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Abstract 
 
The efficiency of a process, especially a long memory seasonal autoregressive fractional integral moving average 

(SARFIMA) process, has commonly been measured through the quality control chart. In this paper, a generalized long memory 

SARFIMA process of the exponentially weighted moving average (EWMA) control chart is carried out and shown. Also, 

analytical and numerical average run length (ARL) were designed to measure the efficiency of the EWMA control. Existence and 

uniqueness by the fixed point theory are proven for the analytical ARL. Error and convergence of numerical integration equations 

are also given for the numerical ARL. The findings indicated that the analytical ARL was evaluated more quickly and accurately 

than the numerical ARL. As a result, the analytical ARL is an alternative for measuring the efficiency of an EWMA control chart 

over a long memory SARFIMA process. 
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1. Introduction 
 

 In the production process, the aim and expectation 

of a manufacturer is to produce quality products without 

defections and variations of their attributes. Statistical tech-

nique is one of the alternative approaches to analyze such 

process, which is called statistical process control (SPC). SPC 

is used in quality control to improve a process through a 

control chart. Control charts have been introduced by several 

researchers. Shewhart (1931) proposed the first control chart 

called the Shewhart Control Chart, based on the assumption 

that observations are normal distributions with a constant 

mean and variance, and independent, identically distributed 

errors, even though real observations do not bear out these 

assumptions. That is, one does not see specific normal

 
distributions in real observations. Subsequently, the Cumula-

tive Sum (CUSUM) Control Chart was introduced by Page 

(1954). The CUSUM control chart is more generalized than 

the Shewhart control chart because it can detect false signals 

through collection and summation of the information of any 

distributed real observations. Roberts (1959) propounded an 

effective chart, or an exponentially weighted moving average 

(EWMA) control chart, which can detect small size shifts in 

the mean of a process faster than the CUSUM control chart. 

Since then, the EWMA control chart has been continually 

developed, such as the EWMA sign, new EWMA, Fuzzy 

EWMA, etc., by several researchers (Abbasi, 2012; Sevil et 

al., 2014; Zhang et al., 2014; Yang & Cheng, 2011). Statis-

tical observations, in general, are cross-section observations 

collected from a population in a given timeframe; and time 

series observations collected from a population in chronolo-

gical order. Time series observations, forecasting observa-

tions, represent real observations, which include trend, season, 

and autocorrelation. In other words, time series observations 

fluctuate, with mean and variance not constant over a given 
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timeframe. Several researchers have studied time series 

processes, autoregressive (AR), moving average (MA), 

autoregressive integrated moving average (ARIMA), and 

autoregressive fractionally integrated moving average 

(AFIMA) process, and applied these to forecasting models 

with real observations in several disciplines, such as medical 

science, finance, etc. Li et al. (2012) also studied the ARIMA 

process of the Box-Jenkins model (Box &Jenkins,1970) to fit 

the number of incidences of hemorrhagic fever with renal 

syndrome (HFRS) in China. Authors found that the AR and 

ARIMA process can describe such observations, enabling 

prediction and prevention. Furthermore, one of the other time 

series processes that can describe the characteristics of real 

observation movements is ARFIMA. Alireza and Ahmad 

(2009) forecasted the stock price index of Tehran (TSIP) with 

the ARFIMA process. In spite of the fact that the AFRIMA 

process can describe fluctuations in real observations, real 

observations sometimes present periodical behavior that varies 

seasonally. Thus, several researchers have conducted studies 

with the seasonal autoregressive fractionally integrated 

moving average (SAFIMA) process. For example, Sakha 

bakhsh (2013) applied consumption of petroleum products in 

the U.S. to model the SARFIMA (seasonal autoregressive 

fractional integral moving average) model with the 

specification of evaluation error using the decomposition 

method. Aye et al. (2015) employed aggregate retail sales of 

South Africa to establish a linear and non-linear model, 23 

single models and three combined models. Two of the 26 

models were the ARFIMA and SARFIMA models. Results 

showed that the combined nonlinear models were better than 

the single linear model. The pivotal point in the establishment 

of the ARFIMA and SARFIMA model was the estimation 

method for the fractional differencing parameter. That is, the 

AFRIMA and SARFIMA processes allow the fractional 

differencing parameter to be a fraction of a whole number 

instead of integer in the ARIMA process and the 

autocorrelation function (ACF) of the ARFIMA and 

SARFIMA process decays to zero on the exponential 

function. Meanwhile, ACF of the ARIMA process decays to 

zero on a geometric function (Hosking, 1981). Because the 

time series presents the long memory properties and periodical 

behavior with the season through the ACF, the long memory 

characteristic in the time series is captured by the fractional 

differencing parameter denoted by d  for the ARFIMA 

process and D  for the SARFIMA process. The ARFIMA and 

SARFIMA processes are long memory properties if there 

exists a nonzero , (0, 0.5)d D . For a short and intermediate 

memory property, , 0d D   and , ( 0.5, 0.0)d D  , respectively 

(Barbara et al., 2006). Several authors have used various 

methods for estimating ,d D  and their properties starting 

from theoretical derivation to implementation. Bisognin and 

Lopes (2009) gave proof of the properties of a long memory 

SARFIMA process, such as the spectral density function, the 

seasonal frequency, the long memory characteristics, etc. 

Reisen et al. (2014) used a semi-parametric method based on 

a Monte Carlo simulation for estimating parameter D of 

SARFIMA with two seasonal periods of long memory real 

observations of PM10 concentrations and hourly demand for 

electricity. Likewise, Richard (1996) proposed the semi-

parametric method for estimating parameter D with long 

memory volatility for real observations including interest rates 

and exchange rates with respect to both the frequency and 

time domain of the SARFIMA model. Based on the Markov 

Chain Monte Carlo (MCMC) method, Ndongo et al. (2010) 

presented the classical Whittle method. Meanwhile, Mostafaei 

and Sakhabakhsh (2011), Sakhabakhsh, Yarmohammadi 

(2012) and Mostafaei (2012) used the conditional sum of 

squares method for estimating parameter d of the SARIMA 

process and D of the SARFIMA process to model energy 

field observations. The results indicated that energy field 

observations exhibit non-stationary and periodic behavior and 

the SARFIMA model shows a better performance in terms of 

fitting these observations than the SARIMA model. 

To be successful in the execution of an EWMA 

control chart in real observations, a quality controller requires 

a statistic to determine whether the process is reasonable and 

controllable under an EWMA control chart or not. The 

average run length (ARL) is an indicator of the standard 

measurements in the performance of an efficient quality 

control chart. With the ARL, it is possible to predict the 

number of observations sampled from the process until the 

control chart can detect the false signals in an out-of-control 

process and it can then be categorized into two stages: in-

control stage ARL (ARL0) and out-of stage ARL (ARL1). 

Three common methods for evaluating the ARL are as 

follows. First, the Monte Carlo (MC) method uses simulation 

for evaluating ARL until a sufficiently large number of the 

iteration is generated so that the approximated ARL converges 

to the exact ARL (Hawkins & Olwell, 1998). Second, the 

Markov Chain Approach (MCA) method developed the 

transition probability of the run on the partition of the range 

between the upper control limit (UCL) and lower control limit 

(LCL) (Champ & Rigdon, 1991). Third, the numerical integral 

equation (NIE) method was derived from the transformation 

of the integral equation whose solution represents the ARL in 

system of linear equations (Areepong & Sukparungsee, 2010). 

Several researchers have used the same means. Phanyaem et 

al. (2013) used observations from the ARMA process with 

exponential distribution white noise for evaluating the ARL 

using the NIE method and making a comparison of the ARL 

between the CUSUM and the EWMA control chart. 

Meanwhile, Piyaphon et al. (2014) expressed the explicit 

formula of the ARL of an EWMA control chart when the 

observations follow the Seasonal Autoregressive and Moving 

Average (SARMAS) process with a seasonal period, S. 

However, as seen in the above literature review, the 

interesting point is that ARL evaluation for the efficiency of 

quality control in a time series process has rarely been 

proposed, especially with regard to applications in a 

SARFIMA process with exponential white noise under an 

EWMA control chart. Therefore, the three main goals of this 

research are to approximate the ARL, or numerical ARL 

designed by the NIE method with the composite midpoint 

rule; derive explicit formula of the ARL, or analytical ARL, of 

the EWMA control chart over the SARFIMA process for 

long-memory observations with exponential distribution white 

noise; and make a comparison between the numerical ARL 

and analytical ARL. The rest of the paper is organized as 

follows. In the second section, the characteristics of the 

EWMA control chart and generalized SARFIMA process are 

described and expanded upon, respectively. In the third 
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section, the derivation of the analytical ARL is presented and the existence and uniqueness of the analytical ARL are also proved 

by the functional analysis concept. In the fourth section, the numerical method for numerical ARL is demonstrated. Furthermore, 

the error analysis and convergence of the numerical ARL are analyzed. The numerical results of the ARL and accuracy 

measurements are illustrated in the fifth section. Finally, the discussion and conclusions will be summarized in the sixth section. 

 

2.  EWMA Control Chart and Generalized Long Memory SARFIMA Process 
 

An EWMA statistic depending upon a sequence of random variables, ; 1,2,3,...,tX t n  generated from the SARFIMA 

process that is expanded in the generalized form with process mean  and variance 2 is defined as  

 

1 0(1 ) ; 1,2,3,..., ;t t tZ Z X t n Z                               (1) 

 

where   is a smoothing parameter or weighting parameter satisfying 0 1  . An EWMA control chart with an initial 

mean process, 0 and width factor, K of the control chart consists of an asymptotical control limit as follows: 

 

Upper control limit: 2

0 1 (1 ) ,
(2 )

t

EWMAUCL K


  


     
 

 

Center Line: 0,EWMACL    

 

Lower control limit: 2

0 1 (1 ) .
(2 )

t

EWMALCL K


  


     
 

 

The ARFIMA process is a generalized ARIMA process from an integer to a fractional differencing parameter. In 

practice, however, the process involves the seasonal behavior of the ARFIMA process. The SARFIMA process is a seasonal long 

memory process denoted by SARFIMA(P,D,Q)S with the periodic season order S, if there exists a nonzero differencing 

parameter, (0, 0.5).D  The original SARFIMA (P,D,Q)S model, which can be explained in terms of a seasonal differencing 

binomial expansion 

 

2 31 1
(1 ) 1 (1 ) (1 )(2 ) ....

2! 3!

S D S SB DB D D B D D D B          

 

can be defined as 

 

( )(1 ) ( )S S D S

t tB B X B                        (2) 

 

where 2

1 2( ) (1 ... ); 1S S S PS

P iB B B B         is the autoregressive polynomial of degree P for 

1,2,...,i P  and 2

1 2( ) (1 ... ); 1S S S QS

Q iB B B B         is the autoregressive polynomial of degree 

Q for 1,2,...,i Q . The white noise process,
t , assumed with exponential distribution, i.e.

1
( ) exp( )t

tf



 

   with shift 

parameter 0  .In a control state, it is assumed that the shift parameter   known as 0   could be changed to an out-of-

control state 0(1 )     with shift size, .  The initial value is assigned as 
2 ( 1) ( 2), ,..., , ,t S t S t P S t P SX X X X     

 

( 3) ( ),..., 1.t P S t P D SX X      The generalization of SARFIMA in recursive form is carried out by applying binomial expansion as: 

 

1 2 2 1 2 2... ( ... )t t t S t S Q t QS t S t S P t PSX X X X                   

 1 2 2 3 ( 1) 2 1 3 2 4 ( 2)

( 1)
( ... ) ( ... )

2!
t S t S t S P t P S t S t S t S P t P S

D D
D X X X X X X X X         


         

 3 1 4 2 5 ( 3) 1 ( 1) 2 ( 2) (D )

( 1)( 2)
( ... ) ... ( ... ).

3!
t S t S t S P t P S t DS t D S t D S P t P S

D D D
X X X X X X X X           

 
            

 

3. Derivation of Analytical ARL with A Generalized Long Memory SARFIMA Process under an EWMA    

    Control Chart with Existence and Uniqueness 
 

The integral equation of the second kind is one of several types of integral equations with applications in various fields 

such as mechanics, electromagnetic theory, chemical kinetics, fluid dynamics, and mathematical biology (Kiusalaas, 2005; Nadir, 
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2014; Zang, Chen & Nie, 2014;). In this section, an analytical integral equation as the analytical ARL of the EWMA control chart 

with initial value u over a long memory SARFIMA process is proposed. Also, the existence and uniqueness of the analytical 

ARL based on Fixed Point theory in a functional analysis are proved as follows: 

 

3.1 Derivation of analytical ARL  
 

This research concentrated on the upper control limit side starting at 0  as the center line and ending at 0b  , i.e. 

EWMAUCL b and 0.EWMACL   Let ( )L u be the ARL of an EWMA control chart based on the method of Champ and Rigdon 

(1991). The following integral equation is the analytical ARL satisfying the EWMA control chart of a generalized long memory 

SARFIMA process as  

 

0

( )  1  ((1 )

b

L u L u    
1 1 1 2 ( 1)

2 1 3 ( 2) 1 ( 1) (D )

... ( ... ) ( ... )

( 1)
( ... ) ... ( ... )

2!

t t S Q t QS t S P t PS t S t S P t P S

t S t S P t P S t DS t D S P t P S

X X D X X X

D D
X X X X X X

          

        

              
 
 
          
 

) ( )f y dy              (3) 

 

By changing the variable technique, Equation (3) becomes 

 

0

1 (1 )
( ) 1 ( ) (

b
y u

L u L y f


 

 
  

1 1 1 2 ( 1)

2 1 3 ( 2) 1 ( 1) (D )

... ( ... ) ( ... )

( 1)
( ... ) ... ( ... )

2!

t t S Q t QS t S P t PS t S t S P t P S

t S t S P t P S t DS t D S P t P S

X X D X X X

D D
X X X X X X

          

        

              
 
 
          
 

)dy  

 

1 (1 ) 1
1 ( )[exp(

0

u
L y

b


  


  

1 1 1 2 ( 1)

2 1 3 ( 2) 1 ( 1) (D )

... ( ... ) ( ... )

( 1)
( ... ) ... ( ... )

2!

t t S Q t QS t S P t PS t S t S P t P S

t S t S P t P S t DS t D S P t P S

X X D X X X

D D
X X X X X X

          

        

              
 
 
          
 

)
y


 ]dy (4) 

 

Let  
(1 ) 1

( ) exp(
u

A u


 


 

1 1 1 2 ( 1)

2 1 3 ( 2) 1 ( 1) (D )

... ( ... ) ( ... )

( 1)
( ... ) ... ( ... )

2!

t t S Q t QS t S P t PS t S t S P t P S

t S t S P t P S t DS t D S P t P S

X X D X X X

D D
X X X X X X

          

        

              
 
 
          
 

); 0 u b   

 

Thus, 
( )

( )  1 ( )exp( ) , 0  .

0

A u y
L u L y dy u b

b

 


     

 

Let   ( )exp( ) ,

0

y
q L y dy

b




   so 

( )
( )  1 .

A u
L u q


                               (5) 

 

( )
 (1 )exp( )

0

A y y
q dy

b

 


   

 

 (1 )
exp[

0

q y
b



 


 

1




1 1 1 2 ( 1)

2 1 3 ( 2) 1 ( 1) (D )

... ( ... ) ( ... )

( 1)
( ... ) ... ( ... )

2!

t t S Q t QS t S P t PS t S t S P t P S

t S t S P t P S t DS t D S P t P S

X X D X X X

D D
X X X X X X

          

        

              
 
 
          
 

]
y

dy


  

 

  exp[ ]  

0

y
dy

b




  

 

That is, 1
{1 exp( )}exp[

q b
q

  
  

1 1 1 2 ( 1)

2 1 3 ( 2) 1 ( 1) (D )

... ( ... ) ( ... )

( 1)
( ... ) ... ( ... )

2!

t t S Q t QS t S P t PS t S t S P t P S

t S t S P t P S t DS t D S P t P S

X X D X X X

D D
X X X X X X

          

        

              
 
 
          
 

]  

 

[1 exp( )]
b





   
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Thus, 

 

1 1
{1 exp( )} [1 {1 exp( )}exp(

b b
q 

   
     

1 1 1 2 ( 1)

2 1 3 ( 2) 1 ( 1) (D )

... ( ... ) ( ... )

( 1)
( ... ) ... ( ... )

2!

t t S Q t QS t S P t PS t S t S P t P S

t S t S P t P S t DS t D S P t P S

X X D X X X

D D
X X X X X X

          

        

            
 
 
         
 

)].  

 

Substitute q  into Equation (5), then the analytical ARL as  

 

( ) ( )
( )  1 1

( )

A u Nom
L u q

Denom



 
     (6) 

 

where 

 

(1 )
( ) [1 exp( )]exp{ }

b u
Nom


 

 

 
  and 

 

1
( ) [1 exp( )] exp[

b
Denom  

 

 
  

1 1 1 2 ( 1)

2 1 3 ( 2) 1 ( 1) (D )

... ( ... ) ( ... )

( 1)
( ... ) ... ( ... )

2!

t t S Q t QS t S P t PS t S t S P t P S

t S t S P t P S t DS t D S P t P S

X X D X X X

D D
X X X X X X

          

        

              
 
 
          
 

] . 

 

The ARL for the in-control state process, or ARL0, with the setting the parameter 0 = ,   is as follows: 

 

( )
( ) 1

( )

0
0

0

Nom
L u

Denom




                       (7) 

 

Meanwhile, with the setting of exponential parameter 1 = ,  where 1 0 = (1 ),   the ARL for the out-of-control state process 

with shift size  can be written as follows: 

 

( )
( ) 1

( )

1
1

1

Nom
L u

Denom




                                                       (8) 

 

3.2 Existence and uniqueness of analytical ARL 
 

The definitions and theories based on a functional analysis that are necessary for proving the existence and uniqueness 

of the analytical ARL are briefly proposed as follows (Kreyszig, 1989; Rudin, 1991; Yosida, 1995): 

 

Definition 1: Let M  be a nonempty set. For all , ,x y z M , : M M    is called a distance function, or metric, on M if 

  satisfies the following properties 

 

(1) ( , ) 0x y  if x y and ( , ) 0x x   

(2) ( , ) ( , ),x y y x   

(3) ( , ) ( , ) ( , )x z y x x z    

Also, a pair ( , )M  is called a metric space. 

 

Definition 2: A sequence ( )nx of a point ( , )nx M  is a Cauchy sequence if ( , )m nx x tends to zero as ,m n tends to infinity.  

 

Definition 3: A metric space is complete if every Cauchy sequence has a limit x M .In other words, ( , )M  is a complete 

metric space, if ( , )m nx x  tends to zero as ,m n tends to infinity, then there exists x M such that ( , )nx x tends to zero as n  

tends to infinity. 

 

Definition 4: :T M M is a contraction mapping on a complete metric space if there exists 0 1   such that 

( ( ), ( )) ( , )T x T y x y   for all , .x y M  

 

Definition 5: Supremum norm, or Sup-norm, on the domain, ( )Dom L , of the continuous function ( ) : ( )L u Dom L   is 

defined as: ( ) sup{| ( ) |: ( )}.L u L u u Dom L   
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Theorem 1: Banach’s Fixed Point Theorem (Sofonea et al., 2006) 

 

If :T M M is a contraction mapping on a complete metric space ( , )M  , then there is exactly one solution, or a 

unique fixed point, l of T  such that ( )T l l  for all l M .Equation (4) can be rewritten in the form of an integral equation of 

the second kind for a continuous function  

 

1 (1 ) 1
( , ) exp[ )

u y
k u y



  

 
 

1 1 1 2 ( 1)

2 1 3 ( 2) 1 ( 1) (D )

... ( ... ) ( ... )

( 1)
( ... ) ... ( ... )

2!

t t S Q t QS t S P t PS t S t S P t P S

t S t S P t P S t DS t D S P t P S

X X D X X X

D D
X X X X X X

          

        

              
 
 
          
 

]
y


  

 

on [0, ] [0, ]; 0b b b  and unknown function, or the analytical ARL, ( ) :[0, ]L u b  , for a long memory SARFIMA 

process on the EWMA control chart as 

 

( ) ( ) ( , ) 1

0

L u L y k u y dy

b
                                                  (9) 

 

Consider metric space ( , )M  with [0, ]M C b  which contains all of the continuous real value functions on the upper 

control limit side of the EWMA control chart, ( ) :[0, ] [0, ]L u b b  , with Supremum Norm, ( ) sup{| ( ) |: [0, ]}L u L s s b  . The 

mapping :[0, ] [0, ]T b b is defined as 

 

0

( ( )) 1 ( ) ( , )

b

T L u L y k u y dy    

 

Theorem 2: The analytical ARL, or ( )L u , of an integral equation of the second kind corresponding to the long memory 

SARFIMA process on the EWMA control chart has an existence and a uniqueness.  

 

Proof. (Existence) 

 

Let ([0, ])C b be a set of all the continuous functions on [0, ]b  and 0( ( ))n nL u  be a sequence of the analytical ARL on 

([0, ]C b  which is defined by 
1( ) ( ( ))n nL u T L u  for 0n   with any initial point 

0( )L u on ([0, ]C b . For 1n m  , with 

application of the iteration, Definition 4, the triangle inequality, and the Von Neumann series:
0

1

1

i

i











   converges as 1  , 

considering the distance function 

 

( ( ), ( ))n mL u L u
0 0( ( ), ( ))n mT L u T L u  

1

1 0

0

( ( ), ( ))
n m

m i

i

L u L u 
 



 
  

 
  

1 0

1
( ( ), ( )).

1

m L u L u


 


 

 

It is obvious that ( ( ), ( ))n mL u L u  tends to zero as ,m n tends to infinity. Thus, 0( ( ))n nL u  is a Cauchy’s sequence and 

complete sequence as
0lim ( ( )) ( )n

n
T L u L u


 . 

 

Therefore, there exists the analytical ARL, ( ) :[0, ]L u b  , which is the solution of integral Equation (9). 

It is sufficient to show that T  is the contraction mapping to prove the uniqueness of the analytical ARL, ( ).L u For a 

real value continuous function:
1( ),L u 2( ) [0, ],L u C b  consider  

 

1 2( ( )) ( ( ))T L u T L u
1 2

0
0

sup | ( , )[ ( ) ( )] |

b

u b

k u y L y L y dy
 

   

1 2( 0)| ( , ) | ( ) ( )b k u y L y L y    
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1 2( ) ( )L y L y   

 

where ( 0)| ( , ) | 1b k u y     

 

Since 1  , therefore, T  is contraction mapping and then ( )L u  is the fixed point of the mapping T , i.e. 

( ( )) ( ),T L u L u  or Equation (9)has a unique analytical ARL solution. 

 

4. Analysis of Numerical ARL with a Generalized Long Memory SARFIMA Process on an EWMA Control  

    Chart 
 

As most integral equations cannot be solved with an analytical solution due to the complicatedness of integrand 

functions, the numerical technique is an alternative approach to find the solution to an integral equation making up the ARL 

defined as  

 

0

1 (1 )
( ) 1 ( ) (

b
y u

L u L y f


 

 
  

1 1 1 2 ( 1)

2 1 3 ( 2) 1 ( 1) (D )

... ( ... ) ( ... )

( 1)
( ... ) ... ( ... )

2!

t t S Q t QS t S P t PS t S t S P t P S

t S t S P t P S t DS t D S P t P S

X X D X X X

D D
X X X X X X

          

        

              
 
 
          
 

)dy   (10) 

 

In this section, NIEs accounting for the numerical ARL of an EWMA control chart over a long memory SARFIMA 

process are proposed. Moreover, error and convergence of the numerical ARL are demonstrated. The main methodology is 

described as follows. 

 

4.1 Numerical method for evaluation of numerical ARL 
 

The composite midpoint rule (Akinson, 1989; Kiusalaas, 2005; Matheus & Dmitry, 2008) proposed in this research is 

one of the methods for solving NIEs (Yalcinbas & Aynigul, 2011). The domain of the integral, [0, ]b , is divided into m  

subinterval with equal length ( )
b

m
 : 1 20 ... ,ma a a b      corresponding to equal weight: 0j

b
w

m
   and 1m   values of 

0 0 1 1( ) ( ), ( ) ( ),..., ( ) ( ).m mL a f a L a f a L a f a  Namely, 

 

(1 )
( ) (

0

y u
L y f

b




 


1 1 1 2 ( 1)

2 1 3 ( 2) 1 ( 1) (D )

... ( ... ) ( ... )

( 1)
( ... ) ... ( ... )

2!

t t S Q t QS t S P t PS t S t S P t P S

t S t S P t P S t DS t D S P t P S

X X D X X X

D D
X X X X X X

          

        

              
 
 
          
 

)dy

 ( ) ( )

1

w L a f a

m

j j j
j




                   (11) 

 

where  
1

,
2

b
a j

m
j

 
  

 
,

b
w

m
j  1,2,..., .j m  

 

Substitute Equation (11) for Equation (10) to obtain the system of m  linear equations with m  unknown variables as 

                

   
(1 )1

1 (

1

a a
L a w L a f

m
j i

i j j

j



 

 
  




1 1 1 2 ( 1)

2 1 3 ( 2) 1 ( 1) (D )

... ( ... ) ( ... )

( 1)
( ... ) ... ( ... )

2!

t t S Q t QS t S P t PS t S t S P t P S

t S t S P t P S t DS t D S P t P S

X X D X X X

D D
X X X X X X

          

        

              
 
 
          
 

)  

 

For 1,2,...,i m  

 

The above system of linear equations can be formed in the matrix notation as 

 

 
1

1 1( )m m m m m


   L I R 1
                                    (12) 

 

where      , ,..., ,1 1 2L a L a L a
T

m m 
 L  1,1,...,11

T
m 1 , a unit vector, m mR is a matrix with dimension m m  with 

element  
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(1 )1
(

j i
ij j

a a
r w f



 

 
 

1 1 1 2 ( 1)

2 1 3 ( 2) 1 ( 1) (D )

... ( ... ) ( ... )

( 1)
( ... ) ... ( ... )

2!

t t S Q t QS t S P t PS t S t S P t P S

t S t S P t P S t DS t D S P t P S

X X D X X X

D D
X X X X X X

          

        

              
 
 
          
 

),  

 

  (1, 1,...,1)1 diagm I is a unit diagonal vector. 

 

For the EWMA control chart, with the initial value u substituted for aiin  iL a , the numerical ARL can be evaluated as 

 

   
(1 )1

1 (

1

m a uj
L u w L a fj j

j



 

 
  




1 1 1 2 ( 1)

2 1 3 ( 2) 1 ( 1) (D )

... ( ... ) ( ... )

( 1)
( ... ) ... ( ... )

2!

t t S Q t QS t S P t PS t S t S P t P S

t S t S P t P S t DS t D S P t P S

X X D X X X

D D
X X X X X X

          

        

              
 
 
          
 

).  

 

4.2 Asymptotic error, error bound, and convergence of the numerical ARL  
 

The exact error (Er) (Akinson, 1989; Kiusalaas, 2005; Matheus & Dmitry, 2008) in an approximation of the numerical 

ARL of integral Equation (10), which depends on the function ( ) ( )L f  , by the composite midpoint rule, is given as 

 

   
3 3

3 2
1 1

( ) ( ) ( ) ( )
24 24

m m

j j j

j j

b b
Er Er L f L f

m m
   

 

                                               (13) 

 

where  
3

( ) ( ) , ( , )
24 2 2

j j j j j j

h b b
Er L f a a

m m
       for 1,2,...,j m  and (0, ),b  and satisfies  

3
1

2
| |

24

M b
Er

m
 , where 

 1
[0, ]

max | ( ) ( ) |
b

M L f


 


  

 

In order to show the convergence of the numerical ARL, the asymptotical error (Akinson, 1989) for the exact error of 

the Composite Midpoint Rule for the second differentiable function ( ) ( )L f  are defined as lim ( )
m

Er Lf


, i.e., 

 
3

2
lim ( ) ( ) .

24m

b
L f

m
 



  It is obvious that the asymptotical error tends to zero as m  tends to infinity. Therefore, the numerical 

ARL of a long memory SARFIMA process under an EWMA control chart is a convergence. From Equation (13), consider the 

term of the error bound 

 

 | ( ) ( ) | | ( ) ( ) 2 ( ) ( ) ( ) ( ) |L f L f f L f L               

| ( ) || ( ) | | 2 || ( ) || ( ) | | ( ) || ( ) |L f f L f L            

2 2

2 3

( )
exp( )[| ( ) | 2 | ( ) | | ( ) |]

A u
L L L


     

 
      

 

Thus,   2 2

2 3[0, ]

( )
max | ( ) ( ) | [| ( ) | 2 | ( ) | | ( ) |]

b

A u
L f L L L


       

 

      

 

 

As a result, the error bound for the numerical ARL was carried out as 

 

2 2
1 2 3

( )
[| ( ) | 2 | ( ) | | ( ) |]

A u
M L L L     

 
    . 

 

5. Numerical Results 
 

In this section, in comparing the numerical value of the analytical ARL and the numerical ARL as the solution of the 

integral equation representing the ARL of the EWMA control chart over a long memory SARFIMA process, this research desires 

to minimize the absolute percentage relative error (APRE) which is defined as 
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 ( )
  100%

( )

L u L u
APRE

L u


                                                   (14) 

 

where ( )L u is an analytical ARL, and  L u  is a numerical ARL. The figures accounting for the ARL are shown in Tables 1-4. 

The figures in the parentheses in Tables 1-4 represent the computational CPU time in minutes while the APRE as the exact error 

is also shown in the graph in Figure 1.  
 

Table 1. Comparison of the numerical values between the analytical and numerical ARL on SARFIMA (1, 0.1, 2)4. 

 

Shift size (  ) with
0 1   

Analytical ARL 
( )L u  

Numerical ARL 

( )L u  
APRE  

(%) 

    

0.00 370.000444747449 (0.014) 370.000444743069 (7.037) 1.18379E-09 

0.01 331.786614060609 (0.014) 331.786614056757 (13.901) 1.16099E-09 
0.03 268.452923498847 (0.016) 268.452923495853 (20.718) 1.11528E-09 

0.05 218.932665005619 (0.014) 218.932665003271 (27.519) 1.07246E-09 

0.10 135.765481926148 (0.014) 135.765481924825 (34.337) 9.74476E-10 
0.30 29.0891564514702 (0.014) 29.089156451273 (41.185) 6.77917E-10 
0.40 16.0502408367698 (0.014) 16.0502408366787 (48.034) 5.67585E-10 

0.50 9.72384534322514 (0.015) 9.72384534317914 (54.96) 4.73069E-10 
    

 
Table 2. Comparison of the numerical values between the analytical and numerical ARL on SARFIMA (1, 0.3, 2)4. 

 

Shift size (  ) with
0 1   

Analytical ARL 
( )L u  

Numerical ARL 

( )L u  
APRE  

(%) 

    

0.00 370.000380720424 (0.014) 370.00038071784 (6.989) 6.98374E-10 

0.01 330.885692186588 (0.014) 330.885692184323 (13.712) 6.84538E-10 

0.03 266.319561463609 (0.014) 266.319561461856 (20.498) 6.5823E-10 
0.05 216.10241971095 (0.014) 216.102419709582 (27.3) 6.3303E-10 

0.10 132.455900896147 (0.015) 132.455900895385 (34.164) 5.75275E-10 

0.30 27.3876709455636 (0.014) 27.3876709454542 (40.966) 3.99445E-10 

0.40 14.9333640610785 (0.014) 14.9333640610287 (47.83) 3.33483E-10 

0.50 8.97520656566755 (0.014) 8.97520656564277 (54.616) 2.76096E-10 
    

 
Table 3. Comparison of the numerical values between the analytical and numerical ARL on SARFIMA (2, 0.1, 2)12. 

 

Shift size (  ) with
0 1   

Analytical ARL 
( )L u  

Numerical ARL 

( )L u  
APRE  

(%) 

    

0.00 370.000459420447 (0.015) 370.000459417308 (6.818) 8.48379E-10 

0.01 331.217549183702 (0.016) 331.217549180947 (13.604) 8.31771E-10 

0.03 267.103951517072 (0.015) 267.103951514938 (20.437) 7.98946E-10 
0.05 217.141291012132 (0.015) 217.141291010463 (27.332) 7.68628E-10 

0.10 133.666022227482 (0.015) 133.666022226549 (34.149) 6.98008E-10 

0.30 28.0022369683228 (0.015) 28.0022369681868 (41.06) 4.85681E-10 

0.40 15.3348683748081 (0.015) 15.3348683747459 (47.956) 4.05606E-10 
0.50 9.24323844934806 (0.014) 9.24323844931694 (54.82) 4.72978E-10 

    

 
Table 4. Comparison of the numerical values between the analytical and numerical ARL on SARFIMA (2, 0.3, 2)12. 

 

Shift size (  ) with
0 1   

Analytical ARL 
( )L u  

Numerical ARL 

( )L u  
APRE  

(%) 

    

0.00 369.99998815077 (0.014) 369.999988148685 (6.864) 5.63503E-10 
0.01 330.518128542793 (0.014) 330.518128540967 (13.743) 5.52477E-10 

0.03 265.453049034583 (0.014) 265.453049033176 (20.622) 5.30033E-10 

0.05 214.957231169933 (0.014) 214.957231168838 (27.72) 5.09405E-10 
0.10 131.128316930688 (0.015) 131.128316930081 (34.663) 4.62886E-10 

0.30 26.7234332275109 (0.014) 26.7234332274251 (41.589) 3.21059E-10 

0.40 14.5018843590053 (0.014) 14.5018843589665 (48.5) 2.67558E-10 

0.50 8.68857585076846 (0.014) 8.68857585074919 (55.301) 2.21785E-10 
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Figure 1. Error on Numerical ARL. 

 

 

The figures in Tables 1-4 represent the analytical 

ARL evaluated from the Composite Midpoint Rule on 

1,000m  subintervals and its error with the shift parameter 

0(1 )    , where  is shift size, starting with 
0 370ARL  , 

1u  , and APRE. The different seasonal periods, S=4 for 

Table 1 and 2, and S=12 for Table 3 and 4, are used to 

compare the results. Table 1 and 2 are shown on 

0.1D  , 0.001687725b   and  0.3D  , 0.00129642b  , 

respectively, with 
1 10.1, 0.1,   

2 0.2  . Table 3 and 4 

are shown on 0.1D  , 0.001428809b   and 0.3D  , 

0.00116401b  , respectively, with 
1 20.1, 0.2,     

1 20.1, 0.2    . In all of the figures in each table, the 

analytical ARL is approximately the same value as the 

numerical ARL. However, the CPU time of the analytical 

ARL is significantly lower than the CPU time of the 

numerical ARL. While the CPU time of the analytical ARL is 

steady between 0.014 to 0.016 minutes, the CPU time of the 

numerical ARL rises as the shift size increases. 

Figure 1 demonstrates the error of the numerical 

ARL. As seen in the graph in figure 1, one of the differences 

between the fractional differencing parameter (D) and the 

seasonal period (S) is that S is fixed and D increases from 0.1 

to 0.3, but the error decreases. In comparison, D is fixed and 

there is an increase in the seasonal period from S=4 to S=12, 

but the error still decreases. 

 

6. Discussion and Conclusions 
  

In this paper, the analytical and numerical ARL 

have been proposed, while the existence and uniqueness of the 

analytical ARL have been proved. Also, the error and 

convergence of the numerical ARL have been analyzed and 

shown. The findings indicated that the analytical ARL and 

numerical ARL have a satisfactory performance. In this 

research, the analytical ARL is an alternative approach for an 

EWMA control chart over a long memory SARFIMA process 

due to faster computation than the numerical ARL and greater 

accuracy. Furthermore, the numerical ARL approaches the 

analytical ARL as D increases with fixed S, or S increases 

with fixed D. Notice that the seasonal period and fractional 

differencing parameter that effect the minimizing of error are 

the significant factors in evaluating the ARL of an EWMA 

control chart over a long memory SARFIMA process. As 

discussed previously, the analytical ARL is a very flexible 

method, but it has certain limitations. In case of a complicated 

integrand of the integral equation, the analytical ARL cannot 

be directly integrated. In other cases, when two or more 

characteristics of a variable are considered in a quality control 

chart, a system of integral equations representing their ARL is 

possibly more suitable than analytical ARL. For these two 

example cases, the numerical method for the numerical ARL 

is preferable. Moreover, the application of real data with long 

memory such as production data, financial data, 

environmental data, etc. should be applied to the model. These 

problems should be addressed in future research with a focus 

on novel development.   
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