

ศึกษาการหาค่ากัมมันตภาพของสารกัมมันตรังสี ^{14}C โดยใช้เครื่องนับรังสีจากแสงวันของของเหลวด้วยวิธี CIEMAT/NIST ซึ่งใช้ตัวแปรอย่างเป็นสารมาตรฐานกัมมันตรังสี ^3H วิธีนี้ ประกอบด้วยการคำนวณทางทฤษฎีจากซอฟแวร์เพื่อคำนวณหาค่าประสิทธิภาพของการนับ สำหรับชุดสารมาตรฐานกัมมันตรังสี ^{14}C และประสิทธิภาพของการนับสำหรับชุดสารมาตรฐาน กัมมันตรังสี ^3H ที่สัมพันธ์กับค่าพารามิเตอร์อิสระในช่วง 1.05-1.80 กับข้อมูลที่ได้จากการทดลอง จากเครื่องนับรังสีจากแสงวันและทดสอบการวิเคราะห์สมการที่เป็นแบบจำลองทางคณิตศาสตร์จาก วิธี CIEMAT/NIST จากนั้นคำนวณหาค่ากัมมันตภาพของชุดสารมาตรฐานกัมมันตรังสี ^{14}C แล้ว เปรียบเทียบกับค่ากัมมันตภาพจริง พนวณว่ามีค่าเบอร์เซ็นต์ความคลาดเคลื่อนน้อยมาก อยู่ในช่วง 0.04-0.37% ตรวจสอบสมการแบบจำลองทางคณิตศาสตร์ดังกล่าวโดยเตรียมชุดสารกัมมันตรังสี ^{14}C ขึ้นมาอีกชุดหนึ่ง แล้วใช้สมการแบบจำลองทางคณิตศาสตร์คำนวณหาค่าประสิทธิภาพของ การนับเพื่อคำนวณหาค่ากัมมันตภาพของชุดสารกัมมันตรังสี ^{14}C ที่เตรียมขึ้น พนวณว่ามีค่า เบอร์เซ็นต์ความคลาดเคลื่อนน้อยมากเช่นกัน อยู่ในช่วง 0.05-0.33%

Study on activity determination by using Liquid Scintillation Counter (LS counter) via CIEMAT/NIST Method of radioactive standard, ^{14}C , were traced against ^3H . The CIEMAT/NIST method has been widely used for radionuclide standardization. This method consists of theoretical calculations to calculate counting efficiency of a ^{14}C and the tracer ^3H relative with in the interval of free parameter 1.05-1.80 and the experimental data from LS counter. In addition, detailed analysis of the equations as a mathematical model were used to compute the counting efficiency of radioactive standard ^{14}C and then calculated result of radioactive standard ^{14}C activity obtained by using this model were compared with actual activity so that we could obtain percentage error of absolute activity for radioactive standard ^{14}C to be extremely small (0.04- 0.37%)