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Abstract

We establish characterizations of rational numbers by using SEL series expansions, which yield generalized versions of

characterizing rational numbers by Sylvester series, Engel series and Liiroth series expansions. Characterizations of rational

numbers via alternating SEL series expansions yield generalized versions of characterizing rational numbers by alternating

Sylvester series, alternating Engel series and alternating Liiroth series expansions.
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1. Introduction

According to Galambos (1976), Knopfmacher and
Knopfmacher (1988), and Singthongla and Kanasri (2014), it
is well-known that each A € R is uniquely representable as an
infinite series expansion called Sylvester series expansion,

which is of the form

= Q —_—,
0 a,
n=1

a ={[AJ ifAgZ
" la-1ifae?

a,(a, —1) + 1foralln > 1. Moreover, A € Q if and only if

where a; =2, and a1 =
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an41 = ay(a, — 1) + 1 for all sufficiently large n. Ananalo-
gous representation  Galambos (1976), Knopfmacher and
Knopfmacher (1988), Laohakosol, Chaichana, Kanasri, and
Rattanamoong (2009), and Singthongla and Kanasri (2014)
also states that every real number A has a unique represent-
tation as an infinite series expansion called Engel series

expansion, which is of the form

« 1
A=a0+z )
a; - ay,
n=1

“ z{[AJ ifAe¢z
" la-1ifde?

a,foralln > 1. Moreover, A € Q if and only if a,;; = a,

where a; =2, anda,; =

for all sufficiently large n. For the last representation Galam-
bos (1976) and Singthongla and Kanasri (2014), it is also

known that each A € R is uniquely representable as an infinite
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series expansion called Liiroth series expansion, which is of the form

1 1
A=a +—+Z )
" L - 1) a(an — Dag

Al ifA¢zZ

A—1ifdcz and a, = 2 foralln > 1. Moreover, A € Q if and only if the Liiroth series expansion of 4 is

where ay = {

periodic.

In another direction, Kalpazidou, Knopfmacher, and Knopfmacher introduced three alternating series expansions for
real numbers, namely, alternating Sylvester series, alternating Engel series (Knopfmacher & Knopfmacher, 1989), and alternating
Liiroth series expansions (Kalpazidou, Knopfmacher, & Knopfmacher, 1990). The series under discussion are as follows: Every
real number A has a unique representation as a series expansion called alternating Sylvester series expansion, which is of the

form

(- 1)"

n+1

A_a0+—+

where ay = 4], a; = 1, and a,41 = a,(a, + 1) foralln > 1. Moreover, A is rational if and only if the alternating Sylvester
series expansion of A is finite. Corresponding to the series of Engel, it is known that every real number A has a unique

representation as a series expansion called alternating Engel series expansion, which is of the form

1"
=Qqy + —_— + Z ( )
a - anan+1

where ag = |4], a; = 1, and a,; = a, + 1 foralln > 1. Moreover, 4 is rational if and only if the alternating Engel series
expansion of A is finite. For the last representation, it is also known that every real number A has a unique representation as a

series expansion called alternating Liiroth series expansion, which is of the form

A + +Z C1
= qQ, —_ )
0 a;(a; + 1)+ ap(ay + Days

where ag = |A] and a, = 1 forall n = 1. Moreover, 4 is rational if and only if the alternating Liiroth series expansion of A is
finite or periodic.

In 2014, Kanasri and Singthongla introduced two algorithms for constructing two infinite series expansions for real
numbers, namely, SEL series expansion (Singthongla & Kanasri, 2014) and alternating SEL series expansion (Kanasri &
Singthongla, 2014), which yield generalized versions of the first three series expansions and the last three (alternating) series
expansions, respectively.

In this work, we establish characterizations of rational numbers by using SEL series expansion and alternating SEL
series expansion, which yield generalized versions of characterizing rational numbers by the first three series expansions and the
last three (alternating) series expansions, respectively.

2. Characterizing Rational Numbers by SEL Series Expansion

We first recall the algorithm for constructing SEL Series Expansion as follows: Given any real number A, write it as

Al ifAe¢z

A = ay + Ay, where aoz{A—lifAeZ
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and 0 < A; < 1. Then recursively define
1
a, =1+ [A_J, (2.1)
Apy1 = (anAn - 1)en' (22)

where e, = e, (a,) is a positive rational number, which may depend on a,, forall n > 1.

To facilitate the proof of Theorem 1, we prove the following lemma.

Lemma 1. Any series

1 < 1
—+ - 2.3
b Zl bifi bafubrrn @9

where b, € N,b; =2, b,y = (b, — 1)/f, +1=2,and f, = f,(b,) € Q' for all n > 1 converges to a real number B; such

1
Proof. For n €N, let C,, = + Zk 1m.
11" PrJ kPk+1

increasing. To show that the series in (2.3) converges, it suffices to show that (C,) is bounded above. Since by = 2 and b, .1 =
(b, = 1)/f, +1=2foralln > 1, we have

It is clear that the sequence of positive real numbers (C,) is

1 bn+1 -1
E < bn——l(n >1). (2.4)
It follows that
-1
(b =13 =1) (b1 —1) 1

C <—
" by = (by = 1)(b;—=1) (b —1) by brbgsq

-1
_1 +"Z (bes1 — 1)
by £ (by — Dby -+ bibyyy
b Dp Z( i)
" (b - Dby b1 -1 by by bbby
1 (1 1 + 1 1 )
T b -1 b, by by-b,

_ 1 (1 1 )< 1
T b -1 by-+b,) by —1

for all n > 1. Thus the series in (2.3) converges to a nonzero real number B;. Consequently, 1/b; < By < 1/(b; — 1), which
implies that b; = 1 + |1/B4], and the lemma follows.
Recall the following result in (Singthongla & Kanasri, 2014), which gives the existence and uniqueness of SEL series

expansion for any real number.

Theorem 1. Let A € R and assume that

—¢ N (n=1). (2.5)
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Then A is uniquely representable as an infinite series expansion called SEL series expansion, which is of the form

A=a +—+ E 2.6
0 4 (161 " An€ nln41’ (26)
n=1

wherea; > 2and a1 = (a, —1)/e, + 1 forall n > 1.

Proof. Using (2.1), we get

1 1
— <Ay s —

n n

T (= 1). .7)

We now prove the following Claim.
Claim. 0 <4, < 1forall n>1.

Proof of the Claim. We will prove this claim by induction on n. If n = 1, then we have seen that 0 < 4; < 1. Assume now that
0< A, <1 for n=>1. It follows by (2.1) that a,, = 2. Since 4,41 = (a,4, — De, = (An —ai) a,e, and using (2.5) and

(2.7) we have

a
0< Apr = (@dy — Doy < (=2 —1)e, = <1 28)

and so we have the Claim.

From this Claim together with (2.1), we deduce that a,, > 2 for all n > 1. By using (2.1), (2.5), and (2.8), we obtain
api1 = (a, —1)/e, +1foralln> 1.

From (2.2), we get that

1 An+1
A =—+—"—"-(m=>1). 2.9
et =D 29
Applying (2.9) repeatedly, we obtain
1 1 1 A
A =—+ +ot +—" (n>1).
ar aeaz a1€1 " Ap—1€p-10n 161" A€y

By Lemma 1, the series in the right hand side of (2.6) is convergent. It follows that lim,,_,., 1/(a;e; --- a,e,a,41) = 0. Using

(2.7) and a,,+1 = 2, we deduce that

Aniq 1 1 2
0< < . < n>1).
aiéq - apép ae; - apéy Apy4q -1 a1€1 - ApenQniq
It follows that lim,, o, A,41/(a1€1 ++ @n_1€_1ane,) = 0. Therefore,
Z a6y Ap€plniq
and (2.6) follows, as desired.
To prove uniqueness, suppose that A € R has expansions
+= + i byt —+ Z ! (2.10)
=ag+— — .
0 ~ aier - apénln+1 0 by byfy b fubyit

with the restrictions

-1
+ 1> 2,ande, = e,(a,) € Qt(n = 1),

n

a
ap €Za, EN,a; = 2,a,41 = —
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1> 2,andf, = £,(6,) €QF( > D).

n

b
by € Z,b, € N,by > 2,by,q >

Using Lemma 1, we obtain

1 1 < 1 1
0<—<A1:=—+Z < <1
a aq ajey - Apeénlnyr a1 —1

0<1<B'—1+§: ! < ! <1
by "' by Labifi o bafibpe T bi—17

If A; = 1, then by (2.10) we also have B, = 1, forcing ag = by. If 0 < A; < 1, then (2.10) shows that 0 < B; < 1, again forcing

ay = by. In either case, by cancelling the terms ay, b, in (2.10), we have

S —— - (2.11)
Zalel ‘a,e an+1 Zb1f1 by fubp i1 !

By Lemma 1, we deduce that a; = 1 + LH =1+ LH = by, and so e; = e;(a;) = e;(by) = fi. By cancelling the terms a4, by,
1 1

and ey, f; in (2.11), we obtain

—— =:B,.
Zazez anenan+1 szfz by fabp 1 2

Then Lemma 1 implies that a, = 1 + LH =1+ IBLJ = by, and s0 e; = e;(ay) = e;(by) = f,. On repeating this argument,
2 2

we successively find that a, = b,, and e, = f, for all n > 1. Therefore, the expansion is unique and the proof of the theorem is
complete.

By setting e, = 1/a,, e, =1,0re, = a, —1 forall n > 1 in Theorem 1, we obtain the well-known expansions for
real numbers, namely, Sylvester series, Engel series, or Liiroth series expansions, respectively.

In the first part of this work, we are interested in characterizing rational numbers by using SEL series expansion. First,
we will give the definition of periodic SEL series expansion as follows: An SEL series expansion of a real number 4,

o
ap +_+Z
aje; - anenani1’

is said to be periodic if there are positive integers m and r such that a,, = a,,,ande, = e, for everyn > m.

The following two theorems give characterizations of rational numbers by such expansion, which are our first main

results.
Theorem 2. Assume that 1/e,, € N foralln > 1 and let

(o]
= qy + —_— + Z
=1 ai1€1 " Apendnyq

be the SEL series expansion of A € R. Then 4 € Q if and only if a,, .1 = (a, — 1)/e, + 1 for all sufficiently large n.
Proof. Assume that A € Q. Thus, by (2.2), each A,, is also rational, i.e., 4,, = p,,/q, , Where p,, and q,, are positive integers with
(pn, g,) = 1. Replacing A,, by p,,/q,, in (2.2) and (2.7), we obtain
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AnPn — qn _ Pn+1

= (2.12)
(1/en)qn In+1
and a,p, — q, < pn, respectively, forall n > 1. Since 1/e,, € Nand (p,41,qn+1) = 1, we have
Pn+1 < AnPn — qn < pn(n = 1) (213)

It follows that p, = P > 1 for all sufficiently large n. By (2.13), we have a,P —q, = P for all sufficiently large n.
Consequently, P divides g, which implies P = 1, and so q,, = a,, — 1 for all sufficiently large n. Using (2.12), we deduce that

UGy1—1=qpy1 =—qn =
€n €n

for all sufficiently large n.

Conversely, assume that there exists a positive integer N such that a,y1 = (a,, —1)/e,+1 foralln = N. Then

Any1 — 1 1

———=—(Mm=N). 2.14
a,—1 ¢ (n=N) (2.14)

It follows that

e}

1 1
A=B+
A1€1 7 AN-1€N-1 &= ANEN " On€nlnt1

_3 +lz 1 (aN+1 - 1) (aN+2 - 1) (an+1 - 1)
a ANay+1 - Qplniq \ Ay — 1 ay4 —1 a, —1

1% Aper — 1
=B+= Z n+1
a la (ay — Dayayyg - Qplniq

1 - 1 1
v )
alay— 1) = anay41 " Ap ANAN41 " Ont1

=5+ ) €@

where B=ay+ 1/a; +3N-11/(a1eq - ane,ani1) and @ = ajeq -+ ay_qey_q, as desired.

Theorem 3. If e, € N for all n > 1, then the corresponding SEL series expansion of A € R is periodic if and only if A € Q.
Proof. Assume that the corresponding SEL series expansion of A € R is periodic. Then there are positive integers m and r such

that a,, = a,4, and e,, = e, for every n = m. Thus

[ee]
1 1
A=ag+—+ -+ + E
a aie1 - Am—2€m-—20m—1 a1€1 " Ap—-16n-1an

n=m
1 2
=B+————(a+Ba+p°a+-)
a1 Gm-1€m—1
=B+ : ( ! )e(@
ajer - Ap_1€p_1 \1—p '

. 1 1

as desired, where B=ay+—++——m—,
a aier - am—2€m—2am—1

1 1

and 0<fi=—< 1.

Amem  Am+r—1 Amem " Am+r—18m+r—1

1
a=—+-+
Am
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Conversely, we will show that the SEL series expansion of a rational number A is periodic. Since A is a rational, so is
each A, for all n = 1. Thus 4, = p, /g, , where p, and g, are positive integers with (p,, g,) = 1. Replacing 4, by p,/q, in
(2.2), we get

en(anpn - qn) — Pn+1
An qn+1

(n=1).

Since e, € N and (pn41,qns1) = 1, we have p,.1 < e,(ayp, — qn) and 1 < g1 < q, for all n > 1. Then there exists a

positive integer ny such that g, = Q for all n > n,. Using (2.7), we get that p, (a, — 1) < q,, for all n > 1. Thus
0<pngpn(an_1)SQ (n2no).

But the number of positive integers in the interval (0, @] is finite implying that there are positive integers m (= ng) and r such
that p,, 4 = pm and so A,, 4, = 4,,. Thus, by (2.1), we have a,, ., = a,, and the assertion follows.

Characterizations of rational numbers using Sylvester series or Engel series expansions follow immediately from
Theorem 2 by setting e,, = 1/a,, or e, = 1 for all n > 1, respectively. Taking e, = a, — 1 for all n > 1 in Theorem 3 leads to a

characterization of rational numbers by Liiroth series expansion.
3. Characterizing Rational Numbers by Alternating SEL Series Expansion

In this section, we will establish characterizations of rational numbers by using alternating SEL series expansion. The
periodic alternating SEL series expansion is defined similarly to the periodic SEL series expansion. We first recall the algorithm
for constructing such expansion. Given any real number A, write it as A = ay + A;, where ay = |A] and 0 < A; < 1. Then we

recursively define
1
= IA_J’ ford, >0, 3.1
n
Apyr = (1 - anAn)en' (32)

where e, = e, (a,) is a positive rational number, which may depend on a,. By the proof of Theorem 1 in Kanasri and
Singthongla (2014), we have the following facts on the alternating SEL series expansion:

(F1) 1/(a, +1)< A4, <1/a,forn=1A4, >0,

(F2) forn>1,if0<A4, <1,then0<A4,,; <1,and

(F3) if A, = 0 for some m = 1, then the corresponding alternating SEL series expansion of 4 is finite.

The following theorem gives the existence and uniqueness of alternating SEL series expansion for any real number
(Kanasri & Singthongla, 2014).

Theorem 4. Let A be any real number and assume that (a, + 1)/e, € N for all n > 1. Then A is uniquely representable as a

series expansion called alternating SEL series expansion, which is of the form

G0k
A=a +—+Z
0 aje; - anenQnyi’

where a; > 1and a,,, = (a, +1)/e, foralln>1.

We deduce now our results on the alternating SEL series expansion for rational numbers.
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Theorem 5. If 1/e, € N forall n > 1, then the corresponding alternating SEL series expansion of A € R is finite if and only if
AeqQ.
Proof. It is clear that any number represented by a finite alternating SEL series expansion is rational.

Conversely, assume that A is rational. Then, by (3.2), 4,, is also rational for all n > 1. Thus, we can write 4, = p,,/qn,
where p,, and g,, are non-negative integers with (p,,q,) = 1 for all n > 1. By (3.1), we have a, = |1/4,,] > 1/A, — 1 and so

Qn — APy < py forall n = 1. Replacing A,, by p,,/q, in (3.2), we obtain

qnPn+1

= (Qn - anpn)qn+1(n >1).
€n

Since 1/e, € N and (p,,4+1,9n+1) = 1, we have p,,1|(q, — a,p,) and so

0< Pnt1 = (Qn - anpn) < Pn(Tl = 1)

This shows that (p,,) is a strictly decreasing sequence of non-negative integers. It follows that p,, = 0 for some m € N and so

A,, = 0. Thus, the assertion follows by (F3).

Theorem 6. If e, € N for all n > 1, then the corresponding alternating SEL series expansion of A € R is finite or periodic if
and only if A € Q.

Proof. If the corresponding alternating SEL series expansion of A € R is finite, then it is clear that A is rational. Now we assume
that such expansion is periodic. Then there are positive integers m and r such that a,, = a,,,, and e,, = e, ,, for every n > m.
Leta =an ey Qpir_1€mir—t @d B = aje; - a6y 1fa=1,thena, =a,4y1 = =api,—1=1ande, =e,,1 =

= en4r—1 = 1. But we have a,, 11 = (a,, +1) /e,, = a,, +1 > a,,, a contradiction, so a > 1. As the expansion is periodic,

we derive
-1 m—lc -1 -1 2r
A=B+( ) 1+( )+( 2) + ),
B a a
where
1 -1 m—2
B=ay+—- 4+t 1) )
a; aiea; aier " p—26m—20m—1
1 1 —-1)r1
C=—- 4ot 1) .
am Am €m Am+1 Am€m " Am4r—2C€m4r—2Am+r—1
If r is even, then
A—B+(_1)m_1c<1+1+ ! + ) —B+(_1)m_1ca€
B B a a? h Bla—1) @

Similarly, if r is odd, then

A:B+ﬂ(1_l+i_...)
B a a?
=B+w{(1+1+1+...)_(1+1+1+...)}
B a?  at a a a°
Lla+1)
Conversely, assume that A is rational and the corresponding alternating SEL series expansion of A € R is infinite.

Then, by using (3.2), 4,, is also rational for all n > 1. Let A; = p/q for some positive integers p and q. Thus, forn > 2,
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Ay = 1- an—lAn—l)en—l

=ep-1— €10y 14p1

=€n-1— en—lan—l(en—z - en—Zan—ZAn—Z)

=aA1+b=p—n,
q

=é€p-1 —€ep—1ap—1yp—2 t+ en—lan—len—zan—ZAn—Z

for some a, b, p, € Z, since e,, € N for all n > 1. By (F2) and (F3), we deduce that

0<A4,<1foralln>1. Itfollowsthat1 <p, <qforalln>1i.e.

12 g-1
hefh2. 0

qa’'q’

which implies that the expansion is periodic as desired.

}(n >1),

Characterizations of rational numbers using alternating Sylvester series or alternating Engel series follow immediately

form Theorem 5 by setting e, = 1/a, or e, =1 for all n > 1, respectively. Taking e, = a,, + 1 for all n > 1 in Theorem 6

leads to a characterization of rational numbers by alternating Liiroth series expansion.
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