การวิเคราะห์และทวนสอบแบบจำลองของโบราณสถานอิฐก่อ

Analysis and Verification of Masonry Historical Monument Model

คำนำ

ในประเทศไทยมีสิ่งก่อสร้างที่มีความสำคัญทางประวัติศาสตร์อยู่เป็นจำนวนมาก หลาย แห่งได้รับการยกย่องให้เป็นมรดกโลก อาทิเช่น โบราณสถานบริเวณจังหวัดอยุธยา เป็นต้น ซึ่ง โบราณสถานเหล่านี้มีความสำคัญในด้านต่างๆเป็นอย่างมาก ไม่ว่าจะเป็นในด้านการศึกษาตลอดจน ในด้านที่เป็นหลักฐานอ้างอิง จึงจำเป็นที่จะต้องอนุรักษ์โบราณสถานเหล่านี้ให้เป็นมรดกของชนรุ่น หลังสืบไป จากการศึกษาและสำรวจพบว่าโครงสร้างโบราณสถานในประเทศไทยส่วนใหญ่ใช้อิฐ เป็นวัสดุก่อสร้างหลักตั้งแต่ในระดับฐานจนถึงยอด จากการทดสอบคุณสมบัติของอิฐก่อที่เก็บ ตัวอย่างจากสถานที่จริงและอิฐก่อที่ผลิตในปัจจุบัน พบว่าค่าโมดูลัสความยืดหยุ่นอยู่ระหว่าง 32,000 ถึง 35,000 กิโลกรัมต่อตารางเซนติเมตรโดยประมาณ ส่วนกำลังรับแรงอัดของอิฐก่อพบว่ามี ค่าประมาณ 43 ถึง46 กิโลกรัมต่อตารางเซนติเมตร และยังพบว่าค่ากำลังอัดไม่ขึ้นกับเวลา (สุดชาย, 2543)

มีปัจจัยหลายประการที่ทำให้โบราณสถานเกิดความเสียหายหรือเสื่อมสภาพลง เช่น กาลเวลาที่ทำให้ปูนก่อซึ่งเป็นวัสดุเชื่อมประสานระหว่างอิฐก่อเสื่อมสลายหรือสึกกร่อนไป ซึ่งทำ ให้โบราณสถานมีความแข็งแกร่งลดลง ในด้านภูมิอากาส ได้แก่ ความร้อนซึ่งทำให้อิฐก่ออาจเกิด การแตกร้าว หรือน้ำฝนที่ชะล้างทำให้ปูนก่อสึกกร่อน ในด้านการทรุดตัวของชั้นดินที่รองรับซึ่ง อาจจะเกิดการทรุดตัวไม่เท่ากัน การเกิดหน่วยแรงคึงขึ้นในโครงสร้างบางส่วนซึ่งส่งผลให้เกิดการ แตกร้าว นอกจากนั้นยังมีการสันนิษฐาน และมีการบันทึกว่าโบราณสถานในประเทศไทยเดยได้รับ ความเสียหายเนื่องจากแผ่นดินไหวมาแล้ว ยิ่งไปกว่านั้นมนุษย์เองก็เป็นต้นเหตุสำคัญที่ทำให้ โบราณสถานเกิดความเสียหายได้ เช่น การเข้าทำลายหรือขุดเจาะ ปัจจัยต่างๆเหล่านี้มีผลทำให้ โบราณสถานมีความเสื่อมสภาพลงทั้งสิ้น และถ้ายังปล่อยให้โบราณสถานเกิดความเสื่อมสภาพลง ไปเรื่อยๆ จนถึงระดับหนึ่งโบราณสถานเหล่านั้นก็อาจพังทลายลงมาได้ ดังนั้นจึงจำเป็นที่จะต้องทำ การบูรณปฏิสังขรณ์โบราณสถานเหล่านั้นเพื่อป้องกันไม่ให้มีการสูญเสียเกิดขึ้น และการ บูรณปฏิสังขรณ์โบราณสถานใดๆจักกระทำได้อย่างสัมฤทธิ์ผล จำเป็นด้องมีความเข้าใจพฤติกรรม ทางวิศวกรรมและทราบถึงความเสียหายเริงโครงสร้างองโบราณสถานแหล่านั้น สำหรับในปัจจุบันโบราณสถานที่เสี่ยงต่อการเกิดความเสียหายได้แก่ เจดีย์ประธานทรง ปรางก์ของวัควรเชษฐ์เทพบำรุง ณ จังหวัดพระนครศรีอยุธยา ซึ่งตำแหน่งที่ตั้งใกล้กับทางหลวง ซึ่ง ทางกรมศิลปากรเกรงว่าองก์เจดีย์อาจได้รับผลกระทบกระเทือนจากการจราจร ดังนั้นในงานวิจัย ครั้งนี้ จึงเป็นกรณีศึกษาถึงพฤติกรรมของเจดีย์ประธานทรงปรางก์ของวัควรเชษฐ์เทพบำรุง ณ จังหวัดพระนกรศรีอยุธยา ซึ่งมีความสูงประมาณ 30 เมตร โดยที่รูปร่างสัณฐานของเจดีย์ทรงปรางก์ แสดงดังภาพที่ 1 สร้างขึ้นในสมัยสมเด็จพระเอกาทศรถ (พ.ศ.2148-พ.ศ.2153) ซึ่งมีอายุราว 400 ปี แสดงดังภาพที่ 2 โดยทำวิเคราะห์แบบจำลองและการตรวจวัดการสั่นไหว ซึ่งจะทำให้ทราบสภาพ ในปัจจุบันของโบราณสถานเพื่อการศึกษาแนวทางในการสร้างแบบจำลองที่มีประสิทธิภาพของ โบราณสถานอิฐก่อรูปแบบดังกล่าว

<u>ภาพที่ 1</u> รูปร่างสัณฐานของเจดีย์ทรงปรางค์ ที่มา: สันติ (2542)

วัตถุประสงค์ของการวิจัย

 เพื่อศึกษาคุณสมบัติพื้นฐานทางพลศาสตร์ของโครงสร้างโบราณสถานอิฐก่อ
 เพื่อศึกษาหน่วยแรงสำคัญของโบราณสถานในสภาพปัจจุบันภายใต้น้ำหนักตัวเอง
 เพื่อศึกษาถึงพฤติกรรมของโครงสร้างโบราณสถานอิฐก่อภายใต้แรงกระทำทาง พลศาสตร์

<u>ภาพที่ 2</u> เจดีย์ประธานทรงปรางก์วัดวรเชษฐ์เทพบำรุง

การตรวจเอกสาร

การศึกษาและวิจัยทางด้านต่างๆเกี่ยวกับโบราณสถานในประเทศไทย ทั้งทางด้านกำลังของ วัสดุ การวิเคราะห์โครงสร้างทางสถิตศาสตร์ และการวิเคราะห์โครงสร้างทางพลศาสตร์ ที่ผ่านมามี ดังนี้

้วรศักดิ์ (2540ก. 2540ข) ได้วิเคราะห์ถึงหน่วยแรงที่เกิดขึ้นของเจดีย์โบราณสถานเนื่องจาก ้น้ำหนักตัวเอง โดยทำการวิเคราะห์พระปฐมเจดีย์ที่จังหวัดนครปฐมซึ่งเป็นเจดีย์ทรงปรางก์ ได้เก็บ ้ตัวอย่างอิฐไปทคสอบ พบว่าค่ากำลังรับแรงอัคเท่ากับ 28.21 กิโลกรัมต่อตารางเซนติเมตร ค่า ์ โมคูลัสความยืดหยุ่นเท่ากับ 28,210 กิโลกรัมต่อตารางเซนติเมตร ค่าอัตราส่วนปัวซองเท่ากับ 0.216 ้ผลจากการวิเคราะห์ไฟไนท์อิลิเมนต์เนื่องจากน้ำหนักตัวเอง พบว่าหน่วยแรงอัดที่เกิดขึ้นมีค่า 1 ใน 3 ของกำลังรับแรงอัค ดังนั้นภายใต้น้ำหนักตัวเอง พระปฐมเจคีย์มีก่าอัตราส่วนความปลอดภัย เท่ากับ 3 นอกจากนั้น ยังได้ทำการวิเคราะห์ โครงสร้างเจดีย์ภูเขาทองซึ่งมีตำแหน่งบนสุดเอียงจาก ้ศูนย์กลางเป็นระยะ 2.1 เมตร เพื่อเสนอแนวทางในการบูรณะและซ่อมแซม ได้ตรวจสอบองค์เจดีย์ ้ โดยการเจาะนำตัวอย่างมาทคสอบ เพื่อนำไปสร้างแบบจำลองวิเคราะห์ โดยวิธีไฟไนท์อิลิเมนต์ พบว่า การกระจายของหน่วยแรงในโครงสร้าง จะเป็นการถ่ายแรงจากส่วนบนของโครงสร้างสู่ ้ส่วนล่าง โดยที่หน่วยแรงสูงสุดจะอยู่บริเวณศูนย์กลางของฐานองก์เจดีย์ ซึ่งก่าหน่วยแรงอัดอันเกิด ้จากน้ำหนักของตัวเจคีย์เองมีค่าประมาณ 10 เปอร์เซ็นต์ ของกำลังอัคประลัยของวัสคุก่อ จึงพอสรุป ้ได้ว่าเจดีย์ภูเขาทองยังมีเสถียรภาพที่ดี และจะไม่เกิดการวิบัติแบบพังทลายทันที แต่จากการสำรวจ พบว่า วัสดุก่อมีสภาพค่อนข้างทรุดโทรม และมีช่องโพรงกระจายอยู่ทั่วไปในบริเวณฐานของเจดีย์ และเมื่อพิจารณาถึงหน่วยแรงดึงที่เกิดขึ้นซึ่งพบว่ามีก่าน้อย แต่เนื่องจากวัสดุก่อมีสภาพทรุดโทรม ้ด้วยแรงดึงเพียงเล็กน้อยเป็นผลให้เกิดรอยแตกร้าวขึ้นดังเห็นได้ในสภาพปัจจุบัน

แนวทางในการบูรณะองค์เจดีย์ภูเขาทอง คือการอัดฉีดน้ำปูนเข้มข้นในส่วนฐานของเจดีย์ เพื่อปีดช่องโพรงที่กระจายอยู่ และเพื่อเป็นการกระจายหน่วยแรงกดให้ออกจากศูนย์กลาง ทำให้ ฐานเจดีย์มีบริเวณที่ช่วยกันเฉลี่ยรับแรงกดเป็นบริเวณกว้างขึ้น จึงกาดว่าวิธีนี้องก์เจดีย์ซึ่งมีการเอียง ในอดีตจะไม่มีการเอียงเพิ่มขึ้นอีกในอนากต และเมื่อทำการวิเคราะห์แบบจำลองหลังการบูรณะ แล้ว พบว่า ก่าหน่วยแรงสูงสุดมีก่าลดลง และหน่วยแรงบริเวณฐานเจดีย์มีการกระจายที่ดีขึ้น

สุดชาย (2543) ได้ทำการศึกษาถึงความสามารถในการรับแรงของอิฐ โบราณและอิฐที่ใช้ใน การบูรณะ โบราณสถาน โดยใช้ตัวอย่างทดสอบจำนวน 9 แห่ง เป็นอิฐ โบราณที่เก็บตัวอย่างมาจาก แหล่งโบราณสถานในเขตจังหวัดพระนครศรีอยุธยา 8 แห่ง และอิฐที่มีการผลิตในปัจจุบันที่บ้าน ลุมพี จังหวัดพระนครศรีอยุธยา 1 แห่ง และนำผลการทคสอบที่ได้ไปวิเคราะห์โครงสร้างเจคีย์ ประธานโบราณสถานวัดกุฎีคาวซึ่งเป็นเจคีย์ทรงปรางก์ จากผลการทคสอบและการวิเคราะห์ โครงสร้างสรุปได้ว่า

 กำลังรับแรงอัดและ โมดูลัสความยืดหยุ่นของอิฐตัวอย่างทั้ง 9 แห่ง มีค่าใกล้เคียงกัน โดย ที่กำลังรับแรงอัดมีค่าระหว่าง 43 ถึง 46 กิโลกรัมต่อตารางเซนติเมตร ซึ่งไม่ขึ้นกับเวลา และ โมดูลัส ความยืดหยุ่นมีค่าระหว่าง 32,000 ถึง 35,000 กิโลกรัมต่อตารางเซนติเมตร

2. การวิเคราะห์โครงสร้างเจดีย์ประชานโดยวิธีไฟในอิถิเมนต์ เพื่อศึกษาถึงการกระจาย หน่วยแรงเนื่องจากน้ำหนักขององค์เจดีย์ ในกรณีที่ไม่มีการต่อเติมองค์ระฆังและ ปล้องใฉน พบว่า หน่วยแรงที่เกิดขึ้นกับองค์เจดีย์ทั้งหน่วยแรงในแนวดิ่งและหน่วยแรงในแนวราบเป็นหน่วยแรงอัด โดยมีหน่วยแรงอัดสูงสุดบริเวณฐาน และหน่วยแรงอัดที่เกิดขึ้นมีค่าไม่เกินกำลังรับแรงอัดของอิฐ

 เมื่อต่อเติมโครงสร้างส่วนบนขององค์เจดีย์ตามรูปแบบสันนิษฐาน พบว่าหน่วยแรงที่ เกิดขึ้นในแนวดิ่งเป็นหน่วยแรงอัด มีก่าสูงสุดบริเวณฐานและ ไม่เกินกำลังรับแรงอัดของอิฐ แต่จะ เกิดหน่วยแรงดึงในแนวราบบริเวณส่วนบนที่ต่อเติมและบริเวณฐาน หน่วยแรงดึงที่เกิดขึ้นมีขนาด ไม่มากนัก แต่อาจมีผลในการทำให้องก์เจดีย์เริ่มแตกร้าว โดยเฉพาะบริเวณรอยต่อระหว่างอิฐกับ ปูนก่อ

วรพจน์ (2543) ได้ทำการศึกษาเกี่ยวกับคุณสมบัติและพฤติกรรมของวัสคุประกอบจากอิฐ และปุนก่อซึ่งผสมเส้นใยเหล็กเพื่อเสริมกำลัง โดยทำการทคสอบคุณสมบัติของปุนก่อเสริมกำลัง เปรียบเทียบกับปุนก่อมาตรฐาน พร้อมทั้งได้ทำการทคสอบโครงสร้างย่อยในห้องปฏิบัติการและ วิเคราะห์ด้วยวิธี ไฟไนท์อิลิเมนต์ จากผลการทคลองสรุปได้ว่า

 ปูนก่อเสริมกำลังมีกำลังรับแรงคึงและกำลังรับแรงอัคเพิ่มขึ้นจากปูนก่อมาตรฐาน ประมาณ 20 ถึง 30 เปอร์เซ็นต์ และกำลังของปูนก่อเสริมกำลังจะเพิ่มขึ้นตามจะเพิ่มขึ้นตามปริมาณ ของเส้นลวคเสริมแรงที่เพิ่มขึ้น

 การวิเคราะห์แบบจำลองโครงสร้างย่อยด้วยวิธีไฟในท์อิลิเมนต์ พบว่าอัตราส่วนปัวซอง มีค่าใกล้เคียงกับค่าที่ได้จากการทดสอบ

อดิศัย (2544) ได้ทำการศึกษาถึงคุณสมบัติพื้นฐานทางพลศาสตร์และคุณสมบัติวัสดุของ โครงสร้างโบราณสถาน โดยใช้ข้อมูลทางการศึกษาจากเจดีย์วัดกุฎีดาว ซึ่งประกอบด้วยอิฐที่ใช้ใน การบูรณะองค์เจดีย์ รูปร่างสัณฐานขององค์เจดีย์ ซึ่งนำอิฐก่อที่ใช้ในการบูรณะโบราณสถานมาทำ การทดสอบจำนวน 5 ตัวอย่าง เพื่อหาคุณสมบัติของวัสคุเพื่อใช้เป็นข้อมูลในการวิเคราะห์ โครงสร้างทางพลศาสตร์ โดยวิธีไฟในท์อิลิเมนต์ จากการวิเคราะห์ด้วยโปรแกรมไฟในท์อิลิเมนต์ พบว่าก่ากวามถี่ธรรมชาติในรูปแบบการสั่นไหวด้านข้างที่หนึ่ง มีก่า 1.7595 Hz

สำหรับงานวิจัยที่ผ่านมาที่ได้ทำการศึกษาและวิเคราะห์เกี่ยวกับโบราณสถานตามที่ต่างๆ ในต่างประเทศ เป็นดังนี้

Kuchitsu et al. (1999) ได้ศึกษาถึงการเกิดของเกลือในอิฐก่อที่มีผลทำให้โบราณสถานที่ จังหวัดอยุธยาเกิดความเสียหาย ทำการทดสอบโดยการก่อเสาตัวอย่างโดยใช้อิฐที่จังหวัดอยุธยา จำนวน 2 ตัวอย่าง โดยที่เสาตัวอย่างแรกทำการฉาบปูนปิดผิวหน้าของอิฐตลอดเสา ส่วนตัวอย่างที่ สองไม่ได้ฉาบปูนปิดผิวหน้าของอิฐ พบว่าปริมาณกวามชื้นในเสาตัวอย่างแรกมีมากกว่า และใน หน้าหนาวสังเกตพบว่าเสาตัวอย่างที่ไม่ได้ฉาบปูนปิดผิวหน้าของอิฐจะเกิดเกลือที่อิฐอย่างชัดเจน และได้ทำการสังเกตบริเวณกำแพงของโบราณสถานที่จังหวัดอยุธยาระยะเวลาห่างกัน 1 อาทิตย์ พบว่าช่วงสิ้นสุดหน้าฝนกำแพงของโบราณสถานยังไม่เกิดเกลือขึ้น หลังจากนั้น 1 อาทิตย์ เมื่อเริ่ม เข้าต้นหน้าหนาวจะสังเกตเห็นเกลือจำนวนมากเกาะอยู่ที่อิฐ ซึ่งจากการสังเกตและทดลองสรุปได้ ว่า ความเสียหายของอิฐก่อของโบราณสถานที่เกิดจากการกัดกร่อนของเกลือในจังหวัดอยุธยาจะ เกิดเป็นฤดู คือจะเริ่มเกิดกวามเสียหายเมื่อเริ่มเข้าหน้าหน้าหนาวจนกระทั่งถึงเริ่มต้นหน้าฝน และ โบราณสถานบริเวณที่ปูนฉาบยังมีความสมบูรณ์ อิฐก่อจะไม่เกิดความเสียหายจากการกัดกร่อนของ เกลือ

Jaishi et al. (2003) ทำการศึกษาถึงรูปแบบของความเสียหายของวัคอิฐก่อที่เป็น โบราณสถานและมรคกโลกในประเทศเนปาล ภายใต้แรงกระทำเนื่องจากแผ่นคินไหว ซึ่งการหา แรงค้านข้างที่กระทำต่อโครงสร้างค้วยวิธีสัมประสิทธิ์แผ่นดินไหว จำเป็นที่จะต้องทราบค่าคาบ ธรรมชาติซึ่งเป็นคุณสมบัติพื้นฐานทางพลศาสตร์ของโครงสร้าง จึงทำการประมาณก่าคาบ ธรรมชาติโดยการวิเคราะห์ค้วยวิธีไฟไนท์อิลิเมนต์ และทำการตรวจวัคจริงในสนาม โดยเลือกวัค ด้วอย่าง 10 ตัวอย่าง มาวิเคราะห์ค้วยวิธีไฟไนท์อิลิเมนต์ และเถือกวัคตัวอย่าง 3 ตัวอย่าง เพื่อทำการ ตรวจวัคจริงในสนามเนื่องจากผลของแรงในสภาพแวคล้อม เมื่อนำมาหาความสัมพันธ์ระหว่างค่า คาบธรรมชาติกับความสูงของวัค (H) และความยาวของฐาน (d) ค้วยวิธีทางสถิติได้เท่ากับ T = 0.0488H/d^{1/2} และทำการวิเคราะห์หน่วยแรงที่เกิดขึ้นกับโครงสร้างที่ถูกกระทำจากแรงค้านข้าง เนื่องจากแผ่นดินไหว จากผลการทคลองพบว่า ก่าคาบธรรมชาติของวัคโบราณสถานทั้งหมดน้อย กว่า 0.6 วินาที และอัตราส่วนความหน่วงอยู่ระหว่าง 1-6 เปอร์เซ็นต์ สำหรับรูปแบบความเสียหาย ของวัดทั้งหมดเกิดจากหน่วยแรงดึงและหน่วยแรงอัด ส่วนหน่วยแรงเฉือนไม่เกินก่าที่ยอมให้เพราะ กำแพงอิฐก่อมีความหนามาก ยกเว้นวัดบางตัวอย่างที่รูปแบบความเสียหายเกิดจากหน่วยแรงเฉือน

Kuhlmann (2003) ได้ทำการศึกษาถึงพฤติกรรมของโบสถ์ขนาดใหญ่ซึ่งเป็นมรดกโลกที่ มีอาขุกว่า 1200 ปี ในประเทศเยอรมัน ซึ่งตั้งอยู่ในบริเวณที่เสี่ยงต่อการเกิดแผ่นดินไหว โดยที่โบสถ์ ประกอบด้วยโครงสร้างหลัก 3 ส่วนเรียงกัน คือ หอกอยตะวันตกทางด้านซ้าย หอกอยแปดเหลี่ยมที่ อยู่ตรงกลาง และโรงสวดมนต์ขนาดใหญ่ทางด้านขวา ซึ่งโรงสวดมนต์ประกอบด้วยเสาที่บางและ ภายนอกตกแต่งด้วยกระจกซึ่งไม่สามารถรับแรงทางด้านข้างจากแผ่นดินไหวได้ จึงได้มีการติดตั้ง สมอเหล็กและกอนกรีตเพื่อยึดโครงสร้างของโรงสวดมนต์ให้ติดกับหอกอยแปดเหลี่ยม เพื่อทำการ ถ่ายแรงกระทำไปให้หอกอยแปดเหลี่ยม และได้ทำการตรวจวัดโกรงสร้างทางพลศาสตร์ พบว่า ค่าความถี่ธรรมชาติ 2 รูปแบบแรกเท่ากับ 1.13 และ 2.13 Hz ตามถำดับ และได้ทำการวิเคราะห์ แบบจำลองของโครงสร้าง โดยที่แบบจำลองจะถูกปรับแก้จนกว่าก่าความถี่ธรรมชาติจาก แบบจำลองจะใกล้เกียงกับก่าที่ได้จากการตรวจวัด ซึ่งการปรับแก้แบบจำลองจะใช้น้ำหนักของส่วน ที่ไม่ใช่โครงสร้างหลักกระจายเพิ่มเข้าไปในแบบจำลอง จากนั้นทำการวิเคราะห์แบบจำลองภายใด้ แผ่นดินไหว พบว่าหน่วยแรงดึงเกิดขึ้นมากที่สุดที่สมอหลัก มีก่าประมาณ 10 เปอร์เซ็นต์ของกำลัง รับแรงดึง โครงสร้างจึงอยู่ในสภาพที่ปลอดภัย

Carpinteri et al. (2005) ทำการศึกษาถึงพฤติกรรมของหอดอยอิฐก่อในสมัยโบราณใน ประเทศอิตาลี โดยที่หอดอยกว้าง 5.9 x 5.9 เมตร สูง 39 เมตร และความหนาของกำแพงอิฐก่ออยู่ ระหว่าง 0.8 - 2 เมตร ซึ่งหอดอยเอียงจากศูนย์กลางไปทางเหนือวัดจากค้านบนสุดเป็นระยะ 39 เซนติเมตร โดยที่ทำการตรวจสอบสภาพของหอดอยโดยวิธีภาพถ่ายทางความร้อน ซึ่งสามารถใช้ ระบุรอยแตกร้าวของโครงสร้างได้ พบว่ารอยแตกร้าวส่วนใหญ่พบที่บริเวณช่องเปิดของโครงสร้าง เช่น ช่องหน้าต่าง เป็นด้น และทำการวิเคราะห์โครงสร้างโดยวิธีไฟในท์อิถิเมนต์ โดยทำการ วิเคราะห์แบบเชิงเส้น และวิเคราะห์แบบไม่เป็นเชิงเส้น และได้ทำการทดสอบกับโครงสร้างจริง บริเวณฐานของหอดอยเพื่อหาคุณสมบัติของอิฐก่อและหน่วยแรงที่เกิดขึ้นในตำแหน่งต่างๆภายใต้ สภาวะจริงด้วยวิธี Flat-jack tests ซึ่งคุณสมบัติของอิฐก่อที่ใช้ในการวิเคราะห์แบบจำลอง ได้แก่ โมดูลัสยืดหยุ่นเท่ากับ 5,000 เมกกะนิวตันต่อตารางเมตร, อัตราส่วนปัวซอง เท่ากับ 0.2, ความ หนาแน่นเท่ากับ 1,600 กิโลกรัมต่อลูกบาศก์เมตร, กำลังรับแรงดึงเท่ากับ 0.3 เมกกะนิวตันต่อตาราง เมตร และกำลังรับแรงอัดเท่ากับ 2 เมกกะนิวตันต่อตารางเมตร จากการวิเคราะห์แบบเชิงเส้น พบว่า ค่าหน่วยแรงที่ได้จากการวิเคราะห์มีค่าใกล้เกียงกันมากกับก่าหน่วยแรงที่ได้จากการทดสอบ Flatjack ในตำแหน่งเดียวกัน แสดงให้เห็นว่าแบบจำลองที่ใช้วิเคราะห์มีความถูกต้อง และพบว่าค่า หน่วยแรงที่เกิดขึ้นมีค่าน้อยกว่าค่ากำลังรับแรงอัดของอิฐก่อ นั่นคือในสภาพจริงโครงสร้างอยู่ใน สภาวะยึดหยุ่น สำหรับการวิเคราะห์แบบไม่เป็นเชิงเส้น เมื่อเพิ่มความเอียงของโครงสร้างขึ้นเรื่อยๆ หน่วยแรงดึงที่บริเวณส่วนล่างของโครงสร้างจะเพิ่มขึ้นจนเกิดรอยแตกร้าวและเพิ่มขึ้นเรื่อยๆ และ เมื่อโครงสร้างเอียงมากกว่า 3 เปอร์เซ็นต์ของความสูง บริเวณฐานของโครงสร้างจะเกิดการระเบิด เนื่องจากค่าหน่วยแรงอัดมีค่าถึงกำลังรับแรงอัดของอิฐก่อ สรุปได้ว่าเมื่อโครงสร้างเอียง 3 เปอร์เซ็นต์ หรือระยะการเยื้องศูนย์ที่ตำแหน่งบนสุดเท่ากับ 125 เซนติเมตร จะเป็นสภาวะประลัย ของโครงสร้าง

Juhasova et al. (2002) ได้ศึกษาถึงพฤติกรรมของโครงสร้างอิฐก่อภายใต้แรง แผ่นดินไหวและผลของปูนฉาบชนิดพิเศษ ที่ทำให้โครงสร้างอิฐก่อสามารถด้านทานแรง แผ่นดินไหวได้มากขึ้น โดยได้ทำการสร้างโครงสร้างก่ออิฐ 2 ชั้นขนาดใหญ่ขึ้นบนโต๊ะเขย่า ซึ่ง ไม่ได้ฉาบปูนปิดผิวหน้าของอิฐก่อ จากนั้นทำการใส่คลื่นความสั่นสะเทือน จนโครงสร้างเกิดความ เสียหาย จากนั้นทำการซ่อมแซม โดยยึดตรึงด้วยลวดตะแกรงซึ่งมีคุณสมบัติรับแรงดึงได้สูงและ ฉาบด้วยปูนฉาบพิเศษที่มีกำลังสูง จากนั้นทำการทดสอบการสั่นไหวอีกครั้ง จากผลการทดลอง พบว่า การทดสอบครั้งแรกเมื่อโครงสร้างไม่ได้ฉาบปูน ค่าความเร่งสูงสุดของโครงสร้างที่ทำให้ โครงสร้างเสียหายประมาณ 0.36 g หลังจากทำการเสริมกำลังของโครงสร้างพบว่า ค่าความเร่ง สูงสุดของโกรงสร้างที่ทำให้โครงสร้างเสียหายประมาณ 0.69 g แสดงว่าเมื่อเสริมกำลังของ โครงสร้างจะสามารถด้านทางแรงแผ่นดินไหวเพิ่มขึ้นประมาณ 2 เท่า และพบว่าเมื่อทำการเสริม กำลังของโครสร้าง ค่าความถี่ธรรมชาติจะมีก่าเพิ่มขึ้น

Kim and Ryu (2003) ทำการทดสอบการสั่นใหวของเจดีย์ขนาดเล็ก 5 ชั้น สูง 3 เมตร เพื่อค้นหาถึงขนาดของแผ่นดินใหวที่เกิดขึ้นในปี ค.ศ. 1936 ที่ประเทศเกาหลี ที่ทำให้ส่วนบนของ เจดีย์พังลงมาตามที่มีการบันทึกไว้ โดยได้สร้างเจดีย์ขึ้นมาใหม่ตามขนาดและรูปทรงเดิมที่มีการ บันทึกไว้ ทำการทดสอบเจดีย์บนโต๊ะเขย่า โดยแบ่งการทดสอบเป็น 2 ประเภท คือการสั่นใหวใน ระดับต่ำเพื่อหาก่าความถี่ธรรมชาติของเจดีย์ และทดสอบการสั่นใหวโดยใส่ คลื่นความสั่นสะเทือน ในรูปของความเร่งของแผ่นดินไหว 4 แห่ง ได้แก่ Coalinga earthquake (1983), Whittier Narrows earthquake (1987), Taft earthquake (1952) และ El Centro earthquake (1940) เพื่อศึกษาความสัมพันธ์ระหว่างรูปแบบของความเสียหายกับขนาดของแผ่นดินไหว ซึ่งจากการ ทดลองพบว่า ความถี่ธรรมชาติของเจดีย์มีค่าประมาณ 2 Hz และเมื่อใส่คลื่นความสั่นสะเทือนของ Coalinga earthquake และ Whittier Narrows earthquake ซึ่งมีก่าคาบของแผ่นดินไหวที่สั้น พบว่ารูปแบบความเสียหายของเจคีย์เกิดจากชั้นที่ 1 ของเจคีย์เสียรูป ส่วนเมื่อใส่คลื่นความ สั่นสะเทือน Taft earthquake และ El Centro earthquake ซึ่งมีค่าคาบของแผ่นดินไหวที่ยาว พบว่ารูปแบบความเสียหายของเจคีย์จะเกิดเพราะส่วนบนของเจคีย์พังลงมา แสดงว่าแผ่นดินไหวที่ เกิดในปี 1936 มีลักษณะคล้ายกับ Taft earthquake และ El Centro earthquake สำหรับขนาด ของแผ่นดินไหวอยู่ระหว่าง 0.15 g - 0.24 g

สำหรับงานวิจัยต่างๆที่ทำการศึกษาเกี่ยวกับการตอบสนองของโครงสร้างเนื่องจาก การจราจร เป็นดังนี้

วรศักดิ์ (2540ก) ได้วิเคราะห์ถึงหน่วยแรงที่เกิดขึ้นของเจดีย์โบราณสถานเนื่องจากคลื่น ความสั่นสะเทือนในรูปของความเร่งเนื่องจากรถบรรทุก โดยทำการวิเคราะห์พระปฐมเจดีย์ที่ จังหวัดนครปฐม ผลจากการวิเคราะห์ไฟไนท์อิลิเมนต์ทางพลศาสตร์เนื่องจากคลื่นความ สั่นสะเทือนในรูปของความเร่งที่ได้จากรถบรรทุกซึ่งมีค่าความเร่งสูงสุดประมาณ 0.05g พบว่าเมื่อ โครงสร้างมีการสั่นไหวจะเกิดหน่วยแรงดึงขึ้นบางตำแหน่ง ได้แก่บริเวณส่วนยอดและบริเวณ ปล้องไฉน ซึ่งหน่วยแรงดึงนี้จะทำให้โครงสร้างเกิดการแตกร้าวและจะเกิดการแตกร้าวต่อไปเรื่อยๆ ทำให้โครงสร้างเสื่อมสภาพลงอย่างรวดเร็ว

Hunaidi (2000) ได้ให้รายละเอียดเกี่ยวกับการตอบสนองเนื่องจากการจราจร คือ การจราจรที่ทำให้เกิดการสั่นสะเทือนหรือแรงทางพลศาสตร์ที่มีนัยสำคัญ จะเกิดกับถนนที่ไม่เรียบ หรืองรุงระ และชนิดของพาหนะ ได้แก่ รถโดยสารงนาดใหญ่ และรถบรรทุก ซึ่งการตอบสนอง ของถนนจะมีก่ากวามเร่งสูงสุดอยู่ในช่วง 0.0005g – 0.2g และกวามถื่อยู่ในช่วง 5 – 25 Hz ซึ่ง งนาดของการสั่นสะเทือนจะขึ้นอยู่กับปัจจัยต่างๆ ได้แก่ กวามงรุงระของถนน น้ำหนักของรถ กวามเร็วของรถ ระบบภายในของรถ (suspension system) และฤดูกาลประจำปี เช่น ที่ในฤดู หนาวที่ประเทศแกนาดา บริเวณดินชั้นบนจะเป็นน้ำแข็งทำให้การสั่นไหวต่ำลงเมื่อเทียบกับฤดู อื่นๆ

Degrande and Lombaert (2000) ได้ทำการวิเคราะห์หาการตอบสนองที่ผิวดินที่ ตำแหน่งต่างๆเนื่องจากรถบรรทุก โดยทำการจำลองรถบรรทุกแบบ 2 มิติ จากการวิเคราะห์พบว่า การสั่นไหวจะรุนแรงที่สุดบริเวณศูนย์กลางของถนน และจะลดลงเรื่อยๆเมื่อระยะห่างออกไป และ ถ้าเพิ่มความเร็วของรถการสั่นไหวก็จะเพิ่มมากขึ้นด้วย และได้ทำการตรวจวัดการสั่นสะเทือน โดย ให้รถบรรทุกวิ่งบนถนนที่ความเร็ว 30 และ 70 กม./ชม. พบว่าที่ความเร็ว70 กม./ชม. ขนาดของการ สั่นสะเทือนจะมากกว่าประมาณ 3 เท่า และของเขตของการสั่นสะเทือนที่รู้สึกได้มีขนาดค่ามากกว่า

<u>การตรวจวัดคุณสมบัติเชิงพลศาสตร์ของโครงสร้าง</u>

คุณสมบัติทางพลศาสตร์ของโครงสร้างที่สำคัญ คือ ความถี่ธรรมชาติ (Natural Frequency) อัตราส่วนความหน่วง (Damping Ratio) และรูปแบบการสั่นไหว (Mode Shape) โดยทั่วไปวิธีการหาค่าคุณสมบัติเชิงพลศาสตร์ของโครงสร้างแบ่งออกได้เป็น 2 ประเภท ได้แก่

 วิธีวิเคราะห์สำหรับโครงสร้างที่มีความสลับซับซ้อนอาจทำการสร้างแบบจำลองไฟ-ในต์อิลลิเมนต์ (Finite Element Model) เพื่อหาคุณสมบัติเชิงพลศาสตร์ที่สำคัญอันได้แก่ ความถึ่ ธรรมชาติ และรูปแบบการสั่นไหว โดยพยายามจำลองพฤติกรรมของโครงสร้างให้ใกล้เคียงความ จริงมากที่สุด

 2. วิธีการตรวจวัด เป็นการหาค่าคุณสมบัติทางพลศาสตร์ของโครงสร้างจากการตรวจวัด ด้วยเครื่องมือพิเศษสำหรับการตรวจวัด

วิธีการตรวจวัดในการหาก่าคุณสมบัติทางพลศาสตร์ของโครงสร้างแบ่งได้ 3 วิธี ได้แก่ วิธีการตรวจวัดการสั่นไหวด้วยแรงกระทำ (Force Vibration) วิธีการตรวจวัดการสั่นไหวอิสระ (Free Vibration) และวิธีการตรวจวัดการสั่นไหวเนื่องจากแรงในสภาพแวดล้อม (Ambient Vibration) สำหรับวิธีการตรวจวัดการสั่นไหวด้วยแรงกระทำ และวิธีการตรวจวัดการสั่นไหว อิสระ จำเป็นจะต้องมีแรงกระทำกับโครงสร้างขณะทำการทดลอง สำหรับวิธีการตรวจวัดการสั่น ไหวเนื่องจากแรงในสภาพแวดล้อมจะใช้วิธีวิเคราะห์ฟูเรียร์ (Fourier Analysis) ซึ่งเป็นวิธีที่ ก่อนข้างซับซ้อน แต่เนื่องจากความก้าวหน้าทางวิทยาการกอมพิวเตอร์ในปัจจุบัน ทำให้วิธีนี้ไม่เป็น ปัญหาอีกต่อไป ดังนั้นวิธีการตรวจวัดการสั่นไหวเนื่องจากแรงในสภาพแวดล้อมจึงเป็นวิธีที่

<u>การตรวจวัดเพื่อหาค่าความถี่ธรรมชาติ</u>

วิธีการตรวจวัดการสั่นไหวเนื่องจากแรงในสภาพแวดล้อม คือการตรวจวัดการสั่นไหวของ โกรงสร้างในระดับการสั่นไหวต่ำที่มีอยู่ตลอดเวลาในธรรมชาติ ซึ่งเกิดจากแรงกระทำหรือการ กระตุ้นจากสิ่งแวคล้อมที่มีอยู่รอบๆและภายในโครงสร้าง เช่น แรงลม การสั่นสะเทือนของพื้นคิน เนื่องจากการจราจร เป็นค้น การใช้กลุ่มคนช่วยเขย่าโครงสร้าง ก็ถือได้กลุ่มคนเหล่านี้ว่าเป็น ตัวกระตุ้นการสั่นไหวแบบหนึ่ง เพราะเมื่อโครงสร้างถูกกระต้นด้วยความถี่ที่ตรงกับค่าความถี่ ธรรมชาติ การสั่นไหวของโครงสร้างจะเพิ่มขึ้นแม้ว่าการกระตุ้นจะอยู่ในระดับต่ำ แต่ผลของการกำ ทอน (Resonance) จะทำให้ผลการสั่นไหวของโครงสร้างมีความชัดเจนขึ้น ดังนั้นการใช้กลุ่มคน กระตุ้นโครงสร้างจึงควรที่จะทราบค่าความถี่ธรรมชาติของโครงสร้างอย่างกร่าวๆก่อนจากวิธีไฟ ในต์อิลิเมนต์ เพื่อที่จะกระตุ้นโครงสร้างได้ใกล้เคียงกับค่าความถี่ธรรมชาติ แต่ในการใช้กลุ่มคน กระตุ้นโครงสร้าง สามารถทำได้เฉพาะรูปแบบการสั่นพื้นฐานเท่านั้น เพราะที่รูปแบบการสั่นไหว ที่สูงขึ้นจังหวะของการกระตุ้นจะมีค่ามากกว่าความถิ่ที่คนจะสามารถกระตุ้นได้

การตรวจวัดการสั่นไหวเนื่องจากแรงในสภาพแวคล้อมจะนำไปสู่การหาก่าคุณสมบัติเชิง พลศาสตร์ของโครงสร้างอย่างแท้จริง ข้อมูลจากการตรวจวัดที่ได้จะนำไปหาก่าคุณสมบัติทาง พลศาสตร์ของโครงสร้าง คือ ความถี่ธรรมชาติ อัตราส่วนความหน่วง และรูปแบบการสั่นไหว ซึ่ง เครื่องมือที่ใช้ในการตรวจวัดแบ่งได้เป็น 2 ประเภท คือ อุปกรณ์วัดอัตราเร่งของการสั่นสะเทือน (Accelerometer) และอุปกรณ์วัดความเร็วของการสั่นสะเทือน (Velocity Transducer)

ในการหาก่าความถี่ธรรมชาติ เครื่องมือที่ใช้ตรวจวัดการสั่นไหวทั้งหมดมักจะถูกติดตั้งที่ ชั้นบนสุดของโครงสร้าง เนื่องจากในรูปแบบการสั่นไหวพื้นฐาน การเคลื่อนที่ของโครงสร้างที่ชั้น บนสุดเนื่องจากแรงกระทำภายนอกจะมีค่ามากที่สุด ทำให้ผลตอบสนองของสัญญาณมีความชัดเจน มากกว่าชั้นที่ต่ำลงมา และในกรณีที่อาการชั้นบนสุดเป็นดาดฟ้าซึ่งเป็นพื้นที่โถ่งทำให้สะควกต่อ การตรวจวัดมากยิ่งขึ้น ส่งผลให้ก่าความถี่ธรรมชาติในรูปแบบของสเปกตรัมของฟูเรียร์แอมพลิจูด (Fourier Amplitude Spectrum) มีความคมชัดยิ่งขึ้น โดยก่าสูงสุดของฟูเรียร์แอมพลิจูดจะเป็น ขอดแหลมอย่างชัดเจน โดยสามารถอธิบายได้ด้วยสมมติฐานที่ว่า แรงกระดุ้นจากสภาพแวคล้อมมี ลักษณะที่เป็นส่วนผสมของแรงหลายชนิดจากแหล่งต่างๆ ซึ่งอาจพิจารณาว่ามืองก์ประกอบของ ความถี่ที่หลากหลาย เมื่อแรงลักษณะนี้กระทำต่อโครงสร้างซึ่งมีความถี่ธรรมชาติและอัตราส่วน กวามหน่วงประจำรูปแบบการสั่นไหวใดๆ จึงพิจารณาได้ว่าโครงสร้างได้ถูกแรงกระทำที่มี ส่วนผสมของความถี่หลายๆก่า ดังนั้นผลตอบสนองของโครงสร้างจึงเป็นการผสมกันของ ผลตอบสนองในแต่ละองก์ประกอบความถี่ของแรงที่กระทำ และผลตอบสนองจะมีก่ามากสำหรับ องก์ประกอบที่มีกวามถิ่าก้าตัดรวามถิ่ธรรมชาติของโครงสร้าง ลือเกิดการสั่นพ้อง ดังนั้น ก่าความถิ่ธรรมชาติจึงสามารถประเมินได้จากขอดแหลมของก่าฟูเรียร์แอมพลิจูด นอกจากนี้การที่ จะพิจารณาว่ารูปแบบการสั่นไหวที่ได้จากการตรวจวัด เป็นการสั่นมีความถี่จานข้าง (Translation) หรือการสั่นใหวแบบบิดตัว (Torsional) ทำใด้โดยการพิจารณาจากความต่างเฟส ของฟูเรียร์แอมพลิจูดที่วัดได้จากเครื่องมือที่ชั้นบนสุดในทิศทางการวัดเดียวกัน โดยที่ถ้าความต่าง เฟสเท่ากับ 0 องศา แสดงว่าทั้งสองตำแหน่งของการติดตั้งเครื่องมือมีการสั่นใหวไปในทิศทาง เดียวกันเป็นรูปแบบการสั่นใหวในแนวด้านข้าง และถ้าความต่างเฟสเท่ากับ 180 องศา แสดงว่าเป็น รูปแบบการสั่นใหวแบบบิดตัว โดยทั่วไปการจัดวางองก์อาการจะไม่มีความสมมาตรทำให้จุด ศูนย์กลางมวล (Center of Mass) ของแต่ละชั้นไม่ตรงกัน ส่งผลให้รูปแบบการสั่นไหวไม่สามารถ แยกกันได้อย่างชัดเจน จากความไม่สมมาตรดังกล่าวเป็นผลให้ก่าความถี่ธรรมชาติและอัตราส่วน ความหน่วงที่รูปแบบการสั่นไหวในทิศทางที่ต่างกันมีค่าไม่เท่ากัน ดังนั้นจะต้องทำการติดตั้ง เครื่องมือวัดการสั่นไหวทั้งในทิศทางเหนือ-ใต้ (N-S) และ ทิศทางตะวันออก-ตก (E-W) เพื่อใช้ใน การหารูปแบบการสั่นไหวในแนวด้านข้างทั้ง 2 ทิศทาง

<u>การตรวจวัดเพื่อหารูปแบบการสั่นใหว</u>

สำหรับการติดตั้งเครื่องมือในการหารูปแบบการสั่นใหว ของโครงสร้าง จำเป็นต้องมี จุดอ้างอิงซึ่งจะต้องสัมพันธ์กับทุกจุดที่ทำการตรวจวัด วิธีการนี้เรียกว่า จุดอ้างอิงเดี่ยว(Singular Reference Point) ดังแสดงในภาพที่ 3 โดยที่หัววัดความเร่ง "A" กำหนดให้เป็นจุดอ้างอิงที่ชั้น บนสุดของโครงสร้าง สำหรับ หัววัดความเร่ง "B" และ "C" จะถูกย้ายไปชั้นอื่นๆจนครบทุกชั้น โดยที่ในแต่ละชั้นจะต้องทำการบันทึกสัญญาณ 2 ทิศทาง เพื่อนำไปใช้วิเคราะห์หารูปแบบการสั่น ใหวของอาการต่อไป

<u>ภาพที่ 3</u> การติดตั้งเครื่องมือในการหารูปแบบการสั่นไหว

เมื่อทำการตรวจวัดโดยวิธี จุดอ้างอิงเดี่ยว ตามภาพที่ 3 ข้อมูลที่ได้จะนำมาใช้ในการหา รูปแบบการสั่นไหวโดยหลักการที่เรียกว่า อัตราส่วนของขนาดฟูเรียร์(Fourier Spectral Ratio) คือจะใช้การหาค่าอัตราส่วนของขนาดฟูเรียร์ที่ได้จากผลการตอบสนองของโครงสร้างที่ชั้นต่างๆ กับค่าขนาดฟูเรียร์ของตำแหน่งอ้างอิงที่ชั้นบนสุด แล้วทำการแปลงอัตราส่วนที่มีค่ามากที่สุดให้ เป็น 1 หน่วย สำหรับการพิจารณาทิศทางเทียบกับทิศทางของตำแหน่งอ้างอิง ทำได้โดยพิจารณา จากการต่างเฟส กล่าวคือถ้าที่ตำแหน่งนั้นมีเฟสเดียวกันกับตำแหน่งอ้างอิง แสดงว่าตำแหน่งนั้นมี การเคลื่อนที่ในทิศทางเดียวกับตำแหน่งข้างอิง และถ้าที่ตำแหน่งนั้นมีเฟสต่างกัน 180 องศากับ ตำแหน่งอ้างอิง แสดงว่าตำแหน่งนั้นมีการเคลื่อนที่ในทิศทางตรงกันข้ามกับตำแหน่งอ้างอิง ซึ่งค่า เฟส (Phase) สามารถคำนวณได้จากสมการที่ (1)

$$Phase = tan^{-1}(a / b)$$
(1)

โดยที่

a แทนส่วนที่เป็นจำนวนจริง (Real) ของการแปลงฟูเรียร์ b แทนส่วนที่เป็นจำนวนจินตภาพ (Imaginary) ของการแปลงฟูเรียร์

<u>การวิเคราะห์ค่าความถี่ธรรมชาติและรูปแบบการสั่นไหวของโครงสร้าง</u>

<u>ภาพที่4</u> โครงสร้างหลายอันดับความอิสระ

การกระจัดของการเกลื่อนที่ $\left\{ u_{(t)}
ight\}$ ของโครงสร้างในภาพที่ 4 แสดงดังสมการที่ (2);

$$\left\{u_{(t)}\right\} = \left\{\phi\right\} z_{(t)} \tag{2}$$

โดยที่ $\{\phi\}$ = Mode shapes

 $z_{(t)}$ = Generalized displacement

สมการการเคลื่อนที่ของระบบการสั่นอิสระ แสดงดังสมการที่ (3);

$$[M]{\{\ddot{u}\}} + [K]{\{u\}} = 0$$
(3)

แทนค่าสมการ (2) ในสมการ (3);

$$[M]\{\phi\}\ddot{z} + [K]\{\phi\}z = 0 \tag{4}$$

แทนค่าผลเฉลยของ $z_{(t)} = A \sin \omega t$ ในสมการที่ (4);

$$\left(-\omega^{2}[M]\{\phi\}+[K]\{\phi\}\right)A\sin\omega t = 0$$
(5)

สำหรับผลเฉลย non-trivial ค่า A และ ω ไม่เป็นศูนย์ ดังนั้น;

$$\left[\left[K \right] + \omega^2 \left[M \right] \right] \left\{ \phi \right\} = 0 \tag{6}$$

นั้นคือ

$$\left[\left[K \right] + \omega^2 \left[M \right] \right] = 0 \tag{7}$$

สมการที่ (7) ใช้สำหรับหาค่าความถี่ธรรมชาติของระบบ สำหรับการหารูปแบบการสั่น ใหวจะใช้ค่าความถี่ธรรมชาติมาแทนในสมการที่ (6)

<u>การวิเคราะห์อัตราส่วนความหน่วง</u>

การตอบสนองของระบบที่เป็นการสั่นใหวอิสระ ค่าการตองสนองสูงสุดในแต่ละรอบจะ ลคลงเนื่องจากความหน่วงคังภาพที่ 5

<u>ภาพที่ 5</u> การตอบสนองของระบบการสั้นใหวอิสระ

ซึ่งสามารถหาอัตราส่วนความหน่วงโดยวิธีการถคลงของถอการิทึม (Logarithm Decrement) ดัง สมการที่ (8) (Chopra, 1995)

$$\xi = \frac{1}{2\pi p} \ln \left(\frac{A_n}{A_{n+p}} \right) \tag{8}$$

โดยที่ ζ = อัตราส่วนความหน่วง A_n = ค่าสูงสุดของการตอบสนองในรอบที่ n A_{n+p} = ค่าสูงสุดของการตอบสนองในรอบที่ n + p

<u>การวิเคราะห์โครงสร้างโดยวิธีไฟในท์อิลิเมนต์</u>

การวิเคราะห์โครงสร้างโดยวิธีไฟในท์อิลิเมนต์จะมีกระบวนการเช่นเดียวกับการวิเคราะห์ โครงสร้างแบบสติฟเนสเมทริกซ์ แต่จะแตกต่างกันตรงที่ค่าของอิลิเมนต์สติฟเนส (Element Stiffness) จะขึ้นอยู่กับชนิดของอิลิเมนต์ที่ใช้แสดงดังภาพที่ 6 กระบวนการวิเคราะห์โครงสร้าง โดยวิธีไฟในท์อิลิเมนต์แสดงดังภาพที่ 7

<u>ภาพที่ 7</u> กระบวนการวิเคราะห์โครงสร้างโดยวิธีไฟในท์อิลิเมนต์

<u>การวิเคราะห์ค่าอิลิเมนต์สติฟเนส</u>

วัตถุที่ถูกแรงกระทำ ดังภาพที่ 8 จะเกิดการเคลื่อนที่ของทุกจุด (Displacement Field) ใน วัตถุ แสดงดังสมการที่ 9

<u>ภาพที่ 8</u> แรงกระทำและการเคลื่อนที่บนวัตถุ

ซึ่งการเคลื่อนที่ของทุกจุดจะอธิบายด้วยการเคลื่อนที่ที่จุดใดๆในแต่ละแนวแกนดังสมการที่ (9)

การเคลื่อนที่ของทุกจุด
$$\gamma_{(x,y,z)} = \begin{cases} u_{(x,y,z)} \\ v_{(x,y,z)} \\ w_{(x,y,z)} \end{cases}$$
 (9)

โดยที่สมมติฐานของการเคลื่อนที่ของทุกจุดประกอบด้วยฟังก์ชั่นรูปร่าง (Shape Function) และ ค่าพารามิเตอร์ทั่วไป (Generalize Parameter) ดังสมการที่ (10)

$$\left\{\gamma_{(x,y,z)}\right\} = \left[M_{(x,y,z)}\right]\left\{\alpha\right\}$$
(10)

โดยที่

$$\begin{bmatrix} M_{(x,y,z)} \end{bmatrix}$$
 = ฟังก์ชั่นรูปร่าง
 $\{ \alpha \}$ = ค่าพารามิเตอร์ทั่วไป

ความสัมพันธ์ระหว่างการเคลื่อนที่ที่จุดต่อ (Displacements at Nodes) กับ $\{lpha\}$ ดังสมการที่ (11)

$$\{u\} = [A]\{\alpha\} \tag{11}$$

ความสัมพันธ์ระหว่างความเครียดกับ $\{lpha\}$ เป็นดังสมการที่ (12)

$$\{\varepsilon\} = [B]\{\alpha\} \tag{12}$$

ความสัมพันธ์ระหว่างความเค้นกับความเครียดเป็นดังสมการที่ (13)

$$\{\sigma\} = [D]\{\varepsilon\} \tag{13}$$

จากหลักการของการเคลื่อนที่เสมือน (Virtual Displacement) จะได้

พลังงานภายใน
$$\delta W_I = \int_{v} \delta \varepsilon^T \sigma dv = \int_{v} \delta \alpha^T B^T D B \alpha dv$$
 (14)

พลังงานภายนอก
$$\delta W_E = \delta u^T p = \delta \alpha^T A^T p$$
 (15)

พลังงานภายในเท่ากับพลังงานภายนอก ดังนั้นสมการที่ (14) เท่ากับสมการที่ (15) จะได้

$$p = A^{-1^T} \int_{v} B^T D B dv A^{-1} u \tag{16}$$

จาก p = ku จะได้ค่าอิลิเมนต์สติฟเนสดังสมการที่ (17)

$$k = A^{-1^{T}} \int_{v} B^{T} DB dv A^{-1}$$
 (17)

วัสดุอุปกรณ์ และวิธีการ

<u>วัสดุอุปกรณ์</u>

- 1. หัววัดความเร็วของการสั่นสะเทือนพร้อมสายสัญญาณ
- 2. เครื่องบันทึกสัญญาณระบบดิจิตอล
- 3. กล้องสำรวจ (Theodolite T16)
- 4. เทปวัดระยะ
- 5. โปรแกรมวิเคราะห์แบบจำลอง MSC/NASTRAN
- 6. คอมพิวเตอร์

<u>วิชีการ</u>

สำหรับขั้นตอนในงานวิจัยนี้สามารถแบ่งออกได้เป็น 4 ขั้นตอน ได้แก่ การตรวจวัดการสั่น ใหว การวิเคราะห์แบบจำลองโดยวิธีไฟในท์อิลิเมนต์ การปรับแก้แบบจำลองเพื่อให้ใกล้เคียงกับ สภาพโครงสร้างจริง และการวิเคราะห์ผลตอบสนองจากแรงทางพลศาสตร์ ซึ่งแต่ละขั้นตอนมี วิธีการดังนี้

<u> การตรวจวัด</u>

1 สำรวจลักษณะทางกายภาพและสภาพภายนอกของเจดีย์ประธานที่จะทำการตรวจวัด พร้อมทั้งกำหนดบริเวณที่จะทำการติดตั้งหัววัดความเร็วของการสั่นสะเทือน

ซึ่งพบว่าซุ้มประตูที่ระดับประมาณ 9 เมตร จะมีช่องเปิดซึ่งภายในจะมีห้องเล็กๆขนาดเส้น ผ่านศูนย์กลางประมาณ 2.5 เมตร ซึ่งจะทำการติดตั้งเกรื่องมือตรวจวัดแสดงดังภาพที่ 9 - 10 และ บริเวณภายในจะเป็นช่องกลวงขึ้นไปจนถึงบริเวณส่วนยอดขององก์เจดีย์แสดงดังภาพที่ 11

<u>ภาพที่ 9</u> ตำแหน่งการติดตั้งเครื่องมือตรวจวัดที่ระดับ 9 เมตร ตามแนวแกนของโครงสร้าง

2 ทำการติดตั้งหัววัดความเร็วของการสั่นสะเทือนในทิศทาง เหนือ-ใต้ และทิศทาง ตะวันออก-ตก ของโครงสร้าง 3 ทำการตรวจวัดความเร็วของการสั่นสะเทือนของเจดีย์ประธานเนื่องจากผลของแรงใน สภาพแวคล้อม โดยกำหนดค่าการบันทึก 200 ข้อมูลต่อวินาที (Sampling Rate) ความยาวในการ บันทึกข้อมูล 180 วินาที

4 นำสัญญาณผลตอบสนองความเร็วซึ่งอยู่ในแกนเวลาเป็นหลัก (Time-Domain) ที่ได้มา วิเคราะห์หาค่าความถี่ธรรมชาติ โดยใช้วิธีการแปลงฟาสต์ฟูเรียร์

<u>ภาพที่ 10</u> การตรวจวัดการสั่นใหวของโครงสร้าง

<u>ภาพที่ 11</u> บริเวณช่องเปิด และช่องกลวงภายใน

<u>การวิเคราะห์โดยวิชีไฟในท์อิลิเมนต์</u>

ทำแบบจำลองขององค์เจดีย์ประธานโดยใช้โปรแกรม MSC/NASTRAN จากแบบที่ได้ จากกรมศิลปากรแสดงดังภาพที่ 12 เพื่อวิเคราะห์ค่าหน่วยแรงที่เกิดขึ้นภายใต้น้ำหนักขององค์เจดีย์ และวิเคราะห์ค่าคุณสมบัติพื้นฐานทางพลศาสตร์ของโครงสร้าง ได้แก่ ค่าความถี่ธรรมชาติ และ รูปแบบการสั่นไหวของโครงสร้าง ภาพที่ 13 แสดงแบบจำลองเจดีย์ประธานที่ใช้ในการวิเคราะห์

<u>ภาพที่ 12</u> แบบที่ได้รับจากกรมศิลปากร

<u>ภาพที่ 13</u> แบบจำลองเจดีย์ประธานที่ใช้ในการวิเคราะห์

ซึ่งชิ้นส่วน (Element) ที่ใช้ในการสร้าง เป็นแบบทรงสี่หน้า (Tetrahedron) มี 4 จุดต่อ (Node) เนื่องจากแบบจำลองมีความสลับซับซ้อนเป็นอย่างมาก จำเป็นต้องใช้จำนวนชิ้นส่วนถึง 117,103 ชิ้นส่วน โดยมีจำนวนจุดต่อทั้งหมด 30,572 จุดต่อ สำหรับคุณสมบัติของวัสดุที่ใช้ในการ วิเคราะห์แบบจำลองได้มาจากการทดสอบโครงสร้างย่อย (Sub Structure) ซึ่งก่าโมดูลัสยึดหยุ่น เฉลี่ยที่ประมาณ 27,000 กิโลกรัมต่อตารางเซนติเมตร, อัตราส่วนปัวซอง 0.22, ความหนาแน่น 1,800 กิโลกรัมต่อลูกบาศก์เมตร และก่ากำลังอัดประลัยประมาณ 40 กิโลกรัมต่อตารางเซนติเมตร (อดิศัย, 2544)

<u>การปรับแก้แบบจำลองเพื่อให้ใกล้เคียงกับสภาพโครงสร้างจริง</u>

เนื่องจากแบบจำลองที่ใช้ในการวิเคราะห์นั้นอาจไม่มีความเพียงพอที่จะคลอบคลุมสภาพ โครงสร้างจริง ดังนั้นจึงต้องทำการปรับแก้แบบจำลองก่อนที่จะนำไปวิเคราะห์ผลตอบสนองจาก แรงทางพลศาสตร์ ซึ่งการปรับแก้ได้ใช้ค่าความถี่ธรรมชาติที่ได้จากการตรวจวัดเป็นแนวทาง อิทธิพลที่อาจทำให้แบบจำลองมีสภาพที่แตกต่างจากโครงสร้างจริงที่ได้ทำการสำรวจ ได้แก่ อิทธิพลจากสิ่งก่อสร้างที่ฐานและ โดยรอบ_เนื่องจากโดยรอบองก์เจคีย์ประธานมี สิ่งก่อสร้างอื่นๆ เช่น อุโบสถ วิหาร เจคีย์ราย ซึ่งตั้งอยู่บนฐานเดียวกับเจคีย์ประธาน จึงอาจทำให้ ก่ากวามถี่ธรรมชาติขององก์เจคีย์ประธานเปลี่ยนแปลงได้ แบบจำลองที่ทำการเพิ่มเติมฐานและ สิ่งก่อสร้างโดยรอบแสดงดังภาพที่ 14

<u>ภาพที่ 14</u> แบบจำลองที่ทำการต่อเติมฐานและสิ่งก่อสร้างโดยรอบ

 อิทธิพลจากชั้นดิน บริเวณของฐานรองรับในแบบจำลองถูกกำหนดให้เป็นแบบยึดแน่น (Fixed support) ซึ่งในความเป็นจริงไม่ได้เป็นเช่นนั้น ดังนั้นการทำแบบจำลองโดยรวมผลของชั้น ดินใต้ฐานขององค์เจดีย์ ซึ่งข้อมูลชั้นดินบริเวณวัดวรเชษฐ์เทพบำรุงได้รับจากกรมศิลปากร แสดง ดังภาพที่ 15 – 16

<u>ภาพที่ 15</u> แปลนแสดงตำแหน่งการเจาะสำรวจดิน

<u>ภาพที่ 16</u> แสดงลักษณะชั้นดิน และค่ามาตรฐานการตอกทะลวง (Standard Penetration Test)

แบบจำลองที่ทำการต่อเติมฐาน สิ่งก่อสร้างโดยรอบ และชั้นดินแสดงดังภาพที่ 17โดยที่ใน แบบจำลองจะแบ่งชั้นดินเป็นชั้นละ 5 เมตร ซึ่งคุณสมบัติของชั้นดินจะขึ้นกับลักษณะของชั้นดิน (Das, 1999) คือ

ชั้นที่ 1 จากระดับผิวดินถึงประมาณ 5 เมตร ชั้นดินเป็นแบบแข็งมาก จะใช้ก่าโมดูลัส ยืดหยุ่นประมาณ 493 กิโลกรัมต่อตารางเซนติเมตร อัตราส่วนปัวซองประมาณ 0.25

ชั้นที่ 2 จากระดับประมาณ 5 - 10 เมตร ชั้นดินเป็นแบบปานกลางถึงแข็ง จะใช้ค่าโมดูลัส ยืดหยุ่นประมาณ 211 กิโลกรัมต่อตารางเซนติเมตร อัตราส่วนปัวซองประมาณ 0.3

ชั้นที่ 3 จากระดับประมาณ 10 - 15 เมตร ชั้นดินเป็นแบบแข็งมาก จะใช้ค่าโมดูลัสยึดหยุ่น ประมาณ 493 กิโลกรัมต่อตารางเซนติเมตร อัตราส่วนปัวซองประมาณ 0.25

ชั้นที่ 4 จากระดับประมาณ 15 - 20 เมตร ชั้นดินเป็นแบบทรายแน่นปานกลางถึงทรายแน่น จะใช้ค่าโมดูลัสยึดหยุ่นประมาณ 493 กิโลกรัมต่อตารางเซนติเมตร อัตราส่วนปัวซองประมาณ 0.3

<u>ภาพที่ 17</u> แบบจำลองที่ทำการต่อเติมฐาน สิ่งก่อสร้างโดยรอบ และชั้นดิน

3. อิทธิพลเนื่องจากการเอียงของโครงสร้างที่แสดงถึงความเสียหายภายใน เนื่องจากวัดวร-เชษฐ์เทพบำรุงเป็นวัดเก่าแก่ที่สร้างขึ้นในสมัยสมเด็จพระเอกาทศรถ ซึ่งมีอายุราว 400 ปี จึงมีการ เสื่อมสภาพตามกาลเวลา ที่เห็นได้ชัดคือการเอียงขององค์เจดีย์ที่แสดงถึงความเสียหายภายใน จึงทำ การตรวจวัดถึงการเอียงในแต่ละทิศทางตามแนวแกนขององค์เจดีย์ โดยใช้กล้องสำรวจ T16 Theodolite ในการตรวจวัด แสดงดังภาพที่ 18

<u>ภาพที่ 18</u> การสำรวจการเอียงขององค์เจดีย์

ซึ่งในการวิเคราะห์แบบจำลองเพื่อหาบริเวณที่เกิดการเสียหายจะใช้การวิเคราะห์แบบไม่ เชิงเส้น ซึ่งคุณสมบัติของวัสดุที่ใช้จะแบ่งเป็น 2 ช่วงแสดงดังภาพที่ 19 คือ

 ก่อนถึงกำลังประลัย ความสัมพันธ์ระหว่างหน่วยแรงและความเครียดจะเป็นแบบเชิง เส้น โดยที่ความชันประมาณ 27,000 กิโลกรัมต่อตารางเซนติเมตร

 หลังกำลังประลัย เมื่อถึงกำลังประลัยประมาณ 40 กิโลกรัมต่อตารางเซนติเมตร หลังจาก นี้ ความสัมพันธ์ระหว่างหน่วยแรงและความเครียดจะเป็นแบบหน่วยแรงคงที่ขณะที่ความเครียด เพิ่มขึ้น

<u>การวิเคราะห์ผลตอบสนองจากแรงทางพลศาสตร์</u>

เนื่องจากบริเวณที่ตั้งของวัดวรเชษฐ์อยู่ใกล้กับทางหลวงแสดงดังภาพที่ 20 ซึ่งระยะใกล้สุด ขององค์เจดีย์ประธานกับแนวถนนประมาณ 50 เมตร จึงทำการวิเคราะห์การตอบสนองขององค์ เจดีย์เนื่องจากแรงทางพลศาสตร์ที่ทำให้การตอบสนองตามแนวของถนนในแบบจำลองมี คุณลักษณะใกล้เกียงกับการตอบสนองของถนนเนื่องจากการจราจร นั่นคือ ค่าความเร่งสูงสุด (PGA) อยู่ระหว่าง 0.0005g – 0.2g และความถื่อยู่ในช่วง 5 Hz – 25 Hz (Hunaidi, 2000)

สำหรับแรงที่กระทำตามแนวถนนในแบบจำลองได้มาจากการตรวจวัดการสั่นไหวของ ถนนแสดงดังภาพที่ 21 ซึ่งจะกำหนดให้แรงกระทำเป็นเวลา 10 วินาที จึงทำการวิเคราะห์ ผลตอบสนองเป็นเวลา 12 วินาที ซึ่งต้องวิเคราะห์ผลตอบสนองเป็นจำนวนถึง 1,200 ชุดข้อมูล และ เนื่องจากขีดจำกัดของโปรแกรมที่ใช้วิเคราะห์จึงต้องทำการลดขนาดของแบบจำลองเพื่อให้สามารถ วิเคราะห์ผลตอบสนองได้ตามต้องการ จึงทำแบบจำลองให้เป็นรูปร่างอย่างง่ายแสดงดังภาพที่ 22 สำหรับแรงที่กระทำตามแนวถนนในแบบจำลองแสดงดังภาพที่ 23

<u>ภาพที่ 20</u> บริเวณที่ตั้งของวัควรเชษฐ์เทพบำรุง

<u>ภาพที่ 21</u> การตรวจวัดการสั่นใหวของถนน

<u>ภาพที่ 22</u> แบบจำลองรูปร่างอย่างง่ายขององค์เจดีย์

<u>ภาพที่ 23</u> แรงที่กระทำตามแนวถนนในแบบจำลอง

ซึ่งจะทำการวิเคราะห์ใน 3 กรณี ได้แก่

 จะทำการวิเคราะห์ที่แรงกระทำที่ทำให้ผลตอบสนองตามแนวถนนในแบบจำลองมีค่า ความเร่งสูงสุดประมาณ 0.01g (ประมาณ 0.1 เมตร/วินาที²) ซึ่งพบว่าแรงสูงสุดประมาณ 0.3 ตัน แสดงดังภาพที่ 24 ที่ทำให้ผลตองสนองสูงสุดของถนนประมาณ 0.01g แสดงดังภาพที่ 25 และ ความถิ่ของการตอบสนองอยู่ระหว่าง 5 Hz – 25 Hz แสดงดังภาพที่ 26

<u>ภาพที่ 24</u> แรงสูงสุดประมาณ 0.3 ตัน ที่ทำให้การตอบสนองสูงสุดของถนนประมาณ 0.01g

<u>ภาพที่ 25</u> ผลตองสนองสูงสุดของถนนประมาณ 0.01g (เมตร/วินาที² – วินาที)

<u>ภาพที่ 26</u> การตอบสนองของแนวถนนในแบบจำลอง ความถื่อยู่ในช่วง 5 Hz – 25 Hz

 2. จะทำการวิเคราะห์ที่แรงกระทำที่ทำให้ผลตอบสนองตามแนวถนนในแบบจำลองมีค่า ความเร่งสูงสุดประมาณ 0.1g (ประมาณ 1 เมตร/วินาที²) ซึ่งพบว่าแรงสูงสุดประมาณ 3 ตัน แสดง ดังภาพที่ 27 ที่ทำให้ผลตองสนองสูงสุดของถนนประมาณ 0.1g แสดงดังภาพที่ 28

<u>ภาพที่ 27</u> แรงสูงสุดประมาณ 3 ตัน ที่ทำให้การตอบสนองสูงสุดของถนนประมาณ 0.1g

<u>ภาพที่ 28</u> ผลตองสนองสูงสุดของถนนประมาณ 0.1g (เมตร/วินาที² – วินาที)

 จะทำการวิเคราะห์ที่แรงกระทำที่ทำให้ผลตอบสนองตามแนวถนนในแบบจำลองมีค่า ความเร่งสูงสุดประมาณ 0.2g (ประมาณ 2 เมตร/วินาที²) ซึ่งพบว่าแรงสูงสุดประมาณ 6 ตัน แสดง ดังภาพที่ 29 ที่ทำให้ผลตองสนองสูงสุดของถนนประมาณ 0.2g แสดงดังภาพที่ 30

<u>ภาพที่ 29</u> แรงสูงสุดประมาณ 6 ตัน ที่ทำให้การตอบสนองสูงสุดของถนนประมาณ 0.2g

<u>ภาพที่ 30</u> ผลตองสนองสูงสุดของถนนประมาณ 0.2g (เมตร/วินาที² – วินาที)

ผลและวิจารณ์

<u>ผลการตรวจวัดคุณสมบัติทางพลศาสตร์</u>

<u>ความถี่ธรรมชาติ</u>

เมื่อนำสัญญาณความเร็วกับเวลาที่ได้ซึ่งเป็น โดเมนของเวลา มาแปลงให้อยู่ในรูปของ โดเมนของความถี่ โดยวิธีการแปลงฟาสต์ฟูเรียร์ ซึ่งสเปกตรัมของฟูเรียร์แอมพลิจูดแสดงดังภาพที่ 31 – 32 และความต่างเฟสระหว่างหัววัดที่ 1 กับ 2 แสดงดังภาพที่ 33

<u>ภาพที่ 31</u> สเปกตรัมของฟูเรียร์แอมพลิจูดจากหัววัดที่ 1

<u>ภาพที่ 32</u> สเปกตรัมของฟูเรียร์แอมพลิจูดจากหัววัดที่ 2

<u>ภาพที่ 33</u> ความต่างเฟสระหว่างหัววัดที่ 1 กับ 2
จากสเปกตรัมของฟูเรียร์แอมพลิจูดจากหัววัดที่ 1 และ 2 พบว่า ค่าความถี่ธรรมชาติของ องค์เจดีย์ในรูปแบบการสั่นไหวที่ 1 มีค่าประมาณ 2.2952 Hz

จากภาพที่ 33 ที่ความถี่ประมาณ 2.2952 Hz ความต่างเฟสระหว่างหัววัดที่ 1 กับ 2 มี ค่าประมาณ 0 องศา แสดงว่าการเกลื่อนที่ไปในทิศทางเดียวกัน กล่าวคือ รูปแบบการสั่นไหวที่ 1 เป็นแบบการสั่นไหวด้านข้าง

<u>อัตราส่วนความหน่วง</u>

เนื่องจากสัญญาณผลตอบสนองของ Ambient Vibration จะประกอบด้วยการสั่นอิสระ ของโครงสร้าง และการสั่นเนื่องจากแรงกระทำ การหาอัตราส่วนความหน่วงของรูปแบบการสั่น ใหวที่ 1 ทำโดยการกรองสัญญาณที่ความถี่ 2.2952 Hz เพื่อให้เหลือแต่การสั่นอิสระของโครงสร้าง ดังภาพที่ 34 จากนั้นใช้หลักการของการลดลงของลอการิทึมในการหาอัตราส่วนความหน่วง

<u>ภาพที่ 34</u> การสั่นอิสระของโครงสร้างที่ความถี่ 2.2952 Hz

จากภาพที่ 34 พบว่าในทิศทางตะวันออก – ตก ค่าสูงสุดในรอบที่ 11 เท่ากับ 0.4951 จะได้ ค่าอัตราส่วนความหน่วงเท่ากับ 1.01 เปอร์เซ็นต์ และในทิศทางเหนือ – ใต้ ค่าสูงสุดในรอบที่ 11 เท่ากับ 0.3499 จะได้ค่าอัตราส่วนความหน่วงเท่ากับ 1.51 เปอร์เซ็นต์

<u>ผลการวิเคราะห์แบบจำลอง</u>

<u>ผลการวิเคราะห์คุณสมบัติทางพลศาสตร์ของโครงสร้าง</u>

จากผลการวิเคราะห์ก่าความถี่ธรรมชาติ และรูปแบบการสั่นไหว 10 รูปแบบแรก แสดงดัง ตารางที่ 1 และภาพที่ 35 – 40

Modes	Frequencies
1 x-direction	3.0984 Hz
2 y-direction	3.1707 Hz
3 torsion	9.5208 Hz
4 x-direction	11.1328 Hz
5 y-direction	11.1586 Hz
6 z-direction	12.6770 Hz
7 x-direction	20.7805 Hz
8 y-direction	20.9103 Hz
9 torsion	22.8099 Hz
10 x-direction	29.8292 Hz

<u>ตารางที่ 1</u> ค่าความถี่ธรรมชาติและรูปแบบการสั่นใหวจากการวิเคราะห์

<u>ภาพที่ 35</u> รูปแบบการสั่นใหวที่ 1 ความถี่ธรรมชาติเท่ากับ 3.0984 Hz

<u>ภาพที่ 36</u> รูปแบบการสั่นใหวที่ 3 ความถี่ธรรมชาติเท่ากับ 9.5208 Hz

<u>ภาพที่ 37</u> รูปแบบการสั่นใหวที่ 4 ความถี่ธรรมชาติเท่ากับ 11.1328 Hz

<u>ภาพที่ 38</u> รูปแบบการสั่นใหวที่ 6 ความถี่ธรรมชาติเท่ากับ 12.6770 Hz

<u>ภาพที่ 39</u> รูปแบบการสั่นใหวที่ 7 ความถี่ธรรมชาติเท่ากับ 20.7805 Hz

<u>ภาพที่ 40</u> รูปแบบการสั่นใหวที่ 9 ความถี่ธรรมชาติเท่ากับ 22.8099 Hz

<u>ผลการวิเคราะห์หน่วยแรงภายใต้น้ำหนักขององค์เจดีย์</u>

หน่วยแรงที่เกิดขึ้นในแนวดิ่ง แนวราบ สูงสุดในแนวแกนหลัก (Maximum Principal Stress) และต่ำสุดในแนวแกนหลัก (Minimum Principal Stress) ภายใต้น้ำหนักขององก์เจดีย์ แสดงดังตารางที่ 2 – 5 และภาพที่ 41 – 48

<u>ตารางที่ 2</u> หน่วยแรงในแนวดิ่ง

หน่วยแรงและตำแหน่งที่เกิด	ขนาคของหน่วยแรง
หน่วยแรงอัดบริเวณศูนย์กลางฐาน	-2.69 กก/ชม ²
หน่วยแรงอัคบริเวณรอบฐาน	-1.91 กก/ซม ²
หน่วยแรงอัดบริเวณซุ้มประตู	-8.68 กก/ชม ²
หน่วยแรงคึงบริเวณผิวเรือนธาตุและเรือนขอด	1.34 กก/ชม ²

<u>ตารางที่ 3</u> หน่วยแรงในแนวราบ

หน่วยแรงและตำแหน่งที่เกิด	ขนาดของหน่วยแรง
หน่วยแรงอัคบริเวณซุ้มประตู	-1.61 กก/ซม ²
หน่วยแรงอัคบริเวณรอบฐาน	-0.60 กก/ชม ²
หน่วยแรงคึงบริเวณผิวเรือนธาตุและเรือนขอด	1.12 กก/ชม ²

หน่วยแรงและตำแหน่งที่เกิด	ขนาคของหน่วยแรง
หน่วยแรงอัคบริเวณศูนย์กลางฐาน	-1.79 กก/ซม ²
หน่วยแรงคึงบริเวณผิวเรือนธาตุและเรือนยอด	0.45 กก/ชม 2
หน่วยแรงคึงบริเวณซุ้มประตู	10.21 กก/ซม ²

<u>ตารางที่ 5</u> หน่วยแรงต่ำสุดในแนวแกนหลัก

หน่วยแรงและตำแหน่งที่เกิด	ขนาดของหน่วยแรง
หน่วยแรงอัคบริเวณศูนย์กลางฐาน	-3.40 กก/ซม ²
หน่วยแรงอัดบริเวณรอบฐาน	-1.67 กก/ชม ²
หน่วยแรงอัคบริเวณซุ้มประตู	-13.78 กก/ซม ²

<u>ภาพที่ 41</u> แผนภูมิแสดงค่าหน่วยแรงในแนวคิ่ง (กก/ซม²)

<u>ภาพที่ 42</u> แผนภูมิภาพตัดแสดงก่าหน่วยแรงในแนวดิ่ง (กก/ซม²)

<u>ภาพที่ 43</u> แผนภูมิแสดงค่าหน่วยแรงในแนวราบ (กก/ซม²)

<u>ภาพที่ 44</u> แผนภูมิภาพตัดแสดงค่าหน่วยแรงในแนวราบ (กก/ซม²)

<u>ภาพที่ 45</u> แผนภูมิแสดงค่าหน่วยแรงสูงสุดในแนวแกนหลัก (กก/ซม²)

<u>ภาพที่ 46</u> แผนภูมิภาพตัดแสดงก่าหน่วยแรงสูงสุดในแนวแกนหลัก (กก/ซม²)

<u>ภาพที่ 47</u> แผนภูมิแสดงก่าหน่วยแรงต่ำสุดในแนวแกนหลัก (กก/ซม²)

<u>ภาพที่ 48</u> แผนภูมิภาพตัดแสดงค่าหน่วยแรงต่ำสุดในแนวแกนหลัก (กก/ซม²)

<u>ผลการปรับแก้แบบจำลองเพื่อให้ใกล้เคียงกับสภาพโครงสร้างจริง</u>

เมื่อรวมอิทธิพลจากสิ่งก่อสร้างที่ฐาน และโดยรอบ

เมื่อนำแบบจำลองที่ทำการเพิ่มเติมฐานและสิ่งก่อสร้างโดยรอบ มาวิเคราะห์พบว่า ค่าความถี่ธรรมชาติในรูปแบบการสั่นใหวที่ 1 เท่ากับ 3.0786 Hz ดังภาพที่ 49

<u>ตารางที่ 6</u> ค่าความถี่ธรรมชาติและรูปแบบการสั่นไหวจากการวิเคราะห์เมื่อรวมอิทธิพลจาก สิ่งก่อสร้างที่ฐาน และ โดยรอบ

Modes	Frequencies
1 x-direction	3.0786 Hz
2 y-direction	3.1490 Hz
3 sites mode	8.5018 Hz
4 torsion	9.5007 Hz
5 x-direction	10.9911 Hz
6 y-direction	11.0123 Hz
7 sites mode	11.9454 Hz
8 z-direction	12.5430 Hz
9 sites mode	13.3095 Hz
10 sites mode	15.3118 Hz

<u>ภาพที่ 49</u> รูปแบบการสั่นไหวด้านข้างที่ 1 ความถี่ธรรมชาติเท่ากับ 3.0786 Hz

เมื่อรวมอิทธิพลจากสิ่งก่อสร้างที่ฐาน และโดยรอบ และอิทธิพลจากชั้นดิน

เมื่อทำการวิเคราะห์แบบจำลองที่ต่อเพิ่มชั้นดินลงไปเป็นระยะ 20 เมตร ค่าความถึ่ ธรรมชาติและรูปแบบการสั่นไหว 10 รูปแบบแรกแสดงดังตารางที่ 7 และภาพที่ 50 – 53

<u>ตารางที่ 7</u>	ค่าความถี่ธรรมช	າຕີແລະรູປແบบก	ารสั่นใหวจากเ	การวิเครา	ะห์เมื่อรวม	อิทธิพลจาก
	สิ่งก่อสร้างที่ฐาน	และ โดยรอบ แล	າະອົກຮີพลจากข	ชั้นดิน		

Modes	Frequencies	
1 combination mode	2.4444 Hz	
2 structure x-direction	2.5336 Hz	
3 structure y-direction	2.6256 Hz	
4 combination mode	2.9036 Hz	
5 combination mode	3.0264 Hz	
6 combination mode	3.2034 Hz	
7 combination mode	3.3971 Hz	
8 soil mode	3.4925 Hz	
9 soil mode	3.5429 Hz	
10 soil mode	3.6340 Hz	

<u>ภาพที่ 50</u> รูปแบบการสั่นใหวที่ 1 ความถี่ธรรมชาติเท่ากับ 2.4444 Hz

<u>ภาพที่ 51</u> รูปแบบการสั่นใหวด้านข้างที่ 2 ขององค์เจดีย์ ความถี่ธรรมชาติเท่ากับ 2.5336 Hz

<u>ภาพที่ 52</u> รูปแบบการสั่นใหวที่ 4 ความถี่ธรรมชาติเท่ากับ 2.9036 Hz

<u>ภาพที่ 53</u> รูปแบบการสั่นไหวที่ 8 ของชั้นดิน ความถี่ธรรมชาติเท่ากับ 3.4925 Hz

<u>เมื่อรวมอิทธิพลเนื่องจากการเอียงของโครงสร้างที่แสดงถึงความเสียหายภายใน</u>

ผลจากการสำรวจการเอียงของโครงสร้างในทิศเหนือ-ใต้ และทิศตะวันออก-ตะวันตก ตาม แนวแกนของโครงสร้าง แสดงคังตารางที่ 8-9 และภาพที่ 54

ความสูงของโครงสร้าง (เมตร)	การเอียงของโครงสร้าง (เซนติเมตร)
0.00	0
6.00	-10
10.60	-20
17.45	-20
21.45	-21
32.00	-23

<u>ตารางที่ 8</u> การเอียงของโครงสร้างในทิศเหนือ-ใต้ ตามแนวแกนของโครงสร้าง

<u>ตารางที่ 9</u> การเอียงของโครงสร้างในทิศตะวันออก-ตะวันตก ตามแนวแกนของโครงสร้าง

ความสูงของโครงสร้าง (เมตร)	การเอียงของโครงสร้าง (เซนติเมตร)
0.00	0
6.00	5
10.60	8
17.45	3
21.45	4
32.00	-8.5

<u>ภาพที่ 54</u> การเอียงของโครงสร้างทั้งสองทิศทาง

เมื่อนำผลการเอียงของโครงสร้างมาวิเคราะห์แบบไม่เชิงเส้น พบว่าในบางบริเวณของ โครงสร้างมีค่าหน่วยแรงถึงค่ากำลังประลัย ซึ่งแสดงถึงการเสียหายของโครงสร้างคังภาพที่ 55

<u>ภาพที่ 55</u> แสดงบริเวณที่เกิดการเสียหายภายในโครงสร้าง

และเมื่อนำแบบจำลองที่รวมผลของการเสียหายเนื่องจากการเอียงของโครงสร้าง ค่าความถึ่ ธรรมชาติและรูปแบบการสั่นไหว 10 รูปแบบแรกแสดงดังตารางที่ 10 และภาพที่ 56 – 59

<u>ตารางที่ 10</u> ค่าความถี่ธรรมชาติและรูปแบบการสั่นไหวจากการวิเคราะห์เมื่อรวมอิทธิพลจาก สิ่งก่อสร้างที่ฐาน และ โคยรอบ อิทธิพลจากชั้นดิน และการเสียหายเนื่องจากการเอียง ของ โครงสร้าง

Modes	Frequencies	
1 structure x-direction	2.1441 Hz	
2 structure y-direction	2.3819 Hz	
3 combination mode	2.4821 Hz	
4 combination mode	2.8931 Hz	
5 combination mode	3.0240 Hz	
6 combination mode	3.1983 Hz	
7 combination mode	3.3985 Hz	
8 soil mode	3.4975 Hz	
9 soil mode	3.5431 Hz	
10 soil mode	3.6375 Hz	

<u>ภาพที่ 56</u> รูปแบบการสั่นไหวด้านข้างที่ 1 ขององค์เจดีย์ ความถี่ธรรมชาติเท่ากับ 2.1441 Hz

<u>ภาพที่ 57</u> รูปแบบการสั่นใหวที่ 3 ความถี่ธรรมชาติเท่ากับ 2.4821 Hz

<u>ภาพที่ 58</u> รูปแบบการสั่นใหวที่ 4 ความถี่ธรรมชาติเท่ากับ 2.8931 Hz

<u>ภาพที่ 59</u> รูปแบบการสั่นใหวที่ 8 ของชั้นดิน ความถี่ธรรมชาติเท่ากับ 3.4975 Hz

<u>ผลการวิเคราะห์ผลตอบสนองจากแรงทางพลศาสตร์</u>

<u>ผลตอบสนองจากแรงทางพลศาสตร์ที่ทำให้การตอบสนองตามแนวของถนนในแบบจำลองมีค่า</u> <u>ความเร่งสูงสุดประมาณ 0.01g</u>

จากการวิเคราะห์การตอบสนองเนื่องจากแรงทางพลศาสตร์ พบว่าค่าการเคลื่อนที่สูงสูด ขององก์เจดีย์ที่ตำแหน่งบนสุดและล่างสุดแสดงดังตารางที่ 11 – 12 การเกลื่อนที่ที่ตำแหน่งบนสุด และล่างสุดขององก์เจดีย์ในแต่ละทิศทางแสดงดังภาพที่ 60 – 65

<u>ตารางที่ 11</u> การเกลื่อนที่สูงสุดที่ตำแหน่งบนสุดขององก์เจดีย์ เมื่อถนนมีการตอบสนอง 0.01g

ทิศทางของการเกลื่อนที่	การเกลื่อนที่สูงสุด (เมตร)
ตะวันออก – ตะวันตก	0.00005717
เหนือ – ใต้	0.00010700
แกนดิ่ง	0.00000355

<u>ตารางที่ 12</u> การเกลื่อนที่สูงสุดที่ตำแหน่งถ่างสุดขององก์เจดีย์ เมื่อถนนมีการตอบสนอง 0.01g

ทิศทางของการเกลื่อนที่	การเกลื่อนที่สูงสุด (เมตร)
ตะวันออก – ตะวันตก	0.00000451
เหนือ – ใต้	0.00000924
แกนดิ่ง	0.00000454

<u>ภาพที่ 60</u> การเคลื่อนที่ตำแหน่งบนสุดขององค์เจดีย์ในทิศทางตะวันออก – ตะวันตก เมื่อถนนมีการ ตอบสนอง 0.01g (เมตร – วินาที)

<u>ภาพที่ 61</u> การเคลื่อนที่ตำแหน่งบนสุดขององค์เจดีย์ในทิศทางเหนือ – ใต้ เมื่อถนนมีการตอบสนอง 0.01g (เมตร – วินาที)

<u>ภาพที่ 62</u> การเคลื่อนที่ตำแหน่งบนสุดขององก์เจดีย์ในทิศทางแกนดิ่ง เมื่อถนนมีการตอบสนอง 0.01g (เมตร – วินาที)

<u>ภาพที่ 63</u> การเคลื่อนที่ตำแหน่งล่างสุดขององก์เจดีย์ในทิศทางตะวันออก – ตะวันตก เมื่อถนนมี การตอบสนอง 0.01g (เมตร – วินาที)

<u>ภาพที่ 64</u> การเคลื่อนที่ตำแหน่งล่างสุดขององค์เจดีย์ในทิศทางเหนือ – ใต้ เมื่อถนนมีการ ตอบสนอง 0.01g (เมตร – วินาที)

<u>ภาพที่ 65</u> การเคลื่อนที่ตำแหน่งล่างสุดขององก์เจคีย์ในทิศทางแกนดิ่ง เมื่อถนนมีการตอบสนอง 0.01g (เมตร – วินาที)

ทำการหาค่าการเคลื่อนที่สัมพัทธ์ (Relative displacement) ระหว่างตำแหน่งบนสุดและ ล่างสุดขององก์เจดีย์แสดงดังภาพที่ 66 ผลของการเกลื่อนที่สัมพัทธ์ทั้ง 3 ทิสทางแสดงดังภาพที่ 67 -69 จากนั้นนำค่าการเกลื่อนที่สัมพัทธ์สูงสุดไปกระทำกับตำแหน่งบนสุดขององก์เจดีย์เพื่อสึกษาถึง หน่วยแรงที่เกิดขึ้น โดยที่การเกลื่อนที่สัมพัทธ์สูงสุดระหว่างตำแหน่งบนสุดและล่างสุดขององก์ เจดีย์แสดงดังตารางที่ 13

<u>ภาพที่ 66</u> ตำแหน่งการเคลื่อนที่บนสุดและล่างสุดที่พิจารณา

<u>ตารางที่ 13</u> การเคลื่อนที่สัมพัทธ์ระหว่างตำแหน่งบนสุดและล่างสุดขององก์เงดีย์ เมื่อถนนมีการ ตอบสนอง 0.01g

ทิศทางของการเคลื่อนที่	การเกลื่อนที่สูงสุด (เมตร)
ตะวันออก – ตะวันตก	0.00005936
เหนือ – ใต้	0.00010895
แกนดิ่ง	0.00000287

<u>ภาพที่ 67</u> การเคลื่อนที่สัมพัทธ์ระหว่างตำแหน่งบนสุดและล่างสุดในทิศทางตะวันออก – ตะวันตก เมื่อถนนมีการตอบสนอง 0.01g

<u>ภาพที่ 68</u> การเคลื่อนที่สัมพัทธ์ระหว่างตำแหน่งบนสุดและล่างสุดในทิศทางเหนือ – ใต้ เมื่อถนนมี การตอบสนอง 0.01g

<u>ภาพที่ 69</u> การเคลื่อนที่สัมพัทธ์ระหว่างตำแหน่งบนสุดและล่างสุดในทิศทางแกนดิ่ง เมื่อถนนมีการ ตอบสนอง 0.01g

เมื่อนำค่าการเกลื่อนที่สัมพัทธ์สูงสุดไปกระทำกับองก์เจดีย์ร่วมกับน้ำหนักขององก์เจดีย์เอง พบว่าหน่วยแรงที่เกิดขึ้นใน แนวแกนหลัก และแนวแกนรอง แสดงดังตารางที่ 14-15 และภาพที่ 70 - 71

<u>ตารางที่ 14</u> หน่วยแรงสูงสุดในแนวแกนหลักเนื่องจากแรงพลศาสตร์และน้ำหนักขององค์เจดีย์ เมื่อ ถนนมีการตอบสนอง 0.01g

หน่วยแรงและตำแหน่งที่เกิด	ขนาคของหน่วยแรง
หน่วยแรงคึงบริเวณซุ้มประตู	10.23 กก/ซม ²
หน่วยแรงอัดที่ผิวบริเวณเรือนธาตุ	-1.81 กก/ชม ²

<u>ตารางที่ 15</u>	หน่วยแรงต่ำสุดในแนวแกนหลักเนื	้องจากแรงพลศาสต	าร์และน้ำหนักของอ	วงค์เจดีย์ เมื่อ
	ถนนมีการตอบสนอง 0.01g			

หน่วยแรงและตำแหน่งที่เกิด	ขนาดของหน่วยแรง	
หน่วยแรงอัคบริเวณซุ้มประตู	-13.82 กก/ซม ²	
หน่วยแรงคึงที่ผิวบริเวณเรือนยอด	0.051 กก/ชม 2	

<u>ภาพที่ 70</u> แผนภูมิภาพตัดแสดงค่าหน่วยแรงสูงสุดในแนวแกนหลักเนื่องจากแรงพลศาสตร์เมื่อ ถนนมีการตอบสนอง 0.01g และน้ำหนักขององค์เจดีย์ (กก/ซม²)

<u>ภาพที่ 71</u> แผนภูมิภาพตัดแสดงก่าหน่วยแรงต่ำสุดในแนวแกนหลักเนื่องจากแรงพลศาสตร์เมื่อ ถนนมีการตอบสนอง 0.01g และน้ำหนักขององก์เจดีย์ (กก/ซม²)

<u>ผลตอบสนองจากแรงทางพลศาสตร์ที่ทำให้การตอบสนองตามแนวของถนนในแบบจำลองมีค่า</u> <u>ความเร่งสูงสุดประมาณ 0.1g</u>

จากการวิเคราะห์การตอบสนองเนื่องจากแรงทางพลศาสตร์ พบว่าก่าการเคลื่อนที่สูงสูด ขององก์เจดีย์ที่ตำแหน่งบนสุด ล่างสุด และการเกลื่อนที่สัมพัทธ์แสดงดังตารางที่ 16 – 18 การ เกลื่อนที่ที่ตำแหน่งบนสุด ล่างสุด และการเกลื่อนที่สัมพัทธ์ขององก์เจดีย์ในแต่ละทิศทางแสดงดัง ภาพที่ 72 – 80

<u>ตารางที่ 16</u> การเกลื่อนที่สูงสุดที่ตำแหน่งบนสุดขององก์เจดีย์ เมื่อถนนมีการตอบสนอง 0.1g

ทิศทางของการเคลื่อนที่	การเคลื่อนที่สูงสุด (เมตร)
ตะวันออก – ตะวันตก	0.0005720
เหนือ – ใต้	0.0010700
แกนดิ่ง	0.0000355

ทิศทางของการเคลื่อนที่	การเคลื่อนที่สูงสุด (เมตร)
ตะวันออก – ตะวันตก	0.0000451
เหนือ – ใต้	0.0000924
แกนดิ่ง	0.0000454

<u>ตารางที่ 17</u> การเกลื่อนที่สูงสุดที่ตำแหน่งล่างสุดขององก์เจดีย์ เมื่อถนนมีการตอบสนอง 0.1g

<u>ตารางที่ 18</u> การเคลื่อนที่สัมพัทธ์สูงสุดระหว่างตำแหน่งบนสุดและล่างสุดขององค์เจดีย์ เมื่อถนนมี การตอบสนอง 0.1g

ทิศทางของการเคลื่อนที่	การเกลื่อนที่สูงสุด (เมตร)
ตะวันออก – ตะวันตก	0.0005936
เหนือ – ใต้	0.0010895
แกนดิ่ง	0.0000287

<u>ภาพที่ 72</u> การเคลื่อนที่ตำแหน่งบนสุดขององค์เจดีย์ในทิศทางตะวันออก – ตะวันตก เมื่อถนนมีการ ตอบสนอง 0.1g (เมตร – วินาที)

<u>ภาพที่ 73</u> การเคลื่อนที่ตำแหน่งบนสุดขององค์เจดีย์ในทิศทางเหนือ – ใต้ เมื่อถนนมีการตอบสนอง 0.1g (เมตร – วินาที)

<u>ภาพที่ 74</u> การเคลื่อนที่ตำแหน่งบนสุดขององก์เจคีย์ในทิศทางแกนดิ่ง เมื่อถนนมีการตอบสนอง 0.1g (เมตร – วินาที)

<u>ภาพที่ 75</u> การเคลื่อนที่ตำแหน่งล่างสุดขององค์เจดีย์ในทิศทางตะวันออก – ตะวันตก เมื่อถนนมี การตอบสนอง 0.1g (เมตร – วินาที)

<u>ภาพที่ 76</u> การเคลื่อนที่ตำแหน่งล่างสุดขององค์เจคีย์ในทิศทางเหนือ – ใต้ เมื่อถนนมีการ ตอบสนอง 0.1g (เมตร – วินาที)

<u>ภาพที่ 77</u> การเคลื่อนที่ตำแหน่งล่างสุดขององก์เจคีย์ในทิศทางแกนดิ่ง เมื่อถนนมีการตอบสนอง 0.1g (เมตร – วินาที)

<u>ภาพที่ 78</u> การเคลื่อนที่สัมพัทธ์ระหว่างตำแหน่งบนสุดและล่างสุดในทิศทางตะวันออก – ตะวันตก เมื่อถนนมีการตอบสนอง 0.1g

<u>ภาพที่ 80</u> การเคลื่อนที่สัมพัทธ์ระหว่างคำแหน่งบนสุดและล่างสุดในทิศทางแกนดิ่ง เมื่อถนนมีการ ตอบสนอง 0.1g

เมื่อนำค่าการเกลื่อนที่สัมพัทธ์สูงสุดไปกระทำกับองก์เจดีย์ร่วมกับน้ำหนักขององก์เจดีย์เอง พบว่าหน่วยแรงที่เกิดขึ้นใน แนวแกนหลัก และแนวแกนรอง แสดงดังตารางที่ 19-20 และภาพที่ 81 - 82

<u>ตารางที่ 19</u> หน่วยแรงสูงสุดในแนวแกนหลักเนื่องจากแรงพลศาสตร์และน้ำหนักขององค์เจดีย์ เมื่อ ถนนมีการตอบสนอง 0.1g

หน่วยแรงและตำแหน่งที่เกิด	ขนาดของหน่วยแรง
หน่วยแรงคึงบริเวณซุ้มประตู	11.02 กก/ชม ²
หน่วยแรงอัดที่ผิวบริเวณเรือนธาตุ	-2.05 กก/ซม ²

<u>ตารางที่ 20</u> หน่วยแรงต่ำสุดในแนวแกนหลักเนื่องจากแรงพลศาสตร์และน้ำหนักขององค์เจดีย์ เมื่อ ถนนมีการตอบสนอง 0.1g

หน่วยแรงและตำแหน่งที่เกิด	ขนาดของหน่วยแรง
หน่วยแรงอัคบริเวณซุ้มประตู	-14.79 กก/ชม ²
หน่วยแรงคึงที่ผิวบริเวณเรือนยอด	0.056 กก/ชม ²

<u>ภาพที่ 81</u> แผนภูมิภาพตัดแสดงค่าหน่วยแรงสูงสุดในแนวแกนหลักเนื่องจากแรงพลศาสตร์เมื่อ ถนนมีการตอบสนอง 0.1g และน้ำหนักขององค์เจดีย์ (กก/ซม²)

<u>ภาพที่ 82</u> แผนภูมิภาพตัดแสดงก่าหน่วยแรงต่ำสุดในแนวแกนหลักเนื่องจากแรงพลศาสตร์เมื่อ ถนนมีการตอบสนอง 0.1g และน้ำหนักขององก์เจดีย์ (กก/ซม²)

<u>ผลตอบสนองจากแรงทางพลศาสตร์ที่ทำให้การตอบสนองตามแนวของถนนในแบบจำลองมีค่า</u> ความเร่งสูงสุดประมาณ 0.2g

จากการวิเคราะห์การตอบสนองเนื่องจากแรงทางพลศาสตร์ พบว่าค่าการเคลื่อนที่สูงสูด ขององค์เจดีย์ที่ตำแหน่งบนสุด ล่างสุด และการเคลื่อนที่สัมพัทธ์แสดงดังตารางที่ 21 – 23 การ เคลื่อนที่ที่ตำแหน่งบนสุด ล่างสุด และการเคลื่อนที่สัมพัทธ์ขององค์เจดีย์ในแต่ละทิศทางแสดงดัง ภาพที่ 83 – 91

การเคลื่อนที่สูงสุด (เมตร)
0.001150
0.002160
0.000071

<u>ตารางที่ 21</u> การเกลื่อนที่สูงสุดที่ตำแหน่งบนสุดขององก์เจดีย์ เมื่อถนนมีการตอบสนอง 0.2g

<u>ตารางที่ 22</u> การเกลื่อนที่สูงสุดที่ตำแหน่งล่างสุดขององก์เจดีย์ เมื่อถนนมีการตอบสนอง 0.2g

ทิศทางของการเคลื่อนที่	การเคลื่อนที่สูงสุด (เมตร)
ตะวันออก – ตะวันตก	0.000091
เหนือ – ใต้	0.000187
แกนคิ่ง	0.000091

<u>ตารางที่ 23</u> การเคลื่อนที่สัมพัทธ์สูงสุดระหว่างตำแหน่งบนสุดและล่างสุดขององก์เงดีย์ เมื่อถนนมี การตอบสนอง 0.2g

การเคลื่อนที่สูงสุด (เมตร)
0.001194
0.002209
0.000058

<u>ภาพที่ 83</u> การเคลื่อนที่ตำแหน่งบนสุดขององค์เจดีย์ในทิศทางตะวันออก – ตะวันตก เมื่อถนนมีการ ตอบสนอง 0.2g (เมตร – วินาที)

<u>ภาพที่ 84</u> การเคลื่อนที่ตำแหน่งบนสุดขององค์เจดีย์ในทิศทางเหนือ – ใต้ เมื่อถนนมีการตอบสนอง 0.2g (เมตร – วินาที)

<u>ภาพที่ 85</u> การเคลื่อนที่ตำแหน่งบนสุดขององก์เจคีย์ในทิศทางแกนดิ่ง เมื่อถนนมีการตอบสนอง 0.2g (เมตร – วินาที)

<u>ภาพที่ 86</u> การเคลื่อนที่ตำแหน่งล่างสุดขององค์เจดีย์ในทิศทางตะวันออก – ตะวันตก เมื่อถนนมี การตอบสนอง 0.2g (เมตร – วินาที)

<u>ภาพที่ 87</u> การเคลื่อนที่ตำแหน่งล่างสุดขององค์เจคีย์ในทิศทางเหนือ – ใต้ เมื่อถนนมีการ ตอบสนอง 0.2g (เมตร – วินาที)

<u>ภาพที่ 88</u> การเคลื่อนที่ตำแหน่งล่างสุดขององก์เจคีย์ในทิศทางแกนดิ่ง เมื่อถนนมีการตอบสนอง 0.2g (เมตร – วินาที)

<u>ภาพที่ 89</u> การเคลื่อนที่สัมพัทธ์ระหว่างตำแหน่งบนสุดและล่างสุดในทิศทางตะวันออก – ตะวันตก เมื่อถนนมีการตอบสนอง 0.2g

<u>ภาพที่ 90</u> การเคลื่อนที่สัมพัทธ์ระหว่างตำแหน่งบนสุดและล่างสุดในทิศทางเหนือ – ใต้ เมื่อถนนมี การตอบสนอง 0.2g

<u>ภาพที่ 91</u> การเคลื่อนที่สัมพัทธ์ระหว่างตำแหน่งบนสุดและล่างสุดในทิศทางแกนดิ่ง เมื่อถนนมีการ ตอบสนอง 0.2g

เมื่อนำค่าการเกลื่อนที่สัมพัทธ์สูงสุดไปกระทำกับองก์เจดีย์ร่วมกับน้ำหนักขององก์เจดีย์เอง พบว่าหน่วยแรงที่เกิดขึ้นใน แนวแกนหลัก และแนวแกนรอง แสดงดังตารางที่ 24-25 และภาพที่ 92 - 93

<u>ตารางที่ 24</u> หน่วยแรงสูงสุดในแนวแกนหลักเนื่องจากแรงพลศาสตร์และน้ำหนักขององค์เจดีย์ เมื่อ ถนนมีการตอบสนอง 0.2g

หน่วยแรงและตำแหน่งที่เกิด	ขนาดของหน่วยแรง	
หน่วยแรงคึงบริเวณซุ้มประตู	11.87 กก/ซม ²	
หน่วยแรงอัดที่ที่ผิวบริเวณเรือนธาตุ	-2.39 กก/ชม ²	

<u>ตารางที่ 25</u>	หน่วยแรงต่ำสุดในแนวแกนหลักเนื่อ	งจากแรงพลศาสตร์แล	าะน้ำหนักขององ	งค์เจดีย์ เมื่	้อ
	ถนนมีการตอบสนอง 0.2g				

หน่วยแรงและตำแหน่งที่เกิด	ขนาดของหน่วยแรง
หน่วยแรงอัคบริเวณซุ้มประตู	-15.80 กก/ซม ²
หน่วยแรงดึงที่ผิวบริเวณเรือนยอด	0.067 กก/ชม 2

<u>ภาพที่ 92</u> แผนภูมิภาพตัดแสดงค่าหน่วยแรงสูงสุดในแนวแกนหลักเนื่องจากแรงพลศาสตร์เมื่อ ถนนมีการตอบสนอง 0.2g และน้ำหนักขององค์เจดีย์ (กก/ซม²)

<u>ภาพที่ 93</u> แผนภูมิภาพตัดแสดงค่าหน่วยแรงต่ำสุดในแนวแกนหลักเนื่องจากแรงพลศาสตร์เมื่อ ถนนมีการตอบสนอง 0.2g และน้ำหนักขององก์เจดีย์ (กก/ซม²)

จากการวิเคราะห์ทั้ง 3 กรณี หน่วยแรงเนื่องจากแรงพลศาสตร์ที่เพิ่มขึ้นจากหน่วยแรง ภายใต้น้ำหนักขององค์เจดีย์ แสดงดังตารางที่ 26

<u>ตารางที่ 26</u> หน่วยแรงเนื่องจากแรงพลศาสตร์ที่เพิ่มขึ้นจากหน่วยแรงภายใต้น้ำหนักขององค์เจคีย์

	ผลตอบ	สนองสูงสุดตามแนว	ถนน
 หน่วยแรง	0.01g	0.1g	0.2g
หน่วยแรงอัด	0.1%	2.5%	5.1%
หน่วยแรงดึง	0.06%	2%	4.1%

<u>วิจารณ์ผลการทดลอง</u>

รูปแบบการสั่นใหวของแบบจำลองที่ยังไม่ได้ปรับแก้อิทธิพลต่างๆ จะข้ามช่วงความถี่
 ระหว่าง 3 – 5 Hz ซึ่งจากการตรวจวัดจะปรากฏความถี่ในช่วงดังกล่าว ซึ่งแสดงว่าแบบจำลองที่ใช้
 ไม่มีความเพียงพอที่จะคลอบคลุมสภาพโครงสร้างจริง

 จากแบบจำลองที่ทำการรวมอิทธิพลจากสิ่งก่อสร้างที่ฐานและ โดยรอบ พบว่าค่าความถี่ ธรรมชาติและรูปแบบการสั่นไหวมีค่าใกล้เคียงกับค่าที่ได้จากแบบจำลองดั้งเดิม แต่จะมีรูปแบบการ สั่นไหวของสิ่งก่อสร้างโดยรอบเพิ่มเข้ามา

 เมื่อทำการรวมอิทธิพลเนื่องจากการเอียงของโครงสร้างที่แสดงถึงความเสียหายภายใน จะทำให้องก์เจคีย์มีค่าสติฟเนสต่ำลง จึงส่งผลให้ก่าความถี่ธรรมชาติเฉพาะรูปแบบการสั่นไหวของ องก์เจคีย์ลคต่ำลง

สรุปและข้อเสนอแนะ

<u>สรุปผลการทดลอง</u>

จากการศึกษาแบบจำลองสำหรับพฤติกรรมทางสถิตศาสตร์ คุณสมบัติพื้นฐานทาง พลศาสตร์และพฤติกรรมทางพลศาสตร์ของเจดีย์ประธานทรงปรางก์วัดวรเชษฐ์เทพบำรุง ณ จังหวัดพระนกรศรีอยุธยา สามารถสรุปได้ดังนี้

 หน่วยแรงสถิตย์ที่เกิดขึ้นจากน้ำหนักเจดีย์ทรงปรางก์เองเป็นหน่วยแรงอัดเป็นส่วนใหญ่ และสูงสุดถึง 34 เปอร์เซ็นต์ของกำลังอัดประลัย ณ บริเวณซุ้มประตู ซึ่งก่อนข้างสูงสำหรับ โกรงสร้างอิฐก่อ นอกจากนั้นน้ำหนักองก์เจดีย์ทรงปรางก์ทำให้เกิดหน่วยแรงดึงสูงสุดถึง 25 เปอร์เซ็นต์ของกำลังอัดประลัย ณ บริเวณส่วนล่างของซุ้มประตูซึ่งจะทำให้เกิดการแตกร้าวเสียหาย และหน่วยแรงดึงยังเกิดขึ้นเล็กน้อยที่ผิวบริเวณเรือนธาตุและเรือนยอด ซึ่งถึงแม้จะไม่สูงนักก็อาจ เป็นสาเหตุของการแตกร้าวเสียหายในระยะยาวได้

 การวิเคราะห์คุณสมบัติทางพลศาสตร์ของเจดีย์ทรงปรางค์ มีความจำเป็นต้องสร้าง แบบจำลองที่มีชั้นดินใต้โบราณสถานด้วย แบบจำลองที่มิได้รวมชั้นดินจะไม่สามารถแสดงการสั่น ไหวในบางช่วงความถี่ (ประมาณ 3-5 Hz) ได้ การรวมชั้นดินในแบบจำลองทำให้ค่าความ กลาดเกลื่อนของความถิ่ธรรมชาติต่างจากค่าการตรวจวัดลดลงจาก 35 ไปเป็น 5 เปอร์เซ็นต์

 สิ่งก่อสร้างโดยรอบมีผลอยู่บ้างต่อค่าความถี่ธรรมชาติที่ใช้เป็นตัวชี้วัด แต่ไม่มีนัยสำคัญ โดยตรง

 4. การวิบัติภายในเนื่องจากการเอียงของโครงสร้างมีนัยสำคัญโดยตรงต่อค่าความถิ่ ธรรมชาติที่ใช้เป็นตัวชี้วัด โดยขึ้นอยู่กับรูปแบบทิศทางการเอียงในอดีต

5. หน่วยแรงภายในองค์เงคีย์ที่เกิดจากน้ำหนักขององค์เงคีย์และแรงพลศาสตร์มีทั้งหน่วย แรงอัคและหน่วยแรงคึง ซึ่งเป็นสาเหตุให้เกิดการแตกร้าวเสียหายเพิ่มขึ้นได้

<u>ข้อเสนอแนะ</u>

 การวิบัติภายในเนื่องจากการเอียงขององค์เจดีย์ขึ้นอยู่กับรูปแบบทิศทางการเอียงในอดีต ซึ่งควรทำการศึกษาต่อไป

 ในการวิเคราะห์ผลตอบสนองขององค์เจดีย์เนื่องจากแรงทางพลศาสตร์ ควรทำการศึกษา ผลตอบสนองเนื่องจากแรงแผ่นดินไหวที่มีโอกาสเกิดขึ้นในประเทศไทยเพื่อทำการตรวจสอบ หน่วยแรงต่างๆที่เกิดขึ้น

 ควรมีการศึกษาเพื่อหาความสัมพันธ์ระหว่างก่าคาบธรรมชาติกับรูปร่างสัณฐานขององค์ เจดีย์ทรงต่างๆ

เอกสารและสิ่งอ้างอิง

- วรพจน์ ประชาเสรี. 2543. **คุณสมบัติและพฤติกรรมของวัสดุประกอบจากอิฐและปูนก่อเสริม** กำลัง. วิทยานิพนธ์ปริญญาโท, มหาวิทยาลัยเกษตรศาสตร์.
- วรศักดิ์ กนกนุกูลชัย. 2540ก. โครงการถนนพุทธบูชา: ผลกระทบต่อโครงสร้างองค์พระปฐมเจดีย์. โยธาสาร 9(3): 51-56.

_____. 2540ข. การวิเคราะห์โครงสร้างเจคีย์ภูเขาทองเพื่อการบูรณะ. โยธาสาร 9(12): 54-60.

- สุดชาย พานสุวรรณ. 2543. <mark>การวิเคราะห์โบราณสถานก่ออิฐในเชิงวิศวกรรม.</mark> วิทยานิพนธ์ ปริญญาโท, มหาวิทยาลัยเกษตรศาสตร์.
- สันติ เล็กสุขุม. 2544. **ศิลปะอยุธยา งานช่างหลวงแห่งแผ่นดิน.** พิมพ์ครั้งที่ 2. สำนักพิมพ์เมือง โบราณ, กรุงเทพฯ.
- อดิศัย มอพิมพ์. 2544. พฤติภาพทางจลศาสตร์ของโครงสร้างโบราณสถาน. วิทยานิพนธ์ปริญญา โท, มหาวิทยาลัยเกษตรศาสตร์.
- Carpinteri, A., S. Invernizzi and G. Lacidogna. 2005. In situ damage assessment and nonlinear modeling of a historical masonry tower. **Engineering structures** 27: 387-395.
- Chopra, A.K. 1995. Dynamics of Structures Theory and Applications to Earthquake Engineering. Prentice Hall International, Inc., United States of America.
- Das, B.M. 1999. **Principle of Foundation Engineering.** Forth edition. PWS Publishing, United States of America.

- De Grande, G. and G. Lombaert. 2000. Numerical modeling and in situ measurements of free field traffic induced vibrations. 4th PIARC
 International Symposium on Surface Characteristics of Roads and Airfields. Nantes, France.
- Jaishi, B., W.X. Ren, Z.H. Zong and P.N. Maskey. 2003. Dynamic and seismic performance of old muti-tiered temples in Nepal. **Engineering structures** 25: 1827-1839.
- Juhasova, E.M. Hurak and Z. Zembaty. 2002. Assessment of seismic resistance of masonry structures including boundary conditions. Soil Dynamics and Earthquake Engineering 22: 1193-1197.
- Kim, J.K. and H. Ryu. 2003. Seismic test of a full-scale model of a five-storey stone pagoda. Earthquake Engineering and Structural Dynamics 32: 731-750.
- Kuchitsu, N., T. Ishizaki and T. Nishiura. 1999. Salt weathering of the brick monuments in Ayutthaya, Thailand. **Engineering Geology** 55: 91-99.
- Kuhlmann, W. 2003. **Historic Building under Earthquake Load**. Institute of Structural Statics and Dynamics, Aachen University. Germany.
- Hunaidi, O. 2000. Traffic vibration in buildings. National Research Council of Canada June: 1-7.

ภาคผนวก

ເວລາ	ความเร่ง	ເວລາ	ความเร่ง	เวลา	ความเร่ง
(วินาที)	(เมตร/วินาที²)	(วินาที)	(เมตร/วินาที²)	(วินาที)	(เมตร/วินาที²)
0.01	-0.0097	0.31	-0.0292	0.61	0.0097
0.02	0.0097	0.32	0.0438	0.62	0.0244
0.03	-0.0244	0.33	-0.0633	0.63	-0.0097
0.04	-0.0390	0.34	-0.0244	0.64	0.0146
0.05	0.0195	0.35	0.0341	0.65	-0.0195
0.06	-0.0292	0.36	0.0210	0.66	0.0244
0.07	0.0390	0.37	-0.0146	0.67	-0.0390
0.08	-0.0195	0.38	0.0341	0.68	-0.0244
0.09	-0.0097	0.39	-0.0244	0.69	0.0049
0.1	0.0195	0.4	0.0438	0.7	0.0097
0.11	-0.0244	0.41	0.0195	0.71	0.0049
0.12	0.0195	0.42	-0.0049	0.72	0.0097
0.13	-0.0097	0.43	-0.0195	0.73	-0.0146
0.14	-0.0341	0.44	-0.0341	0.74	0.0438
0.15	0.0682	0.45	-0.0097	0.75	0.0585
0.16	0.0097	0.46	-0.0390	0.76	0.0828
0.17	0.0300	0.47	-0.0390	0.77	-0.0438
0.18	-0.0244	0.48	-0.0341	0.78	-0.0049
0.19	0.0195	0.49	0.0341	0.79	0.0438
0.2	0.0097	0.5	-0.0779	0.8	0.0049
0.21	-0.0390	0.51	-0.0097	0.81	-0.0292
0.22	0.0097	0.52	-0.0536	0.82	0.0150
0.23	0.0585	0.53	0.0097	0.83	0.0049
0.24	0.0195	0.54	0.0049	0.84	0.0146
0.25	-0.0146	0.55	-0.0146	0.85	0.0341
0.26	-0.0097	0.56	0.0049	0.86	-0.0292
0.27	0.0195	0.57	0.0390	0.87	0.0244
0.28	0.0292	0.58	-0.0049	0.88	0.0244
0.29	0.0292	0.59	-0.0244	0.89	0.0049
0.3	-0.0244	0.6	-0.0438	0.9	-0.0049

<u>ตารางผนวกที่ 1</u> ความเร่งของถนนจากการตรวจวัดการสั่นใหว

เวลา	ความเร่ง	ເວລາ	ความเร่ง	ເວລາ	ความเร่ง
(วินาที)	(เมตร/วินาที ²)	(วินาที)	(เมตร/วินาที²)	(วินาที)	(เมตร/วินาที²)
0.91	-0.0292	1.21	0.0097	1.51	-0.0146
0.92	0.0585	1.22	0.0074	1.52	-0.0146
0.93	0.0029	1.23	-0.0682	1.53	0.0039
0.94	0.0146	1.24	0.0292	1.54	0.0536
0.95	0.0536	1.25	0.0244	1.55	-0.0049
0.96	0.0341	1.26	0.0049	1.56	0.0341
0.97	-0.0195	1.27	0.0341	1.57	-0.0146
0.98	0.0390	1.28	-0.0341	1.58	0.0244
0.99	0.0097	1.29	0.0195	1.59	0.0146
1	0.0341	1.3	-0.0097	1.6	-0.0146
1.01	0.0195	1.31	0.0015	1.61	-0.0097
1.02	-0.0487	1.32	-0.0390	1.62	-0.0097
1.03	-0.0292	1.33	0.0146	1.63	0.0049
1.04	-0.0195	1.34	-0.0097	1.64	0.0146
1.05	0.0390	1.35	0.0244	1.65	0.0244
1.06	-0.0097	1.36	0.0244	1.66	-0.0097
1.07	-0.0828	1.37	-0.0097	1.67	-0.0390
1.08	0.0146	1.38	0.0292	1.68	0.0097
1.09	0.0146	1.39	0.0195	1.69	0.0244
1.1	-0.0292	1.4	0.0244	1.7	0.0244
1.11	-0.0195	1.41	0.0195	1.71	0.0097
1.12	0.0585	1.42	0.0341	1.72	0.0438
1.13	0.0049	1.43	0.0146	1.73	0.0049
1.14	0.0244	1.44	-0.0244	1.74	0.0341
1.15	0.0012	1.45	-0.0244	1.75	-0.0390
1.16	-0.0195	1.46	0.0731	1.76	0.0043
1.17	0.0244	1.47	-0.0097	1.77	-0.0097
1.18	-0.0097	1.48	0.0244	1.78	0.0244
1.19	-0.0438	1.49	0.0195	1.79	-0.0292
1.2	0.0438	1.5	-0.0146	1.8	0.0146

เวลา	ความเร่ง	เวลา	ความเร่ง	เวลา	ความเร่ง
(วินาที)	(เมตร/วินาที ²)	(วินาที)	(เมตร/วินาที ²)	(วินาที)	(เมตร/วินาที ²)
1.81	0.0731	2.11	-0.0195	2.41	0.0097
1.82	0.0244	2.12	-0.0292	2.42	-0.0244
1.83	-0.0585	2.13	0.0097	2.43	0.0195
1.84	0.0097	2.14	-0.0731	2.44	-0.0390
1.85	0.0438	2.15	0.0390	2.45	0.0146
1.86	-0.0292	2.16	0.0244	2.46	0.0195
1.87	0.0633	2.17	-0.0049	2.47	0.0585
1.88	-0.0390	2.18	0.0049	2.48	0.0438
1.89	0.0292	2.19	0.0390	2.49	-0.0049
1.9	-0.0097	2.2	0.0341	2.5	-0.0341
1.91	-0.0049	2.21	-0.0585	2.51	0.0146
1.92	0.0390	2.22	-0.0341	2.52	-0.0049
1.93	0.0341	2.23	0.0097	2.53	0.0097
1.94	0.0536	2.24	-0.0146	2.54	0.0097
1.95	-0.0341	2.25	0.0097	2.55	-0.0097
1.96	-0.0390	2.26	-0.0341	2.56	0.0244
1.97	-0.0146	2.27	-0.0244	2.57	0.0049
1.98	-0.0633	2.28	-0.0146	2.58	0.0049
1.99	-0.0195	2.29	-0.0438	2.59	0.0146
2	-0.0097	2.3	-0.0146	2.6	0.0341
2.01	-0.0731	2.31	-0.0292	2.61	0.0146
2.02	0.0244	2.32	0.0146	2.62	0.0049
2.03	-0.0731	2.33	0.0195	2.63	-0.0292
2.04	-0.0487	2.34	-0.0438	2.64	-0.0049
2.05	0.0195	2.35	-0.0292	2.65	-0.0097
2.06	0.0146	2.36	0.0097	2.66	0.0633
2.07	0.0341	2.37	0.0341	2.67	-0.0682
2.08	-0.0341	2.38	0.0487	2.68	-0.0390
2.09	0.0146	2.39	-0.0487	2.69	-0.0195
2.1	-0.0049	2.4	0.0244	2.7	0.0049

เวลา	ความเร่ง	เวลา	ความเร่ง	เวลา	ความเร่ง
(วินาที)	(เมตร/วินาที ²)	(วินาที)	(เมตร/วินาที ²)	(วินาที)	(เมตร/วินาที ²)
2.71	-0.0146	3.01	0.0244	3.31	0.0195
2.72	-0.0633	3.02	-0.0097	3.32	-0.0146
2.73	-0.0195	3.03	-0.0049	3.33	0.0195
2.74	-0.0244	3.04	0.0195	3.34	-0.0097
2.75	-0.0292	3.05	0.0779	3.35	0.0438
2.76	0.0536	3.06	-0.0195	3.36	-0.0536
2.77	0.0146	3.07	0.0244	3.37	0.0049
2.78	0.0097	3.08	0.0487	3.38	0.0097
2.79	0.0292	3.09	-0.0097	3.39	-0.0244
2.8	0.0341	3.1	0.0195	3.4	-0.0146
2.81	0.0244	3.11	0.0292	3.41	-0.0049
2.82	-0.0195	3.12	0.0049	3.42	0.0097
2.83	0.0341	3.13	-0.0049	3.43	0.0091
2.84	-0.0195	3.14	-0.0049	3.44	0.0026
2.85	-0.0146	3.15	-0.0682	3.45	-0.0390
2.86	-0.0536	3.16	0.0244	3.46	0.0292
2.87	-0.0097	3.17	-0.0292	3.47	0.0292
2.88	0.0244	3.18	-0.0195	3.48	-0.0049
2.89	0.0633	3.19	-0.0292	3.49	-0.0195
2.9	-0.0682	3.2	0.0244	3.5	-0.0014
2.91	0.0244	3.21	0.0195	3.51	-0.0042
2.92	0.0438	3.22	0.0146	3.52	-0.0390
2.93	-0.0195	3.23	-0.0244	3.53	-0.0097
2.94	-0.0292	3.24	-0.0146	3.54	-0.0097
2.95	-0.0049	3.25	0.0097	3.55	-0.0633
2.96	-0.0146	3.26	-0.0097	3.56	0.0438
2.97	-0.0292	3.27	0.0195	3.57	-0.0097
2.98	0.0049	3.28	0.0244	3.58	0.0438
2.99	-0.0341	3.29	0.0097	3.59	-0.0049
3	0.0049	3.3	0.0390	3.6	0.0097

เวลา	ความเร่ง	เวลา	ความเร่ง	เวลา	ความเร่ง
(วินาที)	(เมตร/วินาที²)	(วินาที)	(เมตร/วินาที²)	(วินาที)	(เมตร/วินาที²)
3.61	-0.0097	3.91	-0.0146	4.21	-0.0633
3.62	0.0244	3.92	-0.0244	4.22	-0.0049
3.63	-0.0049	3.93	-0.0390	4.23	-0.0097
3.64	0.0487	3.94	-0.0097	4.24	-0.0011
3.65	-0.0146	3.95	-0.0146	4.25	-0.0244
3.66	0.0049	3.96	-0.0146	4.26	-0.0487
3.67	0.0097	3.97	-0.0097	4.27	0.0097
3.68	0.0292	3.98	0.0049	4.28	-0.0341
3.69	-0.0097	3.99	0.0049	4.29	-0.0047
3.7	-0.0195	4	0.0585	4.3	0.0292
3.71	0.0195	4.01	0.0244	4.31	0.0390
3.72	0.0438	4.02	0.0146	4.32	0.0438
3.73	-0.0013	4.03	-0.0244	4.33	0.0292
3.74	-0.0536	4.04	0.0633	4.34	-0.0341
3.75	-0.0292	4.05	-0.0097	4.35	0.0053
3.76	0.0244	4.06	0.0049	4.36	0.0018
3.77	-0.0195	4.07	0.0195	4.37	-0.0292
3.78	-0.0341	4.08	-0.0244	4.38	-0.0390
3.79	-0.0146	4.09	-0.0341	4.39	0.0146
3.8	-0.0019	4.1	-0.0292	4.4	0.0731
3.81	-0.0244	4.11	-0.0049	4.41	0.0195
3.82	-0.0585	4.12	-0.0341	4.42	-0.0097
3.83	-0.0244	4.13	-0.0221	4.43	0.0390
3.84	0.0146	4.14	-0.0011	4.44	-0.0049
3.85	0.0049	4.15	-0.0146	4.45	0.0049
3.86	0.0195	4.16	0.0097	4.46	-0.0292
3.87	-0.0487	4.17	-0.0146	4.47	0.0487
3.88	-0.0049	4.18	0.0146	4.48	-0.0195
3.89	-0.0013	4.19	-0.0292	4.49	0.0244
3.9	-0.0438	4.2	0.0146	4.5	0.0341

เวลา	ความเร่ง	เวลา	ความเร่ง	เวลา	ความเร่ง
(วินาที)	(เมตร/วินาที²)	(วินาที)	(เมตร/วินาที²)	(วินาที)	(เมตร/วินาที ²)
4.51	-0.0195	4.81	0.0779	5.11	-0.0049
4.52	0.0438	4.82	0.0146	5.12	0.0341
4.53	-0.0292	4.83	0.0390	5.13	-0.0049
4.54	-0.0536	4.84	-0.0292	5.14	-0.0292
4.55	-0.0049	4.85	0.0146	5.15	0.0049
4.56	0.0146	4.86	0.0292	5.16	-0.0487
4.57	0.0097	4.87	-0.0244	5.17	-0.0536
4.58	-0.0536	4.88	0.0000	5.18	-0.0097
4.59	0.0146	4.89	-0.0438	5.19	-0.0097
4.6	0.0000	4.9	-0.0146	5.2	-0.0536
4.61	-0.0146	4.91	-0.0049	5.21	0.0146
4.62	-0.0195	4.92	0.0146	5.22	0.0146
4.63	-0.0049	4.93	0.0341	5.23	-0.0341
4.64	0.0390	4.94	0.0049	5.24	0.0438
4.65	-0.0097	4.95	0.0195	5.25	-0.0292
4.66	-0.0097	4.96	0.0244	5.26	-0.0146
4.67	0.0049	4.97	-0.0097	5.27	-0.0292
4.68	0.0000	4.98	0.0292	5.28	0.0000
4.69	0.0195	4.99	0.0244	5.29	0.0438
4.7	0.0536	5	-0.0438	5.3	-0.0049
4.71	0.0097	5.01	0.0292	5.31	0.0195
4.72	0.0487	5.02	0.0049	5.32	0.0000
4.73	0.0195	5.03	0.0097	5.33	-0.0390
4.74	0.0000	5.04	-0.0146	5.34	-0.0049
4.75	0.0146	5.05	0.0146	5.35	0.0097
4.76	-0.0146	5.06	-0.0097	5.36	-0.0341
4.77	0.0244	5.07	0.0146	5.37	0.0146
4.78	0.0244	5.08	0.0438	5.38	-0.0341
4.79	0.0244	5.09	0.0390	5.39	0.0049
4.8	0.0195	5.1	-0.0049	5.4	-0.0097

เวลา	ความเร่ง	เวลา	ความเร่ง	เวลา	ความเร่ง
(วินาที)	(เมตร/วินาที ²)	(วินาที)	(เมตร/วินาที ²)	(วินาที)	(เมตร/วินาที ²)
5.41	-0.0244	5.71	0.0097	6.01	-0.0438
5.42	-0.0097	5.72	-0.0390	6.02	-0.0585
5.43	-0.0049	5.73	0.0585	6.03	0.0097
5.44	-0.0097	5.74	-0.0146	6.04	-0.0292
5.45	0.0097	5.75	-0.0292	6.05	-0.0438
5.46	-0.0244	5.76	-0.0438	6.06	0.0341
5.47	0.0049	5.77	-0.0195	6.07	0.0195
5.48	0.0097	5.78	0.0097	6.08	-0.0341
5.49	-0.0146	5.79	-0.0779	6.09	0.0195
5.5	0.0049	5.8	0.0341	6.1	0.0244
5.51	-0.0341	5.81	-0.0049	6.11	0.0292
5.52	0.0244	5.82	0.0390	6.12	-0.0244
5.53	0.0244	5.83	0.0000	6.13	0.0195
5.54	-0.0341	5.84	-0.0292	6.14	-0.0341
5.55	-0.0097	5.85	0.0146	6.15	0.0244
5.56	-0.0097	5.86	0.0097	6.16	0.0292
5.57	0.0000	5.87	0.0585	6.17	0.0049
5.58	-0.0390	5.88	-0.0097	6.18	-0.0244
5.59	-0.0487	5.89	-0.0049	6.19	-0.0195
5.6	-0.0146	5.9	0.0146	6.2	-0.0292
5.61	0.0097	5.91	0.0146	6.21	-0.0097
5.62	-0.0438	5.92	0.0049	6.22	0.0390
5.63	-0.0341	5.93	0.0536	6.23	-0.0049
5.64	-0.0585	5.94	0.0438	6.24	-0.0097
5.65	0.0049	5.95	0.0585	6.25	-0.0097
5.66	0.0341	5.96	0.0146	6.26	-0.0438
5.67	0.0341	5.97	0.0097	6.27	0.0390
5.68	0.0244	5.98	-0.0049	6.28	-0.0146
5.69	-0.0195	5.99	0.0049	6.29	0.0341
5.7	0.0438	6	0.0244	6.3	0.0146

เวลา	ความเร่ง	เวลา	ความเร่ง	เวลา	ความเร่ง
(วินาที)	(เมตร/วินาที²)	(วินาที)	(เมตร/วินาที²)	(วินาที)	(เมตร/วินาที²)
6.31	-0.0244	6.61	-0.0049	6.91	0.0097
6.32	0.0585	6.62	-0.0049	6.92	0.0013
6.33	-0.0341	6.63	0.0146	6.93	0.0292
6.34	-0.0049	6.64	0.0049	6.94	0.0025
6.35	-0.0292	6.65	0.0097	6.95	-0.0011
6.36	-0.0097	6.66	-0.0097	6.96	-0.0731
6.37	0.0146	6.67	0.0049	6.97	0.0390
6.38	0.0097	6.68	-0.0049	6.98	0.0146
6.39	-0.0536	6.69	-0.0195	6.99	0.0049
6.4	-0.0341	6.7	-0.0195	7	0.0292
6.41	0.0146	6.71	0.0244	7.01	-0.0438
6.42	0.0049	6.72	0.0097	7.02	-0.0049
6.43	0.0097	6.73	-0.0146	7.03	0.0146
6.44	0.0244	6.74	-0.0195	7.04	-0.0244
6.45	0.0633	6.75	-0.0195	7.05	-0.0195
6.46	0.0244	6.76	-0.0097	7.06	0.0341
6.47	-0.0049	6.77	0.0097	7.07	0.0244
6.48	0.0049	6.78	0.0390	7.08	0.0244
6.49	-0.0195	6.79	-0.0049	7.09	0.0195
6.5	-0.0682	6.8	0.0146	7.1	0.0244
6.51	0.0146	6.81	0.0097	7.11	-0.0292
6.52	0.0390	6.82	0.0244	7.12	0.0244
6.53	-0.0341	6.83	0.0146	7.13	0.0390
6.54	-0.0049	6.84	-0.0292	7.14	0.0000
6.55	0.0341	6.85	-0.0018	7.15	-0.0146
6.56	0.0049	6.86	-0.0049	7.16	0.0487
6.57	0.0049	6.87	-0.0244	7.17	0.0146
6.58	0.0292	6.88	0.0292	7.18	0.0146
6.59	0.0049	6.89	-0.0244	7.19	-0.0195
6.6	0.0097	6.9	-0.0244	7.2	-0.0049

เวลา	ความเร่ง	เวลา	ความเร่ง	เวลา	ความเร่ง
(วินาที)	(เมตร/วินาที ²)	(วินาที)	(เมตร/วินาที ²)	(วินาที)	(เมตร/วินาที ²)
7.21	0.0292	7.51	-0.0292	7.81	-0.0097
7.22	-0.0633	7.52	0.0024	7.82	0.0049
7.23	0.0438	7.53	0.0049	7.83	-0.0146
7.24	0.0146	7.54	0.0487	7.84	-0.0390
7.25	-0.0341	7.55	-0.0195	7.85	-0.0146
7.26	0.0097	7.56	-0.0100	7.86	-0.0244
7.27	0.0146	7.57	-0.0195	7.87	0.0146
7.28	-0.0097	7.58	0.0244	7.88	0.0049
7.29	0.0049	7.59	0.0633	7.89	-0.0779
7.3	0.0049	7.6	0.0097	7.9	-0.0438
7.31	0.0097	7.61	0.0049	7.91	-0.0049
7.32	-0.0195	7.62	0.0195	7.92	0.0438
7.33	0.0097	7.63	0.0049	7.93	0.0146
7.34	0.0000	7.64	0.0146	7.94	0.0012
7.35	-0.0438	7.65	0.0097	7.95	0.0487
7.36	-0.0146	7.66	0.0195	7.96	0.0438
7.37	0.0049	7.67	-0.0049	7.97	-0.0487
7.38	-0.0633	7.68	-0.0341	7.98	0.0031
7.39	0.0341	7.69	0.0146	7.99	0.0341
7.4	-0.0487	7.7	-0.0049	8	-0.0097
7.41	-0.0292	7.71	-0.0244	8.01	-0.0049
7.42	0.0585	7.72	0.0244	8.02	0.0049
7.43	-0.0097	7.73	-0.0341	8.03	0.0536
7.44	-0.0292	7.74	0.0487	8.04	-0.0097
7.45	-0.0146	7.75	-0.0438	8.05	-0.0146
7.46	-0.0292	7.76	0.0146	8.06	-0.0049
7.47	-0.0292	7.77	-0.0438	8.07	-0.0438
7.48	-0.0195	7.78	0.0585	8.08	0.0195
7.49	0.0438	7.79	0.0097	8.09	-0.0341
7.5	-0.0244	7.8	-0.0195	8.1	-0.0021

เวลา	ความเร่ง	เวลา	ความเร่ง	เวลา	ความเร่ง
(วินาที)	(เมตร/วินาที ²)	(วินาที)	(เมตร/วินาที ²)	(วินาที)	(เมตร/วินาที ²)
8.11	-0.0097	8.41	0.0146	8.71	0.0195
8.12	0.0244	8.42	-0.0028	8.72	0.0049
8.13	0.0195	8.43	-0.0049	8.73	0.0292
8.14	-0.0292	8.44	0.0244	8.74	-0.0390
8.15	0.0292	8.45	0.0292	8.75	0.0000
8.16	-0.0049	8.46	0.0146	8.76	0.0146
8.17	-0.0097	8.47	0.0244	8.77	0.0146
8.18	0.0146	8.48	0.0146	8.78	-0.0049
8.19	0.0438	8.49	0.0487	8.79	0.0438
8.2	-0.0097	8.5	0.0146	8.8	0.0049
8.21	0.0292	8.51	-0.0195	8.81	0.0244
8.22	-0.0438	8.52	0.0244	8.82	0.0341
8.23	0.0195	8.53	-0.0146	8.83	0.0097
8.24	0.0341	8.54	0.0244	8.84	0.0000
8.25	0.0049	8.55	-0.0049	8.85	0.0097
8.26	0.0244	8.56	-0.0244	8.86	-0.0049
8.27	0.0146	8.57	0.0487	8.87	-0.0292
8.28	0.0341	8.58	-0.0049	8.88	0.0146
8.29	-0.0146	8.59	0.0097	8.89	0.0146
8.3	-0.0487	8.6	-0.0146	8.9	0.0000
8.31	0.0195	8.61	0.0000	8.91	-0.0146
8.32	-0.0292	8.62	-0.0146	8.92	-0.0438
8.33	-0.0049	8.63	-0.0487	8.93	-0.0049
8.34	0.0341	8.64	-0.0097	8.94	-0.0049
8.35	0.0244	8.65	-0.0244	8.95	-0.0097
8.36	0.0016	8.66	0.0487	8.96	-0.0390
8.37	0.0244	8.67	-0.0195	8.97	-0.0097
8.38	0.0049	8.68	0.0000	8.98	0.0244
8.39	-0.0195	8.69	0.0682	8.99	-0.0390
8.4	0.0018	8.7	0.0292	9	0.0097

เวลา	ความเร่ง	เวลา	ความเร่ง	เวลา	ความเร่ง
(วินาที)	(เมตร/วินาที ²)	(วินาที)	(เมตร/วินาที ²)	(วินาที)	(เมตร/วินาที ²)
9.01	-0.0195	9.31	0.0146	9.61	0.0014
9.02	-0.0682	9.32	0.0049	9.62	0.0244
9.03	-0.0292	9.33	0.0438	9.63	0.0195
9.04	-0.0244	9.34	-0.0244	9.64	0.0487
9.05	-0.0244	9.35	-0.0341	9.65	0.0487
9.06	0.0097	9.36	0.0244	9.66	-0.0049
9.07	0.0049	9.37	-0.0633	9.67	0.0341
9.08	-0.0049	9.38	-0.0097	9.68	0.0049
9.09	-0.0390	9.39	-0.0049	9.69	0.0390
9.1	0.0244	9.4	0.0195	9.7	-0.0487
9.11	0.0390	9.41	-0.0633	9.71	0.0075
9.12	0.0438	9.42	-0.0146	9.72	0.0097
9.13	0.0023	9.43	0.0195	9.73	0.0390
9.14	-0.0049	9.44	0.0116	9.74	-0.0146
9.15	0.0779	9.45	0.0195	9.75	-0.0146
9.16	0.0438	9.46	-0.0097	9.76	0.0097
9.17	-0.0049	9.47	-0.0097	9.77	-0.0292
9.18	0.0244	9.48	0.0049	9.78	0.0097
9.19	0.0390	9.49	0.0049	9.79	-0.0390
9.2	0.0633	9.5	0.0049	9.8	0.0049
9.21	0.0390	9.51	0.0390	9.81	0.0146
9.22	0.0146	9.52	0.0292	9.82	0.0097
9.23	0.0146	9.53	0.0244	9.83	0.0049
9.24	-0.0049	9.54	-0.0487	9.84	0.0341
9.25	-0.0292	9.55	-0.0292	9.85	0.0536
9.26	0.0244	9.56	0.0244	9.86	-0.0163
9.27	-0.0049	9.57	0.0049	9.87	-0.0341
9.28	0.0195	9.58	0.0195	9.88	0.0097
9.29	-0.0049	9.59	0.0063	9.89	-0.0049
9.3	-0.0146	9.6	0.0146	9.9	0.0244

เวลา	ความเร่ง	เวลา	ความเร่ง	เวลา	ความเร่ง
(วินาที)	(เมตร/วินาที²)	(วินาที)	(เมตร/วินาที²)	(วินาที)	(เมตร/วินาที²)
9.91	0.0146	9.95	0.0244	9.99	0.0195
9.92	-0.0244	9.96	0.0146	10	0.0195
9.93	0.0097	9.97	0.0000		
9.94	-0.0341	9.98	0.0244		