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Abstract 
 

This paper investigates the stability and Hopf bifurcation of SEIR delay model with logistic growth. Firstly, the 

existence and uniqueness of equilibrium point are analyzed. For the study of the stability of the equilibrium point time delay ( ) 

was chosen as the bifurcation parameter. By considering the roots of characteristic equations, it was found that disease-free 

equilibrium is locally asymptotically stable for all 0  . The endemic equilibrium of the model is conditionally stable. Hopf 

bifurcation will occur when the bifurcation parameter passes through a critical value. Moreover, stability and direction of Hopf 

bifurcation are obtained by using the normal form theory and the center manifold reduction. Finally, the numerical solutions are 

simulated to verify the theoretical results. 
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1. Introduction 

 

Outbreak of a disease is a serious danger for human 

lives. Many diseases such as Spanish flu, cholera, severe acute 

respiratory syndrome (SARS), and measles have caused many 

deaths of humans (Patterson & Pyle, 1991; Johnson & Muel-

ler, 2002; Smith, 2006; Taubenburger & Morenst, 2006; 

World Health Organization [WHO], 2010). While a doctor 

tries to treat patients to recover from diseases, the scientist 

attempts to find a method in prevention or control the out-

break of a disease. They construct a system of equations to 

describe the phenomenon of disease, which is called epidemic 

model. Usually, an epidemic model is used to study the effect 

of each parameter to the number of infected people. Control-

ling these parameters help to decrease the number of infected 

people or control the infected people when a disease outbreak 

occurs. The epidemic model has several types depending on 

individuals in the model. The model in this research used the 

assumption that when susceptible individuals ( S ) get the 

 
disease, it incubate inside in individuals for a period of time 

before becoming infectious. This period is called latent period 

and individuals in this period are exposed individuals ( E ). 

After passing this period, individuals become infected ( I ) 

and/or recovered ( R ) individuals, respectively. Thus, this 

paper studies the dynamical behavior based on the SEIR epi-

demic model. 

There are many researches about dynamic behaviors 

of SEIR model. Greenhalgh (1992) analyzed the SEIR epide-

mic model when the death rate depends on the number of 

individuals in the population. Li and Muldowney (1995) stu-

died the global stability of SEIR model with nonlinear inci-

dence rate. Zhang et al. (2006) studied the global stability and 

dynamics of an SEIR epidemic model with immigration in 

different individuals. Li et al. (2006) studied the global stabi-

lity of an SEIR model with constant immigration. Li and Jin 

(2005) studied the global stability of epidemic model with 

infectious force in latent, infected and immune period. Massad 

et al. (2007) used the SEIR model with logistic growth and 

infectious forced in infected and latent period to predict the 

number of patient from influenza in Brazil. 

Time delay is introduced in the epidemic model to 

study changes in the dynamic behavior. Usually, the time de-

lay parameter is chosen to be a bifurcation parameter. The
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dynamic behaviors of the model may change when the bifur-

cation parameter increases or decreases. There are some stu-

dies about mathematical models with time delay. Khan and 

Greenhalgh (1999) analyzed the Hopf bifurcation of an epide-

mic model with time delay in vaccination. Wan and Wei 

(2010) analyzed Hopf bifurcation in a food-limited population 

model with time delay. Zhang et al. (2010) analyzed the stabi-

lity of Hopf bifurcation of an epidemic model with stage 

structure. Chinviriyasit (2015) studied the effect time delay of 

an SEIR epidemic model with nonlinear incidence rate. 

Misraet al. (2012) constructed a delay mathematical model to 

ana-lyze the controlling of cholera epidemic. 

The aim of this paper is to modify the model of 

Massad et al. (2007) with some assumptions. First, the sensiti-

vity of infection from exposed and infected individuals not 

equal. Thus, the value of contact rate from exposed and in-

fected individuals should be different. Second, when suscepti-

ble individuals contact the infectious individuals, they do not 

become infectious immediately. Therefore, the time delay is 

introduced into the model. Furthermore, the dynamics of the 

model changes when the time delay is included which is in-

teresting behavior. Formulation and existence of equilibrium 

point of the model are illustrated in Section 2. The stability of 

disease-free and endemic equilibrium are analyzed in Section 

3 and 4. Further, the direction of Hopf bifurcation is illustrated 

in Section 5. Numerical results are shown in Section 6 and 

conclusion of this paper is presented in Section 7. 

 

2. Model Formulation and Equilibrium Point 
 

2.1 Model formulation 
 

 In this research, the model of Massad et al. (2007) is 

modified. The total population at time t , denoted by ( )N t , is 

subdivided into four individuals: susceptible ( ( )S t ), exposed 

( ( )E t ), infected ( ( )I t ) and recovered ( ( )R t ), thus 

 

( ) ( ) ( ) ( ) ( )N t S t E t I t R t                    (1) 

 

 The susceptible individuals is increased by the lo-

gistic growth term when r  is birth rate and K  is carrying 

capacity. Susceptible individuals decrease by acquiring infec-

tion from both exposed individuals and infected individuals. It 

is assumed that susceptible individuals are exposed at a time 

t   and became infective at a time   later. Thus, the rate at 

which susceptible individuals in contact with the virus pro-

gress to the latent stage is given by 

 

1 2( ) ( )

( )

E t I t

N t

   



  



, 

 

where  is a latent time delay,
1 E   and 

2 I  . The   

be the average number of sufficient contact S  to transmit 

infection in unit time per infective individual in the population 

(of size N ). The parameters E  and I  account for the abi-

lity to cause infection by exposed individuals (0 1)E   and 

by infected individuals (0 1)I  , respectively. Further, the 

population of susceptible individuals is decreased by natural 

death (at rate  ). Thus, the rate of change of the susceptible 

population is given by 

 

1 2( ) ( )( ) ( )
( ) 1 ( ) ( ).

( )

E t I tdS t N t
rN t S t S t

dt K N t

   
 



   
     

 

   (2) 

 

 The population of exposed individuals is generated 

by infection of susceptible individuals. This population de-

crease by development of disease symptoms (at rate  ), re-

covery from the disease (at rate  ) and natural death (at rate 

 ). This gives 

 

1 2( ) ( )( )
( ) ( ) ( ).

( )

E t I tdE t
S t E t

dt N t

   
   



  
    



             (3) 

 

 The infected individuals is increased at rate  . This 

individuals decreased by natural death (at rate  ), disease-

induced death (at rate  ) and recovery from the disease (at 

rate  ). Thus, the rate of change in this individual is given by 

 

( )
( ) ( ) ( ).

dI t
E t I t

dt
      

                 (4) 

 

 Finally, the population of recover individuals is 

generated by the recovery from the disease in exposed and 

infected individuals at rate and  , respectively. This popu-

lation decreased by natural death at rate  . Thus, 

 
( )

( ) ( ) ( ).
dR t

E t I t R t
dt

                      (5) 

 

Thus the model for the transmission dynamics of an infectious 

disease with time delay is given by the following nonlinear 

system of delay differential equations: 

 

1 2

1 2

( ) ( )( ) ( )
( ) 1 ( ) ( ),

( )

( ) ( )( )
( ) ( ) ( ),

( )

( )
( ) ( ) ( ),

( )
( ) ( ) ( ).

E t I tdS t N t
rN t S t S t

dt K N t

E t I tdE t
S t E t

dt N t

dI t
E t I t

dt

dR t
E t I t R t

dt

   
 



   
   



   

  

   
     

 

  
    



   

  
      

(6)

 
 

The initial condition of (6) is given as 

 

1 2 3 4( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ), [ ,0],S E I R                  
  

(7) 

 

where 
1 2 3 4[ , , , ]       such that ( ) (0) 0i i     for 

[ ,0], 1,2,3,4,i     and   denotes the Banach space 

4([ ,0], )R   of continuous functions mapping the interval 

[ ,0]  into 4R
. 

 

The basic dynamical feature of the model (6) will be  
 

explored and the following lemmas are established. 
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Lemma 1: All solution ( ( ), ( ), ( ), ( ))S t E t I t R t  of the model (6) with initial condition (7) are positive for all 0t   when 

( )N t K . 

 

Proof: From the second equation of the model (6), we have 

( ) ( )
dE

E t
dt

      . 

Hence, 
( )( ) (0) 0tE t E e       , for all 0t  .                 (8) 

 

Similarly, using the same approach as for ( )E t , it can be shown that ( ) 0I t   and ( ) 0R t   for all 0t  .Next, we assume that 

( )N t K  and there exist a constant K which 

( ) ( ) ( ) ( )1 2 1 2( ) ( ),
( ) ( )

E t I t E t I t
S t K S t

N t N t

     




   
 


                 (9) 

the first equation in the model (6) is rewritten 

 

              (10) 

   
 

Therefore, 

                                                                                                 for all 0t             (11) 

 

Thus, ( ), ( ), ( )S t E t I t  and ( )R t  are positive for all 0t  . 

 

 

Lemma 2: Let r  , the closed set 

 

4 ( )
( , , , ) : 0

K r
S E I R R S E I R

r




 
        

 

,              (12) 

is positively invariant. 

Proof: 

Adding all equations in (6) gives 

( ) ( )
( ) 1 ( ) ( )

dN t N t
rN t N t I t

dt K
 

 
    

 

.               (13) 

Since  
( )dN rN K r

N
dt K r

 
  

 
, it follows that 0

dN

dt
   if  

( )
( )

K r
N t

r


 . By standard comparison theorem, it can be 

shown that   

 

( )

( )
( )

( )
(0)

(0)

r t

K r
N t

r K r
r N e

N r





  




 
  

 

.                (14) 
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In particular, 
( )

( )
K r

N t
r


 if 

( )
(0)

K r
N

r


 .  Thus,   is positively invariant. Further, if 

( )
(0)

K r
N

r


 , either the 

solution of the model (6) enters   in finite time, or ( )N t  approaches ( )K r

r

  and the variables ,E I  and R  approach to zero. 

Hence, the region   attracts all solutions in 4R
 (i.e., all solutions in 4R

 eventually enter  ). 

Thus, the model (6) is well-posed epidemiologically and mathematically in   (Hethcote, 2000). Hence, it is sufficient 

to study the dynamics of the model in  . 

 

2.2 Equilibria of the model 

 

 The equilibria of the model (6) can find by setting the right hand side of the model (6) equal to zeros. Let 

* * * *( , , , )S E I R  be any arbitrary equilibrium point of the model (6) and * * * * *N S E I R    . By solving equation at steady 

state, the equilibrium point of the model (6) is given by 

 

* * * * * * *
* * * *

*

1 2

1 , , , ,
rN N S E E I

S E I R
K k k

   

  

  
     

  

                                     (15) 

where
1k       and 

2k      . 

Note that, 
*  is the force of infection at steady state, can be expressed as 

* *
* 1 2

*

E I

N

 



 .                                               (16) 

For convenience in computation, (15) is rewrite in terms of 
* *S  as shown in below: 

 

* ** * * *
* * * 2

1 1 2 1 2

( )
, ,

k SS S
E I R

k k k k k

   




   .                (17) 

Substituting (17) in (16) gives 

 
* *

*

1 2 1 2 1 2 2

1 2

( ) ( ) 0,
S

k k k k k
k k


      


                                  (18) 

 

Observe that (18) has two solutions. First, * * 0S   this yield * * 0.E I   Substitute these results into (15), the disease-free 

equilibrium (DFE) of the model (6)is presented. 

  
0 0 0 0 0

( )
( , , , ) ,0,0,0 ,

K r
S E I R

r

 
   

 
                                                       (19) 

 

The endemic equilibrium (EE) can find by solving the remaining terms in (18), this give 

 

  * 1 2 0

1 2

( 1)k k R

k k










.                  (20) 

where
0R  is called basic reproduction number, given by 

1 2 2
0

1 2

.
k

R
k k

  


                                   (21) 

From (20), it follow that * 0  if 
0 1R  . Thus, the model (6) has a unique endemic equilibrium if 

0 1R  . The each components 

of this equilibrium are obtained by substituting (20) into (15). In the case *
0 1( 0)R   , the model (6) has no positive 

file:\\The
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equilibrium which is not biological feasible. Further, if 0 1R  , then * 0   corresponds to disease-free equilibrium. These results 

are summarized below. 

 

Theorem 3: If
0 1R  , the model (6) has a unique endemic equilibrium, given by * * * * *( , , , )S E I R when 

*
* *0 1 2 0 1 2 2 0

2

1 2 0 1 2

* *
* *0 2 0

1 2 1 2

[ ( ) ( )] ( 1)
, ,

( )

( 1) ( )( 1)
, .

K rR k k R k k k R S
S E

k k rR k k

R S k R S
I R

k k k k

   

 

  

 

   
 

 

  
 

 

             (22) 

 

Further, the model (6) has no endemic equilibrium when
0 1R  . 

 

3. Stability of Disease-Free Equilibrium 

 

 It is known that the stability of the equilibrium is determined by considering the roots of the Jacobian of the model (6) 

evaluated at the equilibrium point. The equilibrium point is absolutely stable if all roots have negative real parts. On the other 

hand, it unstable if there exist at least one positive real root. Thus, to analysis the stability of disease-free equilibrium, the 

Jacobian of the model (6) evaluated at 
0  is constructed. 

1 2

1 1 2

0

2

2 2 2

0 0
( )

0 0

0

r r e r e r

k e e
J

k

 

 

     

 



  

 

 

          
 

  
 
 

  


                             (23) 

Two eigenvalues of (23) are 
1 ,r   

2    and the other eigenvalues 3  and 4  are roots of transcendental equation 

2

1 2 1 1 2 1 2 2( ) 0,k k e k k k e e                                              (24) 

For 0  , (24) is reduced to 

  2 2
2 1 0 1 2 0

2

(1 ) (1 ) 0,k k R k k R
k

 
 

 
       
 

               (25) 

It is obvious that, all roots of (25) are negative real part when 
0 1R  . Thus, if 

0 1R  , 
0  is locally asymptotically stable when 

0  . 

For 0  , the existence of pure imaginary root of (24) is investigated. Let ( 0)i     be root of (24), separating the real 

and imaginary parts, we have 

2

1 2 2 1 1 2

1 1 2 2 1 2

( )cos sin ,

cos ( )sin ( ) ,

k k k

k k k

       

       

   


    

                               (26) 
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Squaring and adding two equations of (26), we have 

 

4 2 22
1 0 1 1 2 1 2 0 1 2 1 2 2

2

(1 ) ( ) (1 )( ) 0,k R k k k k R k k k
k

 
     

 

 

          
 

 
 

                          (27) 

Obvious that (27) has no positive real roots if 
0 1R  . Thus, (24) has no purely imaginary roots. Furthermore, the existence of 

positive real roots of (24) is considered when 0  .It is obvious that 
2

1 2 1 2( ) 0k k k k      has no positive real roots. 

By Lemma 3.1 (Tipsri&Chinviriyasit, 2015), all roots of (24) are not positive real roots for all 0  . From these results, the 

following Theorem is established. 

Theorem 4: If 
0 1R  , the disease-free equilibrium, 

0 is absolutely stable for all 0  . 

 

4. Stability of Endemic Equilibrium and Bifurcation Analysis 

 

 In this section, the stability of endemic equilibrium is analyzed by observing the eigenvalues of model (6). Let 

*
* 2

1
N

a r
K

 
  
 
 

and
* *

* 1 2
*

E I
q

N

 
 , the Jacobian matrix of the model (6) evaluated at *  is given by  

  

11 12 13 14

21 22 23 24*

2

( ) ,
0 0

0

J J J J

J J J J
J

k

  

 
 
 
 
 

 


                            (28) 

where 

*

1* *

11 14 1
2

12 14 13 14

0 0

* * * *

21 11 22 12 1 23 13 2

0

4 1

4

4

,

, ,

,, ,

, .

e e q e
J J J J

R R

J J a J J a k J

J J q e J

J a J

R

J

a

a

  
  




  

    

         

 

 

 



 



 

The eigenvalues of *( )J   are the roots of the polynomial 

4 3 2 3 2

3 2 1 0 3 2 1 0 0,a a a a b b b b e                  
            (29) 

where 

2 * 2 *

0 1 2 1 2 1 1 2 1 2 1 2 1 2

2 * *

2 1 2 1 2 1 2 3 1 2

* * 2

0 1 2 0 1 2 1 2 1 2

0

2
* * *1 1

1 1 2 1 2 1 2

0 0

, ( ) 2 ( ) ,

2 ( ) ( ) , 2 ,

( 2 ) ,

( ) 2

a k k k k a a k k k k k k k k a

a k k k k k k a a k k a

b k k R k k a q k k k k
R

b k k q k k a k k q
R R

     

   


   

   
 

       

          

 
     

 

 
       
 

*

1 2 1 2

0

* * * *1 1
2 1 2 3

1

0 0 0

1 22

( ) ,

( ) .,

k k q k k
R

b q k k q a b q
R R

k k
R
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First, the stability of endemic equilibrium, *  at 0   is analyzed. Replace 0   in (29), this gives 

4 3 2

3 3 2 2 1 1 0 0( ) ( ) ( ) ( ) 0,a b a b a b a b                         (30) 

where 

* * * * 2
0 0 1 2 0 1 2 3 3 2

0 0 2

2 * * * * * * 2
1 1 2 2 1 2 1 2 1 2

0 0 2

2 * * * * * 2
2 2 2 2 1 2

0 2

( 1) , 2 ,

( ) ( ) ( ) ,

2 ( ) ( ) (2 ) .

a b k k R a q k k a b k a q
R R k

a b k k a k k q a q k k q k k a
R R k

a b k k a k k q a q a
R k

 
  

 
    

 
    

 
           

 

 
           

 

          

 

Let 
i i ih a b  when 0,1,2,3i  . Obvious that the coefficients ( 0,1,2,3)ih i   are all positive if 

0 1R   and *2N K  (note 

that * 0q  if 
0 1R  ). Furthermore it can be shown that 

  

*
* * * * * 2 *2

2 3 1 1 2 2

0 2 0

* * * * * *2 2
2 2 2

0 2 0 2

(2 )( ) ( )

2 2 ( ) ( 2 ) ,

0.

q
h h h a q a k k q q k q

R k R

k a q k k a a q a
R k R k

  
  

   
   

 
          

 

  
           
  



 

 

2 2 2

1 2 3 1 0 3 1 2 3 1 0 3

* * * * * 2
2 1 2 1 2

0 0 2

*
* * * * * * 22

1 2 2

0 2 0

* * *2
2 1 2

0 2

( )

( ) ( )( ) ( )

( )(

,

2 ) ( )

2

h h h h h h h h h h h h

k a q k k a q k k a
R R k

q
a a q k k q q q k

R k R

k a q q k k
R k

 
   

  
  

 
 

    

  
          
   

  
         

   

 
      
 

2

0 0 2

* * * * * * * * *2
2

0 0 2 0

* 2 * * * * * *2
1 2 1 2

0 2

* * *2 2
2 2

0 2

1
( ) 1 (2 )

( ) (2 ) ( ) ( )

( ) ( ) (2 )

R R k

q a q q a k q q a a
R R k R

q k k q k a a q a k q
R k

a k q a a k
R k

 
 

 
   

 
     

   
  

   
    

   

  
         

  

 
         

 


     



* *

0 2

( ) ,

0.

q a
R k


   

   
    


 

 

It is seen that
0 0 3 3,a b a b   and above results are positive when

0 1R  .Hence, by the Routh-Hurwitz criterion, all roots of (30) 

have negative real parts when 
0 1R   and the following Lemma is established. 

Lemma 5: If
0 1R 

 
and *2N K , then the endemic equilibrium, * of the system (6) is asymptotically stable at 0  . 

Next, the stability of endemic equilibrium for the case 0   is analyzed. First, we show that (29) has no positive real roots by 

considering the roots of polynomial 
 

4 3 2

3 2 1 0( ) .f a a a a                                        (31) 
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The coefficients ( 0,1,2,3)ia i   are all positive when *2N K . Further it can be shown that 

 
* * * *

2 3 1 1 2 1 2 1 2 1 2

2

1 2 3 1 3 0

* * 2 * * 2

1 2 1 2 1 2 1 2 1 2

* * 2 2 *

1 2 1 2 1 2

( )( (2 )( )) (2 )( ( ) (2 )( )),

0,

( )

(2 )( ) ( (2 ) ( )(2 )) (2 )

( )( )(2 )( (2 )( ) 1

a a a k k k k a k k a a a k k

a a a a a a

a k k k k k k a k k a a k k

a k k a k k a k k

    

   

    

           



 

         

          *( )),

0.

a 



 

 
By Routh-Hurwitz criterion, ( )f   has no positive real roots. Applying Lemma 3.1 in Tipsri and Chinviriyasit (2015), (29) has 

no positive real roots for 0  . 

Next, the distribution of roots of (29) is investigated by assuming that it has purely imaginary roots. Replacing 

( 0)i     in (29), this gives 

 
4 3 2 3 2

3 2 1 0 3 2 1 0( ) (cos sin ) 0.a i a a i a b i b b i b i                              (32) 

 

Separating the real and imaginary parts, this gives 

 

  
2 3 4 2

2 0 1 3 2 0

3 2 3

3 1 2 0 3 1

( )cos ( )sin ,

( )cos ( )sin .

b b b b a a

b b b b a a

      

      

       


      

                                               (33) 

 

Squaring and adding both equation of (33), gives 

 

 
8 6 4 2

3 2 1 0 0,e e e e                                                    (34) 

 

where 

 

2 2 2 2

0 0 0 1 1 0 2 1 0 2

2 2 2 2

2 2 0 2 1 3 1 3 3 3 3 2

2 2 ,

2 2 2 , 2

,

.

e a b e a a a b b b

e a a b b b a a e a b a

     

       

 

Let 
2z  , (34) can be rewritten as 

 

 4 3 2
3 2 1 0( ) 0,h z z e z e z e z e                                                (35) 

where 

 

 

 

0 0 0 0 0

* * * *
1 2 0 1 2 1 2 0 1 2

0 0

( )( ),

( 1) (3 ) 2 ,

e a b a b

a k k R q k k k k a R q k k
R R

 
    

  

     
          
   


 
  




                        

(36) 

 

 
2 2

1 1 0 0 0 2 1( 2 ) (2 ),e a a a b b b     

         

2 * 2 * 2 *1 1 1
1 1 1 2 1 2

0 0 0

* * * 2 * * 2 * * 2 21 1
1 2 2 1 1 2 2

0 0

2
*

2 2 2
0 0 1 2

0

( ) ( ) 2 2

2 ( ) ( ) 2 ( )

( 1) ( 1) 2

a k k a q k k k k
R R R

q q q k k q q k k q q k k k
R R

q
R R k k

R

  
   

 
  




        
      
        

  


        

        

 
     

 

 
  





* * * *
1 2 2 1

0 0

2 2*2 *
2 2 2 2 1 2 01 2

0 1 2
0 0 1 2 1 2

*
1 2 1 2 0 1

1 2 0

2 2 ( )

( 1)22 ( )
( 1)

( )

( )( 1)
, (37)

q k k a q k k q

R R

k k Rk kq a
R k k

R R k k k k

a k k k k R

k k R

  

 


 






 

  
   

 

  
   


 





                      

(37) 
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2 2

2 2 0 1 3 1 3 2( 2 2 ) (2 ),e a a a a b b b      

      

   

2 2 2 * 2 * 2 *1 1
1 2 1 1 1 2

0 0

2 * * * * 2 * *1 1
2

0 0

**
* *1 1 1 2 1

1 2 2

0 0 0 0

* 2

( ) ( ) 2

2 ( )2
2

( )

( )k k a k k q k k q
R R

k a q a q a a
R R

q k kq
q q k k k

R R R R

a q

 
 

 
    

   




    
   
    

  

       

         

  


  
   
    

 
     









  

* * * * 21 1

0 0

( ) , (38)q q a
R R

 


 
 


  


                                          (38) 

 

 

   

2 2

3 3 3 2

2
2

* * 2 *1
1 2 1 2 1 2 1 2

0

2
*

2 2 2 * *2 *2 1 1
1 2

0 0

*
* * 2 * *22 1 1

1 2 2

0 2 0 0

2 ,

2 2 2 ( ) ( ) ,

2
2 2 ,

2
( )( ) 2 2 . (39)

e a b a

k k a q k k k k k k a
R

q
k k a a q

R R

q
k k q k q a a

R k R R


   

 
 

   
 

  

 
             

 

 
         

 

 
         

 

                         (39) 

 

Applying with Lemma of Zhang, Cao, and Xu (2015), the roots of (34) is distributed by analyzing ( )h z in (35). For 
0 0e  , it 

follows that 
0(0) 0h e  , then as lim ( )

z
h z


  , thus ( ) 0h z   has at least one positive root. Further, differentiating (35) 

with respect to z  give 

 

 3 2

3 2 1( ) 4 3 2 .h z z e z e z e                     (40) 

 

It is seen that if all coefficients ( 1,2,3) 0ie i    then ( ) 0h z   implies that ( )h z  is monotonically increasing in (0, ) . 

Thus, there exists a unique positive number 0z  such that 
0( ) 0h z  . By these results the following Lemma is established. 

 

Lemma 6: For the characteristic Equation (29), and the conditions 

 

 * *1

0

,a q
R


                      (41) 

 1
1

0

,k
R


                    (42) 

 1
2

0

.k
R


                    (43) 

are satisfied, the following results hold: 

(i) If
0 0e  , then (29) has no pure imaginary root for 0  . 

(ii) If 
0 0e  , then (29) has a pair of purely imaginary roots

0i when , 0,1,...,j

c j   where 

 

6 4
2 3 3 0 1 3 3 1 2 2 0 0

2 2 2 2 2
0 3 0 1 0 0 0 0 0

2
0 2 2 0 1 1 0 0 0

2 2 2 2 2
3 0 1 0 0 0 0 0

( ) ( )1
arccos

( ) ( )

( )
2 , 0,1,..., .

( ) ( )

j
c

b a b a b a b a b b

b b b b

a b a b a b a b
j j n

b b b b

 


    




   

      
  

   

   
  

    

              (44) 
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and
0 0z  with 0z being the unique positive zero of (35). 

From, Lemma 3.5 (Tipsri&Chinviriyasit, 2015) and Lemma 6 the following theorem is established. 

 

Theorem 7: If *

0 1, 2R N K  and conditions (41)-(43) are satisfied, then the following results of endemic equilibrium * hold: 

(i)
*  is absolutely stable for 0  whenever

0 0e  . 

(ii) *  is conditionally stable, that is
* is asymptotically stable for [0, )c  whenever 

0 0e  . 

 

Next, we analyzed the bifurcation of model (6). The time delay is chosen as a bifurcation parameter. To show that there exists a 

Hopf bifurcation at c  , it needs to verify that 

 
Re( ( ))

0.|
c

d

d
 

 


                   (45) 

 

Let ( ) ( ) ( )i        be the root of (29), so that ( ) 0c    and 
0( )c    are satisfied when 

c  . Substituting 

( ) ( ) ( )i        into (29) and differentiating both sides of the resulting equation with respect to  , this obtained 

 

    
3 3 2

3 2 1 3 2 1 0

2

3 2 1

(4 3 2 ) ( )

(3 2 ) 0.

d d
a a a b b b b e

s d

d
b b b

d

 
       

 


 



   
 
 

      

   

            (46) 

Hence 

 

4 3 2 3 2

3 2 0 3 2 0

2 4 3 2 2 3 2

3 2 1 0 3

1

2 1 0

3 2 2
.

( ) ( )

a a a b b bd

d a a a a b b b b

     

          


    

  
   

 
 
     

            (47) 

Therefore, 

 

0

8 6 4

0 3 0 2 0 0

1

2 2 3 2

0 0 2 0 1 0 3 0

3 2
.

[( ) ( )
e

]
R

i

e e ed

d b b b b 

  

    


 

 
 

 


  
               (48) 

Therefore, 

 

1 8 6 4

0 3 0 2 0 0

2 2 3 2

0 0 2 0 1 0 3 0

3 2( ) ( )
sign sign sign .

[( ) ( ) ]
c c

e e ed d

d d b b b b   

     

     



 

      
      

       

           (49) 

 

Obvious that the transversality condition (45) is satisfied when 
0 0e  and 

2 3, 0e e  .  According to Routh's Theorem, the root of 

characteristic equation (29) crosses from left to right on the imaginary axis as   continuously varies from a value less than c  to 

one greater than c . Therefore, the conditions for Hopf bifurcation are satisfied at c  . 

Observe that 0 0e    whenever
*

02 , 1N K R    and 
*

0 *

3 2a
R

a


   whereas 2e  and 3e  are positive when the condition (41)-

(43) are satisfy. Thus, from these results, Lemma 5 and 6, the following theorem is established. 
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Theorem 8: For the model (6), the following results hold: 

(i) If *2N K , 
*

0 *

3 2a
R

a


 and conditions (41)-(43) are satisfied, then the endemic equilibrium

* of the model (6) is 

asymptotically stable for [0, )c  and it is unstable when c  . 

(ii) If all conditions as stated in (i) hold then the model (6) undergoes a Hopf bifurcation at the endemic equilibrium 
* when

c  . 

 

5. Direction of Hopf Bifurcation 

 

 In the previous section, we show that the model (6) undergoes a Hopf bifurcation and the periodic solutions will 

appear. The periodic solution bifurcate from endemic equilibrium *  at the critical values c . The direction, stability and 

periods of these periodic solutions are determined by using the normal theory and the center manifold theorem as pointed by 

Hassardet al. (1981). 

 

Let * * * *

1 2 3 4( ) ( ) , ( ) ( ) , ( ) ( ) , ( ) ( ) ,u t S t S u t E t E u t I t I u t R t R        ( ) ( ),i ix t u t 1,2,3,4; ci       where 

c  is defined by (44) and R , thus system (6) can be written as a functional differential equation in 4([ 1,0], )C C R   as 

 

(50) 

 

where   4

1 2 3 4( ) ( ), ( ), ( ), ( )
T

x t x t x t x t x t R   and 4 4: , :L C R f R C R     are given respective by 

  (0)( ) ( ) ( ) ( 1)c cL N UUM          ,   (51) 

 

where 

* * * *
11 2 3 4

21 2 3 41

32

4

( )( )

( )0 0 0
, , ( )

( )0 0 0 00 0

( )0 0 0 00

am m m ma a a a

am m m mk
N U aM

ak

a







  

           
    

     
    
    

    





 

* * * *
* * * *

1 2 1 3 2 4* * * *
1 , ( ) , ( ) ,

S S S S
m q m q m q m q

N N N N
 

 
        

 

 . 

1 2

2
( , ) ( ) ,

0

0

c

F F

F
f    

 
 
  
 
 
 

 

where 

2 2 2 2

1 1 1 2 2 3 3 4 4 5 1 2 6 1 3

7 1 4 8 2 3 9 2 4 10 3 4

2 2 2 2

2 1 1 2 2 3 3 4 4 5 1 2 6 1 3

7 1

(0) (0) (0) (0) (0) (0) (0) (0)

(0) (0) (0) (0) (0) (0) (0) (0),

( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

( 1)

F n n n n n n

n n n n

F l l l l l l

l

       

       

       

 

     

   

             

  4 8 2 3 9 2 4 10 3 4( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1),l l l              
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* *

1 2 3 4 5 6 7 8 9 10 1 * *

* * * *
* * * * *

2 1 3 2 4 5 1 1*2 *2 *2 * *2

* * * *
* * * *

6 2 2 7 8 1 2* *2 * *2 *2

, 2 , 1 ,

1
( ) , ( ) , , ( ) ( 2 ) ,

1
( ) ( 2 ) , 2 , ( 2 )

r r q S
n n n n n n n n n n l

K K N N

S S S S
l q l q l q l q q

N N N N N

S q S S
l q q l q l q

N N N N N

   

   

 
               

 

          

          

* *
* *

9 1 10 2*2 *2

,

( 2 ) , ( 2 ) .
S S

l q l q
N N

      

 

 

By the Riesz representation theorem, there exist a function ( , )    of bounded variation for [ 1,0]   , such that 

 

   
0

1
( ) ( , ) ( ), for .L d C       


     (52) 

In fact, we can choose 

   ( , ) ( ) ( )c M        ( ) ( 1),c N        (53) 

where ( )   is Dirac delta function. 

For 1 4([ 1,0], ),C R   define 

   

0

1

( )
, [ 1,0),

( ) ,

( , ) ( ), 0,

d

dA

d s s

 


 

   



 

 
 


   (54) 

and 

    
0, [ 1,0),

( )
( , ), 0.

R
f


 

  

 
 



   (55) 

Then system (50) is equivalent to 

         (56) 

where 

    ( ) ( )  for [ 1,0].tx x t         (57) 

For 1 4 *([0,1], ( ) )C R  , define 

   *

0

1

( )
, (0,

  

1]
( )

( ,0) ( ), 0,T

d s
s

dsA s

d t t s





 



 

 
  
 

   (58) 

and bilinear inner product 

             
0

1 0
( ), ( ) (0) (0) ( ) ( ) ( ) ,s d d



 
            

 
                (59) 

 

where ( ) ( ,0)    . (0)A and *A  are adjoint operators. By discussion in Section 4, we know that 
0 ci   are eigenvalues of 

(0)A . Thus, they are also eigenvalues of *A . We need to compute eigenvector of (0)A  and 
*A  which corresponding to 

eigenvalues 
0 ci  and 

0 ci  , respectively. Suppose 0

1 2 3( ) (1, , , ) ciTv v v v e
     is the eigenvector of (0)A  

corresponding to 
0 ci  , then 

0(0) (0) (0)cA v i v  . It follows from the definition of (0)A , (51),(52) and (53), we have 



940 A. Sirijampa et al. / Songklanakarin J. Sci. Technol. 40 (4), 928-952, 2018 

   

0(0) ( 1) (0).c c cv v i vM N                     (60) 

For 0( 1) (0) ci
v v e

 
  , then we obtain 

*

0 0 2 0
1 * * * *

1 0 2 0 0 0 2 0

*

0 0
2 * * * *

1 0 2 0 0 0 2 0

*

0 2 0
3 *

1 0

( )( )( )
,

( )( )( ) ( ) ( )

( )( )
,

( )( )( ) ( ) ( )

( )( ( ) )

( )

i i a k i
v

a k i k i i a i a k i a

i i a
v

a k i k i i a i a k i a

i a k i
v

a k i

    

         

    

         

    



   
 

        

  
 

        

   
 

  * * *

2 0 0 0 2 0

.
( )( ) ( ) ( )k i i a i a k i a              

 

 

Similarly, we can obtain the eigenvector 0* * * *

1 2 3( ) (1, , , ) ci s
v s D v v v e

 
  of *A  corresponding to 

0 ci  . It follows from the 

definition of 
*A , (51), (52) and (53), we obtain 

 

   

0

0

* * *
* *0 1 0 4 1
1 3

1 1 0

* *
* 0 1 0 0 3 4
2

0 2 0 1

( )
, ,

( )

( ) ( )(( ) )
.

( )( )

c

c

i

i

a i m e i a m a m
v v

m e m i

i a m i a i m m
v

i k i m

 

 

   

 

       

  

     
 



      


 

              (61) 

 

In order to assure *( ), ( ) 1v s v    , the value of D  is determined. By (59), we have 

 

  
 

0 0

0

* * * *

1 2 3 1 2 3

0
( )* * *

1 2 3 1 2 3
1 0

* * * *

1 1 2 2 3 3 1 1 2 1 3 2 4 3

( ), ( ) (1, , , )(1, , , )

(1, , , ) ( )(1, , , ) ,

1 ( 1)( ) .

c c

c

T

i iT

i

c

v s v D v v v v v v

D v v v e d v v v e d

D v v v v v v v m m v m v m v e


      

 

 



  



 

 



  



        

   

Therefore, we can choose D  as 

     
0* * * *

1 1 2 2 3 3 1 1 2 1 3 2 4 3

1

1 ( 1)( ) ci

c

D
v v v v v v v m m v m v m v e

  


       
            (62) 

 

In the following, we use the ideas of Hassard et al. (1981) to compute the coordinates describing center manifold 
0C  at 0.   

Define 

   
*( ) , , ( , ) ( ) ( ) ( ) ( ) 2Re{ ( ) ( )}.t t tz t v x W t x z t v z t v x z t v                     (63) 

 

On the center manifold 
0C , we have 

     
2 2

20 11 02( , ) ( ( ), ( ), ) ( ) ( ) ( ) ,
2 2

z z
W t W z t z t W W zz W                      (64) 

where z  and z  are local coordinates for center manifold 
0C  in the direction of 

*v and
*v . Note that W  is real if tx  is real. 

We only consider the real solutions. For the solution 
0tx C  of (56), since 0   and (50), we have 

 

                  (65) 
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where 

2 2 2
*

0 20 11 02 21( , ) (0) ( , ) .
2 2 2

z z z z
g z z v f z z g g zz g g                   (66) 

From (63), we have ( , , )tx W z z zv zv   . Thus, 

2 2
( ) ( ) ( )

20 11 1 1 02(0) (0) (0) (0) ,
2 2

n

nt n

n n

n

z z
x zv zv W W zz W        

0 0

2 2
( ) ( ) ( )

20 111 1 02( 1) ( 1) ( 1) ( 1) ,
2 2

c ci i n

nt n

n n

n

z z
x zv e zv e W W zz W

   

                      (67) 

for 1,2,3,4n  and
0 0 1v v  . 

It follows that 

* * *

0 1 1 2( , ) (0) ( , ) (0) (0, ) ( ( 1) ).t cg z z v f z z v f x D F v F                  (68) 

where 

2 2 2 2

1 1 1 2 2 3 3 4 4 5 1 2 6 1 3

7 1 4 8 2 3 9 2 4 10 3 4

2 2 2 2

2 1 1 2 2 3 3 4 4 5 1 2 6

(0) (0) (0) (0) (0) (0) (0) (0)

(0) (0) (0) (0) (0) (0) (0) (0),

( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

t t t t t t t t

t t t t t t t t

t t t t t t

F n x n x n x n x n x x n x x

n x x n x x n x x n x x

F l x l x l x l x l x x l

     

   

            1 3

7 1 4 8 2 3 9 2 4 10 3 4

( 1) ( 1)

( 1) ( 1) ( 1)    ( 1) ( 1) ( 1) ( 1) ( 1).

t t

t t t t t t t t

x x

l x x l x x l x x l x x

 

           

 

 

Comparing the coefficients with (66), we have 



0

2 2 2

20 1 2 1 3 2 4 3 5 1 6 2 7 3 8 1 2 9 1 3 10 2 3

2* 2 2 2

1 1 2 1 3 2 4 3 5 1 6 2 7 3 8 1 2 9 1 3 10 2 3

2 2 2

02 1 2 1 3 2 4 3 5 1 6 2 7 3 8 1 2 9 1

2 ( )

( 1) ( ) ,

2 (

c

c

i

c

g D n n v n v n v n v n v n v n v v n v v n v v

v e l l v l v l v l v l v l v l v v l v v l v v

g D n n v n v n v n v n v n v n v v n v v

 







          

         

        







0

3 10 2 3

2* 2 2 2

1 1 2 1 3 2 4 3 5 1 6 2 7 3 8 1 2 9 1 3 10 2 3

11 1 2 1 1 3 2 2 4 3 3 5 1 1 6 2 2 7 3 3

*

8 1 2 1 2 9 1 3 1 3 10 2 3 2 3 1

)

( 1) ( ) ,

2 2 2 2 ( ) ( ) ( )

( ) ( ) ( ) ( 1)

ci

c

n v v

v e l l v l v l v l v l v l v l v v l v v l v v

g D n n v v n v v n v v n v v n v v n v v

n v v v v n v v v v n v v v v v

 



 

         

         

        



1 2 1 1

3 2 2 4 3 3 5 1 1 6 2 2 7 3 3 8 1 2 1 2

9 1 3 1 3 10 2 3 2 3

2 2

2 2 ( ) ( ) ( ) ( )

( ) ( ) ,

l l v v

l v v l v v l v v l v v l v v l v v v v

l v v v v l v v v v



         

   

 

   
   

(1) (2)

21 1 5 1 6 2 7 3 11 2 1 5 8 2 9 3 11

(3) (4)

3 2 6 8 1 10 3 11 4 3 7 9 1 10 2 11

(1) (2)

1 5 1 6 2 7 3 20 2 1 5 8 2 9 3 20

3 2

2 2 (0) 2 (0)

2 (0) 2 (0)

1 1
( ) (0) ( ) (0)

2 2

cg D n n v n v n v W n v n n v n v W

n v n n v n v W n v n n v n v W

n n v n v n v W n v n n v n v W

n v

       

       

   
          
   



0

(3) (4)

6 8 1 10 3 20 4 3 7 9 1 10 2 20

* (1)

1 1 5 1 6 2 7 3 20

(2) (3)

2 1 5 8 2 9 3 20 3 2 6 8 1 10 3 20

1 1
( ) (0) ( ) (0)

2 2

1
( 1) ( ) ( 1)

2

1 1
( ) ( 1) ( ) (

2 2

ci

n n v n v W n v n n v n v W

v e l l v l v l v W

l v l l v l v W l v l l v l v W

 

   
         

   

 
      

 

   
            
   

0

(4)

4 3 7 9 1 10 2 20

* (1)

1 1 5 1 6 2 7 3 11

(2) (3)

2 1 5 8 2 9 3 11 3 2 6 8 1 10 3 11

1)

1
( ) ( 1)

2

( 1) (2 ) ( 1)

(2 ) ( 1) (2 ) ( 1)

ci

l v l l v l v W

v e l l v l v l v W

l v l l v l v W l v l l v l v W

 

 
      
  

      

           

         
(4)

4 3 7 9 1 10 2 11(2 ) ( 1)l v l l v l v W                                    (69) 
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In order to determine 
21g , we need to compute 

20 ( )W   and 
11( )W  . From (56) and (63), we have 

,W x zv zvt      

                                                       (70) 

where 
2 2

20 11 02( , , ) ( ) ( ) ( ) .
2 2

z z
H z z H H zz H                                                  (71) 

Substituting the series (64) and (71) into (70) and comparing the coefficients, we have 

 

0 20 20 11 11( (0) 2 ) ( ) ( ), (0) ( ) ( ).cA i I W H A W H                                                    (72) 

 

By (70), we know that for [ 1,0)   , 

 

* *

0 0( , , ) (0) ( , ) ( ) (0) ( , ) ( ) ( , ) ( ) ( , ) ( )H z z v f z z v v f z z v g z z v g z z v         
 
 (73) 

 

Comparing the coefficients with (71), this gives 

 

20 20 02 11 11 11( ) ( ) ( ), ( ) ( ) ( ).H g v g v H g v g v                       (74) 

 

From (72), (74), and the definition of (0)A , we have 

           (75) 

Noticing 0( ) (0) ci
v v e

    , we have 

0 0 0220 02
20 1

0 0

( ) (0) (0) ,
3

c c ci i i

c c

ig ig
W v e v e E e

        
   


               (76) 

where (1) (2) (3) (4) 4

1 1 1 1 1( , , , )TE E E E E R   is a constant vector. Similarly, we have 

 

0 011 11
11 2

0 0

( ) (0) (0) ,c ci i

c c

ig ig
W v e v e E

     
   


                 (77) 

 

where (1) (2) (3) (4) 4

2 2 2 2 2( , , , )TE E E E E R   is a constant vector. 

In the following, we will find out 
1E and 

2E . From the definition of (0)A  and (72), we have 

0

20 0 20 20
1

( ) ( ) 2 (0) (0),cd W i W H    


   
             (78) 

   
0

11 11
1

( ) ( ) (0)d W H  


  ,                (79) 

 

where ( ) (0, )    . By (70), we know that when 0   

* *

0 0 0

0

( , ,0) (0) ( , ) (0) (0) ( , ) (0) ( , )

( , ) (0) ( , ) (0) ( , ).

H z z v f z z v v f z z v f z z

g z z v g z z v f z z

   

   
 

Applying with (71), this give 

   
20 20 02 1 2(0) (0) (0) ( , ,0,0) ,T

cH g v g v G G                 (80) 
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11 11 11 3 4(0) (0) (0) ( , ,0,0) ,T

cH g v g v G G                 (81) 

where 



0

0

2 2 2

1 1 2 1 3 2 4 3 5 1 6 2 7 3 8 1 2 9 1 3 10 2 3

2 2 2 2

1 2 1 3 2 4 3 5 1 6 2 7 3 8 1 2 9 1 3 10 2 3

2 2 2 2

2 1 2 1 3 2 4 3 5 1 6 2 7 3 8 1 2 9 1 3 10 2

2 ( )

( ) ,

2 (

c

c

i

i

G n n v n v n v n v n v n v n v v n v v n v v

e l l v l v l v l v l v l v l v v l v v l v v

G e l l v l v l v l v l v l v l v v l v v l v

 

 





         

         

          3

3 1 1 2 2 1 1 3 3 2 2 4 4 3 3 5 5 1 1

6 6 2 2 7 7 3 3 8 8 1 2 1 2

9 9 1 3 1 3 10 10 2 3 2 3

4 1 2 1 1 3 2 2 4 3 3 5 1 1

),

2( ) 2( ) 2( ) 2( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ),

2 2 2 2 ( )

v

G n l n l v v n l v v n l v v n l v v

n l v v n l v v n l v v v v

n l v v v v n l v v v v

G l l v v l v v l v v l v v

          

        

     

       6 2 2 7 3 3

8 1 2 1 2 9 1 3 1 3 10 2 3 2 3

( ) ( )

( ) ( ) ( ).

l v v l v v

l v v v v l v v v v l v v v v

  

     

 

 

Since 
0 ci   is the eigenvalue of (0)A  and (0)v  is the corresponding eigenvector, we obtain 

    
 

0

0

0

0
1

0

0
1

( ) (0) 0,

( ) (0) 0.

c

c

i

c

i

c

i I e d v

i I e d v

 

 

   

   







 

  





                (82) 

Substituting (76) and (80) into (78), this yields 

    0
0

2

0 1 1 2
1

2 ( ) ( , ,0,0)ci

c ci I e d E G G
      


                (83) 

Then, it follows that 

   

0

0

0

0

0

2*
(1) 0 1 1 1 2 4 1 2 1 2
1 2* *

0 1 3 0 4 1 1 2

2
(2) 1 1 2 3
1 2* *

0 1 3 0 4 1 1 2

2
(3) 1 1 1 2 3
1

(2 ) ( ) (1 )
,

(2 ) (2 ) (1 )

,
(2 ) (2 ) (1 )

( )

(2

c

c

c

c

c

i

i

i

i

i

i k G G G C m a G C C e
E

i k C i a C m a C C e

G m e G C
E

i k C i a C m a C C e

C G m e G C
E

i

 

 

 

 

 



  

  











     


      




      




0

0

0

2* *

0 1 3 0 4 1 1 2
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Similarly, substitute (77) and (81) into (79), we obtain 
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where
1 2 2 3 2 4( )D k m m k m        and *

2 1( )D a m    . Therefore, we can determined 
20 ( )W   and 

11( )W   from 

(76) and (77), respectively. Furthermore, all 
ijg  have been expressed in terms of parameters, and we can compute the following 

values: 

2
2 02 21

1 11 20 11
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1
2

2 1

1 2
2

0

| |
(0) 2 | | ,

2 3 2

Re{ (0)}
,
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Im{ (0)} Im ( )
,

c

c

c

c

g g
c g g g

c

c

c
T

i

 


 



  

 

 
     

  


  
 







  


             (87) 

 

From the conclusion in Hassard et al. (1981), the main results in this section are concluded in the following theorem. 

 

Theorem 9: The model (6), when c  , the direction and the stability of periodic solution of Hopf bifurcation is determined 

by (87). Then 

(i) the sign of
2  determines the direction of the Hopf bifurcation: if 

2 20( 0)   , then the Hopf bifurcation is supercritical 

(subcritical) and the bifurcation periodic solutions exist for ( )c c     ; 

(ii) the sign of 
2  determines the stability of the bifurcating periodic solution: the bifurcation periodic solutions are stable 

(unstable) if 
2 20( 0)   ; 

(iii) the sign of 
2T  determines the period of the bifurcating periodic solutions: the period increase (decrease) if 

2 20( 0).T T   

 

6. Numerical Simulation 

 

To see the behavior of the model (6), the numerical solutions of the model (6) are simulated by using MATLAB 

programming with RK4 method. Parameters values use in simulating the model (6) are based on the influenza H1N1 parameters 

as shown in Table 1. 

 
    Table 1. Parameters are used in numerical simulation (unit week where applicable). 

 

Parameter Description Value Source 

    

r  Birth rate 0.5 Assumed 

K  Carrying capacity 10,000 Assumed 

  Contact rate 7.29 Assumed 

E  Ability to cause infection by exposed individuals 0.21 Assumed 

I  Ability to cause infection by infectious 

individuals 
0.84 Assumed 

  Natural mortality rate 0.000263 [1] 

  Mean duration of latency 2.32 [2] 
  Recovery rate of clinical ill 1.4 [2] 

  Recovery rate in latent period 1.3 [3] 

  Disease induced mortality rate 0.065 [4] 
    

 

[1] Index Mundi (2015). [2]Pourbohloul-Brunham et al. (2009); Yang-Longini et al. (2009);Tuite-Fisman et al. (2010).  

[3] Massad et al. (2007). [4] LonginiJr, Ackerman, and Elveback (1978). 
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To study the stability of the disease-free equilibrium, 
0 , we choose 2   which yields 

0 0.85R  . Applying with 

Theorem 4, the disease-free equilibrium of the model (6) is absolutely stable for all 0  . These results are shown by simulating 

the numerical solutions with various   as shown in Figure 1. Observe that all solutions converge to disease-free equilibrium, 
0  

with various  .  

 
 

 
 

 
 

 
 
 

Figure 1. Numerical solutions of the model (6) with various   and initial condition: (0) 3000, (0) 10, (0) 100S E I   and 

(0) 3000R  . Parameter values used are as in Table 1 with 2    which yields 0 0.85R  . 
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 By choosing 5   which yields 
0 2.12R  , the model (6) has a unique endemic equilibrium, *  as guaranteed by 

Theorem 3. Further 5  , corresponds to the conditions in Theorem 7(i). Thus, *  is absolutely stable for all 0  . Numerical 

solutions for the case 5   are simulated with 10,38.55,45   as show in Figure 2, 3 and 4, respectively. It is seen that all 

numerical solutions converge to * . These represents that the endemic equilibrium, *  is absolutely stable for all 0  . 

 

 
 

 
 

Figure 2. Numerical solutions of the model (6) for 10 c    with initial condition: (0) 3223, (0) 1, (0) 1S E I    
and (0) 6768R  . 

Parameter values used are as in Table 1 with 5   which yields 
0 2.12R  . 

 

 
 

 
 

Figure 3. Numerical solutions of the model (6) for 38.55 c    with initial condition: (0) 3223, (0) 1, (0) 1S E I  
 
and (0) 6768R  . 

Parameter values used are as in Table 1 with 5   which yields 
0 2.12R  . 
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Figure 4. Numerical solutions of the model (6) for 45 c    with initial condition: (0) 3223, (0) 1, (0) 1S E I  
 
and (0) 6768R  . 

Parameter values used are as in Table 1 with 5   which yields 
0 2.12R  . 

 

 Next, we considered the dynamic of the model (6) with 7.29   this yields 
0 3.1R   and there exist a unique 

endemic equilibrium, * as guaranteed by Theorem 3. Further, the conditions in Theorem 8(i) are satisfied and 38.55c   is 

calculated by using (44). Figure 5 shows that for the case 5  , the numerical solutions of the model (6) converge to endemic 

equilibrium when time increase. On the other hand, if we choose 45  , the numerical solutions diverge from  the endemic  
 

 
 

 
 

Figure 5. Numerical solutions of the model (6) for 5 c    with initial condition: (0) 3223, (0) 1, (0) 1S E I    
and (0) 6768R  . 

Parameter values used are as in Table 1 with 7.29   which yields 
0 3.1R  . 
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equilibrium as shown in Figure 7. This means *  is asymptotically stable when c   and unstable when c   as 

guaranteed by Theorem 8(i). For the case 38.55  , the numerical solutions of the model (6) are periodic as shown in Figure 6. 

From these results, it concludes that the model (6) undergoes a Hopf bifurcation at * as guaranteed by Theorem 8(ii). 

 

 
 

 
 

 

 

 

Figure 6. Numerical solutions of the model (6) for 38.55 c   with initial condition: (0) 3223, (0) 1, (0) 1S E I   and (0) 6768R  .  

Parameter values used are as in Table 1 with 7.29   which yields 0 3.1R  . 
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Figure 7. Numerical solutions of the model (6) for 45 c    with initial condition: (0) 3223, (0) 1, (0) 1S E I   and (0) 6768R  . 

Parameter values used are as in Table 1 with 7.29   which yields 0 3.1R  . 

 

Finally, the direction of Hopf bifurcation and the other properties of bifurcating periodic solution are discussed. By 

using 7.29  , we obtain 
0 0.00037   and 38.55n  . Furthermore, we can calculate the following values: 
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10 7

1(0) 2.52 10 1.08 10 ,c i    
3

2 1.497 10 ,    10

2 5.031 10   and 6

2 2.541 10T   . By Theorem 9, we conclude 

that Hopf bifurcation of the model (6) occurring at 38.55c   is subcritical, the periodic solution exists when   crosses c  

from left to right, the periodic solution is unstable and the period increase. 

 

7. Conclusions 

 

 In this paper, we study the dynamic behavior of SEIR delay model with logistic growth. The stability of each 

equilibrium point was analyzed by choosing time delay   as a bifurcation parameter. The main of this study are summarized 

below: 

(i) Disease-free equilibrium, 
0  of the model (6) is locally asymptotically stable for all 0   when 

0 1R   (Theorem 4). 

(ii) The model (6) has a unique endemic equilibrium, *  when 
0 1R   (Theorem 3) and * is locally asymptotically 

stable for all 0  when *2N K , conditions (41)-(43) are satisfied and
0 0e   (Theorem 7(i)). 

(iii) The unique endemic equilibrium, *  is conditionally stable when *2N K , 
*

0 *

3 2a
R

a


   and condition (41)-

(43) are satisfied and the dynamical behavior of the model (6) undergoes a Hopf bifurcation when c   (Theorem 8). 

Furthermore, the stability, direction and period of the periodic solution are determined by using the method based on 

the normal form theory and the center manifold reduction. Finally, the numerical solutions of the model (6) are simulated to 

verify the theoretical results. 
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