CHAPTER II

RELATED WORK

The association rule mining problem has been extensively studied from various aspects
over the past decade. As mentioned in the previous chapter, association rule mining consists of 2
steps: frequent itemsets mining and association rules generation. Most of previous works focus
on frequent itemset mining which is the most time consuming step. They have been proposed to
extend frequent itemsets mining for many purposes. One of interesting approaches is to control
the number of itemsets to be mined (Fu et al., 2000), called top-k significant itemsets mining
approach. Besides, many researchers try to find more interesting patterns (itemsets) by using
other criteria instead of using only a support threshold. Recently, the regularity measure have
been devised to discover itemsets that occur very frequent and regularly in transactional databases.
Thus, this chapter surveys on previous works on the frequent itemsets mining, top-k significant

itemsets mining and regular-frequent itemsets mining.
2.1 Frequent itemsets mining

The frequent itemsets and association rule mining is first introduced by (Agrawal et al.,
1993). Most of association rule mining algorithms adopt the two-phase approach and focus on
the frequent itemset mining in the context of transaction databases. A transaction database is a
database containing a set of transactions and each transaction is associated with a transaction-id.
The basic terms needed for describing association rules and frequent itemsets mining are given by

using the formalism of (Agrawal and Srikant, 1994).

Let I = {iy,42,...,in} be a set of items, that have been used as information units in an
application domain and 7D B be a database which is a set of transactions, where a transaction
t is a subset of I (¢ C I). Each transaction is identified by a transaction-id tid. A set X =
{ij,,...,ij,} C I iscalled an itemset or a l-itemset (an itemset of size [). If X C Y, itis said that
t, contains X (or X occurs in tg). The support of an itemset X in a database is denoted by s,
and is defined as sX = |{t,|1 < ¢ < TDB,t, € TDBand X C tg}|/|TDB|. Anitemset X is
called a frequent itemset if its support is greater than or equal to a support threshold specified by
the user, otherwise the itemset is not frequent. An association rule is an expression of the form
X — Y,where X C I,Y C IT'and XNY = ¢. Note that each of X and Y is a frequent

itemset which contains a set of one or more items and the quantity of each item is not considered.



The itemset X is referred to as the antecedent of the rule and the itemset Y as the consequence.
An example of association rule is the statement that 80% of transactions that purchase A also
purchase B and 10% of all transactions contain both of them. Here, 10% is the support of the
itemset A, B and 80% is the confidence of the rule A — B. An association with the confidence

greater than or equal a confidence threshold is considered as a valid association rule.

In association rules mining, two types of database layouts are employed: horizontal and
vertical databases. As shown in Table 2.1, the traditional horizontal database contains a set of
transactions and each transaction consists of a set of items. Most Apriori-like algorithms use this
type of layout. On the other hand, as illustrated in Table 2.2, each item in the vertical database
layout maintains a set of transaction-ids (denoted by tidset) where it occurs. Based on the vertical
representation of database, various algorithms were devised to mine the results such as Eclat
(Zaki et al., 1997), VIPER (Shenoy et al., 2000) and Mafia (Burdick, 2001). Lastly, as pointed
out in (Zaki et al., 1997) and (Shenoy et al., 2000), they have been shown the trade-off between
both layouts. They claimed that the vertical layout performs generally better than the horizontal

format.

Table 2.1: Horizontal representation

tid | items

1 |abde
2 | cde

3 b efig
4 |abdfg
5 |ceg

6 |abcdg
7 |abcd
8 |abce
9 | bed
10 |aceg
11 | abf
12 | abdg

A large number of efficient algorithms to mine frequent itemsets have been developed over
the years. The strategies developed to speed up frequent itemset mining process can be divided
into two approaches. The first is based on the candidate generation-and-test approach. The Apri-
ori algorithm and its several variations belong to this category. Apriori employs a bottom-up,
breadth-first search that enumerates every single frequent itemset. It also provides the Apriori
property also known as anti-monotone property that any subset of a frequent itemset must be a
frequent. In this approach, a set of candidate itemsets of length n + 1 is generated from the set
of frequent itemsets of length n and then each candidate itemset is checked to see if it meets the

support threshold. Some algorithms adopt an Apriori-like method, and are focused on reducing



Table 2.2: Vertical Tidset representation

items | tidset
14678101112
13467891112
235678910
12467912
125810

3411
34561012

| -0 0 O

the number of candidate itemsets, which in turn reduce the time required for scanning databases,
are briefly described as follows. Park et al. (Park et al., 1995) proposed an efficient Direct Hash-
ing and Pruning (DHP) algorithm to control the number of candidate 2-itemsets and prune the
size of the database by utilizing a hash technique. The inverted hashing and pruning (IHP) al-
gorithm (Holt and Chung, 2002) was proposed. It is similar to the Direct Hashing and Pruning
(DHP) algorithm (Park et al., 1995) in the sense that both use hash tables to prune candidate item-
sets. In DHP, every k-itemset within each transaction is hashed into a hash table. FIn IHP, the
transaction identifiers of each item of the transactions that contain the item are hashed into a hash
table associated with the item. The Tree-Based Association Rule (TBAR) algorithm (Berzal et al.,
2001) employs an effective data-tree structure to store all itemsets to reduce the time required for
database scans. Further, Cheung et al. proposed Fast Distributed Mining (FDM) of association
rules (Cheung et al., 1996) to efficiently discover frequent itemsets, which is aparallelizat\ion of
the Apriori algorithm. At each level, a database scan is independently performed. In 1997, Brin
et al. proposed the Dynamic Itemset Count (DIC) (Brin et al., 1997b) algorithm to locate frequent
item sets, which uses fewer passes over the database than classic algorithms, and fewer candidate
itemsets than methods based on sampling. Agarwal et al. presented the TreeProjection method
(Agarwal et al., 2001) using the hierarchical structure of a lexicographic tree to project transac-
tions at each node of the tree, and matrix counting on this reduced set of transactions for mining
frequent itemsets. Another efficient method (Tsay and Chang-Chien, 2004)‘uses the techniques
of clustering transactions and decomposing larger candidate itemsets for mi‘ning frequent item-
sets. Tsay et al. proposed the Cluster-Based Association Rule (CBAR) method(Tsay and Chiang,
2005), which uses cluster tables to load the database into a main memory that requires only a sin-
gle scan of the database. Its support count is performed on cluster tables, and thus, does not need
to rescan the whole database. The Efficient Dynamic Database Updating Algorithm (EDUA)
(Zhang et al., 2007) is designed for mining dynamic databases when some data are deieted. A
special database structure BitTableFI (Dong and Han, 2007) is used horizontally and vertigally to

compress the database for quickly generating candidate itemsets and counting support.
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Apriori-inspired algorithms show good performance with sparse datasets such as market
basket data, where the frequent patterns are very short. However, with dense datasets such aé
telecommunications and census data, where there are many, long frequent patterns, the perfor-
mance of these algorithms degrades incredibly. This degradation is due to the following reasons:
these algorithms perform as many passes over the database as the length of the longest frequent
pattern. Secondly, they have to generate and test the huge number of candidate itemsets. Thirdly,
a frequent pattern of length [ implies the presence of 2 — 2 additional frequent patterns as well,
each of which is explicitly examined by such algorithms. When [ is large, the frequent itemset
mining methods become CPU bound rather than I/O bound. In other words, it is practically un-
feasible to mine the set of all frequent patterns for other than small /. On the other hand, in many
real world problems (e.g., patterns in biosequences, telecommunications data, census data, etc.)

finding long itemsets of length 30 or 40 is not uncommon (Bayardo, 1998).

The second approach of pattern-growth has been proposed more recently. It also uses the
Apriori property, but instead of generating candidate itemsets, it recursively mines patterns in
the database to count the support for each pattern. Han et al. (Han et al., 2004) proposed the
FP-growth method to avoid generating candidate itemsets by building a FP-tree with only two
scans over the database. This milestone development of frequent itemsets mining avoids the
costly candidate itemsets generation phase, which overcomes the main bottlenecks of the Apriori-
like algorithms. Some algorithm analogy for FP-growth without generating candidate itemsets
is briefly described as follows. The H-mine method (Pei et al., 2001b) uses a memory-based
hyper structure to store a sparse database in the main memory, and builds an H-structure to invoke
FP-growth in mining dense databases. An inverted matrix approach uses an inverted matrix to
store the transactions in a special layout, then builds and mines relatively small structures, which
are called COFI-trees (El-hajj and Zaiane, 2003). The CFP-tree structure (Liu et al., 2007) is
designed to store pre-computed frequent itemsets on a disk to save space. A CFP-tree stores
discovered frequent itemsets, but a FP-tree stores transactions. They both use prefix and suffix
sharing in the CFP-tree, but only prefix sharing in the FP-tree. Maximum length frequentiitcmsets
are generated by adapting a pattern fragment growth methodology (Hu et al., 2008) based on
the FP-tree structure. For most data sets, these algorithms perform better than Apriori. Among
the existing pattern-growth algorithms, H-Mine runs faster than FP-Growth on several commonly

used test data sets.
2.2 Top-k significant itemsets mining

From mining frequent itemsets, a major problem is that user has to define a support thresh-

old. However it is quite difficult for users to set a definite support threshold if they have no special
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knowledge in advance. If the threshold is set too small, there will be a large number of itemseté
having been found, which not only consumes more time and space resource, but also brings much
burden to users on analyzing the mining results. On the contrary, if the threshold is set too large,
there might be much few even no frequent itemsets, which implies some interesting patterns are
hidden owing to the improper determination of support threshold. In some cases of application, it
is natural for user to specify a simple threshold on the amount of mining results, say the most 100

frequent itemsets should be found.

Therefore it is of interest to mine the most k frequent itemsets over transactional databases

with the highest supports.

Definition 2.1 An itemset X is a top-k frequent itemset if there exist no more than (k — 1) itemsets

whose support is higher than that of X.

To focus on mining top-k patterns, Chueung et al. proposed N-most interesting itemsets
mining (Cheung and Fu, 2002)(Cheung and Fu, 2004). This task mines only the N k-itemsets
with highest supports for 1 up to a certain kmqq, Where Kpaz is the upper bound of the length
of itemsets, and N is the desired number of k-itemsets. Three algorithms were proposed for
this mining: LOOPBACK, BOLB, and BOMO. All three algorithms are adapted from the FP-tree
approach. BOMO has two phases. First, it builds the complete FP-tree with all items in the
database to find minimum support threshold of each k-itemset. Then, it mines itemsets. During
the mining process, the support threshold of all itemsets is increased by considering the minimum
value among the support of the N th most frequent k-itemset discovered. It is used to prune
unpromising itemsets. LOOPBACK builds the FP-tree and initializes the support threshold to be
the support of the N'** sorted largest /-frequent. If the number of any k-itemsets is less than IV, the
tree will be rebuilt to find the smaller support in order to mine more itemsets in the mining phase.
BOLB is a hybrid approach of BOMO and LOOPBACK. Like BOMO, it builds the complete FP-
tree only once. The mining process is applied from the technique of LOOPBACK. Wang et al.
proposed mining top-k frequent closed itemsets of length no less than min; (Han et al., 2002)
(Wang et al., 2005), where k is the desired number of frequent closed itemsets to be mined, and
min, is the minimal length of closed itemsets. TFP starts with minimum support threshold at
0. It constructs an FP-tree to raise the threshold and uses the threshold to prune the tree. It
may take a long time to construct the FP-tree to find the final threshold and to prune the tree
if the database contains many transactions and long patterns. Moreover, TFP has to maintain
candidates to ensure that they are really closed. Top-k closed itemset mining was extended to

mine top-k closed sequence in (Tzvetkov et al., 2005). Pietracaprina et al. proposed TopKMiner
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(Pietracaprina and Vandin, 2007) to mine top-k closed itemsets without considering the minimal
length of them. From this mining, it can allow a user to dynamically raise the value k with no
need to restart the computation. TopKMiner mines top-k closed itemsets by combining the LCM
algorithm (Uno et al., 2004a)(Uno et al., 2004b) and priority queue to avoid closed checking. In
addition, it adopts best first search to generate closed itemsets with highest support first. This idea
is supported by C. Wu (Wu, 2006). He proved that a heuristic algorithm is preferred over an exact

algorithm to solve top-k closed itemset mining.
2.3 Regular-frequent itemsets mining

Mining frequent patterns, periodic pattern (Elfeky et al., 2005)(Magbool et al., 2006)(Lee
et al., 2006) and cyclic patterns (Ozden et al., 1998) in static database have been well-addressed
over the last decade. Periodic pattern (also called regular pattern) mining problem in time-series
data focuses on the cyclic behavior of patterns either in the whole (Elfeky et al., 2005) or at some
point (Lee et al., 2006) of time-series. Such pattern mining has also been studied as a wing of
sequential pattern mining (Magbool et al., 2006)(Lee et al., 2006) in recent years. However, al-
though periodic pattern mining is closely related with regular-frequent pattern mining, it cannot
be directly applied for finding regular patterns from a transactional database because of two pri-
mary reasons. First, it considers either time-series or sequential data. Second, it does not consider
the support threshold which is the only constraint to be satisfied by all frequent patterns. Tanbeer
(Tanbeer et al., 2009) proposed the regular-frequent pattern mining technique, on the other hand,
introduces a new interesting measure of regularity and provides the set of patterns that satisfy both

of the regularity and support thresholds in a transactional database.

Ozden et. al. (Ozden et al., 1998) proposed a method to discover the association rules
(Agrawal et al., 1993) occurring cyclically in a transactional database. It outputs a set of rules
that maintains a cyclic behavior in appearance among a predefined non-overlapping database seg-
ments. The main limitation of this method is segmenting the database into a series of fixed sized
segments, which may suffer from border effect. That is, if the sufficient number of occurrences
of a pattern (to become frequent) occurs in the borders of two consecutive segments, the pattern

might be ignored to generate association rules.

The problem of regular-frequent itemsets mining which has similar definition to (Tanbeer

et al., 2009) is defined as follows:

Let I = {iy,i2,...,in} be asetof n > 1literals, called items. Aset X = {i1,...,i} C T

is called an itemset (or a pattern), or a k-itemset if it contains k items. A transactional database
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TDB = {t1,t2,...,tm} over I is a set of m = |TDB| transactions. Each transaction t; =
(tid,Y’) is a tuple where tid = j represents the transaction-id and Y C I is an itemset. If
X C Y, it is said that t; contains X (or X occurs in t;) and is denoted as t;(. Therefore,
TX = {tj(, ..yt }, where j,k € [1,m] and j < k, is the set of all ordered tids, called tidset,
where X occurs. The support of an itemset X in TDB, denoted as Sup(X) = |TX|, is the

number of transactions in 7'DB that contains X .

Let tJX and tk).{ be two consecutive tids in 7%, i.e. where j < k and there is no transaction
ti, 7 < i < k, such that ¢; contains X. Thus, ritX = tf — t;-\' is the regularity value which
represents the number of missing transaction of X between two consecutive transactions tJX and
tX. We denote as RTTX = {rtts, rtts, ..., vt }, the set of all regularities of X between
each pair of two consecutive transactions. Then, the regularity of X can be defined as rX =

maz(rtt, rttX, ..., rttX).

Therefore, an itemset X is called a regular-frequent itemset if (7) its regularity is no greater
than a user-given maximum regularity threshold (o,); (ii) its support is no less than a user-
given minimum support threshold (o). Thus, the regular-frequent itemsets mining problem is
to discover the complete set of regular-frequent itemsets from 7DB with two user-given thresh-
olds: minimum support and maximum regularity threshold which are defined in the percentage of

ITDB|.

However, as pointed out before it is quite difficult for users to set a definite support thresh-
old if they have no special knowledge in advance. In addition, in some cases, it is natural for user
to specify a simple threshold on the amount of regular-frequent patterns, say the most 100 fre-
quent patterns with regularity less than 1,000 transactions(i.e. occur at least once in every 1,000
transactions). It is thus of interest to mine the most frequent k regular patterns over transactional

databases without the minimum support threshold requirement.
2.4 Benchmark datasets

To validate the performance of the variant of association rule mining algorithms, several
real (i.e. accidents, BMS-POS, chess, connect, kosarak, mushroom, pumsb, pumsb*, and retail)
and synthetic database benchmarks (i.e. T1014D100K, T20I6D100K, and T40I10D100K), pub-
licly available from IBM Almaden (http://www.almaden.ibm.com/cs/quest/syndata.html), FIMI
repository (http://fimi.cs.helsinki.fi/data/), and UC-Irvine Machine Learning Database Repository

(http://www.ics.uci.edu/ mlearn/MLRepository.html), are utilized.
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Data set accidents contains (anonymous) traffic accident data from the National Institute of
Statistics (NIS) for the region of Flanders (Belgium) for the period 1991-2000. The BMS-POS
dataset is a real world dataset containing several years worth of point-of-sale data from a large
electronic retailer, aggregated at the product category level. The connect and chess datasets are
derived from UCI Machine Learning Repository. Each transaction in connect and chess contains
legal 8-ply positions in the game where neither player has won yet and the next move is not
forced. The kosarak contains click-stream data of a hungarian on-line news portal. The mushroom
database consists of records describing the characteristics of various mushroom species. The
PUMS datasets (pumsb and pumsb*) contain census data. Pumsb* is the same as pumsb without
items with 80% or more support. The retail market basket dataset is obtained from Belgian retail
supermarket store from December 1999 to November 2000. The synthetic datasets (T1014D100K,
T20I6D100K and T40D100K), using the IBM generator, mimic the transactions in a retailing

environment.

The classical characteristics of datasets were studies in (Gouda and Zaki, 2001). According
to (Gouda and Zaki, 2001), the density was used to categorize the characteristics of datasets. A
dataset is dense when it produces many long frequent itemsets for all values of support thresh-
old. The authors studied on seven datasets, (i.e. chess, connect, mushroom, pumsb, pumsb*,
T10I14D100K, and T4014D100K) and then categorized these datasets according to the density.
The density is estimated by using the characteristics of maximal frquent itemsets and more pre-

cisely their distribution.

However, as pointed out in (Flouvat et al., 2010), there are two limitations of Gouda’s
classification. First, its variability with respect to support threshold values. Second, there is
no clear relationship between the proposed classification and algorithms performance. Therefore,
(Flouvat et al., 2010) proposed a new classification which differs from the classification of (Gouda
and Zaki, 2001). It takes into account both the negative border and the positive border of itemsets.
The positive border of frequent itemsets is the set of all maximal frequent itemsets w.r.t. set
inclusion. The negative border of frequent itemsets is the set of all minimal unfrequent itemsets

w.r.t. set inclusion.

These different types of datasets have been identified by taking advantage of the “dis-
tance”’between positive and negative borders distributions of frequent itemsets. As a consequence,

the authors introduced a new classification of datasets made of three types:

e Type I datasets contain long itemsets in the positive border and a negative border closed

to the positive border, i.e. the mean of the negative border curve is not far from the mean



15

of the positive border curve. In other words, most of the itemsets in the two borders have

approximately the same size.

o Type II datasets contain long itemsets in the positive and a large distance between the two
borders distributions. In other words, the itemsets in the negative border are much smaller

than those of the positive border.

e Type III is a very special case of type O: the two distribution are very close, but they are

concentrated in very low levels. This type allows to catch the notion of sparseness.

The Table 2.3 summarizes this new classification and shows how this study could also used

for FIMI.

Table 2.3: Datasets classification from (Flouvat et al., 2010)

Type Type I Type II Type 111
Distance between the borders | Small Large Small
Itemsets size Long Long Small
Examples of datasets accidents, | connect, BMS-POS,
chess, mushroom, | kosarak,
pumsb pumsb* retail,
T1014D100K,
T20I6D100K,
T40110D100K

Based on the classification of (Flouvat et al., 2010), the Table 2.4 shows the characteristics
of the real and synthetic datasets used in the evaluation of this dissertation. It shows the number
of items, the average transaction length, and the number of records in each database. The table

additionally shows the tpye of datasets that are classified.

Table 2.4: Database characteristics

Database #items | Avg.length | #Transactions | type

accidents 468 338 340,183 | dense
BMS-POS 1,156 7.5 515,597 | sparse
chess 75 37 3,196 | dense
connect 129 43 67,557 | dense
kosarak 41,270 8.1 990,002 | sparse
mushroom 119 23 8,124 | dense
pumsb 2,118 74 49,046 | dense
pusmsb* 2,088 50.5 49,046 | dense
retail 16,469 10.3 88,162 | sparse
T10I4D100K 1,000 10.3 100,000 | sparse
T20I6D100K 1,000 20.2 100,000 | sparse
T40110D100K | 1,000 40.1 100,000 | sparse
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