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Abstract 
 
We establish characterizations of rational numbers by using SEL series expansions, which yield generalized versions of 

characterizing rational numbers by Sylvester series, Engel series and Lüroth series expansions. Characterizations of rational 

numbers via alternating SEL series expansions yield generalized versions of characterizing rational numbers by alternating 

Sylvester series, alternating Engel series and alternating Lüroth series expansions. 

 

Keywords: Sylvester and alternating Sylvester series, Engel and alternating Engel series, Lüroth and alternating Lüroth series, 
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1. Introduction 
 

 According to Galambos (1976), Knopfmacher and 

Knopfmacher (1988), and Singthongla and Kanasri (2014), it 

is well-known that each 𝐴𝐴 ∈ ℝ is uniquely representable as an 

infinite series expansion called Sylvester series expansion, 

which is of the form 
 

𝐴𝐴 = 𝑎𝑎0 + �
1
𝑎𝑎𝑛𝑛

∞

𝑛𝑛=1

, 

 

where       𝑎𝑎0 = �⌊𝐴𝐴⌋        if 𝐴𝐴 ∉ ℤ
 𝐴𝐴 − 1  if 𝐴𝐴 ∈ ℤ

,� 𝑎𝑎1 ≥ 2, and 𝑎𝑎𝑛𝑛+1 ≥

𝑎𝑎𝑛𝑛(𝑎𝑎𝑛𝑛 − 1) + 1 for all 𝑛𝑛 ≥ 1.  Moreover, 𝐴𝐴 ∈ ℚ if and only if

 
𝑎𝑎𝑛𝑛+1 = 𝑎𝑎𝑛𝑛(𝑎𝑎𝑛𝑛 − 1) + 1 for all sufficiently large 𝑛𝑛. Ananalo-

gous representation  Galambos (1976), Knopfmacher and 

Knopfmacher (1988), Laohakosol, Chaichana, Kanasri, and 

Rattanamoong (2009), and Singthongla and Kanasri (2014)  

also states that every real number 𝐴𝐴 has a unique represent-

tation as an infinite series expansion called Engel series 

expansion, which is of the form 

𝐴𝐴 = 𝑎𝑎0 + �
1

𝑎𝑎1 ⋯𝑎𝑎𝑛𝑛

∞

𝑛𝑛=1

, 

where        𝑎𝑎0 = �⌊𝐴𝐴⌋       if 𝐴𝐴 ∉ ℤ
 𝐴𝐴 − 1  if 𝐴𝐴 ∈ ℤ

,� 𝑎𝑎1 ≥ 2, and 𝑎𝑎𝑛𝑛+1 ≥

𝑎𝑎𝑛𝑛 for all 𝑛𝑛 ≥ 1. Moreover, 𝐴𝐴 ∈ ℚ if and only if 𝑎𝑎𝑛𝑛+1 = 𝑎𝑎𝑛𝑛  

for all sufficiently large 𝑛𝑛. For the last representation Galam-

bos (1976) and Singthongla and Kanasri (2014), it is also 

known that each 𝐴𝐴 ∈ ℝ is uniquely representable as an infinite
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series expansion called L𝑢̈𝑢roth series expansion, which is of the form 

𝐴𝐴 = 𝑎𝑎0 +
1
𝑎𝑎1

+ �
1

𝑎𝑎1(𝑎𝑎1 − 1)⋯𝑎𝑎𝑛𝑛(𝑎𝑎𝑛𝑛 − 1)𝑎𝑎𝑛𝑛+1

∞

𝑛𝑛=1

, 

 

where  𝑎𝑎0 = �⌊𝐴𝐴⌋       if 𝐴𝐴 ∉ ℤ
 𝐴𝐴 − 1  if 𝐴𝐴 ∈ ℤ

�  and 𝑎𝑎𝑛𝑛 ≥ 2 for all 𝑛𝑛 ≥ 1. Moreover, 𝐴𝐴 ∈ ℚ if and only if  the Lüroth series expansion of 𝐴𝐴 is 

periodic. 

 In another direction, Kalpazidou, Knopfmacher, and Knopfmacher introduced three alternating series expansions for 

real numbers, namely, alternating Sylvester series, alternating Engel series (Knopfmacher & Knopfmacher, 1989), and alternating 

Lüroth series expansions (Kalpazidou, Knopfmacher, & Knopfmacher, 1990). The series under discussion are as follows: Every 

real number 𝐴𝐴 has a unique representation as a series expansion called alternating Sylvester series expansion, which is of the 

form 
 

𝐴𝐴 = 𝑎𝑎0 +
1
𝑎𝑎1

+ �
(−1)𝑛𝑛

𝑎𝑎𝑛𝑛+1

∞

𝑛𝑛=1

, 

 

where  𝑎𝑎0 = ⌊𝐴𝐴⌋ , 𝑎𝑎1 ≥ 1, and 𝑎𝑎𝑛𝑛+1 ≥ 𝑎𝑎𝑛𝑛(𝑎𝑎𝑛𝑛 + 1) for all 𝑛𝑛 ≥ 1. Moreover, 𝐴𝐴 is rational if and only if the alternating Sylvester 

series expansion of 𝐴𝐴 is finite. Corresponding to the series of Engel, it is known that every real number 𝐴𝐴 has a unique 

representation as a series expansion called alternating Engel series expansion, which is of the form 
 

𝐴𝐴 = 𝑎𝑎0 +
1
𝑎𝑎1

+ �
(−1)𝑛𝑛

𝑎𝑎1 ⋯𝑎𝑎𝑛𝑛𝑎𝑎𝑛𝑛+1

∞

𝑛𝑛=1

, 

 

where  𝑎𝑎0 = ⌊𝐴𝐴⌋, 𝑎𝑎1 ≥ 1, and 𝑎𝑎𝑛𝑛+1 ≥ 𝑎𝑎𝑛𝑛 + 1 for all 𝑛𝑛 ≥ 1. Moreover, 𝐴𝐴 is rational if and only if the alternating Engel series 

expansion of 𝐴𝐴 is finite. For the last representation, it is also known that every real number 𝐴𝐴 has a unique representation as a 

series expansion called alternating L𝑢̈𝑢roth series expansion, which is of the form 
 

𝐴𝐴 = 𝑎𝑎0 +
1
𝑎𝑎1

+ �
(−1)𝑛𝑛

𝑎𝑎1(𝑎𝑎1 + 1)⋯𝑎𝑎𝑛𝑛(𝑎𝑎𝑛𝑛 + 1)𝑎𝑎𝑛𝑛+1

∞

𝑛𝑛=1

, 

 

where  𝑎𝑎0 = ⌊𝐴𝐴⌋ and 𝑎𝑎𝑛𝑛 ≥ 1 for all 𝑛𝑛 ≥ 1. Moreover, 𝐴𝐴 is rational if and only if  the alternating Lüroth series expansion of 𝐴𝐴 is 

finite or periodic. 

 In 2014, Kanasri and Singthongla introduced two algorithms for constructing two infinite series expansions for real 

numbers, namely, SEL series expansion (Singthongla & Kanasri, 2014) and alternating SEL series expansion (Kanasri & 

Singthongla, 2014), which yield generalized versions of the first three series expansions and the last three (alternating) series 

expansions, respectively. 

 In this work, we establish characterizations of rational numbers by using SEL series expansion and alternating SEL 

series expansion, which yield generalized versions of characterizing rational numbers by the first three series expansions and the 

last three (alternating) series expansions, respectively. 

 

2. Characterizing Rational Numbers by SEL Series Expansion 
 

 We first recall the algorithm for constructing SEL Series Expansion as follows: Given any real number 𝐴𝐴, write it as 

𝐴𝐴 = 𝑎𝑎0 + 𝐴𝐴1, where  𝑎𝑎0 = �⌊𝐴𝐴⌋       if 𝐴𝐴 ∉ ℤ
 𝐴𝐴 − 1  if 𝐴𝐴 ∈ ℤ

� 
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and 0 < 𝐴𝐴1 ≤ 1. Then recursively define 

𝑎𝑎𝑛𝑛 = 1 + �
1
𝐴𝐴𝑛𝑛
� ,                                                                                                    (2.1) 

𝐴𝐴𝑛𝑛+1 = (𝑎𝑎𝑛𝑛𝐴𝐴𝑛𝑛 − 1)𝑒𝑒𝑛𝑛 ,                                                                                       (2.2) 
 

where  𝑒𝑒𝑛𝑛 = 𝑒𝑒𝑛𝑛(𝑎𝑎𝑛𝑛) is a positive rational number, which may depend on 𝑎𝑎𝑛𝑛 , for all 𝑛𝑛 ≥ 1. 

 To facilitate the proof of Theorem 1, we prove the following lemma. 

 

Lemma 1. Any series 
 

1
𝑏𝑏1

+ �
1

𝑏𝑏1𝑓𝑓1 ⋯𝑏𝑏𝑛𝑛𝑓𝑓𝑛𝑛𝑏𝑏𝑛𝑛+1

∞

𝑛𝑛=1

,                                                                                 (2.3) 

 

where  𝑏𝑏𝑛𝑛 ∈ ℕ, 𝑏𝑏1 ≥ 2, 𝑏𝑏𝑛𝑛+1 ≥ (𝑏𝑏𝑛𝑛 − 1)/𝑓𝑓𝑛𝑛 + 1 ≥ 2, and 𝑓𝑓𝑛𝑛 = 𝑓𝑓𝑛𝑛(𝑏𝑏𝑛𝑛) ∈ ℚ+ for all  𝑛𝑛 ≥ 1 converges to a real number 𝐵𝐵1  such 

that 𝑏𝑏1 = 1 + ⌊1/𝐵𝐵1⌋. 

Proof. For 𝑛𝑛 ∈ ℕ, let 𝐶𝐶𝑛𝑛 = 1
𝑏𝑏1

+ ∑ 1
𝑏𝑏1𝑓𝑓1⋯𝑏𝑏𝑘𝑘𝑓𝑓𝑘𝑘𝑏𝑏𝑘𝑘+1

𝑛𝑛−1
𝑘𝑘=1 . It is clear that the sequence of positive real numbers (𝐶𝐶𝑛𝑛) is 

increasing. To show that the series in (2.3) converges, it suffices to show that (𝐶𝐶𝑛𝑛) is bounded above. Since 𝑏𝑏1 ≥ 2 and 𝑏𝑏𝑛𝑛+1 ≥

(𝑏𝑏𝑛𝑛 − 1)/𝑓𝑓𝑛𝑛 + 1 ≥ 2 for all 𝑛𝑛 ≥ 1, we have 
 

1
𝑓𝑓𝑛𝑛
≤
𝑏𝑏𝑛𝑛+1 − 1
𝑏𝑏𝑛𝑛 − 1

(𝑛𝑛 ≥ 1).                                                                                        (2.4) 

 

It follows that 
 

                                              𝐶𝐶𝑛𝑛 ≤
1
𝑏𝑏1

+ �
(𝑏𝑏2 − 1)(𝑏𝑏3 − 1)
(𝑏𝑏1 − 1)(𝑏𝑏2 − 1)⋯

(𝑏𝑏𝑘𝑘+1 − 1)
(𝑏𝑏𝑘𝑘 − 1) ∙

1
𝑏𝑏1 ⋯𝑏𝑏𝑘𝑘𝑏𝑏𝑘𝑘+1

𝑛𝑛−1

𝑘𝑘=1

 

     =
1
𝑏𝑏1

+ �
(𝑏𝑏𝑘𝑘+1 − 1)

(𝑏𝑏1 − 1)𝑏𝑏1 ⋯𝑏𝑏𝑘𝑘𝑏𝑏𝑘𝑘+1

𝑛𝑛−1

𝑘𝑘=1

 

     =
(𝑏𝑏1 − 1)

(𝑏𝑏1 − 1)𝑏𝑏1
+

1
𝑏𝑏1 − 1 ��

1
𝑏𝑏1 ⋯𝑏𝑏𝑘𝑘

−
1

𝑏𝑏1 ⋯𝑏𝑏𝑘𝑘𝑏𝑏𝑘𝑘+1
�

𝑛𝑛−1

𝑘𝑘=1

 

                                                                       =
1

𝑏𝑏1 − 1 �1 −
1
𝑏𝑏1

+
1
𝑏𝑏1
−

1
𝑏𝑏1 ⋯𝑏𝑏𝑛𝑛

� 

                                                                       =
1

𝑏𝑏1 − 1 �1 −
1

𝑏𝑏1 ⋯𝑏𝑏𝑛𝑛
� <

1
𝑏𝑏1 − 1, 

 

 

for all 𝑛𝑛 ≥ 1. Thus the series in (2.3) converges to a nonzero real number 𝐵𝐵1. Consequently, 1/𝑏𝑏1 < 𝐵𝐵1 ≤ 1/(𝑏𝑏1 − 1), which 

implies that 𝑏𝑏1 = 1 + ⌊1/𝐵𝐵1⌋, and the lemma follows. 

Recall the following result in (Singthongla & Kanasri, 2014), which gives the existence and uniqueness of SEL series 

expansion for any real number.  

 

Theorem 1. Let 𝐴𝐴 ∈ ℝ and assume that 
 

𝑎𝑎𝑛𝑛 − 1
𝑒𝑒𝑛𝑛

∈ ℕ      (𝑛𝑛 ≥ 1).                                                                                          (2.5) 
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Then 𝐴𝐴 is uniquely representable as an infinite series expansion called SEL series expansion, which is of the form 
 

 𝐴𝐴 = 𝑎𝑎0 +
1
𝑎𝑎1

+ �
1

𝑎𝑎1𝑒𝑒1 ⋯𝑎𝑎𝑛𝑛𝑒𝑒𝑛𝑛𝑎𝑎𝑛𝑛+1

∞

𝑛𝑛=1

,                                                                  (2.6) 

 

where 𝑎𝑎1 ≥ 2 and 𝑎𝑎𝑛𝑛+1 ≥ (𝑎𝑎𝑛𝑛 − 1)/𝑒𝑒𝑛𝑛 + 1 for all  𝑛𝑛 ≥ 1. 

Proof. Using (2.1), we get 
1
𝑎𝑎𝑛𝑛

< 𝐴𝐴𝑛𝑛 ≤
1

𝑎𝑎𝑛𝑛 − 1
(𝑛𝑛 ≥ 1).                                                                                     (2.7) 

 

We now prove the following Claim. 

Claim. 0 < 𝐴𝐴𝑛𝑛 ≤ 1 for all  𝑛𝑛 ≥ 1. 

Proof of the Claim. We will prove this claim by induction on 𝑛𝑛. If 𝑛𝑛 = 1, then we have seen that 0 < 𝐴𝐴1 ≤ 1. Assume now that 

0 < 𝐴𝐴𝑛𝑛 ≤ 1 for  𝑛𝑛 ≥ 1. It follows by (2.1) that 𝑎𝑎𝑛𝑛 ≥ 2. Since  𝐴𝐴𝑛𝑛+1 = (𝑎𝑎𝑛𝑛𝐴𝐴𝑛𝑛 − 1)𝑒𝑒𝑛𝑛 = �𝐴𝐴𝑛𝑛 −
1
𝑎𝑎𝑛𝑛
� 𝑎𝑎𝑛𝑛𝑒𝑒𝑛𝑛  and using (2.5) and 

(2.7) we have  

0 < 𝐴𝐴𝑛𝑛+1 = (𝑎𝑎𝑛𝑛𝐴𝐴𝑛𝑛 − 1)𝑒𝑒𝑛𝑛 ≤ �
𝑎𝑎𝑛𝑛

𝑎𝑎𝑛𝑛 − 1 − 1� 𝑒𝑒𝑛𝑛 =
𝑒𝑒𝑛𝑛

𝑎𝑎𝑛𝑛 − 1 ≤ 1                                                   (2.8) 

 

and so we have the Claim. 

From this Claim together with (2.1), we deduce that 𝑎𝑎𝑛𝑛 ≥ 2 for all 𝑛𝑛 ≥ 1. By using (2.1), (2.5), and (2.8), we obtain 

𝑎𝑎𝑛𝑛+1 ≥ (𝑎𝑎𝑛𝑛 − 1)/𝑒𝑒𝑛𝑛  + 1 for all 𝑛𝑛 ≥ 1. 

From (2.2), we get that 

𝐴𝐴𝑛𝑛 =
1
𝑎𝑎𝑛𝑛

+
𝐴𝐴𝑛𝑛+1

𝑎𝑎𝑛𝑛𝑒𝑒𝑛𝑛
(𝑛𝑛 ≥ 1).                                                                                         (2.9) 

 

Applying (2.9) repeatedly, we obtain 
 

                    𝐴𝐴1 =
1
𝑎𝑎1

+
1

𝑎𝑎1𝑒𝑒1𝑎𝑎2
+ ⋯+

1
𝑎𝑎1𝑒𝑒1 ⋯𝑎𝑎𝑛𝑛−1𝑒𝑒𝑛𝑛−1𝑎𝑎𝑛𝑛

+
𝐴𝐴𝑛𝑛+1

𝑎𝑎1𝑒𝑒1 ⋯𝑎𝑎𝑛𝑛𝑒𝑒𝑛𝑛
(𝑛𝑛 ≥ 1). 

 

By Lemma 1, the series in the right hand side of (2.6) is convergent. It follows that lim𝑛𝑛→∞ 1/(𝑎𝑎1𝑒𝑒1 ⋯𝑎𝑎𝑛𝑛𝑒𝑒𝑛𝑛𝑎𝑎𝑛𝑛+1) = 0. Using 

(2.7) and 𝑎𝑎𝑛𝑛+1 ≥ 2, we deduce that 
 

                        0 <
𝐴𝐴𝑛𝑛+1

𝑎𝑎1𝑒𝑒1 ⋯𝑎𝑎𝑛𝑛𝑒𝑒𝑛𝑛
≤

1
𝑎𝑎1𝑒𝑒1 ⋯𝑎𝑎𝑛𝑛𝑒𝑒𝑛𝑛

⋅
1

𝑎𝑎𝑛𝑛+1 − 1 ≤
2

𝑎𝑎1𝑒𝑒1 ⋯𝑎𝑎𝑛𝑛𝑒𝑒𝑛𝑛𝑎𝑎𝑛𝑛+1
(𝑛𝑛 ≥ 1). 

 

It follows that lim𝑛𝑛→∞ 𝐴𝐴𝑛𝑛+1/(𝑎𝑎1𝑒𝑒1 ⋯𝑎𝑎𝑛𝑛−1𝑒𝑒𝑛𝑛−1𝑎𝑎𝑛𝑛𝑒𝑒𝑛𝑛) = 0. Therefore, 
 

𝐴𝐴1 =
1
𝑎𝑎1

+ �
1

𝑎𝑎1𝑒𝑒1 ⋯𝑎𝑎𝑛𝑛𝑒𝑒𝑛𝑛𝑎𝑎𝑛𝑛+1

∞

𝑛𝑛=1

 

and (2.6) follows, as desired. 

 To prove uniqueness, suppose that 𝐴𝐴 ∈ ℝ has expansions 
 

𝐴𝐴 = 𝑎𝑎0 +
1
𝑎𝑎1

+ �
1

𝑎𝑎1𝑒𝑒1 ⋯𝑎𝑎𝑛𝑛𝑒𝑒𝑛𝑛𝑎𝑎𝑛𝑛+1

∞

𝑛𝑛=1

= 𝑏𝑏0 +
1
𝑏𝑏1

+ �
1

𝑏𝑏1𝑓𝑓1 ⋯𝑏𝑏𝑛𝑛𝑓𝑓𝑛𝑛𝑏𝑏𝑛𝑛+1
,                                 (2.10)

∞

𝑛𝑛=1

 

with the restrictions 

                            𝑎𝑎0 ∈ ℤ, 𝑎𝑎𝑛𝑛 ∈ ℕ, 𝑎𝑎1 ≥ 2,𝑎𝑎𝑛𝑛+1 ≥
𝑎𝑎𝑛𝑛 − 1
𝑒𝑒𝑛𝑛

+ 1 ≥ 2, and𝑒𝑒𝑛𝑛 = 𝑒𝑒𝑛𝑛(𝑎𝑎𝑛𝑛) ∈ ℚ+(𝑛𝑛 ≥ 1), 
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                         𝑏𝑏0 ∈ ℤ, 𝑏𝑏𝑛𝑛 ∈ ℕ, 𝑏𝑏1 ≥ 2, 𝑏𝑏𝑛𝑛+1 ≥
𝑏𝑏𝑛𝑛 − 1
𝑓𝑓𝑛𝑛

+ 1 ≥ 2, and𝑓𝑓𝑛𝑛 = 𝑓𝑓𝑛𝑛(𝑏𝑏𝑛𝑛) ∈ ℚ+(𝑛𝑛 ≥ 1). 

Using Lemma 1, we obtain 

 0 <
1
𝑎𝑎1

< 𝐴𝐴1 ≔
1
𝑎𝑎1

+ �
1

𝑎𝑎1𝑒𝑒1 ⋯𝑎𝑎𝑛𝑛𝑒𝑒𝑛𝑛𝑎𝑎𝑛𝑛+1
≤

1
𝑎𝑎1 − 1 ≤ 1,

∞

𝑛𝑛=1

 

0 <
1
𝑏𝑏1

< 𝐵𝐵1 ≔
1
𝑏𝑏1

+ �
1

𝑏𝑏1𝑓𝑓1 ⋯𝑏𝑏𝑛𝑛𝑓𝑓𝑛𝑛𝑏𝑏𝑛𝑛+1
≤

1
𝑏𝑏1 − 1 ≤ 1.

∞

𝑛𝑛=1

 

 

If 𝐴𝐴1 = 1, then by (2.10) we also have 𝐵𝐵1 = 1, forcing 𝑎𝑎0 = 𝑏𝑏0. If 0 < 𝐴𝐴1 < 1, then (2.10) shows that 0 < 𝐵𝐵1 < 1, again forcing 

𝑎𝑎0 = 𝑏𝑏0. In either case, by cancelling the terms 𝑎𝑎0, 𝑏𝑏0 in (2.10), we have 
 

𝐴𝐴1 =
1
𝑎𝑎1

+ �
1

𝑎𝑎1𝑒𝑒1 ⋯𝑎𝑎𝑛𝑛𝑒𝑒𝑛𝑛𝑎𝑎𝑛𝑛+1

∞

𝑛𝑛=1

=
1
𝑏𝑏1

+ �
1

𝑏𝑏1𝑓𝑓1 ⋯𝑏𝑏𝑛𝑛𝑓𝑓𝑛𝑛𝑏𝑏𝑛𝑛+1
= 𝐵𝐵1.                                   (2.11)

∞

𝑛𝑛=1

 

 

By Lemma 1, we deduce that 𝑎𝑎1 = 1 + � 1
𝐴𝐴1
� = 1 + � 1

 𝐵𝐵1
� = 𝑏𝑏1, and so 𝑒𝑒1 = 𝑒𝑒1(𝑎𝑎1) = 𝑒𝑒1(𝑏𝑏1) = 𝑓𝑓1. By cancelling the terms 𝑎𝑎1, 𝑏𝑏1, 

and 𝑒𝑒1, 𝑓𝑓1 in (2.11), we obtain 
 

                 𝐴𝐴2 : =
1
𝑎𝑎2

+ �
1

𝑎𝑎2𝑒𝑒2 ⋯𝑎𝑎𝑛𝑛𝑒𝑒𝑛𝑛𝑎𝑎𝑛𝑛+1

∞

𝑛𝑛=2

=
1
𝑏𝑏2

+ �
1

𝑏𝑏2𝑓𝑓2 ⋯𝑏𝑏𝑛𝑛𝑓𝑓𝑛𝑛𝑏𝑏𝑛𝑛+1
=:𝐵𝐵2.

∞

𝑛𝑛=2

 

 

Then Lemma 1 implies that 𝑎𝑎2 = 1 + � 1
 𝐴𝐴2
� = 1 + � 1

 𝐵𝐵2
� = 𝑏𝑏2, and so 𝑒𝑒2 = 𝑒𝑒2(𝑎𝑎2) = 𝑒𝑒2(𝑏𝑏2) = 𝑓𝑓2. On repeating this argument,    

we successively find that 𝑎𝑎𝑛𝑛 = 𝑏𝑏𝑛𝑛  and 𝑒𝑒𝑛𝑛 = 𝑓𝑓𝑛𝑛  for all 𝑛𝑛 ≥ 1. Therefore, the expansion is unique and the proof of the theorem is 

complete.                      

By setting 𝑒𝑒𝑛𝑛 = 1/𝑎𝑎𝑛𝑛  , 𝑒𝑒𝑛𝑛 = 1, or 𝑒𝑒𝑛𝑛 = 𝑎𝑎𝑛𝑛 − 1 for all 𝑛𝑛 ≥ 1 in Theorem 1, we obtain the well-known expansions for 

real numbers, namely, Sylvester series, Engel series, or Lüroth series expansions, respectively. 

 In the first part of this work, we are interested in characterizing rational numbers by using SEL series expansion. First, 

we will give the definition of periodic SEL series expansion as follows: An SEL series expansion of a real number 𝐴𝐴, 
 

𝑎𝑎0 +
1
𝑎𝑎1

+ �
1

𝑎𝑎1𝑒𝑒1 ⋯𝑎𝑎𝑛𝑛𝑒𝑒𝑛𝑛𝑎𝑎𝑛𝑛+1
,

∞

𝑛𝑛=1

 

 

is said to be periodic if there are positive integers 𝑚𝑚 and 𝑟𝑟 such that 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛+𝑟𝑟and𝑒𝑒𝑛𝑛 = 𝑒𝑒𝑛𝑛+𝑟𝑟  for every 𝑛𝑛 ≥ 𝑚𝑚. 
 

 The following two theorems give characterizations of rational numbers by such expansion, which are our first main 

results. 

 

Theorem 2. Assume that 1/𝑒𝑒𝑛𝑛  ∈ ℕ  for all 𝑛𝑛 ≥ 1 and let 
 

  𝐴𝐴 = 𝑎𝑎0 +
1
𝑎𝑎1

+ �
1

𝑎𝑎1𝑒𝑒1 ⋯𝑎𝑎𝑛𝑛𝑒𝑒𝑛𝑛𝑎𝑎𝑛𝑛+1

∞

𝑛𝑛=1

 

 

be the SEL series expansion of 𝐴𝐴 ∈ ℝ. Then 𝐴𝐴 ∈ ℚ if and only if 𝑎𝑎𝑛𝑛+1 = (𝑎𝑎𝑛𝑛 − 1)/𝑒𝑒𝑛𝑛 + 1 for all sufficiently large 𝑛𝑛. 

Proof. Assume that 𝐴𝐴 ∈ ℚ. Thus, by (2.2), each 𝐴𝐴𝑛𝑛  is also rational, i.e., 𝐴𝐴𝑛𝑛 = 𝑝𝑝𝑛𝑛/𝑞𝑞𝑛𝑛  , where 𝑝𝑝𝑛𝑛  and 𝑞𝑞𝑛𝑛  are positive integers with 

(𝑝𝑝𝑛𝑛 , 𝑞𝑞𝑛𝑛) = 1. Replacing 𝐴𝐴𝑛𝑛  by 𝑝𝑝𝑛𝑛/𝑞𝑞𝑛𝑛  in (2.2) and (2.7), we obtain 
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𝑎𝑎𝑛𝑛𝑝𝑝𝑛𝑛 − 𝑞𝑞𝑛𝑛
(1/𝑒𝑒𝑛𝑛)𝑞𝑞𝑛𝑛

=
𝑝𝑝𝑛𝑛+1

𝑞𝑞𝑛𝑛+1
                                                                                              (2.12) 

 

and 𝑎𝑎𝑛𝑛𝑝𝑝𝑛𝑛 − 𝑞𝑞𝑛𝑛 ≤ 𝑝𝑝𝑛𝑛 , respectively, for all 𝑛𝑛 ≥ 1. Since 1/𝑒𝑒𝑛𝑛  ∈ ℕ and (𝑝𝑝𝑛𝑛+1, 𝑞𝑞𝑛𝑛+1) = 1, we have 
 

𝑝𝑝𝑛𝑛+1 ≤ 𝑎𝑎𝑛𝑛𝑝𝑝𝑛𝑛 − 𝑞𝑞𝑛𝑛 ≤ 𝑝𝑝𝑛𝑛(𝑛𝑛 ≥ 1).                                                                    (2.13) 
 

It follows that 𝑝𝑝𝑛𝑛 = 𝑃𝑃 ≥ 1 for all sufficiently large 𝑛𝑛. By (2.13), we have 𝑎𝑎𝑛𝑛𝑃𝑃 − 𝑞𝑞𝑛𝑛 = 𝑃𝑃 for all sufficiently large 𝑛𝑛. 

Consequently, 𝑃𝑃 divides 𝑞𝑞𝑛𝑛 , which implies 𝑃𝑃 = 1, and so 𝑞𝑞𝑛𝑛 = 𝑎𝑎𝑛𝑛 − 1 for all sufficiently large 𝑛𝑛. Using (2.12), we deduce that 
 

                    𝑎𝑎𝑛𝑛+1 − 1 = 𝑞𝑞𝑛𝑛+1 =
1
𝑒𝑒𝑛𝑛
𝑞𝑞𝑛𝑛 =

𝑎𝑎𝑛𝑛 − 1
𝑒𝑒𝑛𝑛

 

for all sufficiently large 𝑛𝑛. 

Conversely, assume that there exists a positive integer 𝑁𝑁 such that 𝑎𝑎𝑛𝑛+1 = (𝑎𝑎𝑛𝑛 − 1)/𝑒𝑒𝑛𝑛+1 for all 𝑛𝑛 ≥ 𝑁𝑁. Then 
 

𝑎𝑎𝑛𝑛+1 − 1
𝑎𝑎𝑛𝑛 − 1 =

1
𝑒𝑒𝑛𝑛

(𝑛𝑛 ≥ 𝑁𝑁).                                                                                    (2.14) 

It follows that 

                         𝐴𝐴 = 𝐵𝐵 +
1

𝑎𝑎1𝑒𝑒1 ⋯𝑎𝑎𝑁𝑁−1𝑒𝑒𝑁𝑁−1
�

1
𝑎𝑎𝑁𝑁𝑒𝑒𝑁𝑁 ⋯𝑎𝑎𝑛𝑛𝑒𝑒𝑛𝑛𝑎𝑎𝑛𝑛+1

∞

𝑛𝑛=𝑁𝑁

 

                             = 𝐵𝐵 +
1
𝛼𝛼 �

1
𝑎𝑎𝑁𝑁𝑎𝑎𝑁𝑁+1 ⋯𝑎𝑎𝑛𝑛𝑎𝑎𝑛𝑛+1

∞

𝑛𝑛=𝑁𝑁

�
𝑎𝑎𝑁𝑁+1 − 1
𝑎𝑎𝑁𝑁 − 1 � �

𝑎𝑎𝑁𝑁+2 − 1
𝑎𝑎𝑁𝑁+1 − 1�⋯�

𝑎𝑎𝑛𝑛+1 − 1
𝑎𝑎𝑛𝑛 − 1 � 

                             = 𝐵𝐵 +
1
𝛼𝛼 �

𝑎𝑎𝑛𝑛+1 − 1
(𝑎𝑎𝑁𝑁 − 1)𝑎𝑎𝑁𝑁𝑎𝑎𝑁𝑁+1 ⋯𝑎𝑎𝑛𝑛𝑎𝑎𝑛𝑛+1

∞

𝑛𝑛=𝑁𝑁

 

                             = 𝐵𝐵 +
1

𝛼𝛼(𝑎𝑎𝑁𝑁 − 1) � �
1

𝑎𝑎𝑁𝑁𝑎𝑎𝑁𝑁+1 ⋯𝑎𝑎𝑛𝑛
−

1
𝑎𝑎𝑁𝑁𝑎𝑎𝑁𝑁+1 ⋯𝑎𝑎𝑛𝑛+1

�
∞

𝑛𝑛=𝑁𝑁

 

                             = 𝐵𝐵 +
1

𝛼𝛼(𝑎𝑎𝑁𝑁 − 1) �
1
𝑎𝑎𝑁𝑁
� ∈ ℚ, 

 

where  𝐵𝐵 = 𝑎𝑎0 + 1/𝑎𝑎1  + ∑ 1/(𝑎𝑎1𝑒𝑒1⋯𝑎𝑎𝑛𝑛𝑒𝑒𝑛𝑛𝑎𝑎𝑛𝑛+1)𝑁𝑁−1
𝑛𝑛=1  and 𝛼𝛼 = 𝑎𝑎1𝑒𝑒1 ⋯𝑎𝑎𝑁𝑁−1𝑒𝑒𝑁𝑁−1, as desired.  

  

Theorem 3. If 𝑒𝑒𝑛𝑛  ∈ ℕ  for all 𝑛𝑛 ≥ 1, then the corresponding SEL series expansion of 𝐴𝐴 ∈ ℝ is periodic if and only if 𝐴𝐴 ∈ ℚ. 

Proof. Assume that the corresponding SEL series expansion of 𝐴𝐴 ∈ ℝ is periodic. Then there are positive integers 𝑚𝑚 and 𝑟𝑟 such 

that 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛+𝑟𝑟  and 𝑒𝑒𝑛𝑛 = 𝑒𝑒𝑛𝑛+𝑟𝑟  for every 𝑛𝑛 ≥ 𝑚𝑚. Thus 
 

                          𝐴𝐴 = 𝑎𝑎0 +
1
𝑎𝑎1

+ ⋯+
1

𝑎𝑎1𝑒𝑒1 ⋯𝑎𝑎𝑚𝑚−2𝑒𝑒𝑚𝑚−2𝑎𝑎𝑚𝑚−1
+ �

1
𝑎𝑎1𝑒𝑒1 ⋯𝑎𝑎𝑛𝑛−1𝑒𝑒𝑛𝑛−1𝑎𝑎𝑛𝑛

∞

𝑛𝑛=𝑚𝑚

 

                             = 𝐵𝐵 +
1

𝑎𝑎1𝑒𝑒1 ⋯𝑎𝑎𝑚𝑚−1𝑒𝑒𝑚𝑚−1
(𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝛽𝛽2𝛼𝛼 + ⋯ ) 

                             = 𝐵𝐵 +
𝛼𝛼

𝑎𝑎1𝑒𝑒1 ⋯𝑎𝑎𝑚𝑚−1𝑒𝑒𝑚𝑚−1
�

1
1 − 𝛽𝛽

� ∈ ℚ, 

 

as desired, where        𝐵𝐵 ≔ 𝑎𝑎0 + 1
𝑎𝑎1

+ ⋯+ 1
𝑎𝑎1𝑒𝑒1⋯𝑎𝑎𝑚𝑚−2𝑒𝑒𝑚𝑚−2𝑎𝑎𝑚𝑚−1

, 

                                           𝛼𝛼 ≔ 1
𝑎𝑎𝑚𝑚

+ ⋯+ 1
𝑎𝑎𝑚𝑚𝑒𝑒𝑚𝑚⋯𝑎𝑎𝑚𝑚+𝑟𝑟−1

  and  0 < 𝛽𝛽 ≔ 1
𝑎𝑎𝑚𝑚𝑒𝑒𝑚𝑚⋯𝑎𝑎𝑚𝑚+𝑟𝑟−1𝑒𝑒𝑚𝑚+𝑟𝑟−1

< 1. 
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Conversely, we will show that the SEL series expansion of a rational number 𝐴𝐴 is periodic. Since 𝐴𝐴 is a rational, so is 

each 𝐴𝐴𝑛𝑛  for all 𝑛𝑛 ≥ 1. Thus 𝐴𝐴𝑛𝑛 = 𝑝𝑝𝑛𝑛/𝑞𝑞𝑛𝑛  , where 𝑝𝑝𝑛𝑛  and 𝑞𝑞𝑛𝑛  are positive integers with (𝑝𝑝𝑛𝑛 , 𝑞𝑞𝑛𝑛) = 1. Replacing 𝐴𝐴𝑛𝑛  by 𝑝𝑝𝑛𝑛/𝑞𝑞𝑛𝑛  in 

(2.2), we get 
𝑒𝑒𝑛𝑛(𝑎𝑎𝑛𝑛𝑝𝑝𝑛𝑛 − 𝑞𝑞𝑛𝑛)

𝑞𝑞𝑛𝑛
=
𝑝𝑝𝑛𝑛+1

𝑞𝑞𝑛𝑛+1
(𝑛𝑛 ≥ 1). 

 

Since 𝑒𝑒𝑛𝑛 ∈ ℕ and (𝑝𝑝𝑛𝑛+1, 𝑞𝑞𝑛𝑛+1) = 1, we have 𝑝𝑝𝑛𝑛+1 ≤ 𝑒𝑒𝑛𝑛(𝑎𝑎𝑛𝑛𝑝𝑝𝑛𝑛 − 𝑞𝑞𝑛𝑛) and 1 ≤ 𝑞𝑞𝑛𝑛+1 ≤ 𝑞𝑞𝑛𝑛  for all 𝑛𝑛 ≥ 1. Then there exists a 

positive integer 𝑛𝑛0 such that 𝑞𝑞𝑛𝑛 = 𝑄𝑄 for all 𝑛𝑛 ≥ 𝑛𝑛0. Using (2.7), we get that 𝑝𝑝𝑛𝑛(𝑎𝑎𝑛𝑛 − 1) ≤ 𝑞𝑞𝑛𝑛  for all 𝑛𝑛 ≥ 1. Thus 
 

0 < 𝑝𝑝𝑛𝑛 ≤ 𝑝𝑝𝑛𝑛(𝑎𝑎𝑛𝑛 − 1) ≤ 𝑄𝑄      (𝑛𝑛 ≥ 𝑛𝑛0). 
 

But the number of positive integers in the interval (0,𝑄𝑄] is finite implying that there are positive integers 𝑚𝑚 (≥ 𝑛𝑛0) and 𝑟𝑟 such 

that 𝑝𝑝𝑚𝑚+𝑟𝑟 = 𝑝𝑝𝑚𝑚  and so 𝐴𝐴𝑚𝑚+𝑟𝑟 = 𝐴𝐴𝑚𝑚 . Thus, by (2.1), we have 𝑎𝑎𝑚𝑚+𝑟𝑟 = 𝑎𝑎𝑚𝑚  and the assertion follows.                                                     

 Characterizations of rational numbers using Sylvester series or Engel series expansions follow immediately from 

Theorem 2 by setting 𝑒𝑒𝑛𝑛 = 1/𝑎𝑎𝑛𝑛  or 𝑒𝑒𝑛𝑛 = 1 for all 𝑛𝑛 ≥ 1, respectively. Taking 𝑒𝑒𝑛𝑛 = 𝑎𝑎𝑛𝑛 − 1 for all 𝑛𝑛 ≥ 1 in Theorem 3 leads to a 

characterization of rational numbers by Lüroth series expansion. 

 

3. Characterizing Rational Numbers by Alternating SEL Series Expansion 
 

In this section, we will establish characterizations of rational numbers by using alternating SEL series expansion. The 

periodic alternating SEL series expansion is defined similarly to the periodic SEL series expansion. We first recall the algorithm 

for constructing such expansion. Given any real number 𝐴𝐴, write it as 𝐴𝐴 = 𝑎𝑎0 + 𝐴𝐴1, where 𝑎𝑎0 = ⌊𝐴𝐴⌋ and 0 ≤ 𝐴𝐴1 < 1. Then we 

recursively define 

𝑎𝑎𝑛𝑛 = �
1
𝐴𝐴𝑛𝑛
� ,    for𝐴𝐴𝑛𝑛 > 0,                                                                                            (3.1) 

𝐴𝐴𝑛𝑛+1 = (1 − 𝑎𝑎𝑛𝑛𝐴𝐴𝑛𝑛)𝑒𝑒𝑛𝑛 ,                                                                                               (3.2) 
 

where 𝑒𝑒𝑛𝑛 = 𝑒𝑒𝑛𝑛(𝑎𝑎𝑛𝑛) is a positive rational number, which may depend on 𝑎𝑎𝑛𝑛 . By the proof of Theorem 1 in Kanasri and 

Singthongla (2014), we have the following facts on the alternating SEL series expansion: 

(F1)   1/(𝑎𝑎𝑛𝑛 + 1) < 𝐴𝐴𝑛𝑛 ≤ 1/𝑎𝑎𝑛𝑛  for 𝑛𝑛 ≥ 1,𝐴𝐴𝑛𝑛 > 0, 

(F2)   for 𝑛𝑛 ≥ 1, if 0 < 𝐴𝐴𝑛𝑛 < 1, then 0 ≤ 𝐴𝐴𝑛𝑛+1 < 1, and 

(F3) if 𝐴𝐴𝑚𝑚 = 0 for some 𝑚𝑚 ≥ 1, then the corresponding alternating SEL series expansion of 𝐴𝐴 is finite. 

 The following theorem gives the existence and uniqueness of alternating SEL series expansion for any real number 

(Kanasri & Singthongla, 2014). 

 

Theorem 4. Let 𝐴𝐴 be any real number and assume that (𝑎𝑎𝑛𝑛 + 1)/𝑒𝑒𝑛𝑛  ∈ ℕ  for all 𝑛𝑛 ≥ 1. Then 𝐴𝐴 is uniquely representable as a 

series expansion called alternating SEL series expansion, which is of the form 
 

 𝐴𝐴 = 𝑎𝑎0 +
1
𝑎𝑎1

+ �
(−1)𝑛𝑛

𝑎𝑎1𝑒𝑒1 ⋯𝑎𝑎𝑛𝑛𝑒𝑒𝑛𝑛𝑎𝑎𝑛𝑛+1

∞

𝑛𝑛=1

, 

where  𝑎𝑎1 ≥ 1 and 𝑎𝑎𝑛𝑛+1 ≥ (𝑎𝑎𝑛𝑛 + 1)/𝑒𝑒𝑛𝑛   for all 𝑛𝑛 ≥ 1.  
 

We deduce now our results on the alternating SEL series expansion for rational numbers. 
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Theorem 5. If  1/𝑒𝑒𝑛𝑛 ∈ ℕ  for all 𝑛𝑛 ≥ 1,  then the corresponding alternating SEL series expansion of 𝐴𝐴 ∈ ℝ is finite if and only if 

𝐴𝐴 ∈ ℚ. 

Proof. It is clear that any number represented by a finite alternating SEL series expansion is rational. 

 Conversely, assume that 𝐴𝐴 is rational. Then, by (3.2), 𝐴𝐴𝑛𝑛  is also rational for all 𝑛𝑛 ≥ 1. Thus, we can write 𝐴𝐴𝑛𝑛 = 𝑝𝑝𝑛𝑛/𝑞𝑞𝑛𝑛 , 

where 𝑝𝑝𝑛𝑛  and 𝑞𝑞𝑛𝑛  are non-negative integers with (𝑝𝑝𝑛𝑛 , 𝑞𝑞𝑛𝑛) = 1 for all 𝑛𝑛 ≥ 1. By (3.1), we have 𝑎𝑎𝑛𝑛 = ⌊1/𝐴𝐴𝑛𝑛⌋ > 1/𝐴𝐴𝑛𝑛 − 1 and so 

𝑞𝑞𝑛𝑛 − 𝑎𝑎𝑛𝑛𝑝𝑝𝑛𝑛 < 𝑝𝑝𝑛𝑛  for all 𝑛𝑛 ≥ 1.  Replacing 𝐴𝐴𝑛𝑛  by 𝑝𝑝𝑛𝑛/𝑞𝑞𝑛𝑛  in (3.2), we obtain 
 

𝑞𝑞𝑛𝑛𝑝𝑝𝑛𝑛+1

𝑒𝑒𝑛𝑛
= (𝑞𝑞𝑛𝑛 − 𝑎𝑎𝑛𝑛𝑝𝑝𝑛𝑛)𝑞𝑞𝑛𝑛+1(𝑛𝑛 ≥ 1). 

 

Since 1/𝑒𝑒𝑛𝑛 ∈ ℕ and (𝑝𝑝𝑛𝑛+1,𝑞𝑞𝑛𝑛+1) = 1, we have 𝑝𝑝𝑛𝑛+1|(𝑞𝑞𝑛𝑛 − 𝑎𝑎𝑛𝑛𝑝𝑝𝑛𝑛) and so 
 

   0 ≤ 𝑝𝑝𝑛𝑛+1 ≤ (𝑞𝑞𝑛𝑛 − 𝑎𝑎𝑛𝑛𝑝𝑝𝑛𝑛) < 𝑝𝑝𝑛𝑛(𝑛𝑛 ≥ 1). 
 

This shows that (𝑝𝑝𝑛𝑛) is a strictly decreasing sequence of non-negative integers. It follows that 𝑝𝑝𝑚𝑚 = 0 for some 𝑚𝑚 ∈ ℕ and so 

𝐴𝐴𝑚𝑚 = 0. Thus, the assertion follows by (F3).  

 

Theorem 6. If 𝑒𝑒𝑛𝑛 ∈ ℕ  for all 𝑛𝑛 ≥ 1, then the corresponding alternating SEL series expansion of 𝐴𝐴 ∈ ℝ is finite or periodic if 

and only if 𝐴𝐴 ∈ ℚ. 

Proof. If the corresponding alternating SEL series expansion of 𝐴𝐴 ∈ ℝ is finite, then it is clear that 𝐴𝐴 is rational. Now we assume 

that such expansion is periodic. Then there are positive integers 𝑚𝑚 and 𝑟𝑟 such that 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛+𝑟𝑟  and 𝑒𝑒𝑛𝑛 = 𝑒𝑒𝑛𝑛+𝑟𝑟  for every 𝑛𝑛 ≥ 𝑚𝑚. 

Let 𝛼𝛼 = 𝑎𝑎𝑚𝑚𝑒𝑒𝑚𝑚 ⋯𝑎𝑎𝑚𝑚+𝑟𝑟−1𝑒𝑒𝑚𝑚+𝑟𝑟−1 and 𝛽𝛽 = 𝑎𝑎1𝑒𝑒1 ⋯𝑎𝑎𝑚𝑚−1𝑒𝑒𝑚𝑚−1. If 𝛼𝛼 = 1, then 𝑎𝑎𝑚𝑚 = 𝑎𝑎𝑚𝑚+1 = ⋯ = 𝑎𝑎𝑚𝑚+𝑟𝑟−1 = 1 and 𝑒𝑒𝑚𝑚 = 𝑒𝑒𝑚𝑚+1 =

⋯ = 𝑒𝑒𝑚𝑚+𝑟𝑟−1 = 1. But we have 𝑎𝑎𝑚𝑚+1 ≥ (𝑎𝑎𝑚𝑚 + 1) /𝑒𝑒𝑚𝑚 = 𝑎𝑎𝑚𝑚 + 1 > 𝑎𝑎𝑚𝑚 , a contradiction, so 𝛼𝛼 > 1. As the expansion is periodic, 

we derive 

   𝐴𝐴 = 𝐵𝐵 +
(−1)𝑚𝑚−1𝐶𝐶

𝛽𝛽 �1 +
(−1)𝑟𝑟

𝛼𝛼 +
(−1)2𝑟𝑟

𝛼𝛼2 + ⋯�, 

where 

       𝐵𝐵 = 𝑎𝑎0 +
1
𝑎𝑎1
−

1
𝑎𝑎1𝑒𝑒1𝑎𝑎2

+ ⋯+
(−1)𝑚𝑚−2

𝑎𝑎1𝑒𝑒1 ⋯𝑎𝑎𝑚𝑚−2𝑒𝑒𝑚𝑚−2𝑎𝑎𝑚𝑚−1
, 

                     𝐶𝐶 =
1
𝑎𝑎𝑚𝑚

−
1

𝑎𝑎𝑚𝑚𝑒𝑒𝑚𝑚𝑎𝑎𝑚𝑚+1
+ ⋯+

(−1)𝑟𝑟−1

𝑎𝑎𝑚𝑚𝑒𝑒𝑚𝑚 ⋯𝑎𝑎𝑚𝑚+𝑟𝑟−2𝑒𝑒𝑚𝑚+𝑟𝑟−2𝑎𝑎𝑚𝑚+𝑟𝑟−1
. 

If 𝑟𝑟 is even, then 

                          𝐴𝐴 = 𝐵𝐵 +
(−1)𝑚𝑚−1𝐶𝐶

𝛽𝛽
�1 +

1
𝛼𝛼

+
1
𝛼𝛼2 + ⋯� = 𝐵𝐵 +

(−1)𝑚𝑚−1𝐶𝐶𝐶𝐶
𝛽𝛽(𝛼𝛼 − 1)

∈ ℚ. 

Similarly, if 𝑟𝑟 is odd, then 

                                                                      𝐴𝐴 = 𝐵𝐵 +
(−1)𝑚𝑚−1𝐶𝐶

𝛽𝛽
�1 −

1
𝛼𝛼

+
1
𝛼𝛼2 −⋯� 

                                                                          = 𝐵𝐵 +
(−1)𝑚𝑚−1𝐶𝐶

𝛽𝛽 ��1 +
1
𝛼𝛼2 +

1
𝛼𝛼4 + ⋯�− �

1
𝛼𝛼 +

1
𝛼𝛼3 +

1
𝛼𝛼5 + ⋯�� 

                                                                          = 𝐵𝐵 +
(−1)𝑚𝑚−1𝐶𝐶𝐶𝐶
𝛽𝛽(𝛼𝛼 + 1)

∈ ℚ. 

 

Conversely, assume that 𝐴𝐴 is rational and the corresponding alternating SEL series expansion of 𝐴𝐴 ∈ ℝ is infinite. 

Then, by using (3.2), 𝐴𝐴𝑛𝑛  is also rational for all 𝑛𝑛 ≥ 1. Let 𝐴𝐴1 = 𝑝𝑝/𝑞𝑞 for some positive integers 𝑝𝑝 and 𝑞𝑞. Thus, for 𝑛𝑛 ≥ 2, 
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𝐴𝐴𝑛𝑛 = (1 − 𝑎𝑎𝑛𝑛−1𝐴𝐴𝑛𝑛−1)𝑒𝑒𝑛𝑛−1 

                                                                                    = 𝑒𝑒𝑛𝑛−1 − 𝑒𝑒𝑛𝑛−1𝑎𝑎𝑛𝑛−1𝐴𝐴𝑛𝑛−1 

                 = 𝑒𝑒𝑛𝑛−1 − 𝑒𝑒𝑛𝑛−1𝑎𝑎𝑛𝑛−1(𝑒𝑒𝑛𝑛−2 − 𝑒𝑒𝑛𝑛−2𝑎𝑎𝑛𝑛−2𝐴𝐴𝑛𝑛−2) 

                               = 𝑒𝑒𝑛𝑛−1 − 𝑒𝑒𝑛𝑛−1𝑎𝑎𝑛𝑛−1𝑒𝑒𝑛𝑛−2 + 𝑒𝑒𝑛𝑛−1𝑎𝑎𝑛𝑛−1𝑒𝑒𝑛𝑛−2𝑎𝑎𝑛𝑛−2𝐴𝐴𝑛𝑛−2 

                                                    ⋮ 

                                                                                     = 𝑎𝑎𝐴𝐴1 + 𝑏𝑏 =
𝑝𝑝𝑛𝑛
𝑞𝑞 , 

 

for some 𝑎𝑎, 𝑏𝑏, 𝑝𝑝𝑛𝑛 ∈ ℤ, since 𝑒𝑒𝑛𝑛 ∈ ℕ for all 𝑛𝑛 ≥ 1. By (F2) and (F3), we deduce that  

0 < 𝐴𝐴𝑛𝑛 < 1 for all 𝑛𝑛 ≥ 1.  It follows that 1 ≤ 𝑝𝑝𝑛𝑛 < 𝑞𝑞 for all 𝑛𝑛 ≥ 1 i.e. 
 

𝐴𝐴𝑛𝑛 ∈ �
1
𝑞𝑞 ,

2
𝑞𝑞 , … ,

𝑞𝑞 − 1
𝑞𝑞 � (𝑛𝑛 ≥ 1), 

 

which implies that the expansion is periodic as desired.    

Characterizations of rational numbers using alternating Sylvester series or alternating Engel series follow immediately 

form Theorem 5 by setting 𝑒𝑒𝑛𝑛 = 1/𝑎𝑎𝑛𝑛  or 𝑒𝑒𝑛𝑛 = 1 for all 𝑛𝑛 ≥ 1, respectively. Taking 𝑒𝑒𝑛𝑛 = 𝑎𝑎𝑛𝑛 + 1 for all 𝑛𝑛 ≥ 1 in Theorem 6 

leads to a characterization of rational numbers by alternating Lüroth series expansion. 
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