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Abstract 

The objective of this research was to create a new transformation method, based on a modification of the Box and Cox 

power transformation (SMBC) by adding the ratio of skewness to two sample sizes, to characterized rought conditions with a 

standardized precipitation index (SPI).  Along with the various classical data transformations, namely the Box and Cox power 

transformation (BC), the exponential transformation, the Yeo and Johnson transformation, and a modification to BC by adding 

range, the results of a simulation study showed that the BC and SMBC methods had similar efficiencies when transforming 

gamma data, Weibull data, and Pearson type III data to a normal distribution, and notably, SMBC performed particularly well 

with the latter. Drought conditions were evaluated using the SMBC transformation on real-life data from rain gauging stations at 

Muang (Lamphun), Mae Prik (Lampang) and Chom Thong (Chiang Mai), Thailand. The SMBC proved to be particularly useful 

in determining the SPI. 
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1. Introduction

A drought is a natural disaster caused by a water 

shortage in an area for an extended time, severely affecting 

the local economy and society. In Thailand, the main cause of 

drought is insufficient rain in the rainy season (Agro-

meteorological Academic Group Meteorological Develop-

ment, 2011).  There are many ways to evaluate drought 

conditions, and the standardized precipitation index (SPI) is a 

popular and widely used method to detect and monitor 

drought.  

The SPI was developed by McKee et al. (1993) for 

evaluating drought at different times.  Calculation of the SPI 

uses cumulative rainfall data during a specific time-period of

interest, for instance, over 3, 6, 12, 24, or 48-month time 

period, using the cumulative rainfall amount transformed to 

standard normal. The SPI can be used to classify conditions as 

dry or wet in each area (Agro-meteorological Academic 

Group Meteorological Development, 2011). 

While examining the distribution of rainfall, McKee 

et al. (1993) fitted a gamma distribution to the rainfall data in 

the SPI calculation, whereas other researchers have tried to 

produce an appropriate model for studying rainfall when 

applying SPI to a particular area under study.  For instance, 

Zhang et al. (2009) applied a log normal distribution to fit the 

rainfall data from Pearl River, China, whereas Yusof and Hui-

Mean (2012) fitted the rainfall data from the state of Johor, 

Malaysia with a Weibull distribution having a heavy tail. 

Gabriel (2011) used a Pearson Type III distribution within his 

calculation of the SPI for Sao Paulo, Brazil, and Khamkong 

and Bookkamana (2011) fitted a generalized extreme value 

distribution for the annual maxima of daily and two-day 

rainfall data for upper Northern Thailand. 
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Environmental variables most frequently display asymmetric distributions with various levels of skewness and kurtosis, 

and precipitation data are no exception: they tend to be skewed positively (Twardosz & Walanus, 2011).  In particular, data 

transformation methods are used to transform data that is non-normally distributed to become normally distributed. Manly (1976) 

stated that an exponential transformation is quite effective at turning a skewed unimodal distribution into a nearly symmetric 

normal distribution, whereas the Yeo and Johnson transformation (2000) is an effective series of power transformations of a 

skewed distribution.  More recently, Watthanacheewakul (2012) proposed a modified Box and Cox transformation as an 

appropriate method to transform right-skewed data to become normal.  

Our focus in this research was to evaluate the available data transformations by applying them to the standardized 

precipitation index for evaluating drought. 

2. Materials and Methods

2.1 Types of distribution 

The gamma distribution is a two-parameter family with the probability density function (pdf) 
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The Weibull distribution is a two-parameter family with the pdf 
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where   is the shape parameter and   is the scale parameter. 

The Pearson Type III distribution (P3) is a three-parameter variation of the gamma distribution with the pdf 
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Here   is the location parameter,   is the shape parameter,   is the scale parameter,   is the mean,  is the 

standard deviation, and     is the skewness. 

The normal distribution is a two-parameter family with the pdf 
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where  is the location parameter and   is  the scale parameter. 

2.2 Transformation methods 

The methods of transforming non-normal data to normal data, tested in our study, are outlined here. 

2.2.1 The Box and Cox power transformation (BC) 

Box and Cox (1964) proposed a method for transforming non-normal data into normal data with homogeneous 

variance: 


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λx 1
0

Y λ

ln(x) 0
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where  is a transformation parameter. 

2.2.2 The exponential transformation (EP) 

Manly (1976) proposed a data transformation that is quite effective at transforming a skewed unimodal distribution into 

a nearly symmetric normal distribution: 
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0

Y λ

x 0
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, (6) 

where   is a transformation parameter. 

2.2.3 The Yeo and Johnson transformation (YJ) 

Yeo and Johnson (2000) proposed a data transformation that was developed from the Box and Cox transformation and 

is effective on skewed distributions: 

λ(x 1) 1
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Y λ

ln(x 1) 0
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where  is a transformation parameter. 

2.2.4 Watthanacheewakul’s (2012) modified Box and Cox power transformation (MBC) 

This is a convenient method for transforming right-skewed data to a normal or nearly normal distribution. 

Watthanacheewakul (2012) proposed a modified Box and Cox transformation of the form 

λ(x c) 1
0

Y λ

ln(x c) 0
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where  is a transformation parameter and c is the range of the data. 

2.2.5 The proposed modified Box and Cox power transformation 

The proposed modified Box and Cox power transformation (SMBC) is an improvement on the original Box and Cox 

power transformation, which makes it appropriate for transforming right-skewed data to normal or nearly normal distribution. 

With the parameter c set to zero, this becomes the Box and Cox power transformation. BC has better efficacy for transforming 

data but is not appropriate when the data contains zero values. Rainfall data from Thailand include zero values in summer and 

winter, we proposed an alternative transformation where c is set to the ratio of skewness between two sample sizes.   

λ(x c) 1
0

Y λ

ln(x c) 0

  
  

 
   

,        (9) 

where  is a transformation parameter and c 2(x Q )

2n(sd)


 , in which

2Q is the 2nd quartile, x  is the mean, sd is the 

standard deviation and n  is the sample size.The estimation of the parameters in SMBC method is illustrated in the Appendix. 
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2.3 Estimation of transformation parameter 
 

The value of transformation parameter   in (5), (6), (7), and (9) can be estimated from the probability density function 

of a normal distribution as 
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where iy  is the transformed value, μ  is the mean and 2σ  is the variance. 

 

The likelihood function of a normal distribution is given by 
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For a fixed  , the maximum likelihood estimates μ̂  and 2σ̂ are 
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Substitute μ̂  and 2σ̂  into equation (12) to get the log likelihood as 
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The maximum likelihood estimate of transformation parameter   in (5) is solved from 
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and similarly the maximum likelihood estimate of   in(6)is given by 
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while for (7) the condition is  
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and the maximum likelihood estimate of the transformation parameter   in(9)(details are given in appendix) is solved 

from 
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Watthanacheewakul (2012) recommended a numerical method, such as bisection, to find a suitable value for the 

transformation parameter that makes the slope of the maximized log likelihood function nearly zero.  However, to estimate the 

parameters, the bisection needs more iterations than either the secant method or some other alternatives. Thus, the secant method 

may be a preferred alternative over the bisection method. 

 

2.4 Standardized precipitation index (SPI) 
 

The SPI is the transformed value, when the cumulative amount of rainfall is transformed into standard normal 

distribution.  A positive SPI indicates that the observed precipitation is greater than the mean precipitation, whereas a negative 

SPI indicates the contrary. Interpretations of the SPI values are shown in Table 1. 
 

Table 1. The standardized precipitation index (SPI) categories based on the  

initial classification of SPI values. 
 

SPI Category 

  

2.00 and above Extremely wet 

1.50 to1.99 Severely wet 
1.00 to 1.49 Moderately wet 

-0.99 to0.99 Near normal 
-1.00 to-1.49 Moderately dry 

-1.50 to-1.99 Severely dry 
-2.00 and less Extremely dry 

 
 

  

 

2.5 Model selection criteria 
 

Two selection criteria for choosing the best-fit distribution, given numeric data, are well-known.  

 

2.5.1 Anderson-Darling (AD) test 
 

Anderson and Darling (1952) proposed a goodness-of-fit test which compares the observed distribution of data with the 

expected CDF, and is defined as  
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n
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where n is the sample size,  F  is the expected CDF, and ix are the ordered data. 

 

2.5.2 Akaike information criterion (AIC) 
 

Akaike (1973) proposed a criterion for selecting a model by comparing the actual model with the proposed model, and 

it is defined by  

 

AIC 2k 2lnL  ,                   (19) 
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where k  is the number of parameters in model and L  is the maximized value of the likelihood function for the fitted 

model.  

 

2.6 Numerical studies methodology 
 

2.6.1 Simulation study 
 

1. Generate the data from a gamma distribution, a Weibull distribution and a Pearson type III distribution, using various 

parameters and sample sizes, with the R program. 

2. Investigate whether the data follow a gamma distribution, a Weibull distribution or a Pearson type III distribution by 

using the AD test at the 0.05 significance level. 

3. Check whether the data are normally distributed according to the AD test at the 0.05 significance level. 

4. Estimate the transformation parameters by applying the secant method. 

5. Apply each data transformation to the simulated data.  

6. Re-check to see if the transformed data are normally distributed according to the AD test at the 0.05 significance 

level. 

7. Repeat steps 1-6 1,000 times. 

8. Consider the percentages of normal distributions. 

Full details are given in Figure 1.  

 
 

Figure 1. Steps in a simulation study. 
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2.6.2 Application to the SPI index of rainfall data 
 

1. The rainfall data were separated into the three seasons: summer (February to May), rainy (June to September), and 

winter (October to January of the next year), each with four months duration. The real-life data were gathered from rain gauging 

stations at Muang (Lamphun), Mae Prik (Lampang), and Chom Thong (Chiang Mai), Thailand. 

2. For each dataset, the unknown parameters of each distribution were estimated by the maximum likelihood method 

and the best-fit distribution was selected by using the AD test at the 0.05 significance level and by using the AIC.  

3. Rainfall data were transformed using SMBC.  

4. The transformed rainfall data were re-checked to see if they were normally distributed using the AD test at the 0.05 

significance level. 

5. If the transformed rainfall data had a normal distribution, they were evaluated as drought indicator values using the 

SPI. 

 

3. Results and Discussion 
 

3.1 Simulation study 
 

For gamma distribution, the BC transformation obtained the highest percentage followed by the SMBC transformation. 

When the sample size was small, the EP transformation achieved the highest percentage, and when skewness and sample size 

increased, the EP the YJ and the MBC transformations showed poorer success rates (Table 2).  
 

   Table 2. Percentage normal distributions after transformation of a gamma  
    distribution.   
 

n     SK BC EP YJ MBC SMBC 

         

15 2 1 1.41 99.3 99.3 99.6 94.1 99.3 

 4 1 1 99.6 99.9 99.8 98.8 99.6 

 6 1 0.82 99.8 100.0 99.8 99.8 99.8 
 2 3 1.41 99.3 93.4 98.8 96.7 99.4 
 4 3 1 99.6 99.8 99.8 99.6 99.7 
  6 3 0.82 99.8 100.0 99.9 99.8 99.8 

30 2 1 1.41 99.9 96.5 99.2 99.8 99.9 
 4 1 1 99.6 99.6 99.8 99.4 99.6 

 6 1 0.82 99.1 99.1 99.2 99.3 99.1 
 2 3 1.41 99.9 96.5 98.2 97.3 99.8 
 4 3 1 99.6 99.6 99.8 99.4 99.5 
  6 3 0.82 99.1 99.1 99.1 99.3 99.1 

50 2 1 1.41 99.0 92.1 98.6 93.0 99.0 
 4 1 1 99.2 97.1 99.5 98.3 99.2 

 6 1 0.82 100.0 98.8 100.0 99.2 100.0 

 2 3 1.41 99.0 92.1 96.7 93.0 99.0 

 4 3 1 99.2 97.1 99.0 98.3 99.2 
  6 3 0.82 100.0 97.6 99.9 99.2 100.0 

100 2 1 1.41 99.6 73.7 95.4 77.2 99.6 
 4 1 1 99.7 96.2 99.3 97.1 99.7 

 6 1 0.82 99.3 99.2 99.7 99.3 99.3 
 2 3 1.41 99.6 73.7 88.0 77.2 99.6 

 4 3 1 99.7 96.2 99.0 97.1 99.7 

  6 3 0.82 99.3 99.2 99.7 99.3 99.3 
         

 

Note: The bold-face values were considered to indicate the performance  

           transformation. 

 

For a Weibull distribution, the BC and SMBC transformations were similarly efficient. Moreover, when skewness and 

the sample size increased, the SMBC gave the best performance (Table 3).  

For a Pearson Type III distribution, the BC and SMBC transformations were similarly efficient. When the sample size 

was small, the MBC transformation had the highest success rate (Table 4).  

 

3.2 Rainfall data study 
 

Applications of the SMBC transformation to rainfall data are shown in Table 5. 

The rain gauging station at Muang (Lamphun) had maximum/ minimum cumulative seasonal rainfalls of 1,054 

mm/34.4mmwith a central tendency of 239.4 mm. The Pearson type III distribution gave the best fit to these data, among the 

distributions tested. 
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Table 3. Percentage normal distributions after transformation of a Weibull distribution. 
 

n     SK BC EP YJ MBC SMBC 

         

15 0.5 1 5.2 98.0 28.6 60.0 24.2 97.3 

 1 1 0.65 96.6 81.2 93.2 76.1 97.4 

 2 1 0.03 69.4 15.3 43.9 38.1 68.3 

 0.5 3 5.2 98.0 28.6 76.3 24.2 99.0 

 1 3 0.65 96.6 81.2 96.7 76.1 96.9 

 2 3 0.03 69.4 15.3 54.4 38.0 69.1 

30 0.5 1 5.2 99.2 1.8 16.7 3.9 85.9 

 1 1 0.65 99.6 74.4 88.2 78.3 99.5 

 2 1 0.03 98.5 96.5 98.7 96.9 98.6 

 0.5 3 5.2 99.2 1.8 31.9 3.9 93.6 

 1 3 0.65 99.6 74.4 93.8 78.3 99.6 

 2 3 0.03 98.5 96.5 99.4 97.0 98.6 

50 0.5 1 5.2 98.8 0.0 1.7 0.2 91.5 

 1 1 0.65 98.9 46.9 76.5 47.6 99.3 

 2 1 0.03 96.4 87.2 94.1 88.5 96.4 

 0.5 3 5.2 98.8 0.0 9.5 0.2 96.3 
 1 3 0.65 98.9 46.9 89.1 47.6 99.3 

 2 3 0.03 96.4 87.2 95.8 88.5 96.4 

100 0.5 1 5.2 93.8 0.0 0.0 0.0 97.3 

 1 1 0.65 93.8 6.0 33.3 6.9 97.4 

 2 1 0.03 90.9 73.2 83.4 75.0 68.3 

 0.5 3 5.2 93.8 0.0 0.1 0.0 99.0 

 1 3 0.65 93.8 6.0 64.2 6.9 96.9 
 2 3 0.03 90.9 73.2 87.7 75.0 69.1 

         
 

         Note: The bold-face values were considered to indicate the performance transformation 

        
Table 4.   Percentage normal distributions after transformation of a Pearson Type III distribution. 

 

n       SK BC EP YJ MBC SMBC 

          

15 4 1 0.5 0.47 95.4 94.4 95.6 96.3 95.4 

 6 1 0.5 0.43 95.1 93.9 95.4 96.2 95.1 

 4 1 1 0.47 96.5 95.3 96.4 96.4 96.5 

 6 1 1 0.43 95.4 93.9 93.5 95.4 95.4 

 4 3 0.5 2.46 96.3 94.9 96.1 96.2 96.3 

 6 3 0.5 2.26 94.9 93.6 94.8 95.4 94.8 
 4 3 1 2.46 96.2 94.9 96.1 96.6 96.2 

  6 3 1 2.26 94.5 93.3 94.5 95.4 94.5 

30 4 1 0.5 0.47 97.7 97.2 97.9 98.3 97.7 

 6 1 0.5 0.43 97.1 96.6 92.0 98.1 97.1 
 4 1 1 0.47 97.8 97.2 98.0 98.2 97.8 

 6 1 1 0.43 97.0 96.6 96.9 98.1 97.0 

 4 3 0.5 2.46 97.8 97.2 97.7 98.3 97.8 

 6 3 0.5 2.26 96.8 96.6 97.1 98.1 96.8 

 4 3 1 2.46 97.8 97.2 97.7 98.3 97.8 

  6 3 1 2.26 96.9 96.6 96.9 98.1 96.9 

50 4 1 0.5 0.47 97.1 95.5 97.1 97.0 97.1 

 6 1 0.5 0.43 96.3 94.6 96.3 96.2 96.3 

 4 1 1 0.47 97.0 95.5 97.1 97.0 97.0 

 6 1 1 0.43 96.4 94.6 96.3 96.4 96.4 

 4 3 0.5 2.46 97.1 95.5 97.1 97.0 97.1 
 6 3 0.5 2.26 96.3 94.6 96.3 96.2 96.3 

 4 3 1 2.46 97.1 95.5 97.1 97.0 97.1 

  6 3 1 2.26 96.3 94.6 96.3 96.2 96.3 

100 4 1 0.5 0.47 99.2 99.6 99.3 96.9 99.2 

 6 1 0.5 0.43 99.4 98.3 99.5 98.6 99.4 

 4 1 1 0.47 99.3 96.6 99.1 96.9 99.3 

 6 1 1 0.43 99.5 98.3 99.6 98.7 99.5 
 4 3 0.5 2.46 99.0 99.6 99.2 96.9 99.0 

 6 3 0.5 2.26 99.4 98.3 99.4 98.6 99.4 

 4 3 1 2.46 99.1 96.6 99.2 96.9 99.1 

  6 3 1 2.26 99.4 98.3 99.5 98.6 99.4 
          

 

               Note: The bold-face values were considered to indicate the performance transformation 
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    Table 5.     Descriptive statistics and model selection criteria of the four–month rainfall period. 

 

Stations 
Rainfall 

Median QD Skewness 
Gamma Weibull P3 

Min Max AIC AD AIC AD AIC AD 
            

Muang Lamphun 34.4 1,054.0 239.4 129.15 0.9818 2,295.5 1.248 2,299.1 1.514 2,287.0 0.754 

Maepik 8.5 

 

1,064.0 

 

302.7 

 

134.80 

 

0.6872 

 

2,261.1 

 

0.647 

 
2,254.4 

 

0.188 

 

2,259.0 

 

0.324 

 Chom Thong 27.9 793.0 249.6 115.50 0.8360 2,227.8 0.156 2,230.8 0.857 2,239.0 0.156 
            

 

    Note: The bold-face values were considered to indicate the best distribution fitted to the real data and QD is quartile deviation. 

 

The rain gauging station at Mae Phrik (Lampang) had maximum/ minimum cumulative seasonal rainfalls of 1,064 

mm/8.5mm with a central tendency of 302.7mm. The Weibull distribution provided a very good fit to these data, along with the 

Pearson Type III and gamma distributions. 

The rain gauging station at Chom Thong (Chiang Mai)  had maximum/minimum cumulative seasonal rainfalls of 793 

mm/27.9mm with a central tendency of 249.6mm. The gamma distribution was the most appropriate in this case. 

The evaluation of drought severity from the SPI yielded the following results. In Figure 2, we can see that the Muang 

(Lamphun) station showed extremely dry conditions in 1974, 1996 and 1999, whereas, as seen in Figure 3, the Mae Phrik 

(Lampang) station had extremely dry conditions in 1960, 1990, 2005, and 2010. Lastly, data from the Chom Thong (Chiang Mai) 

station showed extremely dry conditions in 1960, 1992, 2004, and 2010 (Figure 4). 

 

 
Figure 2. Four – month SPI for Muang, (Lamphun). 

 

 
Figure 3. Four – month SPI for Mae Phrik, (Lampang). 

 

 
Figure 4. Four – month SPI for Chom Thong, (Chiang Mai). 

 

4. Conclusions 
 

Data transformations that convert a positively–skewed distribution to a normal distribution are essential for the drought 

analysis using SPI. Overall, the BC transformation is powerful but may not be appropriate when the data contains zero values. 

We proposed an alternative transformation, the SMBC, by adding the ratio of skewness for two sample sizes.  The simulation 

results showed that the BC and SMBC transformations were similarly efficient for both gamma and Weibull distributed 

simulated data, and the SMBC performed particularly well with Weibull distributed data.  Therefore, our recommendations are 

that the SMBC transformation is useful when the data follow a Weibull distribution or when the data contain zero values (as on 

evaluating drought conditions by applying the SPI).  Moreover, if one uses the SMBC transformation to convert Weibull 

distributed data to become normally distributed, then we could construct confidence interval estimates of the population mean, 

which is useful for further analysis of the data. Future research could apply the SMBC transformation to other kinds of 

positively–skewed distributions, such as the Gumbel distribution, the generalized exponential distribution, and so on. 
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Appendix 

 

Estimation of transformation parameter for SMBC 
 

The transformation parameter (  ) can be estimated by the probability density function of a normal distribution as  
 

 
2 2

i i1 2
2 2

1 1
f (y μ,σ ) exp (y μ)

2σ
2πσ

 
   

 
,                                                    (A1) 

 

where iy  is the observed value, μ  is the mean, and 2σ  is the variance. 

 

The likelihood function of a normal distribution is given by 
 

 

n
2 2

i in 2
i 12 2

1 1
L( , y ) exp (y μ)

2σ
2πσ



 
     

 

                                                (A2) 

 

For 
  1

λ
i

i

x c
y

λ

 
 , the likelihood function can be written as 

 

 

 
2

n
2

n 2
i 12 2

11 1
L( , , ,  ) exp J(y;x)

2
2π

λ
i

i

x c
λ c x

λσ
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


         
    

             (A3) 

 

where 
n

i

i 1 i

y
J(y;x)

x


 


is the Jacobian of the transformation. 

 

For a fixed  , the maximum likelihood estimators μ̂  and 2σ̂ are 
 

  
λ

n
i

i 1

x c 11
μ̂

n λ

  
  
 
 

 and    
2

λ λ
n n

i i2

i 1 i 1

x c 1 x c 11 1
σ̂

n λ n λ 

          
    

. 

 

Substitute μ̂  and 2σ̂  into equation (A3). Thus, the log likelihood is 
 

 
2

λ
n n

i2 2
i i2

i 1 i 1

x c 1n n 1
ln L(μ,,  ,λ x ) ln 2π ln σ μ (λ 1) ln(x c)

2 2 λ2σ  

  
          
 
 

            (A4) 

 

The log likelihood functions of  becomes 
 

   
2

λ λ
n n n

i i
i i

i 1 i 1 i 1

x c 1 x c 1n n 1 1 n
ln L(λ x ) ln 2π ln (λ 1) ln(x c)

2 2 n λ n λ 2  

                          

            (A5)  

 

The maximum likelihood estimate of the transformation parameter is subject to 
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