By comparing with PF-tree, MTKPP can save a large amount of time for small
and large value of k. MTKPP runs very fast on sparse datasets since each itemset occur rarely
(i.e. the number of tids that each itemset occurs is few). As a result, MTKPP spent a little time to
intersect tidsets while PF-tree take time to merge and order tids. Therefore, these results confirm
the advantage of MTKPP over PF-tree for the real and synthetic sparse datasets where the item

distributes not regularly.
3.6.3 Memory consumption

The variation of memory usage of MTKPP with the number of regular-frequent itemsets to

be mined, k, is shown in Figure 3.37 to Figure 3.47.

From these figures, it is obvious that the memory usage increases as k increases. In fact,
the desired memory of MTKPP depends on the support of each itemset in the top-k list because
MTKPP has to maintain the tidsets (i.e. sets of tids) of all itemsets in the top-k list in order to
calculate their support and the regularity. For dense datasets, the memory usage linearly increases
because the supports of itemsets in the top-k list are very close. For sparse datasets, the memory
usage increases slightly as k increases because the supports of itemsets in the top-k list are quite
different. However, based on the used of the top-k list structure, the memory usage of MTKPP is
efficient for the top-k regular-frequent itemsets mining using the recently available gigabyte range

memory.
3.6.4 Scalability test

The scalability of MTKPP algorithm is also studied on execution time and memory con-
sumption by varying the number of transactions in database. The kosarak dataset is used to test

scalability with the number of transactions. The kosarak dataset is a huge dataset with a large

24

number of distinct of items (41, 270) and transactions (990, 002). First, the database was divided
into six portions (i.e. 100K, 200K, 400K, 600K, 800K and 990K transactions). Then, the per-
formance of MTKPP was investigated on each portion. Second, the value of £ is specified to be
500 and 10, 000 to investigate the scalability on the small and the large values of k. The regularity

threshold was fixed to 6% of the number of transactions in each portion.

The experimental results shown in Figures 3.48 and 3.49. ’It is clear from the graphs that
as the database size increases, overall top-k list initialization time and top-k mining time are
linearly increased. The performance between MTKPP and PF-tree is similar when the number of
transactions is between 0 and 200K transactions. Besides, MTKPP runs faster than PF-tree with
the large number of transactions for the small and the large values of k. As shown the memory
consumption of MTKPP in the figures, the memory requirement increases as the database size
increases. However, MTKPP shows stable performance of about linearly increase of the runtime
and memory usage with respect to the database size. Therefore, it can be observed from the
scalability test that MTKPP can mine the top-k regular-frequent patterns over large datasets and

distinct items with considerable amount of runtime and memory.
3.7 Summary

This chapter introduced and studied the problem of mining the top-k regular (periodic)-
frequent itemsets from transactional databases without setting a support threshold. This problem
allows users to control (or specify) the number of regular itemsets (i.e. the regularly-occurred

itemsets) to be mined.

To discover this kind of itemset, an efficient one-pass algorithm, called MTKPP (Mining
Top-K Periodic(Regular)-frequent Patterns), is presented. Since the minimum support to retrieve
top-k regular-frequent itemsets cannot be known in advance, a new best-first search strategy is
devised to efficiently retrieve the top-k regular-frequent itemsets and the intersection process is
applied to compute the support and the regularity of each itemset. By using these techniques,
MTKPP first considers the itemsets with the highest support and then combines candidates to

build the top-k regular-frequent itemsets list.

In the experiments, the empirical studies on both real and synthetic data (with the small and
large values of k) show that the MTKPP algorithm is efficient for top-k regular-frequent itemset

mining. It is also linearly scalable with the number of transactions comparing with PF-tree.

time(s)

time(s)

accidents (g, = 1)

25

17.5 T T T T T
PF-tree —+—
14 | MTKPP --%-- B2
)
10.5 e i
7 /,,>< -
X"

3.5 P -

=] I i

0 50 100 200 300 400 500
k
accidents (g, = 1)
2400 T T T T T
PF-tree —+—
1920 b MTKPP —-X-- —
1440 — -
960 =
480 —
e W Xe---- . -~
0 1000 2000 4000 6000 8000 10000
k

Figure 3.4: Runtime of MTKPP on accidents (o, = 1%)

time(s)

time(s)

accidents (o, = 2)

17.5 T T T T T
PF-tree —4+—
14 |~ MTKPP —-X-- _
3
105 [~ T A
7+ //x —
X

35 |- = -

i 1 I !

0 50 100 200 300 400 500
k
accidents (o, = 2)
2400 T T T T T
PF-tree —+—
1920 - MTKPP —--X-- -
1440 |- -
960 |- -
480 [~ —
N oo . s S X"
0 1000 2000 4000 6000 8000 10000
k

Figure 3.5: Runtime of MTKPP on accidents (o, = 2%)

time(s)

time(s)

accidents (o, = 3)

17.5 = T T T T T
PF-tree —+—
14 |- MTKPP —-%-- _
Y
10.5 |- 7T
7 //,x -
—X

35 e _

e S 1 ! |

0 50 100 200 300 400 500
k
accidents (o, = 3)
2400 T T T T T
PF-tree ——
1920 - MTKPP --X%-- -
1440 —
960 -
480 |- —~
P ¥e---- R R .
0 1000 2000 4000 6000 8000 10000
k

Figure 3.6: Runtime of MTKPP on accidents (o, = 3%)

time(s)

time(s)

chess (o, = 2)

[| I T
L PF-tree —+—
- MTKPP —-%--
, s %
0.09 p~ -
0.06 —
0.03 =]
L .
0 50 100 200 300 400 500
k
chess (o, = 2)
3 T T T T T
PF-tree —+— i
MTKPP =-X%-- v
24 - z —
18 |- 7 -
12 |- i -
06 B -
| | | |
0 1000 2000 4000 6000 8000 10000
k

Figure 3.7: Runtime of MTKPP on chess (o, = 2%)

time(s)

time(s)

time(s)

time(s)

chess (o, = 4)

C T T T T T

0.15 PF-tree —+— ,9
MTKPP —-%-- .

0.12 i —

S x
0.09 |- i -
0.06 y —
0.03 |- _ el

—=—-X" 1 | | l

0 50 100 200 300 400 500
k
chess (o, = 4)

S T T T T T

r\F/’IF-tree —— ol
TKPP =-X%-- -

24 2 ,/ -
18 bl -
12 [~ =77 —
0.6 - =7 =

= ! ! I !

0 1000 2000 4000 6000 8000 10000

k

Figure 3.8: Runtime of MTKPP on chess (o, = 4%)

0.12

0.09

0.06

chess (o, = 6)

| I |
PF-tree —+—
MTKPP —-%--

200 300 400 500

chess (o, = 6)

= T T T T T
PF-tree —+— £
MTKPP —-X-- -4
24 s —
1.8 ez —
1.2 |- 7 -
06 |- _ge?® al
] | l l
0 1000 2000 4000 6000 8000 10000

k

Figure 3.9: Runtime of MTKPP on chess (o, = 6%)

27

28

connect (o, = 1)

time(s)

8.75 T T T T T
PF-tree —+—
7 |- MTKPP - %-- -
5.25 |- -
3.5 |- —
175 = S o S % i =
A s X 1] !
0 50 100 200 300 400 500
k
connect (o, = 1)
75 T T T T
PF-tree —+—
60 b= MTKPP --%-- .
z 45 =
g e
= 30 ’,X”
15 - - -
————— e
X] |] 1
0 1000 2000 4000 6000 8000 10000

k

Figure 3.10: Runtime of MTKPP on connect (o, = 1%)

connect (o, = 2)

time(s)

8.75 T T T T T
PF-tree ——
7 = MTKPP --%-- -
525 (- -
35 -
| i T
_____ e e R E
AT X 1 1 l
0 50 100 200 300 400 500
k
connect (o, = 2)
75 T T TH T
PF-tree¢ —+—
60 |- MTKPP —->%-- .
w A =
= %
15 |- _aaT —
e~ T 0 |] |
0 1000 2000 4000 8000 8000 10000
k

Figure 3.11: Runtime of MTKPP on connect (o, = 2%)

29

connect (o, = 3)

B.79 T T T T T
PF-tree —+—
7 |- MTKPP --%-- ml
& 525 -
g
= 3.5 = -
T8 b g R e e
_____ A &
A e X | ! !
0 50 100 200 300 400 500
k
connect (o, = 3)
75 T T T T
PF-tree —+—
60 |- MTKPP --%-- -
ONE S e
£ mk e
T o
15 - et ~
————— X
e, | | | |
0 1000 2000 4000 6000 8000 10000

k

Figure 3.12: Runtime of MTKPP on connect (o, = 3%)

mushroom (o, = 4)

03 T T T T T
PF-tree —+—
0.24 Is MTKPP -~ _
B 018 | -
£ T
w042 = - Ls
X
0.06 __x/’ -
T
i | | 1 1 |
0 50 100 200 300 400 500
k
mushroom (o, = 4)
! | I I L
PE-tree ===
24 = MTKPP --%--
1.8]

time(s)

1
0 1000 2000 4000 6000 8000 10000
k

Figure 3.13: Runtime of MTKPP on mushroom (o, = 4%)

30

mushroom (o, = 6)

03 F I I I | !
PE-tree. —=—
Sl MVHKPP =
@ 018 |- et
] L%
E X7
= 012 sz -
¢
0.06 _x¢ ~
5 clan
zae | | | |
0 50 100 200 300 400 500
Kk
mushroom (g, = 6)
3 T T T T T
PF-tree —+— 8
MTKPP —-%-- i
24 - 7/ —
2 18 = A
Q -
E 7
= T2l X =
0.6 |- ==X 8
| | | | 1
0 1000 2000 4000 6000 8000 10000

k

Figure 3.14: Runtime of MTKPP on mushroom (o, = 6%)

mushroom (o, = 8)

0.4 T T T T T
PF-tree —+—
032 |- MTKPP —-%-- _
@ 024 - _
£ e
=016 |- T -
e
0.08 - —
_____ X
————— X 1 ! L !
0 50 100 200 300 400 500
k
mushroom (o, = 8)
3F T 1 T T T ~
PF-tree ——— <
MTKPP - -%-- =7
2.4 - z .
w 18- 27 =
Q ==
£ P
s 12 3 &
06~ == : -
1 1 ! ! 1
0 1000 2000 4000 6000 8000 10000

k

Figure 3.15: Runtime of MTKPP on mushroom (o, = 8%)

time(s)

time(s)

time(s)

time(s)

pumsb (o, = 2)

31

2.75 T T T T T
PF-tree —+—
22 |- MTKPP —-%-- _;.
165 |- e e
e il
11 |- vre -
055 - ---"" o -
2] I I |
0 50 100 200 300 400 500
k
pumsb (o, = 2)
60 T T T T T
PF-tree —+—
48 |- MTKPP —‘X"' =
36 - -
-
24 - X =
4‘—’><"
12 | e T .
TR, i] |] |
0 1000 2000 4000 6000 8000 10000
k

Figure 3.16: Runtime of MTKPP on pumsb (o, = 2%)

pumsb (o, = 4)

275 F T T T T T
PF-tree —+—
MTKPP —-%--
22 =
X
1.65 [~ 7T -
—"x—’

1 T =
L o -
2 1 I] |

0 50 100 200 300 400 500
k
pumsb (o, = 4)
60 T T T T T
PF-tree —+—
| MTKPP --X-- -
48
36 - —
_____ A
24 |- e =
a”—x’
12 LT =
—————— X~
-] |]]
0 1000 2000 4000 6000 8000 10000
K

Figure 3.17: Runtime of MTKPP on pumsb (o, = 4%)

pumsb (o, = 6)

2.75 T T T T T
PF-tree —+—
MTKPP — - --
22 5
@ 165 S CalE
£ e
S 11 e —
055 - oe--""" o -
]] I 1 |
0 50 100 200 300 400 500
3
pumsb (o, = 6)
60 T T T T T
PF-tree —+—
48 |- MTKPP - -%-- _
3 36| —
@ e
£ ul X o
””x”
12 |- T ~
e]] 1 L

0 1000 2000

4000 6000 8000 10000
k

Figure 3.18: Runtime of MTKPP on pumsb (o, = 6%)

pumsb* (o, = 1)

25 = T T T T =
PF-tree —+—
20 | MTKPP —-X-- _
» —
k]
1
= —
9
0 50 ., 100 200 300 400 500
k
pumsb* (o, = 1)
200 F T T T t =
PF-tree —+—
160 | MTKPP i S _
@ 120 —
Q
£

80

40

N SRy PSSy Y = sraene ¥-——-= Xe——===

0 1000 2000 4000 6000 8000 10000

k

Figure 3.19: Runtime of MTKPP on pumsb* (o, = 1%)

32

33

pumsb* (o, = 2)

25 F I I | 1
PF-tree —+—
20 - MTKPP --X%-- |
’(IT -
@
E
0 50 100 200 300 400 500
k
pumsb* (o, = 2)
200 F T T T t
PF-tree ——
160 MTKPP —-X%-- _
@ 120 E
(5
E
40 —
Yoo oo e oo =8 ¥ Komm=e b
0 1000 2000 4000 6000 8000 10000
k

Figure 3.20: Runtime of MTKPP on pumsb* (o, = 2%)

pumsb* (o, = 3)

25, I | | I -
PF-tree —+—
20 MTKPP —-X%~-- _
D
k3
E
0 50 100 200 300 400 500
k
pumsb* (o, = 3)
200 T T T T —
PF-tree —+—
160 |- MTKPP —-X%-- |
= 120 -1
[}
E
= 80 -—
40 —
A Koo X----- e R, K
0 1000 2000 4000 6000 8000 10000

k

Figure 3.21: Runtime of MTKPP on pumsb* (o, = 3%)

34

BMS-POS (o, = 1)

= T T T
. PF-tree. ——
120 | MTKPP =%~
Z 90| .
Q
E
s 60 —
30 |~ -
* AR P Koo ETTD
0 50 100 200 300 400 500
BMS-POS (g, = 1)
300 T T T
PF-tree —+—
240 | MTKPP —-%-- =
o 180 -
2
S 120 -
60 -
e=¥=m—m b I P, sl o Nemr s
0 1000 2000 4000 6000 8000 10000
k
Figure 3.22: Runtime of MTKPP on BMS-POS (o, = 1%)
BMS-POS (o, = 2)
[I i) | —
189 PF-tree —+—
120 L MTKPP =%~ |
z 90 -
[
£
= 60 b -
30 = -
R Yoo b etk el .
0 50 100 200 300 400 500
k
BMS-POS (o, = 2)
325 T T T T
. PF-tree —+—
260 p~ MTKPP —-X%-- -
- 195 - -
g
= 130 i~ —
65 - —
o= Xez=m7 X~ L X0
0 1000 2000 4000 6000 8000 10000

k

Figure 3.23: Runtime of MTKPP on BMS-POS (0, = 2%)

35

BMS-POS (o, = 3)

150 I | | —
PFiéree =1

sop I VIIPE s |

@ 90 =
3]
E

= 60 -

30 -

_____ X_ —_——— —

0 50 100 200 300 400 500
k
BMS-POS (g, = 3)
325 T T T T
PF-tree —+—

260 b= MTKPP —-%-- "

@« 195 =
g

S 130 | -

65 - —

———————————— Hmmmri
X om—- Xx----XF i 1
0 1000 2000 4000 6000 8000 10000

k

Figure 3.24: Runtime of MTKPP on BMS-POS (o, = 3%)

retail (o, = 6)
2.25 - | | | |
PF-tree ——
MTKPP —-X--
1.8 -
w 135 _
[
=
0.45 Y =
,,,, |
0 50 100 200 300 400 500
k
retail (o, = 6)
1.5 F T T T
PF-tree —+—
| MTKPP --X%--
14
» 105 =
T
£
= 7
3.5 -

0 1000 2000 4000 6000 8000 10000
Kk

Figure 3.25: Runtime of MTKPP on retail (o, = 6%)

time(s)

time(s)

time(s)

time(s)

36

retail (o, = 8)
25 F I I | I 1
PF-tree —+—
2 |- MTKPP —-%-- |
15 - -
1+ .
05 =" 000 e e ==X
_____ *——-—'X"’"‘x R
el | | | |
0 50 100 200 300 400 500
k
retail (o, = 8)
20 T T T T T
PF-tree —+—
16 b= MTKPP —-%-- =
12 X 2
8 |- ™ -
X
4 A —
N X | |]]
0 1000 2000 4000 6000 8000 10000

k

Figure 3.26: Runtime of MTKPP on retail (o, = 8%)

retail (o, = 10)

275 F T T T T T
PF-tree ——
MTKPP —-%--
22 |- -
1.65 [~ -
11 -
085 = 2 . Rgeeed ===
_____ x———-"x‘"'_—x
_--X% i 1 ! !
0 50 100 200 300 400 500
K
retail (o, = 10)
225 T T T T T
PF-tree —+—
18 |- MTKPP —-%-- 3
135 | xS
= T -
M
45 |- Lo -
ey ol] I 1 |
0 1000 2000 4000 6000 8000 10000
k

Figure 3.27: Runtime of MTKPP on retail (o = 10%)

T1014D100K (a, = 4)

37

5 T T T T
PF-tree ——
4 |- MTKPP —-%¢-- o
% 3]
T
& gk 4
T S e =
1 — P %
. i X~ I]]
0 50 100 200 300 400 500
k
T1014D100K (o, = 4)
D
T
E
————— X
1.3 X PF-tree —+— =
L MTKPP —-%--
-] 1 |] 1
0 1000 2000 4000 6000 8000 10000
k

Figure 3.28: Runtime of MTKPP on T10/4D100K (o, = 4%)

T1014D100K (o, = 6)

5 T T T T
PF-tree ——

4 |- MTKPP --%-- _
z 3 -~
2
s 2 - -

————— e
1= _ g8 —
O i e | ! L
0 50 100 200 300 400 500
k
T1014D100K (o, = 6)
6.5 F T t =
52 - ~
X
5 39} e
Q __x——’
£ o6} S > —
/X _____
18 = 7 PF-tree —+—
#° MTKPP —=%--
‘] 1 | ! |
0 1000 2000 4000 6000 8000 10000
k

Figure 3.29: Runtime of MTKPP on T10/4D100K (o, = 6%)

T1014D100K (o, = 8)

38

5 T T T T
PF-tree —+—

4 | MTKPP —-%~-- o
e) =
g
s 2P B e ~

ff”x—_‘
1| g -
————— X7
=== R | | | |
0 50 100 200 300 400 500
k
T1014D100K (o, = 8)
6.5 F T t —
52 - -
,”x’
2 39 o, 50257 -
: X
S 28 g —m==T K=" =
//
13 // PF-tree —+— -
, MTKPP —-X -
‘ | ij | | |
0 1000 2000 4000 6000 8000 10000

k

Figure 3.30: Runtime of MTKPP on T10/4D100K (o, = 8%)

T2016D100K (o, = 2)

30 T T T T T
PF-tree —+—
24 |- MTKPP --%-- =|
& 18 |- -
]
S 12 - p
i 3
--------- G
_____ ettt S il I
0 50 100 200 300 400 500
k
T2016D100K (o, = 2)
T f
45 = PF-tree —+— "
MTKPP —-X--
) l
@
E
K—mmm e i T 7
1]] [
0 1000 2000 4000 6000 8000 10000
k

Figure 3.31: Runtime of MTKPP on 720I6D100K (o, = 2%)

39

T2016D100K (o, = 4)

L I T T T T
PE:tree ——
24 |— MTKPP --X%-- =
» 18 =
E
£ 12 -
6 VARt i =
e ol T
e il Yoo X ! |
0 50 100 200 300 400 500
k
T2016D100K (o, = 4)
f
45 = PE-tree =—4—
MTKPP ==X --
36 -1
e 27 —
£ o
L SEE TS
S-mmmn e~ Lo %
9 -
| 1 | |
0 1000 2000 4000 6000 8000 10000

k

Figure 3.32: Runtime of MTKPP on 720/6D100K (o, = 4%)

T2016D100K (g, = 6)

T | | T T
30 = PF-tree —+— m
MTKPP - -%--
24 - -
@ 8 1
Q
E
s 12t -
6 e vV
— - X— - -
T 3
P i S i X 1 l
0 50 100 200 300 400 500
k
T2016D100K (0, = 6)
f
PF-tree —+— 7|
MTKPP - -%--
€ al
[}
E s N
|
0 1000 2000 4000 6000 8000 10000

k

Figure 3.33: Runtime of MTKPP on T20I6D100K (o, = 6%)

40

T40110D100K (o, = 2)

400 T T T T
PF-tree. —t+—
320 | MTKPP --X-- o
& 240 |- i
g
= 160 - —
80 = =
- L Menoooo W= e S
0 50 100 200 300 400 500
K
550
440 -
= 330 |-
g
= 220 |-
o o
oK Y= e
0 1000 2000 4000 6000 8000 10000
k
Figure 3.34: Runtime of MTKPP on T40110D100K (o, = 2%)
T40110D100K (o, = 4)
400 T T T T
PF-tree —+—
320 b= MTKPP --%-- _
& 240 |- —
2
= 160 |- -
80 - —
S NP N T Hemmm = K
0 50 100 200 300 400 500
3
T40110D100K (o, = 4)
550 T T T T
440 1~ —
% 330 |- -
2
S 220 —
i | WK -t
e X mmm= . = . | oo A]
0 1000 2000 4000 6000 8000 10000
K
Figure 3.35: Runtime of MTKPP on T40[10D100K (o, = 4%)

time(s)

time(s)

T40110D100K (o, = 6)

400

320 |~ MTKPP —-X-- -

240

160

80

I | | |
PF-tree ——

50 100 200 300 400 500

T40110D100K (g, = 6)

550 T T T

440 —

330 .

220 =

110 PF-tree —+—
)F_MIKE%L(_—: ==)

0 1000 2000 4000 6000 8000 10000

k

Figure 3.36: Runtime of MTKPP on T40/10D100K (0, = 6%)

memory(MB)

memory(MB)

accidents (o, = 3)

250 T T T T T
MTKPP ——
200 |~ —
150 |- -
100 |- -
50 (- —
]]] 1]
0 50 100 200 300 400 500
K
accidents (o, = 3)
3600 T T T T T
MTKPP ——
2880 |- —
2160 |- =
1440 - —
720 |- -
l 1 1]]
0 1000 2000 4000 6000 8000 10000
k

Figure 3.37: Memory usage of MTKPP on accidents

4]

memory(MB)

memory(MB)

memory(MB)

memory(MB)

chess (o, = 6)

5 T T T T T
MTKPP —f—
4 |- =
= =
2 - —
1 ol
| |] 1 1
0 50 100 200 300 400 500
k
chess (o, = 6)
100 T T T T T
MTKPP —F—
80 |- -
60 [~ _
40 |- —
20 - _
1]]] 1
0 1000 2000 4000 6000 8000 10000

k

Figure 3.38: Memory usage of MTKPP on chess

connect (o, = 3)

125 T T T T
100 | -
75 |- .

50 - —

0 50 100 200 300 400 500

connect (o, = 3)

2425 T : —
1940 |- -

1455 -~

T

970 =1

485 =1

| | | | |
0 1000 2000 4000 6000 8000 10000
k

Figure 3.39: Memory usage of MTKPP on connect

42

memory(MB)

memory(MB)

memory(MB)

memory(MB)

mushroom (o, = 8)

T T T T T
MTKPP ——
5.6 (- ol
42 -
28 =
14 |- —
]] ! | |
0 50 100 200 300 400 500
k
mushroom (o, = 8)
= T T T T T
80 Mrkpp ——
48 - —
36 - —
24 —
12 —
] |]]]
0 1000 2000 4000 6000 8000 10000
k
Figure 3.40: Memory usage of MTKPP on mushroom
pumsb (a, = 6)
85 [~ T T T T T
MTKPP —+—
68 |~ -
51 - -
34 —
17 —
I 1 1] |
0 50 100 200 300 400 500
k
pumsb (o, = 6)
1650 T T T T T
MTKPP ——
1320 -
990 |- -
660 | —
330 |~ —
|]]]]
0 1000 2000 4000 6000 8000 10000

Figure 3.41: Memory usage of MTKPP on pumsb

k

43

memory(MB)

memory(MB)

memory(MB)

memory(MB)

pumsb* (o, = 3)

0 50 100 200 300 400 500

825 T T T T T

MTKPP ——
660 |- -
495 |- -
330 |- -
165 - —

]]]]]
0 1000 2000 4000 6000 8000 10000

k

Figure 3.42: Memory usage of MTKPP on pumsb*

BMS-POS (o, = 3)

45 T T T T T

MTKPP ——
36 - .
27 |- -
18 |- -
= _

| |] I 1
0 50 100 200 300 400 500

BMS-POS (o, = 3)

T T T | | -
175 MTKPP —+— -
140 |- -
105 [~ =

70 e

35 |- -

! | ! ! I
0 1000 2000 4000 6000 8000 10000

k

Figure 3.43: Memory usage of MTKPP on BMS-POS

44

45

retail (o, = 10)

2 T T T T '
MTKPP —f—
16 [~ o
@
S 12 -
g ' . : y
E 08| —
E
0.4 |- —
]] |]]
0 50 100 200 300 400 500
K
retail (o, = 10)
6 T T T T '
MTKPP —f—
48 |- -
o
S 36 —
=
g
E 24 -
£
12 |- -
]]] | |
0 1000 2000 4000 6000 8000 10000
k
Figure 3.44: Memory usage of MTKPP on retail
T1014D100K (o, = 8)
3 T T T T '
MTKPP —f—
24 |- —
)
2 18 -
=
g
E 12 —
E
0.6 |- =
| | l] |
0 50 100 200 300 400 500
k
T1014D100K (g, = 8)
15 T T T T T
MTKPP ——
12 - -
o
2 9r =
>
g
E 8 -
E
3 =
] |] | |
0 1000 2000 4000 6000 8000 10000

k

Figure 3.45: Memory usage of MTKPP on T10[4D 100K

T2016D100K (g, = 6)

9 T T T T T
MTKPP ——
7.0 |= -
)
S 54 -
=
=
5 36 — -
£
18 -
] I ! ! !
0 50 100 200 300 400 500
K
T2016D100K (o, = 6)
w0 F T T T T T -
MTKPP ——
32| -
g
= 24 1~ -
o
§ 16 _
£
8 i
| ! |] |
0 1000 2000 4000 6000 8000 10000

k

Figure 3.46: Memory usage of MTKPP on T720/6D 100K

T40110D100K (g, = 6)

12.8 T T T T T
MTKPP —f—
10.4 [-
)
S 78} —
=
g
E 52 —
£
2.6 [~ .
]] 1] |
0 50 100 200 300 400 500
k
T40110D100K (o, = 6)
75 T T T T T
MTKPP ——
60 (- -
o
2 45 - —
=
g a0
E L
g il
15 = T
]] |]]
0 1000 2000 4000 6000 8000 10000

k

Figure 3.47: Memory usage of MTKPP on 740/10D100K

46

47

kosarak (k = 500, o, = 6)

67 T T T T T
PF-tree —+—

536 - MTKPP ——X—- -
w402 -
g
= 26.8 - -

13.4 —

] = A e N e,
0 1 2 4 6 8 9.9
Number of transactions(100K)
kosarak (k = 500,0, = 6)
10 T T T T T
MTKPP ——

56 - -

)
S 42 —
=
g
5 28 = —
=
14 |- -
| | | | |
0 100 200 400 600 800 990
Number of transactions (100K)
Figure 3.48: Scalability of MTKPP (k : 500, o, = 6)
kosarak (k = 10000, o, = 6)
400 T T T T
PF-tree —+—
320 = MTKPP —-X--
& 240 - —
£
=160 -
80 - Se-=—
3 I
0 1 2 4 6 8 9.9
Number of transactions(100K)
kosarak (k = 10000,0, = 6)
235 T T T T T
MTKPP —+—

188 -1
)

2 141 -
e
o
E 94 -
€

47 - -

| 1 | | |
0 100 200 400 600 800 990

Figure

Number of transactions (100K)

3.49: Scalability of MTKPP (k : 10,000, o = 6)

