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Abstract

This paper investigates the stability and Hopf bifurcation of SEIR delay model with logistic growth. Firstly, the
existence and uniqueness of equilibrium point are analyzed. For the study of the stability of the equilibrium point time delay ()
was chosen as the bifurcation parameter. By considering the roots of characteristic equations, it was found that disease-free
equilibrium is locally asymptotically stable for allz >0. The endemic equilibrium of the model is conditionally stable. Hopf
bifurcation will occur when the bifurcation parameter passes through a critical value. Moreover, stability and direction of Hopf
bifurcation are obtained by using the normal form theory and the center manifold reduction. Finally, the numerical solutions are

simulated to verify the theoretical results.
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1. Introduction

Outbreak of a disease is a serious danger for human
lives. Many diseases such as Spanish flu, cholera, severe acute
respiratory syndrome (SARS), and measles have caused many
deaths of humans (Patterson & Pyle, 1991; Johnson & Muel-
ler, 2002; Smith, 2006; Taubenburger & Morenst, 2006;
World Health Organization [WHO], 2010). While a doctor
tries to treat patients to recover from diseases, the scientist
attempts to find a method in prevention or control the out-
break of a disease. They construct a system of equations to
describe the phenomenon of disease, which is called epidemic
model. Usually, an epidemic model is used to study the effect
of each parameter to the number of infected people. Control-
ling these parameters help to decrease the number of infected
people or control the infected people when a disease outbreak
occurs. The epidemic model has several types depending on
individuals in the model. The model in this research used the
assumption that when susceptible individuals (s) get the
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disease, it incubate inside in individuals for a period of time
before becoming infectious. This period is called latent period
and individuals in this period are exposed individuals (g).
After passing this period, individuals become infected (1)
and/or recovered (Rr) individuals, respectively. Thus, this
paper studies the dynamical behavior based on the SEIR epi-
demic model.

There are many researches about dynamic behaviors
of SEIR model. Greenhalgh (1992) analyzed the SEIR epide-
mic model when the death rate depends on the number of
individuals in the population. Li and Muldowney (1995) stu-
died the global stability of SEIR model with nonlinear inci-
dence rate. Zhang et al. (2006) studied the global stability and
dynamics of an SEIR epidemic model with immigration in
different individuals. Li et al. (2006) studied the global stabi-
lity of an SEIR model with constant immigration. Li and Jin
(2005) studied the global stability of epidemic model with
infectious force in latent, infected and immune period. Massad
et al. (2007) used the SEIR model with logistic growth and
infectious forced in infected and latent period to predict the
number of patient from influenza in Brazil.

Time delay is introduced in the epidemic model to
study changes in the dynamic behavior. Usually, the time de-
lay parameter is chosen to be a bifurcation parameter. The
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dynamic behaviors of the model may change when the bifur-
cation parameter increases or decreases. There are some stu-
dies about mathematical models with time delay. Khan and
Greenhalgh (1999) analyzed the Hopf bifurcation of an epide-
mic model with time delay in vaccination. Wan and Wei
(2010) analyzed Hopf bifurcation in a food-limited population
model with time delay. Zhang et al. (2010) analyzed the stabi-
lity of Hopf bifurcation of an epidemic model with stage
structure. Chinviriyasit (2015) studied the effect time delay of
an SEIR epidemic model with nonlinear incidence rate.
Misraet al. (2012) constructed a delay mathematical model to
ana-lyze the controlling of cholera epidemic.

The aim of this paper is to modify the model of
Massad et al. (2007) with some assumptions. First, the sensiti-
vity of infection from exposed and infected individuals not
equal. Thus, the value of contact rate from exposed and in-
fected individuals should be different. Second, when suscepti-
ble individuals contact the infectious individuals, they do not
become infectious immediately. Therefore, the time delay is
introduced into the model. Furthermore, the dynamics of the
model changes when the time delay is included which is in-
teresting behavior. Formulation and existence of equilibrium
point of the model are illustrated in Section 2. The stability of
disease-free and endemic equilibrium are analyzed in Section
3 and 4. Further, the direction of Hopf bifurcation is illustrated
in Section 5. Numerical results are shown in Section 6 and
conclusion of this paper is presented in Section 7.

2. Model Formulation and Equilibrium Point
2.1 Model formulation

In this research, the model of Massad et al. (2007) is
modified. The total population at time t, denoted by N(t), is

subdivided into four individuals: susceptible (s(t)), exposed
(E(t)), infected (1(t) ) and recovered ( R(t) ), thus

N(t) =S(t) +E() + 1(t) + R(t) 1)

The susceptible individuals is increased by the lo-
gistic growth term when r is birth rate and k is carrying
capacity. Susceptible individuals decrease by acquiring infec-
tion from both exposed individuals and infected individuals. It
is assumed that susceptible individuals are exposed at a time
t—z and became infective at a time 7 later. Thus, the rate at
which susceptible individuals in contact with the virus pro-
gress to the latent stage is given by

BEt-1)+ 1 (t-17),
N(t-7)

where 7 is a latent time delay,ﬂ1 = AP, and B, =B, - The B

be the average number of sufficient contact s to transmit
infection in unit time per infective individual in the population
(of size N). The parameters g and g, account for the abi-

lity to cause infection by exposed individuals (0< 8. <) and
by infected individuals (0 < B <), respectively. Further, the

population of susceptible individuals is decreased by natural
death (at rate ). Thus, the rate of change of the susceptible

population is given by

as(t) _ CN(@)) BE-D)+BIM-7) 0, | (2
T7rN(t)(1 KJ s S(t—17)— uS(t).

The population of exposed individuals is generated
by infection of susceptible individuals. This population de-
crease by development of disease symptoms (at rate o), re-
covery from the disease (at rate x) and natural death (at rate
). This gives

dE®t) BE(t-1)+51(t—7)
dt N(t-7)

S(t—1)—(u+0+K)E(). @)

The infected individuals is increased at rate . This
individuals decreased by natural death (at rate ,), disease-

induced death (at rate ¢) and recovery from the disease (at
rate ). Thus, the rate of change in this individual is given by

%:JE(t)f(,u+a+7)|(t)- @

Finally, the population of recover individuals is
generated by the recovery from the disease in exposed and
infected individuals at rate k- and y , respectively. This popu-
lation decreased by natural death at rate ;. Thus,

%:KE(t)+yl(t)—#R(t)- ©

Thus the model for the transmission dynamics of an infectious
disease with time delay is given by the following nonlinear
system of delay differential equations:

s _ N(t)jfﬁlE(tfrHﬁzl(tfr)S(tfr)fﬂs(t)’

ot ”N“)(PT N
(t-7)

dE() BEt-D)+BIt-1) o,

o N(-1) S(t—7)—(u+o+x)E(),

O e -ras o,

%:KE(t)+;/|(t)*/lR(t).

The initial condition of (6) is given as
S(0) = 4(6),E(0) =:(0),1(0) =,(6),R(0) =, (0), 0 [=,0], (7)

where ¢ =[d,d,,4;,¢,] € C such that ¢(9)=¢(0)>0 for
0 e[-r,0],i=12,3,4, and C denotes the Banach space
C([-r,0],R*) of continuous functions mapping the interval

[-7,0] into R?.

The basic dynamical feature of the model (6) will be
explored and the following lemmas are established.
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Lemma 1: All solution (S(t), E(t), I(t), R(t)) of the model (6) with initial condition (7) are positive for all t>0 when
N{t)<K.

Proof: From the second equation of the model (6), we have

C:TItE> —(u+o+x)E():

Hence,
E(t) > E(0)e “*™" >0, forall t >0. @)

Similarly, using the same approach as for E(t), it can be shown that | (t) >0 and R(t) >0 forall t > 0 .Next, we assume that

N(t) < K and there exist a constant K which

PEC-D+ M=) gy _g AEO+ 1M g ©)
N(t—7) N

the first equation in the model (6) is rewritten

das() _ N(t)( N(t)] REED*+BIW ¢y so),
dt

£ NG) (10)
>-K %su) — uS(1).
Therefore,
S(0)= S(O)eXp{—I(kWWL ,quu} >0 forall £>0. forallt>0 (11)

Thus, S(t), E(t), 1(t) and R(t) are positive forall t>0.
Lemma 2: Let I > u, the closed set

Qz{(S,E,I,R)eRf:0£S+E+I+R<K(rr ,u)} (12)

is positively invariant.
Proof:

Adding all equations in (6) gives

SR N(t)[ Nét)] AN -al @) ”

Since O(Ij—':ls %[M—N} it follows that (L—Tso if N(t)> M By standard comparison theorem, it can be
r

shown that

N() < K(r—u) : (14)

r ‘:K(r lu) N(o):le—(f—ﬂ)t
N(0) r
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In particular, N(t)s@ if N(O)SM. Thus, ¢ is positively invariant. Further, if N(0) >M, either the

solution of the model (6) enters Q in finite time, or N (t) approaches K(r-x) and the variables E,I and R approach to zero.
r

Hence, the region Q attracts all solutions in R? (i.e., all solutionsin R? eventually enter Q).
Thus, the model (6) is well-posed epidemiologically and mathematically in Q (Hethcote, 2000). Hence, it is sufficient

to study the dynamics of the model in €2 .

2.2 Equilibria of the model

The equilibria of the model (6) can find by setting the right hand side of the model (6) equal to zeros. Let
(S",E",1",R") be any arbitrary equilibrium point of the model (6) and N*=S"+E"+1"+R". By solving equation at steady

state, the equilibrium point of the model (6) is given by

S = 1-——|,

« N N) .« AS" . oFE _. xE +yI’ (15)
A+ul” K ’ ’ ’

wherek, = y+o+x and k, = u+a+y.

Note that, A" is the force of infection at steady state, can be expressed as

1= ﬂ1E*|\'l"'*ﬂzl* . (16)

For convenience in computation, (15) is rewrite in terms of A°S” as shown in below:

£ = A'S” 0= oA’S” R = (xk, +op)A'S™ (17)
k, kik, Hkk,
Substituting (17) in (16) gives
ST .
{2 (kk, —oa) + pkk, - u( Bk, + B,0)} =0, (18)
Hkik,

Observe that (18) has two solutions. First, A"S™ =0 this yield E"=1"=0. Substitute these results into (15), the disease-free
equilibrium (DFE) of the model (6)is presented.

50:(SO,EOJO,RO):(M,O,O,OJ, (19)

The endemic equilibrium (EE) can find by solving the remaining terms in (18), this give
1= kK, (Ry—1) (20)
kk, —oa
where R is called basic reproduction number, given by

_ Bk, + po ) (21)

RO klkZ

From (20), it follow that 1" > Qif Ry >1. Thus, the model (6) has a unique endemic equilibrium if R; >1. The each components

of this equilibrium are obtained by substituting (20) into (15). In the case R, <1(1" <0), the model (6) has no positive
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equilibrium which is not biological feasible. Further, if r, =1, then 2" =0 corresponds to disease-free equilibrium. These results

are summarized below.

Theorem 3: If R, > 1, the model (6) has a unique endemic equilibrium, given by £ = (S™,E", 17, R") when
g+ _ KR, (kik, —oa) — p(Rokk, —oa)] v _ pk, (R -1s”
(kk, —oa)rR? ' kk, —oa

o HoR DS . (kk,+op)(Ry-DS”
kk,—oca ' kk, —oa

‘ (22)

Further, the model (6) has no endemic equilibrium when Ro <1-

3. Stability of Disease-Free Equilibrium

It is known that the stability of the equilibrium is determined by considering the roots of the Jacobian of the model (6)
evaluated at the equilibrium point. The equilibrium point is absolutely stable if all roots have negative real parts. On the other
hand, it unstable if there exist at least one positive real root. Thus, to analysis the stability of disease-free equilibrium, the
Jacobian of the model (6) evaluated at & is constructed.

—r+u —r+2u-pe —r+2u—Be " —r+2u

0 —k, + e Be 0 (23)
I&)= o -k 0
2
0 K ¥ —u

Two eigenvalues of (23) are 4, =—r + u, A, = —u and the other eigenvalues /13 and /14 are roots of transcendental equation
A%+ (k, +k, — Be " )A+kk, — Bk,e ' — B,oe " =0, (24)

For 7 =0, (24) is reduced to

/12+(k2+k1(1—R0)+ﬁkzo-J/1+k1k2(1—Ro):O, (25)

It is obvious that, all roots of (25) are negative real part when R; <1. Thus, if R) <1, & is locally asymptotically stable when
7=0.

For 7 >0, the existence of pure imaginary root of (24) is investigated. Let 4 =iw(w > 0) be root of (24), separating the real

and imaginary parts, we have

(Bk, + p,0)cos ot + osin ot
pocoswr—(SK, + f,0)sin wr

kk, - ®°, (26)
(k, +k,) o,
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Squaring and adding two equations of (26), we have

A

Obvious that (27) has no positive real roots if R, <1. Thus, (24) has no purely imaginary roots. Furthermore, the existence of

B2 k- RO)J(kﬁﬁlka]wz+k1k2(1—Ro)(k1kz+ﬁ1kz+ﬁ20)=0, @

positive real roots of (24) is considered when 7 > 0.It is obvious that 1% + (k, +k,)A +kk, =0 has no positive real roots.

By Lemma 3.1 (Tipsri&Chinviriyasit, 2015), all roots of (24) are not positive real roots for all 7 > 0. From these results, the

following Theorem is established.

Theorem 4: If R, <1, the disease-free equilibrium, & is absolutely stable for all 7 > 0.

4, Stability of Endemic Equilibrium and Bifurcation Analysis

In this section, the stability of endemic equilibrium is analyzed by observing the eigenvalues of model (6). Let

a = r[%—l] andq” =M , the Jacobian matrix of the model (6) evaluated at £ is given by
N

‘]11 ‘]12 ‘]13 ‘]14

|3, 3,3 (28)
J(S ): (;1 22 _|2(3 (;4 ,
2
Ky —H

where

. e ﬂe—lr ﬁe—lz . q*e—ir
Jy=Jdu—u-qe * » Ji :‘]14_1R71 Jis :J14_2TrJ14 =-a +R7’

0 0 0

*

‘]21:_‘]11_6‘*_% ‘]ZZ:_‘JIZ_a*_kl’ 3232—‘]13—&*, Jy=—J,-a.

The eigenvalues of J(£") are the roots of the polynomial
A+l + 2, A" +ad+ag+[ A% +b,27 + A +b, Je T =0, (29)

where

8y = kK, + pkika”, ay = g1 (ky+Ky) + 200k, + (kik, + ik + gk, )a’,
a, =1’ +2u(k +k,) +kk, +(k +k, +p)a’, a,=k +k,+2u+a’,

oa
- J - ,Uzklkz J

by = (uk kR, — 24k, )" + ug’ (klkz R
0

2
b = ((kl + kz)q* —kik, _%ﬂ}a* —2pkik, — ﬂll:éu +ﬂq*(k1 +k,) + q*[klkz _(;0{]7

0 0 0

b, :q*(k1+kz+y)+(q*—’glJa*—Zygl—klkz, by :q*_g-

0 0 0
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First, the stability of endemic equilibrium, £ at 7 =0 is analyzed. Replace 7 = 0 in (29), this gives

A +(a, +b)A% +(a, +b,) A% +(a, +b) A+ (8, +b,) =0, (30)

where

a0+b0::uk1k2(Ro_l)a*+ﬂq [kk —j a,+h, =Kk, +2,u+a +q +,36
R, RK,

* * x * * ox
a1+bl=y2k2+yk2a +(k +k)aa +uq (k+k,)+q (k1kz_RJ+,U(ﬂ+a ) Rﬁzk
0
8+, = 1%+ 201k, + (K, + )@ + (k +K, + )0 +2°07 + (2u+a’) ézlf
2

Let h=a +b when j=0,1,2,3. Obvious that the coefficients hi (i=0,1,2,3) are all positive if R, >1 and 2N > K (note
that g > 0if R, >1). Furthermore it can be shown that

qO'a

hzhs—hl=<2u+a*+q*)(u+a*)u+<k1+kz)q*[q* ﬁokz}kq 5

+ 2y+k2+a*+q*+ﬁza 2uk, +k,a" +(u+a)q + (@ +2p) Fro ,
ROkZ ROkZ

>0.

hthhS - hlz - hoha2 = h1(h2h3 - hl) - hohzv

:{ykz(y-ka*)"'q*(kl"'kz)(lu"'a*)+q [k k; — R, ]+(#+a )!Il?ﬂf( :|

{ﬂ(#+a)(2ﬂ+a +97)+(k +ky,)q" [ ﬂk j+q K2+ qga}

oo o345

+uq (@ +q )?+q aaa(k +q +§k j[l R1]+q a'oa(Ru+a’)
0 0

+q*u2k1kz+q*kl(ﬂ+a*)((2ﬂ+a)ﬂz +q (u+a)J [ 2k, (u+0")

Rokj{(z;wa*{kz + glf J+q*(u+a*)]},

va'ky(utq)+ (uat) 4
>0.

It is seen thata, +b,, a,+b, and above results are positive when R, <1.Hence, by the Routh-Hurwitz criterion, all roots of (30)
have negative real parts when R, >1 and the following Lemma is established.

Lemma5: IfR, >1 and 2N” > K , then the endemic equilibrium, £ of the system (6) is asymptotically stable atz = 0.
Next, the stability of endemic equilibrium for the case 7 > 0 is analyzed. First, we show that (29) has no positive real roots by
considering the roots of polynomial

f(A)=2"+a,A° +a,A* +al+a,. (31)
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The coefficients g, (i =0,1,2,3) are all positive when 2N" > K . Further it can be shown that

a,a;—a, = (k +ky)(kk, + (Qu+a")(k +k,)) + (2u+a’)(u(u+a) + (2u+a )k +k,)),
>0,
a,(a,3, _al)_a32a0
= ur ) ko, (e, + (2u+a7) + (k, + ) (2u+a)) + (2u+ )k,
+ g+ @) (K + k) 2u a7 (K + 3+ (2ut+al)(k +K,) + 1+ p(u+a')),
>0.

By Routh-Hurwitz criterion, f (1) has no positive real roots. Applying Lemma 3.1 in Tipsri and Chinviriyasit (2015), (29) has

no positive real roots for 7 > 0.
Next, the distribution of roots of (29) is investigated by assuming that it has purely imaginary roots. Replacing
A =iw(w>0) in (29), this gives

o' —a,0% —a,0" + i +a, + (—b,0’i —b,0’ +bwi + b)) x (coswr —isinwr) = 0. (32)
Separating the real and imaginary parts, this gives

(-b,@* +h,) cos wr + (bo—b,0*)sin wr =-0* +a,0” - a,, (33)
(—hy@® +bw) cos wz + (b,w® —Ny)sin wr = a,0° —a,o.

Squaring and adding both equation of (33), gives

@° +e,0° +e,0" +e0’° +e,=0, (34)
where

€ = ag —bg, €= aiz — 2343, _blz +2b0b2,

e, =a +2a,-b; +2bb,—2aa,, e,=a’-h?-2a,.
Let Z = , (34) can be rewritten as

h(z) = 2* +e,2° +e,2° +e,2+€, =0, (35)
where

€0 = (39 +bp)(ag —by),

(36)
= {a*'”klk2 (Ro~1)+pq’ {k1k2 _?J}{#klkz (a* (B3-Ry)+ 2#)—!1(]* (klkz _?J},
0 o

& = (af —2a939) + (2bgb, —bf),
= (u+a’)? {[kl —ﬁj(kl +ﬂlj}+(g+a*)2 {q*klk2 [kl +ky —2,u—2ﬂ]
RO RO RO

12000 | 2o g | g2 —07) 0K (y — ) 420 () B g2
Ry Ro _ (37)

oaq

2 * * % *
+(Ry 1){[R ] (Ry +1) + 24222 4 219 0kiky | 2370 oaky( —a)
0

Ro Ro

2 * 2,20 _
N 2uoaq “(u+a’) _ﬂz(Ro _1 k12k22+ 200k k, kiks (Ry —1)
Ry Ry (kik, —oa) | kik, —oar

N a*klkz(k1 +k,)(Ry —1) +,u,81]}

kik, —oa Ry
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€, = (az2 +2a, —2a,3;) + (2bb, _bzz)’
= ﬂz(klz + kzz) +(u+ a*)z {[ 1 _lgl}('ﬁ +£1J}+ q*klz (2k2 _q*)
0

0

k2 {(pra Q) (ura —q" )+ p2 {ﬂ+a*+§j](u+a*—'sj} (38)

+20-Lq ﬁ_q* +M+2q*klk2 |(2—lu—ﬁ
RO RO RO RO

+(u+a*)2q*(ﬂl—q*j+q*ﬂl(u+a*)2,
RO R0

eszasz_baz_zaw

Ry

2
Sk 4k, 2+ ) = g =B | 2( it 20k +K,) + Kk, + (K, +K, + m)a’),
1 2 1 2 172 1 2 (39)

. 2
=k12+k22+2,u2+2a*y+a*2—q*2+72q B_| A ,
RO RO

*

_bo k1+ﬁ +(k2+q*)(k2—q*)+2,uz+2/¢a*+a*2+—2(:1 'Bl.
RoK, Ry Ry

Applying with Lemma of Zhang, Cao, and Xu (2015), the roots of (34) is distributed by analyzing h(z)in (35). For e, <0, it
follows that h(0) =g, <0, then as |im h(z) =+, thus h(z) =0 has at least one positive root. Further, differentiating (35)

Z—>+0

with respectto Z give
h'(z) =42° +3e,2> + 2e,2 +¢,. (40)

It is seen that if all coefficients e (i =1,2,3) >0 then h'(z) >0 implies that h(z) is monotonically increasing in (0, +c0).

Thus, there exists a unique positive number Z, such that h(z,) =0. By these results the following Lemma is established.

Lemma 6: For the characteristic Equation (29), and the conditions

,u+a*>ﬁ>q*, (41)
RO

k1>y+ﬁ, (42)
RO

k, >,u+ﬁ. (43)

0
are satisfied, the following results hold:

(i) Ife, > 0, then (29) has no pure imaginary root for z > 0.

(ii) If e, <0, then (29) has a pair of purely imaginary roots +ie, when 7 = ch ,j=0,1,..., where

/i _1 arccos{(bz_a3b3)w§ + (aubs + g, —a,h, —by) e

¢ (bs —by)* @5 + (bpe —bo ) (44)
+ (3022+a22b°2a1b1)“’§a0b°2}+2jﬂ ,i=0L...n.

(b —by)" @y + (Dyewy —bg)eng
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and gy, = \/Zwith Z, being the unique positive zero of (35).

From, Lemma 3.5 (Tipsri&Chinviriyasit, 2015) and Lemma 6 the following theorem is established.

Theorem 7: If R, >1, 2N" > K and conditions (41)-(43) are satisfied, then the following results of endemic equilibrium & hold:
(i) E" is absolutely stable for 7 > Owhenevere, > 0.

(i) £” is conditionally stable, that is Eis asymptotically stable for 7 € [0, ) whenever g, < 0.

Next, we analyzed the bifurcation of model (6). The time delay 7 is chosen as a bifurcation parameter. To show that there exists a

Hopf bifurcation at 7 = ., it needs to verify that

dRe(A(r))
dr

> 0. (45)

c

=T,

Let A(z) =a(r)+iw(r) be the root of (29), so that o (zr,)=0 and w(r,) =, are satisfied when 7 =7_. Substituting

A7) = a(r) +iw(7) into (29) and differentiating both sides of the resulting equation with respect to 7, this obtained

(42° +3a,4" 28,1 +4a,) 2—’1 —(b,A° +b, A% +b A +by)e ™ (/l +T 3—’1)
T T

(46)
+(30,4° +2b,A +b) 3—/1 =0.
T
Hence
( da ]1 __ 3v2atad’i-a, 0242 b 7 (47)
dr A vall+at’+al+a) A2(0,A°0+b,A%+bA+b) A
Therefore,
-1
Re(dﬂ,j - 30} +2e3c;)§ +8,a; — €, _— (48)
dr amioy, Do [(by —b,a,)” + (b0, —bye0)7]
Therefore,
-1 3 6 4
Sign{da(r)} _sign {da(r)} _sign { : 3 + 26352)0 +e,0, —€, _ } (49)
d T =1, d T =T, 0)0 [(bO - bZa)O) + (bla)o - b3a)0) ]

Obvious that the transversality condition (45) is satisfied when e  <0and e,,e, > 0. According to Routh's Theorem, the root of
characteristic equation (29) crosses from left to right on the imaginary axis as 7 continuously varies from a value less than 7, to

one greater than .. Therefore, the conditions for Hopf bifurcation are satisfied at 7 =z .

Observe that ey <0 whenever 2N" > K, Rp>1 and Ry > M whereas €, and €, are positive when the condition (41)-
a

(43) are satisfy. Thus, from these results, Lemma 5 and 6, the following theorem is established.
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Theorem 8: For the model (6), the following results hold:

@) If 2N">K, Rp > 3 tz'u and conditions (41)-(43) are satisfied, then the endemic equilibrium £” of the model (6) is
a

asymptotically stable for 7 [0, 7, ) and it is unstable when 7 > . .

(i) If all conditions as stated in (i) hold then the model (6) undergoes a Hopf bifurcation at the endemic equilibrium £” when

T=1;-
5. Direction of Hopf Bifurcation

In the previous section, we show that the model (6) undergoes a Hopf bifurcation and the periodic solutions will
appear. The periodic solution bifurcate from endemic equilibrium £ at the critical values T.. The direction, stability and

periods of these periodic solutions are determined by using the normal theory and the center manifold theorem as pointed by
Hassardet al. (1981).

Letu,(t) =S(t)-S",u,() =E(t)—E",u;(t) = 1(t) = 1 ,u,(t) =R(t) —R", X (t) =u,(zt), i=1,2,3,4;7 =7, +u where

T, is defined by (44) and 1 e R, thus system (6) can be written as a functional differential equation in C = C([-1,0], R*) as

x=L,(x)+ f(u.x,), (50)

where x(t) = (%, (t), X, (t), X, (t), X, (t))T eR*and L, :C—R*, f :RxC — R* are given respective by

Lﬂ(¢):(rc+,u)MU(O)+(z’c+,u)NU(—1), (51)
where
—(@+u) @ -a -a -m -m, -m; -m, #(a)
M = 0 -k, 0 0 N= m m, m m, ,U(a):¢2(a)
0 o -k 0 o 0 0 0 ¢,(a)
0 Ky U 6o 0 0 0 #,(a)
. s” o S w S .S
m=q [1_N*j1m2:(:81_q )Wlmsz(ﬂz_Q)N*vnu:_q N '
F-F,
FZ
f(u. ) =(z.+p) o |
0
where

F =N (0) + 1,7 (0) + gty (0) + g (0) + N (0)4, (0) + 1 (0); (0)
+1,64(0)4, (0) + g, (0)¢5(0) + negh, (0)44, (0) + 1y (0), (0),

Fo = b (D) + 17 (<D + 1y (D) + L (<) + 1A (D), (D) + L (D) (-2)
+hA (DA (D) +1e8, (=D (=1) + b, (-1, (1) + Loy (=D, (1),



A. Sirijampa et al. / Songklanakarin J. Sci. Technol. 40 (4), 928-952, 2018 939

r r S
n1=n2=n3:n4=K,nS:n6=n7=nB=n9=nm=ZK,I1=g*[lN*j,
o S o S .S o1 o S
l,=—(8-4 )FJs:—(ﬁz—q )F'I“:q F'ISI(ﬁl_q )F—(ﬁl—ZQ )F'

o= (@)1= (A= 20) o b = l==(h+ - 20) o

=z

* *

" S o S
ly=—(8-2q )FJw =—(8,-2q )W'

By the Riesz representation theorem, there exist a function 7(@, ) of bounded variation for g <[-1,0], such that

L@)=[,dn(@.40),  for <C. 2
In fact, we can choose
(0, 1) = (2. + )M 6(0) —(z. + )N 5(0+1), (53)
where 5(6) is Dirac delta function.
For ¢ e C*([-1,0],R*), define
dg(0) _
T 4
[ dnts,1e(s), 0=0,
and
0, 60 €[-1,0),
R(u)¢ = (85)
v {f (ud). 0=0.
Then system (50) is equivalent to
X, = A(p)x, + R(u)x,, (56)
where
X (0)=x(t+6) for <[-1,0]. (57)
For y e C'([0,1], (R")") , define
_dy(s)
A (s) = et se(0,1] (58)
[Cdn" o (-, s=0,
and bilinear inner product
W (). =7 @pO) [, [ #(E-0)dn@)p()de, (59)

where 5(9) =7(6,0) - A(0)and A" are adjoint operators. By discussion in Section 4, we know that *iw,r, are eigenvalues of

A(0). Thus, they are also eigenvalues of A". We need to compute eigenvector of A(0) and A" which corresponding to

0

eigenvalues iw,7.and —iw,r,, respectively. Suppose v(6?)=(1,V1,V2,V3)Tei“’°TE is the eigenvector of A(0)

corresponding to i@, , then A(0)v(0) = iw,z,v(0) - It follows from the definition of A(0), (51),(52) and (53), we have
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7.M v(0) +7, N v(-1) = iew,z,v(0). (60)
For v(-1) = v(0)e ™", then we obtain

(u+io)(u+im, +a*)(k2 +iawy,)

“=" (@ +k, +imy) (K, +iwy)(u +im,) +a o (u+iw,) +a"x(k, +ia,) +a"cy
v o(u+io)(u+ia, +a")

2@k tiay)(K, +iwy)(u+imy) + @ o (p+im,) +a k(k, +im,) +a oy
v, = (u+ioy+a")(x(k, +iay) +oy)

@+ K, +i@,)(K, +iap)(u+im,) +a o (u+iam,) +a'x(k, +im,) +a'oy
Similarly, we can obtain the eigenvector v™(s) = D(1, Vf,vgzk,vz)ei‘”‘)’c5 of A" corresponding to —i,7, . It follows from the
definition of A", (51), (52) and (53), we obtain

. iz, . . .
[ oMt —ioy +me V,k:(lcoo—y—a)m4+aml
1 v 73

1

m,e' " m, (i, — 1) (61)
Vv = (iwy -y _,u)a*ml +(im, _ﬂ_a*)((iwo —)m; —ym,)
2= - - .
(i, =k, ) (i, — pr)my
In order to assure (v'(s),Vv(6)) =1, the value of D is determined. By (59), we have
(V(8),v(0)) =DV, Y, , V)LV, V,, V)T
0 0 — ok xR\ i (E— iy,
=, .o DAY ) (B)L v, v, ) € e,
=D {1+ WV, +V,0, + V0, + 7, (V) —1) (M, +myy, +my, +m,v,)e " } :
Therefore, we can choose D as
b= L (62)

— — — — —iy7,
1+, +V,V, +V,V, +7,(V, —1)(m, + m,v, + myv, +m,v,)e "

In the following, we use the ideas of Hassard et al. (1981) to compute the coordinates describing center manifold C, at x4 =0.
Define

Z() =V, %),  W(t,0)=x —z(t)v(9) - Z(t)V(0) = x, — 2Re{z(t)v(0)}. (63)
On the center manifold C, we have
W(t,0) =W (z(t), Z(t), 6) =W20(0)Z—22+W11(9)27 +W02(9)7—22+..., (64)

where Z and Z are local coordinates for center manifold C, in the direction of V*and \7*. Note that W is real if X; is real.

We only consider the real solutions. For the solution x, e C, of (56), since ;=0 and (50), we have

() =iw,r.z(1)+V (0)£(0,W(=(1),Z(1),0)) + 2Re{z(1),(0)},
=iw,r.z(t)+v (0)f,(z,2),
=iw,r z(t)+ g(z,2). (65)
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where

. 22 72 25
9(z,2)=v (0)f,(z,2)= Oo 5 +0uZZ 400 5 +0n o+

From (63), we have x, =W (z,Z,60) +zv+2Zv . Thus,

2 =52
x.(0) = 2v, , + 2V, , +W (0) Z? W (0)zZ + WS (0) % .
2 =2
X, (-1) = zv_ e + 77 e + W (~1) % WO (~1)2Z + WS (-1) % .
for n=1,2,3,4andv, =V, =1.
It follows that
9(2,2) =7 (0) f,(2,7) =V"(0) f (0,%) = Dz, (F, + (¥ ~DF,).
where
F1 = nlxlzt 0)+ n, X22t (0) + n3X§t 0)+ n4XZt 0)+ N Xy, 0) Xt 0)+ Ng Xy 0) Xst (0)
+ n7 Xlt (0) X4t (O) + n8 X2t (O) X3t (0) + n9 X2t (0) X4t (O) + nlO X3t (O) X4t (0)7
F, = |1X121 =D+ |2X221 =D+ I3X321 =D+ |4X§t =D+ |5X11 -1 X5t =D+ Iexn =D Xst -0
+ I7 Xy (_1) Xyt (_1) + ISXZI (_1) X5t (_1) + Ig Xat (_1) Xyt (_1) + I1o Xgt (_1) Xyt (_1)-

Comparing the coefficients with (66), we have
0, = 2D1, {(n1 F IV +NVZ +NVZ NV, A+ NGV, + NV + MgV, + NGV, V, + Ny VoV, ) +
(V) =1 2% (I, + LV2 +Lv2 + 1,2 + 1y, +1,v, +1v, + vy, +1gv,v, + I10v2v3)},
9c, = 2Dz, {(nl NV NV + 0T NV, + NG, + NV + MUY, + NV + VoY) +
(@~ D™ (L + 105 41,05+ 10, +1%, + 10, + 07, + 10 + L0V 0)
gy, =Dz, {(an + 20V + 20,V,V, + 20,VoV; + N5 (V) + ;) + Ng (v, +V5) + 0, (V; +V)
+Ng (Vi + VY, ) + Ny (V¥ +Vvg ) + g (V,V; +\72V3)) +(v -1 (2|1 +2L,vY,
+ 20V, + 2L, V,0 + 15 (v + V) + 1 (v, + V) + 1 (Vs +7) + 1, (WY, +VV,)
Hg (Vi +%vy) + 1o (V,V; +V2V3))} ,
M. 1, 2
0, = 2Dz, {(Zn1 + NV, + NV, + NV )W, (0) +(2n,v, + ng + gV, + v )W, (0)

+(2nV, + g + gy, + vy W, (0) + (20,9, + 1 +ngy, +nygv, )WY (0)

i, _ 1 _ _
(s g, nm) WSO+ (g 00, ) S0
741 7 we . 7o) W
+ n3v2 + E (nﬁ + n8V1 + n10V3) WZO (0) + n4v3 + E (n7 + n9V1 + nlOVZ) W20 (0)
+ (\71* —1)e' = ((Il + % (I + 157, + I7\73)jW2%) (-9
_ voala @ - 1 T T ®)
+| Ly, +E(I5 +1V, +1,) (W,e' (1) +] LV, +E(Iﬁ +1g +1,,73) (W' (1)

_ 1 _ _
+(|4V3 + E (|7 + |9V1 + I10V2)jW2(04) (‘Dj
+ (3 —1)e "% (21, + gy, +1gv, + LW, (1) +
(2L, + g+ v, + VWP (<1) + (2L, + g + 1y, +1v, WP (-1)
(2L, + o+ + LW (D))

941

(66)

(67)

(68)

(69)
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In order to determine g,, , we need to compute w, (g) and w, (). From (56) and (63), we have

W =% —2v—12v,
AW —2Re{v" (0) £, (=, 5)v(O)}, 0e[-1,0),
aow ~2Re{V'(0)f;(z. 2 WO0)} + fi(z.7), 0=0,
= A(O)W +H(z,Z,0), (70)
where
H(Z,T,G):HZO(H)Z—22+ H,,(0)2z + H02(9)122+---. (71)

Substituting the series (64) and (71) into (70) and comparing the coefficients, we have
(A(O) - 2ia)0‘L'c I )Wzo (9) =-H 20 (‘9)1 A(O)Wu(e) = _Hn(e)- (72)

By (70), we know that for 9 e[-1,0),

H(z,2,0) =~V (0) f,(z, 2)v(0) -V (0) fy (2, Z)V(6) = ~9(2, 2)v(0) - (2, 2)V(6) (73)
Comparing the coefficients with (71), this gives

Hy (0) ==0,0v(0) = 8V(0),  Hy,(6) =—0,,v(0) - 9.,V (6). (74)
From (72), (74), and the definition of A(Q), we have

Woy(0) = 2i0,t, Wy (0) + 8:1(0) + 8,7 (0),  W,,(0) = g,W(0)~Z,7(0). (75)

Noticing v(6) = v(0)e"’ , we have

W20 (9) = IQAV(O)EWOZCH + 3lgiv(0)e—imgrc€ + Elezi(uorcel (76)

0%c 0%c

where E, = (E®,E?,E®,E®)" e R* is a constant vector. Similarly, we have

W, (6) = — 91 y(o)eis? 1 19 g(o)eind 4 E | (77)

Wl Dol

where E, = (E{?, E® , E® , E{Y)T e R* is a constant vector.

In the following, we will find out E and E,. From the definition of A(0) and (72), we have
0 .
[, dn(6)W,y(6) = 2iayz Wy (0) —Hy 0), (78)
0
[, dn(O)W,;(0) =—H,;(0). (79)

where 77(8) =7(0,0) - By (70), we know that when & =0
H(z,Z,0)=-v"(0) f,(z,7)v(0) -V (0) ﬂ(z, )WV (0)+ f,(z,7)
=-9(z,2)v(0)—g(z,2)v(0) + f,(z,2).
Applying with (71), this give
H,0(0) = —0,,v(0) — 9,V (0) + 7. (G,, G,, 0, 0)", (80)
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H,,(0) =-9,,v(0) - §,,V(0) + 7. (G;, G, 0, O)T )
where
G, = 2{(n1 F NN+ NVZ +NVE + NGV, + NV, + NV, +NV,V, + NV,V, + N, VoV
-l (RS VAR IV [V VAR IAVARE) VAR RVAVARS) IVAVARS I10v2v3)} ,
G, = 2672 (I + 1,7 + 1,2 +1,vZ + 1.y, + 1V, + LV, + vy, + v, +1,v,v,),
G3 = 2(”1 - |1) + 2(“2 - Iz)Vlvl + 2(“3 - I3)V2\72 + 2(“4 - IA)V3\73 + (ns - IS)(vl +\71)
+ (ne - Ie)(Vz +\72) + (n7 - I7)(V3 +\73) + (ng - Ia)(vlvz +\71V2)
+ (n9 - IQ)(VjLVS + vlvs) + (nm - |1o)(V2\73 + \72V3),
G, =21, +2l,v,V; + 21V, 7, + 21,v,V, + 1 (v, + V) + | (v, +V,) + 1, (v, + ;)
g (W, +ViV,) + 1y (ViV3 +VV,) + g (V,V5 + V).

Since iw,z, is the eigenvalue of A(0) and v(0) is the corresponding eigenvector, we obtain
H 0 10wy,
(i1 = [ ean(@) v©) 0,
H 0 —iBwyr,
(—la)orcl [le cdn(a))v(O) —0,
Substituting (76) and (80) into (78), this yields
. 0 2iwyr,d
(ZIa)OTCI [ et om(e))E1 ~7.(G,,G,,0,0)

Then, it follows that

E® = @ia, +k)G, - (G, +G,)C, + mla*Gz (@+C + Cz)e_Zi“’“’E
' (2w, +k)Cy — (Qiwy +a + 1)C, +ma’(1+C, +C,)e 7"

E1(2) = i Glm1*eizi%rc +G,C, _ —
(2w, +k,)C; — (2iw, +a + u)C, +ma (1+C, +C,)e """
@ _ C,(Gme "™ +G,C,)
' (2, +k)C,y — (2im, +a" + p)C, +ma’(1+C, +C,)e "’
@ C,(Gme™ ™" +G,C,)

EW = e 2 et
' (2w, +k)C, — (2, +a" + 1)C, + ma’(1+C, +C,)e 2

where C = o C K(Zia)o + kz) +oy C3 — 2|C()0 + a* U+ n,lle—Zia)Orc and C4 — (r-n2 + m3C1 + I.],14(:2)e—2i!z>grC .

Qiwy +k, 2 (2, + u)(2ia, +k,)’

Similarly, substitute (77) and (81) into (79), we obtain
0
[, dn(6)E, =-7.(G;,G,,0,0)"

It follows that

E® — (G;+G,)D, + (kk, —oa)a’G, — ukk,G,

’ (@ + p)D; + ukik, D, — (kk, — ca)ma’
Hk, (DzG4 - m1G3)

(@ + p)D; + ukik, D, — (kk, —oa)ma’

E® = /10'( D,G, - m163)

2 (@ +u)D, + ukk,D, — (kk, —oa)ma”

(xk, +07) ( D,G, - m163)
(@ +p)D, + ukik,D, - (kk, —oa)ma”’

@ _
2

1

@ _
2

943

(81)

(82)

(83)

(84)

(85)

(86)
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where D = ﬂkzm2 + pom, + (Kk2 + o7/)m4 and D, = —(a* +p+m). Therefore, we can determined W, (0) and Wn(e) from

(76) and (77), respectively. Furthermore, all 0jj have been expressed in terms of parameters, and we can compute the following

values:

i > 1900, 9a
¢(0) = Zrc%(gngzo—ﬂgﬂ —3}‘2,
v - _Refc (0} @)
’ Re{'(z.)}
B = 2Re{c,(0)},
T, - _|m{01(0)}+ﬂ2|m/1'(7c)’

TCCUO

From the conclusion in Hassard et al. (1981), the main results in this section are concluded in the following theorem.

Theorem 9: The model (6), when 7 = 7, the direction and the stability of periodic solution of Hopf bifurcation is determined

by (87). Then

(i) the sign of 1, determines the direction of the Hopf bifurcation: if ,, > 0(, <0), then the Hopf bifurcation is supercritical
(subcritical) and the bifurcation periodic solutions exist for 7 > 7_(r < z,) ;

(ii) the sign of B, determines the stability of the bifurcating periodic solution: the bifurcation periodic solutions are stable
(unstable) if B, <0(B,>0);

(iii) the sign of T, determines the period of the bifurcating periodic solutions: the period increase (decrease) if T, > 0(T, <0).

6. Numerical Simulation

To see the behavior of the model (6), the numerical solutions of the model (6) are simulated by using MATLAB
programming with RK4 method. Parameters values use in simulating the model (6) are based on the influenza HLN1 parameters

as shown in Table 1.

Table 1. Parameters are used in numerical simulation (unit week where applicable).

Parameter Description Value Source
r Birth rate 0.5 Assumed
K Carrying capacity 10,000 Assumed
p Contact rate 7.29 Assumed
Be Ability to cause infection by exposed individuals 0.21 Assumed
B, Abl_hi_ﬁy to cause infection by infectious 0.84 Assumed

individuals
H Natural mortality rate 0.000263 [1]
o Mean duration of latency 2.32 [2]
Y Recovery rate of clinical ill 14 [2]
K Recovery rate in latent period 1.3 [3]
(o4 Disease induced mortality rate 0.065 [4]

[1] Index Mundi (2015). [2]Pourbohloul-Brunham et al. (2009); Yang-Longini et al. (2009); Tuite-Fisman et al. (2010).
[3] Massad et al. (2007). [4] LonginiJr, Ackerman, and Elveback (1978).
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To study the stability of the disease-free equilibrium, & , we choose B =2 which yields R, =0.85. Applying with

Theorem 4, the disease-free equilibrium of the model (6) is absolutely stable for all 7 > 0. These results are shown by simulating

the numerical solutions with various 7 as shown in Figure 1. Observe that all solutions converge to disease-free equilibrium, &

with various 7 .

10000
—1=10
=-1=30
8000 =40
- 1=50
2 6000
=
@«
&
S 4000 1
M
N
ZUDO"J"
0 i i i i i
0 05 1 15 2 25 3
Time(weeks) v 1a*
—1=10
-=-1=30
=40
-=1=50

<

i i H i i L i .
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time(weeks)

100 . .
: —1=10
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&0 =40
-=1=50
60,

Infected

i i H ) i L L .
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Time(weeks)

10000 T s
—w=10
\ ; -==1=30
8000 F =40
== 1=50
5 6000} -
2
o
L7}
@ 4000F 1
2000 1
0
0 05 1 1.5 2 25 3
Time(weeks) v 10?

Figure 1. Numerical solutions of the model (6) with various 7 and initial condition: S(0)=3000, E(0)=10,1(0)=100and
R(0) = 3000 . Parameter values used are as in Table 1 with =2 which yields Ry =0.85.
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By choosing g =5 which yields R, =2.12, the model (6) has a unique endemic equilibrium, &" as guaranteed by

Theorem 3. Further g =5, corresponds to the conditions in Theorem 7(i). Thus, & is absolutely stable for all 7> 0. Numerical

solutions for the case B =5 are simulated with z =10,38.55,45 as show in Figure 2, 3 and 4, respectively. It is seen that all

numerical solutions converge to £*. These represents that the endemic equilibrium, £ is absolutely stable for all 7>0.

6500

6000

5500

a8
8

4500

Susceptible

4000/
3500

30000

12

Infected
o

2]

=]

5
Time(weeks)

5
Time(weeks)

Time(weeks)

Time(weeks)

Figure 2. Numerical solutions of the model (6) for z =10 < 7, with initial condition: S(0)=3223,E(0)=1,1(0) =1 and R(0)=6768-
Parameter values used are as in Table 1 with B=5 which yields R,=2.12.
6500 3
6000+ . 25- i
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£ 5000 §
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450011 ]
11 4
AMAAAAAA 4000+ s
W
% 5 10 15 3500, 10 15
Time(weeks) X 104 Time(weeks) x1a?

Figure 3.

Parameter values used are as in Table 1 with B=5 which yields R,=2.12.

Numerical solutions of the model (6) for 7 = 38.55 = 7, with initial condition: S(0) =3223,E(0) =1,1(0) =1 and R(0)=6768.
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Figure 4. Numerical solutions of the model (6) for 7 = 45 > 7, with initial condition: S(0) =3223,E(0)=1,1(0) =1 and R(0)=6768-
Parameter values used are as in Table 1 with B=5 which yields R, = 2.12.

Next, we considered the dynamic of the model (6) with B =7.29 this yields R =3.1 and there exist a unique

endemic equilibrium, £"as guaranteed by Theorem 3. Further, the conditions in Theorem 8(i) are satisfied and 7, ~ 38.55 is

calculated by using (44). Figure 5 shows that for the case r =5, the numerical solutions of the model (6) converge to endemic

equilibrium when time increase. On the other hand, if we choose 7 = 45, the numerical solutions diverge from the endemic
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6800 1
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8 l
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i i
10 15 0 15
x10* Time(weeks) <10

Figure 5. Numerical solutions of the model (6) for 7 =5 < 7, with initial condition: S(0)=3223,E(0)=1,1(0)=1 and R(0)=6768 -
Parameter values used are as in Table 1 with £=7.29 which yields R0 =3.1.
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equilibrium as shown in Figure 7. This means £ is asymptotically stable when 7 <7 and unstable when 7 > 7. as
guaranteed by Theorem 8(i). For the case r~38.55, the numerical solutions of the model (6) are periodic as shown in Figure 6.

From these results, it concludes that the model (6) undergoes a Hopf bifurcation at £ as guaranteed by Theorem 8(ii).

Susceptible

Time(weeks) 4

Time(weeks) 4

Time(weeks) 4

Time(weeks) 4

Figure 6. Numerical solutions of the model (6) for 7 = 38.55 ~ 7, with initial condition: S(0) =3223,E(0) =1,1(0) =1 and R(0) =6768 .
Parameter values used are as in Table 1 with B =7.29 which yields Ry =3.1.
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Figure 7. Numerical solutions of the model (6) for z = 45 > 7. with initial condition: S(0) =3223,E(0) =1,1(0) =1 and R(0) =6768 .
Parameter values used are as in Table 1 with B =7.29 which yields Ry =3.1.

Finally, the direction of Hopf bifurcation and the other properties of bifurcating periodic solution are discussed. By

using p=7.29, we obtain ¢ =0.00037 and 7 =38.55. Furthermore, we can calculate the following values:
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¢,(0)=2.52x107%° —1.08x107i, 1, =—1.497x107°, B, =5.031x10"°and T, =2.541x107°. By Theorem 9, we conclude

that Hopf bifurcation of the model (6) occurring at 7, =38.55 is subcritical, the periodic solution exists when 7 crosses 7

from left to right, the periodic solution is unstable and the period increase.

7. Conclusions

In this paper, we study the dynamic behavior of SEIR delay model with logistic growth. The stability of each

equilibrium point was analyzed by choosing time delay 7 as a bifurcation parameter. The main of this study are summarized

below:

(i) Disease-free equilibrium, & of the model (6) is locally asymptotically stable for all >0 when R, <1 (Theorem 4).

(ii) The model (6) has a unique endemic equilibrium, £ when R, >1 (Theorem 3) and &’ is locally asymptotically

stable for all 7 > 0when 2N” > K, conditions (41)-(43) are satisfied and g, > 0 (Theorem 7(i)).

(iii) The unique endemic equilibrium, £ is conditionally stable when 2N™ > K , R >

M and condition (41)-

(43) are satisfied and the dynamical behavior of the model (6) undergoes a Hopf bifurcation when 7 = 7. (Theorem 8).

Furthermore, the stability, direction and period of the periodic solution are determined by using the method based on

the normal form theory and the center manifold reduction. Finally, the numerical solutions of the model (6) are simulated to

verify the theoretical results.
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