ผลและวิจารณ์

ในการวิจัยครั้งนี้เป็นการวิเคราะห์พฤติกรรมของฐานรากตื้นโดยใช้วิธิไฟในท์อิลิเมนต์(FEM) โดยได้แบ่งกรณีการวิเคราะห์ออกตามคุณสมบัติของดินและคุณสมบัติของฐานราก รายละเอียดในการ แบ่งของแต่ละกรณีได้แสดงรายละเอียดไว้ในวิธีการวิจัย คุณสมบัติที่ทำการพิจารณา ได้แก่ ชนิดของ ดิน ความแข็งแรงของดิน อัตราส่วนความกว้างต่อความลึกของฐานราก Roughness of Footing เป็นด้น เมื่อการวิเคราะห์เสร็จสิ้นก็เป็นขั้นตอนของการนำผลที่ได้มาพิจารณา โดยงานวิจัยครั้งนี้มุ่งเน้นไปที่ ค่ากำลังแบกทานของดินเป็นสำคัญ ก็จะนำค่ากำลังแบกทานที่ได้ภาก FEM มาเปรียบเทียบกับทฤษฎี หรือสมการที่ใช้กันอยู่ในปัจจุบัน นอกจากนั้นยังศึกษาพฤติกรรมโดยรวมของดินตั้งแต่ในสภาวะเริ่มค้น ที่ยังไม่มีน้ำหนักภายนอกมากระทำ หลังจากนั้นเริ่มมีน้ำหนักภายนอกมากระทำจนกระทั่งเกิดการวิบัติ ของดินขึ้นว่ามีกระบวนการกวามต่อเนื่องของการวิบัติอย่างไร ดังนั้นในการนำเสนอผลการวิเคราะห์ จะประกอบไปด้วยหัวข้อหลัก คือ การเปรียบเทียบกำกำลังแบกทานของดินที่ได้จาก FEM กับสมการ กำลังแบกทานของดินโดยทั่วไป พฤติกรรมการวิบัติของดินเนื่องจากการรับน้ำหนักจากฐานรากตื้น และลักษณะการเคลื่อนตัวและรูปร่างของระนาบการวิบัติของดินเนื่องจากการรับน้ำหนักจากฐาน รากตื้นแบบ Strip ซึ่งมีรายละเอียดดังต่อไปนี้

<u>1. กำลังแบกทานของดินเนื่องจากฐานรากแบบ Strip ที่ได้จากการวิเคราะห์ด้วยวิธีไฟในท์อิลิเมนต์</u>

1.1 กำลังแบกทานของคินเหนียวเนื่องจากฐานรากแบบ Strip

ในการหาค่ากำลังแบกทานของคินเหนียวด้วยวิธีไฟไนท์อิลิเมนต์ จะแบ่งกรณีการวิเคราะห์ ตามค่ากำลังความแข็งแรงของคิน โดยแบ่งออกเป็น คินเหนียวอ่อน คินเหนียวแข็งปานกลางและคิน เหนียวแข็งมาก ส่วนคุณสมบัติของฐานรากจะแบ่งกรณีการวิเคราะห์ตามความกว้างของฐานราก ได้แก่ 1, 2 และ 3 เมตร อัตราส่วนระหว่างความลึกต่อความกว้างของฐานราก ได้แก่ 0, 0.5, 1, และ 2 และผิวสัมผัสระหว่างฐานรากกับคิน ได้แก่ แบบขรุขระ (Rough) กับแบบราบเรียบ(Smooth) ซึ่งรวม กรณีที่ทำการวิเคราะห์กำลังแบกทานของคินเหนียวทั้งหมดเท่ากับ 72 กรณี จากนั้นพิจารณาค่ากำลัง แบกทานของคินจากกราฟความสัมพันธ์ระหว่างกำลังแบกทานกับการทรุดตัวที่เกิดขึ้น โดยพิจารณา ร่วมกับ Total Incremental Displacement ของคินใต้ฐานรากด้วย จากภาพที่ 63-74 จะเป็นกราฟความสัมพันธ์ระหว่างกำลังแบกทานของดินกับการทรุด ตัว ซึ่งในแต่ละภาพจะประกอบไปด้วยผลการวิเคราะห์รวม 6 กรณีซึ่งจะเป็นกราฟของดินที่ค่าความ แข็งแรงแตกต่างกันและเงื่อนไขของ Roughness of Footing ที่ต่างกัน นอกจากนั้นในแต่ละภาพจะ แสดงค่ากำลังแบกทานของดินที่คำนวณได้จากสูตรทั่วไปที่เป็นที่นิยมใช้กันอยู่ ได้แก่ สมการของ Terzaghi, Meyerhof, Hansen, Vesic และ Fellenius ซึ่งแต่ละสมการก็จะให้ค่าที่แตกต่างกันไปเนื่องจาก สมมุติฐานที่แตกต่างกัน

สำหรับคินเหนียว กราฟความสัมพันธ์ระหว่างค่ากำลังแบกทานของคินกับค่าการทรุด ตัวที่เกิดขึ้นสามารถพิจารณาแยกออกตามคุณสมบัติดังต่อไปนี้ คือ ค่าความแข็งแรงของคิน ความ กว้างของฐานราก อัตราส่วนความลึกต่อความกว้างของฐานราก ตามลำดับ

สำหรับอิทธิพลของค่าความแข็งแรงของคิน เมื่อคินกำลังแบกทานของคินจะแปรผันตาม ค่ากำลังความแข็งแรงของคิน รูปร่างของกราฟมีลักษณะที่เหมือนกันแต่จะมีความชันของกราฟในช่วง ที่สภาวะอิลาสติกสูงขึ้นเมื่อคินมีค่าความแข็งแรงของคินมากขึ้นและค่ากำลังแบกทานของคินใน สภาวะพลาสติกที่สูงขึ้นเมื่อคินมีค่าความแข็งแรงสูงมากขึ้น นั่นคือความชันของกราฟในช่วงอิลาสติก และค่ากำลังแบกทานของคินในสภาวะพลาสติกสามารถเรียงจากน้อยไปมากได้ดังนี้ คือ คินเหนียว อ่อน คินเหนียวแข็งปานกลาง และคินเหนียวแข็งมาก

สำหรับอิทธิพลของความกว้างของฐานรากต่อค่ากำลังแบกทานของดิน เมื่อฐานรากมี ความกว้างเพิ่มมากขึ้น ก็จะทำให้มีพื้นที่ในการกระจายน้ำหนักเพิ่มมากขึ้นซึ่งก็จะทำให้มีค่ากำลัง แบกทานสูงมากขึ้นไปด้วย และเมื่อฐานรากวางที่ระดับความลึกจากผิวดินมากขึ้น ค่ากำลังแบกทาน ของดินก็จะสูงมากขึ้นด้วย เนื่องมามีแรงด้านทานจากดินที่อยู่เหนือระดับของฐานรากมาช่วย และ จากภาพที่จะเห็นว่าค่า Roughness of Footing จะมีอิทธิพลต่อค่ากำลังแบกทานของดินกรณีที่ฐานรา กวางอยู่ที่ผิวดิน แต่เมื่อฐานรากวางที่ระดับลึกจากผิวดินลงไป ค่า Roughness ก็จะไม่ก่อยมีผลต่อค่า กำลังแบกทานของดิน โดยหากกำหนดให้มีลักษณะแบบ Rough ซึ่งผิวสัมผัสเป็นแบบขรุงระ มีการ เคลื่อนตัวที่เกิดขึ้นเฉพาะแนวดิ่ง ไม่มีการเคลื่อนตัวในแนวราบ ค่ากำลังแบกทานที่ได้ก็จะสูงกว่า การกำหนดให้ผิวสัมผัสเป็นแบบ Smooth ซึ่งเป็นการกำหนดให้ดินใต้ฐานรากเคลื่อนตัวได้ทั้งแนวดิ่ง และแนวราบซึ่งสามารถที่จะเคลื่อนตัวได้อย่างอิสระ แต่เมื่อฐานรากวางอยู่ที่ระดับลึกลงไปจากระดับ ผิวดิน ค่า Roughness ก็จะมีอิทธิพลน้อยลงหรือแทบจะไม่มีอิทธิพลเลยเนื่องจากถูกล้อมหรือกดไว้ ด้วยดินที่อยู่สูงจากระดับฐานรากไว้ ทำให้เป็นการกำกัดกวามสามารถในการเคลื่อนตัวหนีของดิน จากกราฟความสัมพันธ์ทั้ง 72 กรณีของดินเหนียว สามารถที่จะหาค่ากำลังแบกทานของ ดินได้ โดยจะพิจารณาค่าการทรุดตัวที่ก่อให้เกิดการ yield ของดินหรือดินเริ่มเกิดการวิบัติเป็นจุดแรก หรือดินเริ่มเกิดจุดที่เป็นพลาสติกขึ้น นั่นคือดินที่จุดนั้นมีก่าหน่วยแรงเฉือนสูงกว่าก่ากำลังรับแรงเฉือน ของดินนั่นเอง เมื่อเลยจุดนี้ไปดินก็จะเกิดจุดที่เป็นพลาสดิกมากขึ้นเรื่อยารวมตัวกันเป็นมวลพลาสดิก ที่มีขนาดใหญ่ขึ้น เรียกสภาวะในช่วงนี่ว่า Elasto-Plastic State จนกระทั่งมวลที่เป็นพลาสติกรวบตัว กันเป็นระนาบการวิบัติไปสัมผัสที่ผิวดิน ณ จุดนี้ จะเรียกว่า Limit Equilibrium State คือสภาวะที่มวล ดินก่อนที่จะเกิดการวิบัติไปสัมผัสที่ผิวดิน ณ จุดนี้ จะเรียกว่า Limit Equilibrium State คือสภาวะที่มวล การวิบัติขึ้นอย่างทันทีทันใด หรือเรียกจุดที่เกิดการวิบัตินี้ว่า Collapse Mechanism State ดังนั้นใน ตารางที่ 18 จะประกอบไปด้วยค่าการทรุดตัว ณ First Local Yield State Limit Equilibrium State และ Collapse Mechanism State แล้วทำการเปรียบเทียบกับก่าที่กำนวณได้จากสมการกำลังแบกทาน โดยทั่วไปอันได้แก่ สมการของ Fellenius Terzaghi Hansen และ Meryerhof ซึ่งก่าที่ได้จาก FEM ของดินเหนียวจะมีกวามใกล้เกียงกับสมการของ Fellenius และ Hansen ในช่วง D/B < 1ซึ่งเปอร์เซ็นต์ ความแตกต่างที่ได้จะมีก่าน้อยกว่า 10 เปอร์เซ็นต์ แต่ที่กรณี D/B > 1ก่าที่ได้จาก FEM ก็จะมีกวาม ใกล้เคียงกับสมการของ Fellenius และ Hansen เช่นกัน โดยมีเปอร์เซ็นต์กวามแตกต่างน้อยกว่า 15 เปอร์เซ็นต์

จากภาพของความสัมพันธ์ทั้งหมดสามารถที่จะสรุปภาพรวมตามภาพที่ 78 ได้ว่า ดินเมื่อ รับน้ำหนักจากภายนอก ในช่วงแรกหรือที่ค่าการทรุดตัวต่ำดินจะยังคงมีพฤติกรรมเป็นแบบอิลาสติก อยู่ โดยจุดสุดท้ายที่ดินยังคงอยู่ในสภาวะอิลาสติกอยู่คือจุดก่อนที่ดินจะเกิด First Local Yield เทียบ ได้กับกราฟในช่วงที่ยังเป็นเส้นตรง จากนั้นดินก็จะเริ่มเกิดการวิบัติขึ้นหรือเกิด First Local Yield จุดพลาสติกของดินจะเกิดขึ้นและขยายขนาดมากขึ้นเทียบได้กับกราฟช่วงที่เริ่มจะไม่เป็นเส้นตรง จนกระทั่งเริ่มมีค่าความชันเพิ่มขึ้นจนกระทั่งค่าความชันของกราฟเกือบที่จะเป็นศูนย์ และเมื่อดินที่ เป็นพลาสติกขอายตัวจนกระทั่งไปสัมผัสที่ผิวดินจุดนี้เป็นจุดที่ดินพร้อมที่จะเกิดการวิบัติแล้วแต่ยังคง อยู่ในสภาวะสมดุลอยู่จุดนี้จะเป็นจุดก่อนที่กราฟจะเริ่มมีค่าความชันเท่ากับ 0 หรือ ที่เรียกว่า จุด Limit Equilibrium State หลังจากนั้นเมื่อมีน้ำหนักมากระทำมากขึ้นดินก็จะเกิดการวิบัติขึ้นนั่นคือ ถึงแม้ในกราฟค่าการทรุดตัวที่เกิดจะมากขึ้นแต่ค่ากำลังแบกทานของดินก็จะคงที่ หรือเป็นช่วงที่ กราฟจะมีค่าความชันเท่ากับ 0

<u>ภาพที่ 63</u> กราฟความสัมพันธ์ระหว่างการเกลื่อนตัวกับกำลังแบกทานของคินเหนียว กรณีฐานราก กว้างเท่ากับ 1 ม. อัตราส่วนความกว้างต่อความยาว เท่ากับ 0

<u>ภาพที่ 64</u> กราฟความสัมพันธ์ระหว่างการเคลื่อนตัวกับกำลังแบกทานของดินเหนียวกรณีฐานราก กว้างเท่ากับ 1 ม.อัตราส่วนความกว้างต่อความยาวเท่ากับ 0.5

<u>ภาพที่ 65</u> กราฟความสัมพันธ์ระหว่างการเคลื่อนตัวกับกำลังแบกทานของดินเหนียว กรณีฐานราก กว้าง เท่ากับ 1 ม. อัตราส่วนความกว้างต่อความยาว เท่ากับ 1

<u>ภาพที่ 66</u> กราฟความสัมพันธ์ระหว่างการเกลื่อนตัวกับกำลังแบกทานของคินเหนียว กรณีฐานราก กว้างเท่ากับ 1 ม. อัตราส่วนความกว้างต่อความยา เท่ากับ 2

<u>ภาพที่ 67</u> กราฟความสัมพันธ์ระหว่างการเกลื่อนตัวกับกำลังแบกทานของคินเหนียว กรณีฐานราก กว้างเท่ากับ 2 ม. อัตราส่วนความกว้างต่อความยาว เท่ากับ 0

<u>ภาพที่ 68</u> กราฟความสัมพันธ์ระหว่างการเคลื่อนตัวกับกำลังแบกทานของดินเหนียวกรณีฐานราก กว้างเท่ากับ 2 ม.อัตราส่วนความกว้างต่อความยาวเท่ากับ 0.5

<u>ภาพที่ 69</u> กราฟความสัมพันธ์ระหว่างการเกลื่อนตัวกับกำลังแบกทานของดินเหนียวกรณีฐานราก กว้างเท่ากับ 2 ม.อัตราส่วนความกว้างต่อความยาว เท่ากับ 1

<u>ภาพที่ 70</u> กราฟความสัมพันธ์ระหว่างการเคลื่อนตัวกับกำลังแบกทานของดินเหนียวกรณีฐานราก กว้างเท่ากับ 2 ม.อัตราส่วนความกว้างต่อความยาว เท่ากับ 2

<u>ภาพที่ 71</u> กราฟความสัมพันธ์ระหว่างการเกลื่อนตัวกับกำลังแบกทานของคินเหนียว กรณีฐานราก กว้างเท่ากับ 3 ม.อัตราส่วนความกว้างต่อความยาว เท่ากับ 0

<u>ภาพที่ 72</u> กราฟความสัมพันธ์ระหว่างการเคลื่อนตัวกับกำลังแบกทานของคินเหนียวกรณีฐานราก กว้างเท่ากับ 3 ม.อัตราส่วนความกว้างต่อความยาวเท่ากับ 0.5

<u>ภาพที่ 73</u> กราฟความสัมพันธ์ระหว่างการเกลื่อนตัวกับกำลังแบกทานของคินเหนียว กรณีฐานราก กว้างเท่ากับ 3 ม. อัตราส่วนความกว้างต่อความยาว เท่ากับ 1

<u>ภาพที่ 74</u> กราฟความสัมพันธ์ระหว่างการเคลื่อนตัวกับกำลังแบกทานของดินเหนียวกรณีฐานราก กว้าง เท่ากับ 3 ม. อัตราส่วนความกว้างต่อความยาว เท่ากับ 2

	Displa	Displacement from FEM (m.)			ure From FEM	ค่ากำลังแบกทานของคินจากสมการ โดยทั่วไป					
Analysis	At First	At Limit	At Collapse	At Limit	At Collapse	Fellenius	Terzaghi	Hansen	Meyerhof	Vesic	
	Local Yield	Equilibrium	State	Equilibrium	State	(kN/m^2)	(kN/m^2)	(kN/m^2)	(kN/m^2)	(kN/m^2)	
10SCR	0.010	0.050	0.060	108	109	110	114	103	103	103	
10SCS	0.010	0.050	0.060	107	106	110	114	103	103	103	
10MCR	0.010	0.040	0.040	218	218	220	228	206	206	206	
10MCS	0.010	0.040	0.040	212	212	220	228	206	206	206	
10STCR	0.005	0.030	0.032	435	436	440	456	411	411	411	
10STCS	0.005	0.025	0.027	434	434	440	456	411	411	411	
105SCR	0.010	0.180	0.180	142	142	129	122	129	111	111	
105SCS	0.005	0.180	0.180	141	141	129	122	129	111	111	
105MCR	0.005	0.120	0.120	276	276	259	237	250	214	214	
105MCS	0.005	0.120	0.120	275	275	259	237	250	214	214	
105STCR	0.005	0.100	0.100	543	543	517	465	492	420	420	
105STCS	0.005	0.100	0.100	542	542	517	465	492	420	420	

<u>ิตารางที่ 14</u> แสดงค่ากำลังแบกทานของคินเหนียวจากไฟในท์อิลิเมนท์เทียบกับค่ากำลังแบกทานจากสูตรทั่วไป

	Displa	acement from FI	EM (m.)	Bearing Press (kN	ure From FEM		ค่ากำลังแบกทานของคินจากสมการ โดยทั่วไป				
Analysis	At First	At Limit	At Collapse	At Limit	At Collapse	Fellenius	Terzaghi	Hansen	Meyerhof	Vesic	
	Local Yield	Equilibrium	State	Equilibrium	State	(kN/m ⁻)	(kN/m ⁻)	(kN/m ⁻)	(kN/m ⁻)	(kN/m ⁻)	
1SCR	0.010	0.360	0.360	156	156	149	130	155	119	119	
11SCS	0.010	0.360	0.360	156	156	149	130	155	119	119	
1MCR	0.005	0.250	0.250	298	298	297	245	295	223	223	
1MCS	0.005	0.250	0.250	298	298	297	245	295	223	223	
1STCR	0.005	0.190	0.190	579	579	594	474	573	429	429	
1STCS	0.005	0.190	0.190	579	579	594	474	573	429	429	
12SCR	0.005	0.700	0.700	184	184	187	146	207	135	135	
2SCS	0.005	0.680	0.680	184	184	187	146	207	135	135	
2MCR	0.005	0.500	0.500	338	338	374	262	384	240	240	
2MCS	0.005	0.490	0.490	338	338	374	262	384	240	240	
2STCR	0.005	0.380	0.380	644	644	748	492	735	447	447	
12STCS	0.005	0.360	0.360	643	643	748	492	735	447	447	

A 1 .	Displa	acement from FI	EM (m.)	Bearing Pressure From FEM (kN/m ²)		ค่ากำลังแบกทานของดินจากสมการ โดยทั่วไป					
Analysis	At First Local Yield	At Limit Equilibrium	At Collapse State	At Limit Equilibrium	At Collapse State	Fellenius (kN/m ²)	Terzaghi (kN/m ²)	Hansen (kN/m ²)	Meyerhof (kN/m ²)	Vesic (kN/m ²	
20SCR	0.015	0.085	0.097	106	107	110	114	103	103	103	
20SCS	0.008	0.085	0.094	104	105	110	114	103	103	103	
20MCR	0.010	0.060	0.063	213	214	220	228	206	206	206	
20MCS	0.006	0.060	0.061	209	209	220	228	206	206	206	
20STCR	0.005	0.050	0.050	427	427	440	456	411	411	411	
20STCS	0.004	0.050	0.050	418	418	440	456	411	411	411	
205SCR	0.012	0.270	0.300	149	149	129	130	137	119	119	
205SCS	0.012	0.270	0.290	149	149	129	130	137	119	119	
205MCR	0.010	0.180	0.210	283	283	259	245	259	223	223	
205MCS	0.010	0.180	0.210	282	283	259	245	259	223	223	
205STCR	0.010	0.150	0.160	550	549	517	474	501	429	429	
205STCS	0.010	0.150	0.160	549	549	517	474	501	429	429	

	Displa	acement from FI	EM (m.)	Bearing Press (kN	sure From FEM	ค่ากำลังแบกทานของดินจากสมการ โดยทั่วไป					
Analysis	At First	At Limit	At Collapse	At Limit	At Collapse	Fellenius	Terzaghi	Hansen	Meyerhof	Vesic	
	Local Yield	Equilibrium	State	Equilibrium	State	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	
21SCR	0.003	0.600	0.640	168	168	149	146	171	135	135	
21SCS	0.003	0.600	0.630	168	168	149	146	171	135	135	
21MCR	0.006	0.400	0.470	307	307	297	262	312	240	240	
21MCS	0.004	0.400	0.450	307	307	297	262	312	240	240	
21STCR	0.005	0.350	0.360	582	582	594	492	591	447	447	
21STCS	0.005	0.350	0.360	582	497	594	492	591	447	447	
225SCR	0.003	1.150	1.150	214	214	187	178	239	167	167	
225SCS	0.003	1.150	1.150	213	213	187	178	239	167	167	
225MCR	0.002	0.800	0.800	367	367	374	296	418	274	274	
225MCS	0.002	0.800	0.800	366	366	374	296	418	274	274	
225STCR	0.003	0.600	0.600	670	670	748	528	771	483	483	
225STCS	0.003	0.600	0.600	669	669	748	528	771	483	483	

	Displa	acement from FI	EM (m.)	Bearing Press (kN	sure From FEM	ค่ากำลังแบกทานของดินจากสมการ โดยทั่วไป				
Analysis 0SCR 0SCS 0MCR 0MCS 00MCS 30STCR 30STCS 30STCS 305SCR	At First Local Yield	At Limit Equilibrium	At Collapse State	At Limit Equilibrium	At Collapse State	Fellenius (kN/m ²)	Terzaghi (kN/m ²)	Hansen (kN/m ²)	Meyerhof (kN/m ²)	Vesic (kN/m ²
30SCR	0.011	0.130	0.130	106	106	110	114	103	103	103
30SCS	0.011	0.130	0.130	104	104	110	114	103	103	103
30MCR	0.007	0.085	0.090	211	212	220	228	206	206	206
30MCS	0.006	0.080	0.085	208	208	220	228	206	206	206
30STCR	0.004	0.065	0.070	424	424	440	456	411	411	411
30STCS	0.004	0.065	0.065	416	416	440	456	411	411	411
305SCR	0.003	0.380	0.400	151	151	129	138	145	127	127
305SCS	0.003	0.380	0.400	151	151	129	138	145	127	127
305MCR	0.006	0.260	0.270	280	280	259	254	267	231	231
305MCS	0.006	0.260	0.270	280	280	259	254	267	231	231
305STCR	0.004	0.200	0.220	536	537	517	483	510	438	438
305STCS	0.004	0.200	0.220	536	536	517	483	510	438	438

	Displa	Displacement from FEM (m.)			Bearing Pressure From FEM (kN/m ²)		ค่ากำลังแบกทานของดินจากสมการ โดยทั่วไป					
Analysis	At First Local Yield	At Limit Equilibrium	At Collapse State	At Limit Equilibrium	At Collapse State	Fellenius (kN/m ²)	Terzaghi (kN/m ²)	Hansen (kN/m ²)	Meyerhof (kN/m ²)	Vesic (kN/m ²)		
31SCR	0.003	0.790	0.790	184	184	149	162	187	151	151		
31SCS	0.003	0.790	0.790	184	184	149	162	187	151	151		
31MCR	0.002	0.550	0.550	324	324	297	279	329	257	257		
31MCS	0.002	0.550	0.550	323	323	297	279	329	257	257		
31STCR	0.003	0.430	0.430	599	599	594	510	609	465	465		
31STCS	0.003	0.430	0.430	598	598	594	510	609	465	465		
32SCR	0.003	1.410	1.410	244	244	187	210	271	199	199		
32SCS	0.003	1.410	1.410	244	244	187	210	271	199	199		
32MCR	0.002	0.980	0.980	399	399	374	330	452	308	308		
32MCS	0.002	0.980	0.980	398	398	374	330	452	308	308		
32STCR	0.002	0.770	0.770	701	701	748	564	807	519	519		
32STCS	0.002	0.770	0.770	701	701	748	564	807	519	519		

<u>ภาพที่ 78</u> สรุปความสัมพันธ์ระหว่างการทรุดตัวและกำลังแบกทานของดิน ณ แต่ละสภาวะของดินเหนียว

1.2 กำลังแบกทานของคินทรายเนื่องจากฐานรากแบบ Strip

ในการหาค่ากำลังแบกทานของดินทรายด้วยวิธีไฟในท์อิลิเมนต์ จะแบ่งกรณีการวิเคราะห์ ตามค่ากำลังความแข็งแรงของดิน โดยแบ่งออกเป็น ดินทรายหลวม ดินทรายแข็งปานกลาง และดิน ทรายแข็งมาก ส่วนคุณสมบัติของฐานรากจะแบ่งกรณีการวิเคราะห์ตามความกว้างของฐานราก ได้แก่ 1, 2 และ 3 เมตร อัตราส่วนระหว่างความลึกต่อความกว้างของฐานราก ได้แก่ 0, 0.5, 1, และ 2 และผิวสัมผัสระหว่างฐานรากกับดิน ได้แก่ แบบขรุขระ (Rough) กับแบบราบเรียบ(Smooth) ซึ่งรวม กรณีที่ทำการวิเคราะห์กำลังแบกทานของดินทรายทั้งหมดเท่ากับ 72 กรณี จากนั้นพิจารณาค่ากำลัง แบกทานของดินจากกราฟความสัมพันธ์ระหว่างกำลังแบกทานกับการทรุดตัวที่เกิดขึ้น โดยพิจารณา ร่วมกับ Total Incremental Displacement ของดินใต้ฐานรากด้วย

จากภาพที่ 79-90 จะเป็นกราฟความสัมพันธ์ระหว่างกำลังแบกทานของดินกับการทรุด ตัว ซึ่งในแต่ละภาพจะประกอบไปด้วยผลการวิเคราะห์รวม 6 กรณีซึ่งจะเป็นกราฟของดินที่ค่าความ แข็งแรงแตกต่างกันและเงื่อนไขของ Roughness of Footing ที่ต่างกัน นอกจากนั้นในแต่ละภาพจะ แสดงค่ากำลังแบกทานของดินที่คำนวณได้จากสูตรทั่วไปที่เป็นที่นิยมใช้กันอยู่ ได้แก่ สมการของ Terzaghi, Hansen , Meyerhof และ Vesic ซึ่งแต่ละสมการก็จะให้ค่าที่แตกต่างกันไปเนื่องจาก สมมุติฐานที่แตกต่างกัน

สำหรับดินทราย กราฟความสัมพันธ์ระหว่างค่ากำลังแบกทานของดินกับค่าการทรุดตัว ที่เกิดขึ้นสามารถพิจารณาแยกออกตามคุณสมบัติดังต่อไปนี้ คือ ค่าความแข็งแรงของดิน ความกว้าง ของฐานราก อัตราส่วนความลึกต่อความกว้างของฐานราก ตามลำดับ

สำหรับอิทธิพลของค่าความแข็งแรงของดิน ค่ากำลังแบกทานของดินจะแปรผันตามค่า กำลังความแข็งแรงของดิน รูปร่างของกราฟมีลักษณะที่เหมือนกันนั่นคือ จะมีความชันของกราฟ ในช่วงที่สภาวะอิลาสติกสูงขึ้นเมื่อดินมีค่าความแข็งแรงของดินมากขึ้นและค่ากำลังแบกทานของ ดินจะมีค่าสูงขึ้นเมื่อดินมีค่าความแข็งแรงสูงมากขึ้น นั่นคือความชันของกราฟในช่วงอิลาสติกและ ค่ากำลังแบกทานของดินในสภาวะพลาสติกสามารถเรียงจากน้อยไปมากได้ดังนี้ คือ ดินทรายหลวม ดินทรายแข็งปานกลาง และดินทรายแข็งมาก สำหรับอิทธิพลของความกว้างของฐานรากต่อค่ากำลังแบกทานของคิน เมื่อฐานรากมี ความกว้างเพิ่มมากขึ้น ก็จะทำให้มีพื้นที่ในการกระจายน้ำหนักเพิ่มมากขึ้นซึ่งก็จะทำให้มีค่ากำลัง แบกทานสูงมากขึ้นไปด้วย และเมื่อฐานรากวางที่ระดับความลึกจากผิวดินมากขึ้น ค่ากำลังแบกทาน ของดินก็จะสูงมากขึ้นด้วย เนื่องมามีแรงต้านทานจากดินที่อยู่เหนือระดับของฐานรากมาช่วย และ จากภาพที่จะเห็นว่าก่า Roughness of Footing จะมีอิทธิพลต่อค่ากำลังแบกทานของดินทราย มากกว่าดินเหนียวมาก แต่เมื่อฐานรากวางที่ระดับลึกจากผิวดินลงไป ค่า Roughness ก็จะไม่ค่อยมี ผลต่อค่ากำลังแบกทานของดินทรายเช่นเดียวกันกับดินเหนียว

้จากกราฟความสัมพันธ์ทั้ง 72 กรณีของดินทราย สามารถที่จะหาค่ากำลังแบกทานของ ดินได้ โดยจะพิจารณาค่าการทรุดตัวที่ก่อให้เกิดการ yield ของดินหรือดินเริ่มเกิดการวิบัติเป็นจุดแรก ้หรือดินเริ่มเกิดจุดที่เป็นพลาสติกขึ้น นั่นคือดินที่จุดนั้นมีก่าหน่วยแรงเจือนสูงกว่าก่ากำลังรับแรง ้เฉือนของดินนั่นเอง เมื่อเลยจุดนี้ไปดินก็จะเกิดจุดที่เป็นพลาสติกมากขึ้นเรื่อยๆรวมตัวกันเป็นมวล พลาสติกที่มีขนาดใหญ่ขึ้น เรียกสภาวะในช่วงนี่ว่า Elasto-Plastic State จนกระทั่งมวลที่เป็นพลาสติก รวบตัวกันเป็นระนาบการวิบัติจนไปสัมผัสที่ผิวดิน ณ จุดนี้ จะเรียกว่า Limit Equilibrium State คือ ้สภาวะที่มวลดินก่อนที่จะเกิดการวิบัติโดยมวลดินในสภาวะนี้ยังกงอยู่ในสมดุลอยู่ แต่หากเลยจุดนี้ ้ไปคินก็จะเกิดการวิบัติขึ้นอย่างทันทีทันใด หรือเรียกจุดที่เกิดการวิบัตินี้ว่า Collapse Mechanism State ดังนั้นในตารางที่ 19 จะประกอบไปด้วยค่าการทรุดตัว ณ First Local Yield State Limit Equilibrium State และ Collapse Mechanism State แล้วทำการเปรียบเทียบกับค่าที่คำนวณได้จากสมการกำลัง แบกทานโดยทั่วไปอันได้แก่ สมการของ Terzaghi, Hansen, Meryerhof และ Vesic ซึ่งค่าที่ได้จาก FEM ของคินทรายจะมีความค่าที่ใกล้เคียงน้อยกว่าคินเหนียว ซึ่งอาจเป็นผลเนื่องมาจากในการวิเคราะห์ เป็นการวิเคราะห์แบบ Associeated Flow Rule ซึ่งเป็นเงื่อนไขที่มีการกำหนดค่า Angel of Dilatancy ของคินทราย เงื่อนไขนี้จะทำให้การวิเคราะห์ด้วย FEM สามารถทำได้ง่ายที่สุด แต่หากทำการ วิเคราะห์แบบ Non-Associated Flow Rule เมื่อดินมีค่า 🔶 สูงมากๆจะทำให้การวิเคราะห์ไม่เสถียร หรือเกิดความผิดพลาดในการวิเคราะห์สูง ซึ่งจากผลการวิเคราะห์ที่ได้จะให้ค่ากำลังแบกทานที่สูง กว่าสมการกำลังแบกทานโดยทั่วไป โดยจะใกล้เคียงกับสมการของ Terzaghi และ Vesic ในช่วงที่ค่า D/B < 1เปอร์เซ็นต์ความแตกต่างที่ได้จะมีค่าน้อยกว่า 40 เปอร์เซ็นต์ แต่ที่ D/B > 1 จะมีเปอร์เซ็นต์ ้ความแตกต่างไม่เกิน 33 เปอร์เซ็นต์ และที่กรณีฐานรากวางอยู่ที่ผิวดินเปอร์เซ็นต์ความแตกต่างจะมีค่า สูงมาก อยู่ที่ประมาณ 50 เปอร์เซ็นต์

จากภาพของความสัมพันธ์ทั้งหมดสามารถที่จะสรุปภาพรวมตามภาพที่ 94 ได้ว่า ดิน เมื่อรับน้ำหนักจากภายนอก ในช่วงแรกหรือที่ก่าการทรุดตัวต่ำ ดินจะยังคงมีพฤติกรรมเป็นแบบ อิลาสติกอยู่ โดยจุดสุดท้ายที่ดินยังคงอยู่ในสภาวะอิลาสติกอยู่กือจุดก่อนที่ดินจะเกิด First Local Yield เทียบได้กับกราฟในช่วงที่ยังเป็นเส้นตรง จากนั้นดินก็จะเริ่มเกิดการวิบัติขึ้นหรือเกิด First Local Yield จุดพลาสติกของดินจะเกิดขึ้นและขยายขนาดมากขึ้นเทียบได้กับกราฟช่วงที่เริ่มจะไม่เป็น เส้นตรงจนกระทั่งเริ่มมีก่ากวามชันเพิ่มขึ้นจนกระทั่งก่าดวามชันของกราฟเกือบที่จะเป็นสูนย์ และ เมื่อดินที่เป็นพลาสติกขยายตัวจนกระทั่งไปสัมผัสที่ผิวดินจุดนี้เป็นจุดที่ดินพร้อมที่จะเป็นสูนย์ และ เมื่อดินที่เป็นพลาสติกขยายตัวจนกระทั่งไปสัมผัสที่ผิวดินจุดนี้เป็นจุดที่ดินพร้อมที่จะเกิดการวิบัติ แล้วแต่ยังคงอยู่ในสภาวะสมดุลอยู่จุดนี้จะเป็นจุดก่อนที่กราฟจะเริ่มมีก่าความชันเท่ากับ 0 หรือที่เรียกว่า จุด Limit Equilibrium State หลังจากนั้นเมื่อมีน้ำหนักมากระทำมากขึ้นดินก็จะเกิดการวิบัติขึ้นนั่น คือถึงแม้ในกราฟก่าการทรุดตัวที่เกิดจะมากขึ้นแต่ก่ากำลังแบกทานของดินก็จะคงที่ หรือเป็นช่วงที่ กราฟจะมีก่าความชันเท่ากับ 0 แต่ลักษณะกราฟของดินทรายจะมีความชันในช่วงที่เป็นอิลาสติก น้อยกว่าดินเหนียวซึ่งจะมีความชันในช่วงอิลาสติกที่สูงมากกว่า

Borst and Vermeer (1984) กล่าวถึง ข้อจำกัดของการวิเคราะห์แบบ Non-Associated Flow Rules โดยที่ข้อจำกัดของการหาค่า Limit Load นั้น เมื่อค่า ϕ มีค่าสูง การวิเคราะห์จะเริ่มมีปัญหา ซึ่งนี่เป็นจุดบกพร่องหรือข้อจำกัดของวิธีไฟไนท์อิลิเมนต์ ซึ่งสามารถที่จะแก้ปัญหาข้อนี้ได้ด้วยการ กำหนดค่า Dilatancy Angl, ψ ซึ่งถือว่าเป็นการวิเคราะห์แบบ Associated Flow Rule โดย กำหนดให้ $\psi = \phi$ ในการวิจัยครั้งนี้กีพบปัญหานี้เช่นกัน ปัญหาที่พบคือโปรแกรมไม่สามารถลู่เข้า สู่คำตอบของปัญหาได้ ใช้เวลาในการวิเคราะห์นานมาก และมีขนาดไฟล์ที่ใหญ่มาก ลักษณะของ กราฟที่ได้จะไม่คงที่ ไม่สามารถแปลผลได้ ดังนั้น จึงทำการแก้ปัญหานี้โดยการวิเคราะห์แบบ Associated Flow Rule โดยกำหนด $\psi = \phi$

<u>ภาพที่ 79</u> กราฟความสัมพันธ์ระหว่างการเคลื่อนตัวกับกำลังแบกทานของดินทราย กรณีฐานราก กว้าง เท่ากับ 1 ม. อัตราส่วนความกว้างต่อความยาว เท่ากับ 0

<u>ภาพที่ 80</u> กราฟความสัมพันธ์ระหว่างการเคลื่อนตัวกับกำลังแบกทานของดินทราย กรณีฐานราก กว้างเท่ากับ 1 ม. อัตราส่วนความกว้างต่อความยาว เท่ากับ 0.5

<u>ภาพที่ 81</u> กราฟความสัมพันธ์ระหว่างการเคลื่อนตัวกับกำลังแบกทานของดินทราย กรณีฐานราก กว้างเท่ากับ 1 ม. อัตราส่วนความกว้างต่อความยาว เท่ากับ 1

<u>ภาพที่ 82</u> กราฟความสัมพันธ์ระหว่างการเคลื่อนตัวกับกำลังแบกทานของดินทราย กรณีฐานราก กว้างเท่ากับ 1 ม. อัตราส่วนความกว้างต่อความยาว เท่ากับ 2

<u>ภาพที่ 83</u> กราฟความสัมพันธ์ระหว่างการเคลื่อนตัวกับกำลังแบกทานของดินทราย กรณีฐานราก กว้างเท่ากับ 2 ม. อัตราส่วนความกว้างต่อความยาว เท่ากับ 0

<u>ภาพที่ 84</u> กราฟความสัมพันธ์ระหว่างการเคลื่อนตัวกับกำลังแบกทานของดินทราย กรณีฐานราก กว้างเท่ากับ 2 ม. อัตราส่วนความกว้างต่อความยาว เท่ากับ 0.5

<u>ภาพที่ 85</u> กราฟความสัมพันธ์ระหว่างการเคลื่อนตัวกับกำลังแบกทานของดินทราย กรณีฐานราก กว้างเท่ากับ 2 ม. อัตราส่วนความกว้างต่อความยาว เท่ากับ 1

<u>ภาพที่ 86</u> กราฟความสัมพันธ์ระหว่างการเคลื่อนตัวกับกำลังแบกทานของดินทราย กรณีฐานราก กว้างเท่ากับ 2 ม. อัตราส่วนความกว้างต่อความยาว เท่ากับ 2

<u>ภาพที่ 87</u> กราฟความสัมพันธ์ระหว่างการเคลื่อนตัวกับกำลังแบกทานของดินทราย กรณีฐานราก กว้างเท่ากับ 3 ม. อัตราส่วนความกว้างต่อความยาว เท่ากับ 0

<u>ภาพที่ 88</u> กราฟความสัมพันธ์ระหว่างการเคลื่อนตัวกับกำลังแบกทานของคินทรายกรณีฐานราก กว้างเท่ากับ 3 ม. อัตราส่วนความกว้างต่อความยาว เท่ากับ 0.5

<u>ภาพที่ 89</u> กราฟความสัมพันธ์ระหว่างการเคลื่อนตัวกับกำลังแบกทานของดินทราย กรณีฐานราก กว้างเท่ากับ 3 ม. อัตราส่วนความกว้างต่อความยาว เท่ากับ 1

<u>ภาพที่ 90</u> กราฟความสัมพันธ์ระหว่างการเคลื่อนตัวกับกำลังแบกทานของดินทราย กรณีฐานราก กว้างเท่ากับ 3 ม. อัตราส่วนความกว้างต่อความยาว เท่ากับ 2

A	Displa	Displacement from FEM (m.)			ure from FEM $(/m^2)$	ค่ากำลังแบกทานของคินจากสมการ โดยทั่วไป				
Anarysis	At First Local Yield	At Limit Equilibrium	At Collapse State	At Limit Equilibrium	At Collapse State	Terzaghi (kN/m ²)	Hansen (kN/m ²)	Meyerhof (kN/m ²)	Vesic (kN/m ²)	
10LSR	0.002	-	0.075	-	380	167	154	133	190	
10LSS	0.003	-	0.042	-	245	167	154	133	190	
10MSR	0.002	-	0.130	-	735	382	366	334	432	
10MSS	0.002	-	0.064	-	507	382	366	334	432	
10DSR	0.001	-	0.110	-	1403	954	906	890	1039	
10DSS	0.001	-	0.059	-	915	954	906	890	1039	
105LSR	0.001	0.075	0.130	478	603	359	337	290	347	
105LSS	0.001	0.066	0.140	425	601	359	337	290	347	
105MSR	0.001	0.045	0.170	436	1168	754	718	634	732	
105MSS	0.001	0.048	0.200	462	1145	754	718	634	732	
105DSR	0.001	0.022	0.160	442	2145	1726	1623	1500	1649	
105DSS	0.001	0.023	0.160	461	2137	1726	1623	1500	1649	

<u>ตารางที่ 15</u> แสดงค่ากำลังแบกทานของดินทรายจากไฟไนท์อิลิเมนท์เทียบกับค่ากำลังแบกทานจากสูตรทั่วไป

	Displacement from FEM (m.)			Bearing Press (kN	ure from FEM $(/m^2)$	ก่	ค่ากำลังแบกทานของคินจากสมการ โดยทั่วไป				
Analysis	At First	At Limit	At Collapse	At Limit	At Collapse	Terzaghi	11_{2}	Meyerhof	$V_{\rm resid}$ (1-NI/ m^2)		
	Local Yield	Equilibrium	State	Equilibrium	State	(kN/m^2)	Hansen (kin/m)	(kN/m^2)	vesic (kin/m)		
11LSR	0.001	0.130	0.230	765	845	550	576	446	503		
11LSS	0.001	0.130	0.220	766	856	550	576	446	503		
11MSR	0.001	0.130	0.240	1152	1627	1127	1175	934	1032		
11MSS	0.001	0.130	0.240	1152	1626	1127	1175	934	1032		
11DSR	0.001	0.074	0.230	1155	2917	2499	2553	2110	2259		
11DSS	0.001	0.076	0.210	882	2916	2499	2553	2110	2259		
12LSR	0.001	0.240	0.290	1287	1375	932	1217	759	816		
12LSS	0.001	0.240	0.290	1286	1374	932	1217	759	816		
12MSR	0.001	0.260	0.380	2120	2600	1872	2404	1533	1631		
12MSS	0.001	0.260	0.380	2120	2598	1872	2404	1533	1631		
12DSR	0.001	0.180	0.340	3107	4611	4043	5052	3330	3479		
12DSS	0.001	0.180	0.340	3107	4609	4043	5052	3330	3479		

	Displac	Displacement from FEM (m.)			ure from FEM (m^2)	ก่	ค่ากำลังแบกทานของคินจากสมการ โดยทั่วไป				
Analysis	At First	At Limit	At Collapse	At Limit	At Collapse	Terzaghi	2	Meyerhof	2		
	Local Yield	Equilibrium	State	Equilibrium	State	(kN/m^2)	Hansen (kN/m ²)	(kN/m^2)	Vesic (kN/m ²)		
20LSR	0.003	-	0.190	-	522	335	307	266	381		
20LSS	0.004	-	0.110	-	361	335	307	266	381		
20MSR	0.003	-	0.290	-	1093	763	732	669	865		
20MSS	0.004	-	0.160	-	719	763	732	669	865		
20DSR	0.002	-	0.280	-	2099	1908	1813	1780	2079		
20DSS	0.002	-	0.160	-	1347	1908	1813	1780	2079		
205LSR	0.002	0.170	0.390	650	973	717	675	579	694		
205LSS	0.001	0.180	0.440	681	918	717	675	579	694		
205MSR	0.001	0.170	0.510	946	1876	1508	1437	1268	1464		
205MSS	0.001	0.170	0.510	946	1966	1508	1437	1268	1464		
205DSR	0.001	0.080	0.510	935	3564	3452	3246	3000	3299		
205DSS	0.001	0.076	0.510	881	3576	3452	3246	3000	3299		

	Displac	Displacement from FEM (m.)			ure from FEM	ค่	ค่ากำลังแบกทานของดินจากสมการ โดยทั่วไป			
Analysis	At First Local Yield	At Limit Equilibrium	At Collapse State	At Limit Equilibrium	At Collapse State	Terzaghi (kN/m ²)	Hansen (kN/m ²)	Meyerhof (kN/m ²)	Vesic (kN/m ²)	
21LSR	0.001	0.330	0.570	1151	1446	1100	1152	892	1006	
21LSS	0.001	0.320	0.550	1125	1447	1100	1152	892	1006	
21MSR	0.001	0.340	0.750	1773	2859	2254	2350	1868	2063	
21MSS	0.001	0.330	0.730	1729	2859	2254	2350	1868	2063	
21DSR	0.001	0.230	0.700	2499	5256	4997	5105	4220	4518	
21DSS	0.001	0.230	0.680	2499	5265	4997	5105	4220	4518	
22LSR	0.001	0.720	0.940	2289	2510	1865	2434	1518	1632	
22LSS	0.001	0.720	0.940	2292	2514	1865	2434	1518	1632	
22MSR	0.001	0.770	1.220	3745	4856	3744	4807	3066	3262	
22MSS	0.002	0.770	1.230	3745	4857	3744	4807	3066	3262	
22DSR	0.001	0.560	1.080	5761	8658	8086	10105	6659	6958	
22DSS	0.001	0.550	1.080	5718	8656	8086	10105	6659	6958	

	Displa	cement from FE	M (m.)	Bearing Press (kN	ure from FEM	ก่ากำลังแบกทานของคินจากสมการ โดยทั่วไป				
Analysis	At First Local Yield	At Limit Equilibrium	At Collapse State	At Limit Equilibrium	At Collapse State	Terzaghi (kN/m ²)	Hansen (kN/m ²)	Meyerhof (kN/m ²)	Vesic (kN/m ²)	
30LSR	0.002	-	0.330	-	666	502	461	400	571	
30LSS	0.003	-	0.210	-	429	502	461	400	571	
30MSR	0.003	-	0.520	-	1413	1145	1099	1003	1297	
30MSS	0.003	-	0.280	-	919	1145	1099	1003	1297	
30DSR	0.002	-	0.520	-	2796	2861	2719	2670	3118	
30DSS	0.003	-	0.280	-	1786	2861	2719	2670	3118	
305LSR	0.001	0.280	0.690	803	1357	1076	1012	869	1040	
305LSS	0.001	0.280	0.630	803	1259	1076	1012	869	1040	
305MSR	0.001	0.280	0.990	1171	2779	2263	2155	1902	2196	
305MSS	0.001	0.290	0.920	1207	2544	2263	2155	1902	2196	
305DSR	0.001	0.210	0.960	1787	5281	5178	4868	4500	4948	
305DSS	0.001	0.220	0.900	1863	4830	5178	4868	4500	4948	

	Displa	cement from FE	M (m.)	Bearing Press (kN	ure from FEM	ค่ากำลังแบกทานของคินจากสมการ โดยทั่วไป				
Analysis	At First Local Yield	At Limit Equilibrium	At Collapse State	At Limit Equilibrium	At Collapse State	Terzaghi (kN/m ²)	Hansen (kN/m ²)	Meyerhof (kN/m ²)	Vesic (kN/m ²)	
31LSR	0.001	0.580	1.000	1537	2072	1650	1728	1338	1510	
31LSS	0.001	0.590	1.030	1557	2069	1650	1728	1338	1510	
31MSR	0.002	0.630	1.430	2472	4147	3380	3525	2801	3095	
31MSS	0.001	0.620	1.480	2438	4137	3380	3525	2801	3095	
31DSR	0.001	0.420	1.380	3452	7908	7496	7658	6330	6778	
31DSS	0.001	0.440	1.390	3596	7877	7496	7658	6330	6778	
32LSR	0.001	1.320	1.710	3227	3606	2797	3652	2276	2448	
32LSS	0.002	1.330	1.700	3250	3602	2797	3652	2276	2448	
32MSR	0.002	1.440	2.400	5400	7105	5616	7211	4599	4893	
32MSS	0.002	1.400	2.400	5261	7086	5616	7211	4599	4893	
32DSR	0.001	0.990	2.500	7905	12909	12130	15157	9989	10437	
32DSS	0.001	1.010	2.600	8044	12927	12130	15157	9989	10437	

<u>ภาพที่ 91</u> กราฟการทรุดตัวและค่ากำลังแบกทานของดินทราย กรณีฐานรากกว้าง 1 ม.เปรียบเทียบที่ค่าความแข็งแรงของดินต่างๆและที่ค่า D/B ต่างๆ

<u>ภาพที่ 92</u> กราฟการทรุดตัวและค่ากำลังแบกทานของดินทราย กรณีฐานรากกว้าง 2 ม.เปรียบเทียบที่ค่าความแข็งแรงของดินต่างๆและที่ค่า D/B ต่างๆ

<u>ภาพที่ 93</u> กราฟการทรุดตัวและค่ากำลังแบกทานของคินทราย กรณีฐานรากกว้าง 3 ม.เปรียบเทียบที่ค่าความแข็งแรงของคินต่างๆและที่ค่า D/B ต่างๆ

<u>ภาพที่ 94</u> สรุปความสัมพันธ์ระหว่างการทรุดตัวและกำลังแบกทานของคิน ณ แต่ละสภาวะของคินเหนียว

2. พฤติกรรมการวิบัติของดินเนื่องจากการรับน้ำหนักจากฐานรากตื้น

จากผลการวิเคราะห์ทั้งของกรณีดินเหนียวและดินทราย สามารถที่จะอธิบายพฤติกรรมของ ดินในการรับน้ำหนักจากฐานรากตื้นแบบ Strip ได้ โดยสามารถที่จะแบ่งพฤติกรรมที่เกิดขึ้นออกเป็น สภาวะในช่วงต่างๆ องอาจ(2548) และ ก้องรัฐ(2547) ได้เสนอการแบ่งพฤติกรรมการรับน้ำหนัก ของดินออกเป็น 5 สภาวะ คำจำกัดความของแต่ละสภาวะมีดังนี้ คือ

2.1 สภาวะที่ Fully Elastic State

สภาวะที่ดินคงอยู่ในสภาวะอิลาสติกหรือสภาวะเริ่มต้นที่ดินยังไม่มีน้ำหนักจากภายนอก มากระทำจนเริ่มมีน้ำหนักภายนอกมากระทำจนถึงก่าหนึ่งที่ทำให้หน่วยแรงเฉือน(Shearing Stress, au) ที่เกิดขึ้นในดินทุกจุดยังเกิดขึ้นต่ำกว่ากำลังเฉือน (Shearing Strength, au_f) ของดิน หรือ au / au_f มี ก่าประมาณ1 สภาวะนี้เรียกว่า "Fully Elastic State"

2.2 สภาวะที่ First Local Failure State

สภาวะที่มีน้ำหนักภายนอกกระทำจนกระทั่งมีตำแหน่งใดตำแหน่งหนึ่งในมวลดินที่ เกิด Shearing Stress สูงเท่ากับ Shearing Strength (หรือ τ / τ_f มีก่าประมาณ 1) สภาวะนี้เรียกว่า "First Local Failure State" ณ สภาวะนี้เนื้อดินบางแห่งจะเริ่มเป็น "Plastic" เหตุผลที่เนื้อดินบางส่วน เริ่มเป็นพลาสติกก็เนื่องมาจากมี Shearing Stress สูงกว่า Shearing Strength ตามที่กล่าวมาข้างต้นนั่นเอง สามารถอธิบายในรูปของอัตราส่วนระหว่าง Shearing Stress ต่อ Shearing Strength ได้โดยหาก อัตราส่วนดังกล่าวมีก่าน้อยกว่าหนึ่งหมายความว่ามวลดินอยู่ในสภาวะอิลาสติก แต่หากก่าอัตราส่วน ดังกล่าวมีก่าเท่ากับหนึ่งจะหมายความว่ามวลดินจุดนั้นเกิดการวิบัติหรือมีสภาพเป็นพลาสติกแล้ว นั่นเอง

2.3 สภาวะที่ Elasto-Plastic State

สภาวะที่มีน้ำหนักภายนอกกระทำมากขึ้นเรื่อย ทำให้ดินที่อยู่ในสภาพพลาสติกหรือ Plastic Zone ขยายตัวออก แต่ยังคงถูกห่อหุ้มไว้ด้วย Elastic Zone หรือมวลดินที่ยังอยู่ในสภาวะ อิลาสติกอยู่ โดยขนาดของ Plastic Zone หรือ Local Failure Area ขยายตัวตามขนาดของน้ำหนักที่ กระทำ สภาวะนี้เรียกว่า "Elasto–Plastic State"

2.4 สภาวะที่ Limit Equilibrium State

สภาวะที่ยังคงมีน้ำหนักมากระทำมากยิ่งขึ้น มวลดินในสภาวะพลาสติกหรือ Plastic Zone ขยายตัวจนกระทั่งไปสัมผัสที่ผิวดิน ซึ่งเป็นการก่อตัวของระนาบการวิบัติของดินอย่างสมบูรณ์ ณ สภาวะนี้เรียกว่า "Limit Equilibrium State" ระบบยังคงอยู่ในสมคุล

2.5 สภาวะที่ Collapse Mechanism State

สภาวะที่เมื่อเพิ่มน้ำหนักที่มากระทำเพิ่มขึ้นอีกเพียงเล็กน้อยจากจุคสภาวะ Limit Equilibrium State ระบบก็จะไม่อยู่ในสมคุลและจะเกิดการเกลื่อนตัวอย่างทันทีทันใดของดินเกิดการ วิบัติขึ้นอย่างทันทีทันใค ณ สภาวะนี้เรียกว่า "Collapse Mechanism State"

สำหรับพฤติกรรมของฐานรากที่วางอยู่บนผิวดิน(D/B = 0) เมื่อมีน้ำหนักภายนอกมา กระทำจะทำให้เกิดหน่วยแรงที่ขอบของฐานรากสูงมาก ทำให้มวลดินที่ขอบของฐานรากเกิดการ วิบัติก่อนเป็นจุดแรก ซึ่งแตกต่างไปพฤติกรรมของฐานรากแบบ Pertectly Flexible ซึ่งจะเกิดการวิบัติ ที่ได้ฐานรากเป็นจุดแรก จากนั้นดินที่วิบัติจะขยายขนาดมากขึ้นกลายเป็น Plastic Zone ที่ใหญ่ขึ้นโดย จากขอบของฐานรากจะขยายไปที่ได้ฐานรากจากนั้นจะขยายตัวมากขึ้นจนไปสัมผัสที่ผิวดิน ซึ่งที่จุด นี้จะเกิดระนาบการวิบัติขึ้น จุดนี้จะเป็นจุดที่เรียกว่า Limit Equilibrium State หากพิจารณาผลในรูป ของ Relative Shear Stress(τ / τ_f) กับ Total Incremental Displacement จะทำให้เห็นภาพได้ชัดเจน มากยิ่งขึ้นว่าเมื่อระนาบการวิบัติมาสัมผัสที่ผิวดิน การเคลื่อนตัวของดินที่อยู่ในระนาบการวิบัติเริ่ม ที่จะเกลื่อนที่แตกต่างกันกับมวลดินที่อยู่นอกระนาบการวิบัติ หลังจากนั้นเมื่อเลยจุดนี้ไปการเคลื่อน ดัวของดินภายในระนาบการวิบัติก็จะแตกต่างกันอย่างชัดเจน ดังแสดงในภาพที่ 96 ซึ่งเป็นรูปของ Relative Shear Stress ที่สภาวะทั้ง 5 สภาวะของฐานรากที่วางอยู่บนผิวดินและภาพที่ 98 เป็นภาพ ของเวกเตอร์ Total Incremental Displacement ที่สภาวะทั้ง 5 สภาวะของฐานรากที่วางอยู่บนผิวดิน เช่นกัน สำหรับพฤติกรรมของฐานรากที่วางอยู่ที่ระดับต่ำกว่าผิวดิน(D/B>0) เมื่อมีน้ำหนักภายนอก มากระทำหน่วยแรงที่ขอบของฐานรากจะมีก่าสูงมาก ดินที่ขอบของฐานรากจะเกิดการวิบัติก่อนเป็น จุดแรก จากนั้น Plastic Zone ที่เกิดขึ้นก็จะขยายตัวมากขึ้นจนกระทั่งขยายตัวไปสัมผัสกับผิวดิน พฤติกรรมการวิบัติจะเกิดขึ้นคล้ายกลึงกันกับกรณีที่ฐานรากวางอยู่ที่ผิวดิน ดังแสดงในภาพที่ 97 และภาพที่ 99 เป็นภาพของเวกเตอร์ Total Incremental Displacement

เนื่องจากขนาดของปัญหาที่ใช้คือ 30 เมตรดังภาพที่ ในการพิจารณาเวกเตอร์และผล การวิเคราะห์จะมีขนาดเล็กมาก หากจะพิจารณาภาพให้ชัดเจนมากยิ่งขึ้นจึงต้องทำการขยายภาพ ดังนั้นรูปที่จะนำเสนอในงานวิจัยครั้งนี้จะนำเสนอที่ความกว้าง 5 เมตรและความลึก 5 เมตร

<u>ภาพที่ 95</u> การขยายภาพเพื่อใช้ในการนำเสนอในการวิจัยครั้งนี้

Relative Shear Stress

<u>ภาพที่ 96</u> Relative Shear Stress ที่สภาวะต่างๆ ของดิน กรณีที่ D/B = 0

<u>ภาพที่ 97</u> Relative Shear Stress ที่สภาวะต่างๆของดิน กรณีที่ D/B > 0

<u>ภาพที่ 98</u> เวกเตอร์ Total Incremental Displacement ของดินที่สภาวะต่างๆ กรณี D/B = 0

<u>ภาพที่ 99</u> เวกเตอร์ Total Incremental Displacement ของดินที่สภาวะต่างๆ กรณี D/B > 0

<u>3. ลักษณะการเคลื่อนตัวและรูปร่างของระนาบการวิบัติของดินเนื่องจากการรับน้ำหนักจากฐาน</u> รากแบบ strip

จากการพิจารณาแบ่งกรณีศึกษาออกตามคุณสมบัติของฐานรากและคุณสมบัติของคิน ทำ ให้เห็นลักษณะการเคลื่อนตัวที่เกิดขึ้นมีความแตกต่างกันออกไปตามคุณสมบัติที่แตกต่างกัน โดยจะ แยกผลของการเคลื่อนตัวที่เกิดขึ้นตามการวางตัวของฐานราก นั่นคือ ฐานรากที่วางที่ผิวดินและ กรณีที่ฐานรากวางอยู่ที่ระดับต่ำจากผิวดิน

3.1 ลักษณะการเคลื่อนตัวของคินที่ ${\rm D/B}=0$

งานวิจัยครั้งนี้ได้จำลองพฤติกรรมการรับน้ำหนักของฐานราก โดยกำหนดการใส่น้ำหนัก แบบใช้การเคลื่อนตัวเป็นตัวควบคุม(Displacement Control) โดยเป็นการกำหนดให้ทุกๆจุดใต้ฐาน รากเกิดการทรุดตัวที่เท่ากัน(Prescribed Displacement) โดยเพิ่มการทรุดตัวจนกระทั่งดินเกิดการวิบัติ อิทธิพลที่มีผลต่อลักษณะการเกลื่อนตัวได้แก่ก่า Roughness of Footing และ D/B ซึ่งสามารถที่จะ อธิบายได้ดังนี้

การที่กำหนดค่า Roughness of Footing ซึ่งได้แก่ Rough และ Smooth เป็นการกำหนด ลักษณะการเคลื่อนตัวของดินใต้ฐานราก สำหรับกรณีที่กำหนดเป็น Rough จะเป็นการกำหนดให้ดิน ใต้ฐานรากมีการเคลื่อนตัวได้เฉพาะแนวดิ่งเท่านั้น ไม่มีการเคลื่อนตัวทางแนวราบ ส่วนกรณีที่กำหนด เป็น Smooth จะเป็นการกำหนดให้ดินใต้ฐานรากสามารถที่จะเคลื่อนที่ได้ทั้งทางแนวดิ่งและแนวราบ หน่วยแรงเฉือนใต้ฐานรากมีค่าเท่ากับศูนย์เสมือนมีลูกกลิ้งอยู่ที่รอยต่อระหว่างฐานรากกับดินนั่นเอง มวลดินสามารถเคลื่อนตัวได้อย่างอิสระ

สำหรับกรณีที่ฐานรากวางอยู่บนผิวดินโดยตรงหรือ D/B = 0 การเกลื่อนตัวของดินจะมี กวามแตกต่างกันเมื่อมีการกำหนดค่า Roughness of Footing ที่แตกต่างกัน กรณีที่บังคับให้มีการ เกลื่อนตัวได้เฉพาะในแนวดิ่งนั่นคือผิวสัมผัสระหว่างฐานรากกับดินเป็นแบบ Rough การเกลื่อนตัว จะลงไปในระดับที่มีความลึกมากกว่า และจะมีการเกลื่อนตัวหรือการบวมตัวของดินที่บริเวณถัดจาก ขอบของฐานรากน้อยกว่า ซึ่งเป็นผลเนื่องจากการบังคับให้ดินใต้ฐานรากเกิดการเกลื่อนตัวได้เฉพาะใน แนวดิ่ง ซึ่งดินจะเกลื่อนตัวลงไปดันดินด้านล่างให้เกลื่อนตัวขึ้นมาด้านบนจนกระทั่งเกิดการวิบัติ การ เกลื่อนตัวของดินที่ขอบของฐานรากจะมีน้อย แต่หากกำหนดก่า Roughness of Footing เป็น Smooth การเคลื่อนตัวสามารถเกิดขึ้นได้อย่างอิสระ เมื่อมีการรับน้ำหนักดินใต้ฐานรากจะเกิดการเกลื่อนตัว ทั้งทางแนวดิ่งและทางแนวราบ ดินส่วนหนึ่งจะเกลื่อนที่ลงด้านล่างแล้วดันให้ดินด้านล่างเกลื่อนตัว ขึ้นมาด้านบน แต่ดินส่วนหนึ่งก็จะเกลื่อนตัวหนีออกไปทางด้านข้างของฐานรากซึ่งการเกลื่อนตัวจะ ลงไปลึกน้อยกว่า หากพิจารณาจากภาพที่ 100 และภาพที่ 101 จะเห็นว่าเวกเตอร์การเกลื่อนตัวของดิน ใต้กึ่งกลางฐานรากจะเกลื่อนที่ลงแนวดิ่ง อีกส่วนหนึ่งที่เหลือจะเริ่มเกลื่อนที่ออกมาทางด้านข้าง ทางด้านขอบของฐานราก การเกลื่อนตัวที่เกิดขึ้นตั้งแต่เริ่มต้นจนกระทั่งเกิดการวิบัติจะเกิดขึ้นใน ระดับที่ตื้นมากกว่ากรณี Rough

ในภาพที่ 100 เป็นภาพแสดงการเปรียบเทียบการเคลื่อนตัว ณ จุดวิบัติ ระหว่างการ กำหนด Roughness of Footing เป็นแบบ Rough และ Smooth ของดินทราย จะเห็นว่ากรณีกำหนดให้ Roughness of Footing เป็นแบบ Rough ดินจะเคลื่อนตัวลงไปในระดับที่ลึกมากกว่าและมีการเคลื่อนตัว ขึ้นทางด้านขอบของฐานรากน้อยกว่าแบบ Smooth เช่นเดียวกันกับภาพที่ 101 ที่เป็นภาพแสดงการ เปรียบเทียบการเคลื่อนตัวของดิน ณ จุดวิบัติของดินเหนียว กรณีกำหนดให้ Roughness of Footing เป็นแบบ Rough ดินเหนียวจะเคลื่อนตัวลงในระดับที่ลึกมากกว่าและมีการเคลื่อนตัวขึ้นของดิน บริเวณด้านข้างของฐานรากน้อยกว่าแบบ Smooth ภาพที่ 102 แสดงเวกเตอร์การเคลื่อนตัวและภาพ ที่ 106 เป็นภาพแสดง Total Incremental Displacement ของฐานรากที่วางที่ระดับผิวดิน(D/B=0)

3.2 ลักษณะการเคลื่อนตัวของคินที่ D/B > 0

สำหรับกรณีที่ฐานรากวางอยู่ลึกจากผิวดินที่ระดับใดๆลักษณะการเคลื่อนตัวของมวล ดินใต้ฐานรากคล้ายคลึงกันกับกรณีที่ฐานรากวางอยู่บนผิวดิน นั่นคือการเคลื่อนตัวของดินใต้ฐานราก กรณี Roughness of Footing เป็น Rough จะมีการเคลื่อนตัวเฉพาะแนวดิ่งการเคลื่อนตัวจะลงไปใน ระดับที่ลึกมากกว่ากรณีของ Smooth เนื่องจากกรณีหลังดินสามารถที่จะเคลื่อนตัวหนีออกไปทาง ด้านข้างได้ การเคลื่อนตัวที่เกิดขึ้นจะอยู่ในระดับที่ลึกน้อยกว่า แต่เนื่องจากการที่ฐานรากวางอยู่ลึก จากระดับผิวดิน การเคลื่อนตัวจะเกิดขึ้นมากบริเวณใต้ฐานรากเมื่อเทียบกับการเคลื่อนตัวไปสู่ที่ผิว ดิน หากความลึกยิ่งมีค่าสูงมากขึ้นหรือ D/B มีค่ามากกว่าศูนย์มากขึ้น การเคลื่อนตัวของดินขึ้นสู่ผิว ดินด้านบ้านจะมีค่าน้อยมาก การเคลื่อนตัวส่วนใหญ่จะเกิดขึ้นมากอยู่บริเวณที่ฐานรากวางอยู่

ส่วนอิทธิพลเนื่องจากการกำหนดค่า Roughness of Footing นั้นจะไม่ค่อยมีผลต่อการ เคลื่อนตัวโดยดินใต้ฐานรากยังกงมีการเคลื่อนตัวตามที่เงื่อนไขกำหนดที่ไม่สามารถที่จะเคลื่อนตัว ใด้อย่างกรณีที่ฐานรากวางอยู่บนผิวดินเนื่องด้วยถูกกดทับหรือถ้อมไว้ด้วยดินที่อยู่สูงจากระดับของ ฐานรากเอาไว้ ทำให้การกำหนดค่า Roughness of Footing นั้นไม่ก่อยมีผลต่อการเคลื่อนตัวของดิน ส่วนในภาพที่ 103-105 เป็นภาพเวกเตอร์การเคลื่อนตัวของดินและภาพที่ 107-109 แสดง Total Incremental Displacement ของดินใต้ฐานราก กรณีที่ฐานรากที่วางต่ำจากระดับผิวดินที่กวามลึก ใดๆ(D/B>0)

<u>ภาพที่ 100</u> เปรียบเทียบการเคลื่อนตัวของดินทรายใต้ฐานราก ณ จุดวิบัติ ระหว่างค่า Roughness ของฐานรากแบบ Rough กับ Smooth (กรณีดิน = Loose Sand, B = 1 ม., D/B = 0)

<u>ภาพที่ 101</u> เปรียบเทียบการเคลื่อนตัวของคินเหนียวใต้ฐานราก ณ จุดวิบัติ ระหว่างค่า Roughness ของฐานรากแบบ Rough กับ Smooth (กรณีคิน = Soft Clay, B = 1 ม. , D/B = 0)

<u>ภาพที่ 102</u> เวกเตอร์การเกลื่อนตัวของ Medium Clay ที่สภาวะต่างๆ กรณีที่ D/B = 0

<u>ภาพที่ 103</u> เวกเตอร์การเคลื่อนตัวของ Medium Clay ที่สภาวะต่างๆ กรณีที่ D/B = 0.5

<u>ภาพที่ 104</u> เวกเตอร์การเคลื่อนตัวของ Medium Clay ที่สภาวะต่างๆ กรณีที่ D/B = 1

<u>ภาพที่ 105</u> เวกเตอร์การเกลื่อนตัวของ Medium Clay ที่สภาวะต่างๆ กรณีที่ D/B = 2

<u>ภาพที่ 106</u> Total Incremental Displacement ของ Medium Clay กรณีที่ D/B = 0

<u>ภาพที่ 107</u> Total Incremental Displacement ของ Medium Clay กรณีที่ D/B = 0.5

<u>ภาพที่ 108</u> Total Incremental Displacement ของ Medium Clay กรณีที่ D/B = 1

<u>ภาพที่ 109</u> Total Incremental Displacement ของ Medium Clay กรณีที่ D/B = 2

3.3 รูปร่างของระนาบการวิบัติของดินเนื่องจากการรับน้ำหนักจากฐานรากแบบ Strip

เมื่อดินได้รับน้ำหนักจนกระทั่งเกิดการวิบัติ ซึ่งพฤติกรรมของดินที่เกิดการวิบัติได้มี หลายคนที่ได้ทำการตั้งสมมุติฐานไว้ พฤติกรรมการวิบัติสามารถแบ่งออกเป็น 3 กลุ่มดังนี้ คือ Hill Mechanism, Prandtl Mechanism และ Terzaghi Mechanism โดยแต่พฤติกรรมจะพิจารณาแบ่งมวล ดินที่วิบัติออกเป็นสามส่วนเหมือนกัน คือ ส่วนที่หนึ่งเป็นรูปลิ่มสามเหลี่ยมใต้ฐานราก โดยมุมของ สามเหลี่ยมจะมีขนาดที่แตกต่างกันออกไป ดินส่วนนี้จะเกลื่อนตัวลงด้านล่าง ส่วนที่สองจะมีรูปร่าง เป็นรูป Log-Spiral และส่วนที่สามจะเป็นรูปลิ่มสามเหลี่ยมเช่นกันแต่จะมีการเกลื่อนตัวไปด้านบน โดยแต่ละพฤติกรรมจะมีความแตกต่างกันที่มุมภายในรูปลิ่มและจำนวนรูปลิ่มใต้ฐานราก ตามรายละเอียด ที่ได้กล่าวในส่วนของการตรวจเอกสาร ดังนั้น เมื่อนำผลการวิเคราะห์จาก FEM มาทำการเปรียบเทียบ กับพฤติกรรมการวิบัติ สามารถที่จะอธิบายรายละเอียดได้ดังต่อไปนี้

3.3.1 รูปร่างของระนาบการวิบัติของคินกรณี D/B = 0

จากผลของการเคลื่อนตัวของดินกรณีที่ฐานรากวางอยู่ที่ผิวดินจะเห็นว่า ดิน ใต้ฐานรากจะเคลื่อนตัวลง จากนั้นจะเคลื่อนตัวดันให้ดินเคลื่อนที่ขึ้นไปที่ผิวดิน จนกระทั่งเกิดการ วิบัติ สำหรับรูปร่างการวิบัติจะคล้ายคลึงกับสมมุติฐานของ Prandtl มากที่สุด โดยสมมุติฐานของ Prandtl กำหนดให้มุมของรูปลิ่มใต้ฐานรากมีค่าเท่ากับ 45+(**\$**/2) ในทุกความกว้างของฐานราก แต่ อิทธิพลเนื่องจากค่า Roughness of Footing มีผลต่อรูปร่างการวิบัติของมวลดิน โดยกรณีของ Rough จะมีการเคลื่อนตัวลงในระดับที่ลึกและกว้างมากกว่ากรณีของ Smooth ซึ่งทำให้ระนาบของการวิบัติ

3.3.2 รูปร่างของระนาบการวิบัติของคินกรณี D/B > 0

สำหรับกรณีนี้รูปร่างของระนาบวิบัติจะแตกต่างไปจากกรณีของฐานรากที่ วางอยู่ที่ผิวคิน การเคลื่อนตัวของคินจะเริ่มจากคินใต้ฐานรากเคลื่อนตัวลงเนื่องจากถูกบังกับด้วยฐาน ราก จากนั้นคินจะพยายามเคลื่อนที่ไปด้านข้างฐานรากและดันให้คินเคลื่อนที่ขึ้นสู่ด้านบนจนกระทั่ง เกิดการวิบัติ แต่เมื่อฐานรากวางอยู่ที่ระดับลึกมากขึ้น การที่คินจะเคลื่อนที่ขึ้นสู่ด้านบนจะน้อยลง เนื่องจากถูกกดทับไว้ด้วยคินที่อยู่ระดับฐานราก หากพิจารณาจากภาพที่ 116-117 จะเห็นว่าระนาบ การวิบัติจะเกิดจะไม่ชัดเจนเหมือนกับกรณีที่ฐานรากวางอยู่ที่ผิวคิน แต่ยังกงเกิดรูปลิ่มสามเหลี่ยมที่ ใต้ฐานราก จากนั้นจะมีลักษณะเป็นรูป Log-Spiral เชื่อมต่อระหว่างรูปลิ่มสามเหลี่ยมจนสัมผัสกับ ผิวดิน

<u>ภาพที่ 110</u> เปรียบเทียบระนาบการวิบัติของดินเหนียวระหว่าง FEM กับ Prandtl Mechanism กรณีฐานรากกว้าง 1 เมตร

<u>ภาพที่ 112</u> เปรียบเทียบระนาบการวิบัติของดินเหนียวระหว่าง FEM กับ Prandtl Mechanism กรณีฐานรากกว้าง 3 เมตร

<u>ภาพที่ 113</u> เปรียบเทียบระนาบการวิบัติของดินทรายระหว่างที่ได้จาก FEM กับสมมุติฐานของ Prandtl ที่ฐานรากกว้าง 1 เมตร

<u>ภาพที่ 114</u> เปรียบเทียบระนาบการวิบัติของดินทรายระหว่างที่ได้จาก FEM กับสมมุติฐานของ Prandtl ที่ฐานรากกว้าง 2 เมตร

<u>ภาพที่ 115</u> เปรียบเทียบระนาบการวิบัติของดินทรายระหว่างที่ได้จาก FEM กับสมมุติฐานของ Prandtl ที่ฐานรากกว้าง 3

a. ระนาบการวิบัติของฐานรากกว้าง 1 ม. (B = 1)

b. ระนาบการวิบัติของฐานรากกว้าง 1 ม. (B = 1)

<u>ภาพที่ 116</u> ระนาบการวิบัติของคินเหนียวจาก FEM ที่ความกว้างฐานราก 1 ม., 2 ม. และ 3 ม.

c. ระนาบการวิบัติของฐานรากกว้าง 1 ม. (B = 1)

<u>ภาพที่ 116</u> (ต่อ)

a. ระนาบการวิบัติของฐานรากกว้าง 1 ม. (B = 1)

b. ระนาบการวิบัติของฐานรากกว้าง 1 ม. (B = 1)

c. ระนาบการวิบัติของฐานรากกว้าง 1 ม. (B = 1)

<u>ภาพที่ 117</u> ระนาบการวิบัติของดินทรายจาก FEM ที่ความกว้างฐานราก 1 ม., 2 ม. และ 3 ม.